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Cumulative effect of PM2.5 components is
larger than the effect of PM2.5 mass on child
health in India

Ekta Chaudhary 1,10, Franciosalgeo George2,10, Aswathi Saji2,
Sagnik Dey 1,3,4 , Santu Ghosh 5 , Tinku Thomas 5, Anura. V. Kurpad 6,
Sumit Sharma7, Nimish Singh 1,7, Shivang Agarwal7,8 & Unnati Mehta9

While studies on ambient fine particulate matter (PM2.5) exposure effect on
child health are available, the differential effects, if any, of exposure to PM2.5

species are unexplored in lower and middle-income countries. Using multiple
logistic regression, we showed that for every 10μgm−3 increase in PM2.5

exposure, anaemia, acute respiratory infection, and low birth weight pre-
valence increase by 10% (95% uncertainty interval, UI: 9–11), 11% (8–13), and 5%
(4–6), respectively, among children in India. NO3

-, elemental carbon, and NH4
+

weremore associatedwith the three health outcomes thanother PM2.5 species.
We found that the total PM2.5 mass as a surrogate marker for air pollution
exposure could substantially underestimate the true composite impact of
different components of PM2.5. Our findings provide key indigenous evidence
to prioritize control strategies for reducing exposure tomore toxic species for
greater child health benefits in India.

Air pollution poses a significant global health risk, with 6.67 million
(95% UI: 5.90–7.49) deaths worldwide attributable to the combined
effects of household and ambient air pollution1. In 2019, over 99% of
the world’s population inhaled fine particulate matter (PM2.5) con-
centrations that exceeded the World Health Organization (WHO)
annual air quality guideline (AQG) of 5μgm−3 2. In India, home to one-
sixth of the global population, ambient PM2.5 exposure has been rising
in the last three decades3. In 2017, themajority (76.8%) of the people in
India were exposed to an annual population-weighted mean PM2.5

higher than the national ambient air quality standard (NAAQS) of
40μgm−3 4.

The latest round of the state-level burden of diseases in India
estimated that ambient PM2.5 exposure was responsible for 0.98 mil-
lion (0.77–1.19) deaths and 17.8 million disability-adjusted life years5.
The LancetCommission has emphasized that children under the age of
5 years (U5) aremore vulnerable to theharmful impacts of air pollution,

even at low levels, particularly during foetal development and the first
few months of life6. Thus, early-life exposure to air pollution7 impacts
child health outcomes such as acute respiratory infection (ARI)8, which
are the most common cause of global childhood morbidity and
mortality9. In addition to mortality, ambient PM2.5 exposure is a risk
factor for adverse pregnancy outcomes, including low birth weight
(LBW)10, stillbirth11, foetal mortality12, preterm birth13, and birth
defects14. In early childhood, it is a risk factor for impaired child growth,
stunting6,15, and anaemia16,17. Since the lower and middle-income
countries (LMICs) have higher levels of ambient PM2.5 exposure com-
pared to higher-income countries; the LMIC children are likely to have
disproportionately higher rates of these morbidities and mortality
linked to prenatal and early childhood exposure to ambient PM2.5

18.
PM2.5, by itself, is a composite mixture of multiple chemical spe-

cies. The components of PM2.5 may have varying toxicity with varying
mass fractions. As a result, the true cumulative impactof ambient PM2.5
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on health could be manifold higher than that estimated by the total
PM2.5 mass19,20. Moreover, the PM2.5 species can be tagged to specific
emitting sectors, providing opportunities to examine their relative
importance in mitigation strategies. The association between PM2.5

components and their sectoral contributions and U5 child health
outcomes is unknown at the national level in the LMICs.

To address these critical knowledge gaps, we estimated the
association of ambient PM2.5 and its components and emitting sectors
on three U5 child health outcomes—anaemia, ARI, and LBW, in India
andprovided a hypothesis to establish a causal inferenceof the results.
We combined anthropometric measurements, blood biomarkers, and
socioeconomic information from the fourth round of the national
family health survey (NFHS-4) with granular information on sector-
specific speciated PM2.5 exposure that was obtained by integrating
satellite-derived PM2.5 with outputs from the weather research fore-
casting (WRF) and communitymulti-scale air qualitymodelling system
(WRF-CMAQ)model (see ‘Methods’ for details). In this study, we assess
the effect of PM2.5 components and their contributing sources on
multiple child health outcomes and further assess the expected health
benefits of meeting various clean air targets.

Results
Study population and characteristics
There were 259,627 observations in the original NFHS-4 dataset, of
which 15,119 children hadmissing age. After removingmissing records
of exposure, outcome, and covariates, there were 177,072 observa-
tions in the final analytical sample for LBW and ARI (a detailed flow-
chart is given in Supplementary Fig. 1). In the anaemia analysis, all the
anaemia status-missing observations were excluded.

The national prevalence of LBW from the analytical sample was
16.6% (16.4, 16.8). This was slightly higher in girls (17.8%) than in boys
(15.5%). A significant variation in the prevalence of LBW was observed
across the levels of the mother’s education, socioeconomic status,
mother’s bodymass index (BMI), age, place of residence, and different
levels of PM2.5. The prevalence of anaemia among U5 children was
56.8% (56.6, 57.1). Anaemia was associated with maternal education,
religion, socioeconomic, place of residence, levels of PM2.5 exposure,
and maternal anaemia status.

The national prevalence of ARI was 2.8% (2.7–2.9). Maternal edu-
cation, religion, socioeconomic, place of residence, and levels of PM2.5

exposure were significantly associated with ARI. The estimated ARI

prevalence was relatively higher in rural areas than in urban (2.9% vs.
2.4%) areas (Supplementary Table 1).

The annual average PM2.5 level at the PSU level was 62 µgm−3 with
an interquartile range (IQR) of 52–79 µgm−3. Themost dominant PM2.5

components were organic carbon (OC), NO3
-, NH4

+, SO4
2-, and others

that include chloride, sodium, magnesium, potassium, calcium, soil,
and water molecules, and the remaining unspecified components.
These were mostly contributed from domestic, industrial, interna-
tional, agricultural, and transport sectors (Supplementary Table 2).

Effects of PM2.5 and its components and sources on child health
The two-stage model (‘Methods’) estimated the odds ratio, OR of LBW
as 1.15 (1.12–1.18), of anaemia as 1.57 (1.54–1.59), and of ARI as 1.32
(1.24–1.4) for every IQR increase in ambient PM2.5 exposure. Further,
gestational exposure to NO3

- showed the highest association on LBW
of children with OR 1.17 (1.14–1.2) per IQR increase in exposure. The
estimated ORs of LBW for every IQR increase in gestational exposure
of others, NH4

+, elemental carbon (EC), soil, SO4
2-, and OC were 1.14

(1.11–1.17), 1.13 (1.11–1.16), 1.11 (1.08–1.14), 1.09 (1.07–1.11), 1.07
(1.04–1.09), and 1.05 (1.03–1.08), respectively (Fig. 1). For anaemia, we
observed the largest impact of NO3

- (OR: 1.36, 1.32–1.41), followed by
NH4

+ (OR: 1.28, 1.25–1.31), others (OR: 1.25, 1.21–1.28), EC (OR: 1.21,
1.18–1.25), soil (OR: 1.18, 1.16–1.20), SO4

2- (OR: 1.14, 1.12–1.17), OC (OR:
1.12, 1.09–1.15) (Fig. 1). Similarly, the effect of NO3

- on ARI was relatively
higher than other components. The estimated OR of ARI was 1.52
(1.42–1.61) for every IQR increase in NO3

-. EC also had a larger impact
on ARI (OR: 1.49, 1.4–1.58), followed by OC (OR: 1.46, 1.37–1.55), others
(OR: 1.33, 1.26–1.41) and NH4

+ (OR: 1.15, 1.09–1.21) (Fig. 1).
Among the eight PM2.5 sources analysed using the two-stage

model, we found that the IQR increase in PM2.5 from road dust
exhibited a higher effect on LBW (OR: 1.13, 1.11–1.14), followed by the
international transboundary transport (OR: 1.09, 1.07–1.1), the industry
sector (OR: 1.07, 1.05–1.08), the agricultural sector (OR: 1.06,
1.05–1.07), other sectors (OR: 1.04, 1.02–1.07) and transport sector
(OR: 1.05, 1.02–1.07). For anaemia, every IQR increase in PM2.5 expo-
sure attributable to the sectoral emissions of unorganized (that
includes municipal waste burning and crematorium) sectors (OR, 1.19;
1.18–1.20) showed the highest adverse effect, followed by the inter-
national transboundary transport (OR: 1.11, 1.09–1.13), domestic and
road dust (ORs: 1.09 (1.06–1.11) and 1.09 (1.08–1.11), respectively),
agriculture (OR: 1.08, 1.07–1.09), industry (OR: 1.04, 1.02–1.06), and

Fig. 1 | Association between exposure to PM2.5 components and child health
outcomes.Odds ratio per IQR of PM2.5 components concentrations with their 95%
confidence intervals (black dots with error bars) for given health outcomes i.e.,

LBW, Anaemia, and ARI. The analytical sample size used for each health outcome is
provided in the consort diagram (Supplementary Fig. 1).
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transport (OR: 1.03, 1.0–1.06) sector. The power sector (OR: 0.96,
0.94–0.98) did not show any effect on anaemia among children
(Fig. 2). The domestic sector showed the largest effect on ARI than the
rest of the sectors. For every IQR increase of PM2.5 from the domestic
sector, we observed OR of ARI as 1.30 (1.24–1.35) followed by the
transport sector (OR: 1.21, 1.14–1.28), other sectors (OR: 1.21, 1.14–1.28)
and the agricultural sector (OR: 1.1, 1.07–1.13).

Effects of PM2.5 components on anaemia and ARI
stratified by LBW
Stratified estimates were obtained by adding an interaction term of
LBW in the second-stage model with air pollutants, one at a time
(‘Methods’). For an IQR increase in NO3

-, we observed the OR of
anaemia as 1.47 (1.41–1.52) for children born with LBW vs. 1.34
(1.3–1.38) for children born with normal weight. Apart from NO3

-, a
larger differencewas observed for EC (OR 1.3 vs. 1.2), andOC (OR 1.2 vs.

1.1). Similarly, OR of ARI was 1.72 (1.6–1.85) and 1.46 (1.37–1.56),
respectively, for LBW and normal birth weight children for IQR
increase in NO3. EC (OR 1.7 vs. 1.4) and OC (OR 1.6 vs. 1.4) also showed
large differences between LBW and normal birth weight (Fig. 3).
Exactly similar patterns were observed for PM2.5 emission attributable
to different sectors when stratified by LBW (Fig. 4).

Potential nonlinear association
The exposure-response relationship of components OC, NO3

-, and
NH4

+ exhibited a monotonic increase up to a midrange concentration
value, whereas the rest of the components, such as EC, soil, and others,
showed an inverted U-shaped pattern for LBW (Supplementary Fig. 2).
However, for anaemia (Supplementary Fig. 3), the majority of com-
ponents, such as EC, NH4

+, NO3
-, OC, SO4

2-, and others, showed a
monotonic increase in the probability of anaemia prevalence with an
increase in pollutant exposure. In contrast, for soil, the trend line

Fig. 2 | Association between exposure to PM2.5 contributed from various sec-
tors and child health outcomes. Odds ratio per IQR of PM2.5 sectoral concentra-
tions with their 95% confidence intervals (black dots with error bars) for given

health outcomes i.e., LBW, Anaemia, and ARI. The analytical sample size used for
each health outcome is provided in the consort diagram (Supplementary Fig. 1).

Fig. 3 | Association between per IQR of PM2.5 components concentrations with
an interaction of birth weight status and health outcomes such as anaemia
and ARI. The odds ratios with their 95% confidence intervals are represented in

black dots with error bars. LBW represents low birth weight; NBW represents
normal birth weight. The analytical sample size used for each health outcome is
provided in the consort diagram (Supplementary Fig. 1).
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witnessed a fall. The nonlinear association between the probability of
anaemia prevalence increased with increasing PM2.5 exposure. Simi-
larly, varying nonlinear patterns were observed for ARI (Supplemen-
tary Fig. 4).

Cumulative effects
The cumulative effects of PM2.5 components on respective child health
endpoints were estimated by summing over individual component-
specific estimates of regression coefficients (‘Methods’) adjusted to
their respective mass fraction. The cumulative regression coefficient
was defined as

β̂cum =
Xk

i= 1

miβ̂i

where,mi was the mass fractions and β̂i was the estimated regression
coefficient for ith component. The standard error of β̂cum was esti-
mated by V ðβ̂cumÞ=

Pk
i= 1 m

2
i V ðβ̂iÞ assuming independence among

regression coefficients of individual components.
The cumulative OR of PM2.5 components for 10 µgm−3 increase in

PM2.5 mass was estimated as 1.23 (1.21–1.26) for LBW, 1.49 (1.45–1.52)
for anaemia and 1.35 (1.29–1.41) for ARI, while for every 10 µgm−3

increase in PM2.5 mass, ORs were estimated as 1.05 (1.04–1.06), 1.10
(1.09–1.11), and 1.11 (1.08–1.13) for LBW, anaemia, and ARI, respectively.

Expected health benefits of meeting clean air targets
The national ambient air quality standard (NAAQS) for annual PM2.5

was set at 40μgm−3 in 2009 by the Government of India21. We exam-
ined the expected health benefits of meeting the NAAQS (Fig. 5b, e, h)
and eventually the WHO-AQG (Fig. 5c, f, i) based on the indigenous
exposure-response functions. We first estimated the expected reduc-
tion in ambient PM2.5 exposure (4PM2.5) at the district level if India
successfully meets the NAAQS and then the WHO-AQG relative to the
current exposure level. Then, we calculated the attributable fraction
(AF) as follows:

AF =
ðRR� 1Þ

RR

where RR= expðlogðORÞ×4PM2:5Þ, and OR is the estimated odds ratio
for each unit increase of PM2.5 exposure reported in previous

subsection (ORs were converted for unit increase of PM2.5). Finally, we
calculated the expected reduction in district-level prevalence (E) for
LBW, anaemia, and ARI due to the reduction in PM2.5 exposure as:

E =AF×District level prevalence

While we consider OR for elevation of PM2.5 mass (i.e., 1.005, 1.01
and 1.011 for LBW, anaemia and ARI, respectively) the overall LBW
prevalence could reduce from 16.6% (16.4, 16.7) to 14.5% (14.1, 14.9) if
the NAAQS level is achieved. If the exposure is reduced to the WHO-
AQG level, the LBW prevalence could reduce to 11.6% (11.1, 12.4). For
anaemia, the prevalence could reduce from 56.8% (56.6, 57.1) to 44.8%
(43.8, 45.7) and further to 32.9% (32.1, 33.6), respectively, while for ARI,
the prevalence could reduce from 2.8% (2.7, 2.9) to 2.1% (1.9, 2.3) and
further to 1.5% (1.3, 1.6) if the NAAQS and WHO-AQG levels are
achieved.

While we consider cumulative OR for elevation of PM2.5 compo-
nents (i.e., 1.021, 1.041 and 1.03 for LBW, anaemia andARI, respectively,
the overall LBW prevalence could reduce from 16.6% (16.4, 16.7) to
15.7% (15.3, 16.1) if the NAAQS level is achieved. If the exposure is
reduced to the WHO-AQG level, the LBW prevalence could reduce to
14.7% (14.3, 15.09). For anaemia, the prevalence could reduce from
56.8% (56.6, 57.1) to 50.7% (49.7, 51.8) and further to 44.2% (43.3, 45.1),
respectively, while for ARI, the prevalence could reduce from2.8% (2.7,
2.9) to 2.3% (2.1, 2.7) and further to 2.1% (1.8, 2.5) if the NAAQS and
WHO-AQG levels are achieved.

Discussion
In this study, we present, to our knowledge, the first comprehensive
assessment of the effects of PM2.5 and its components, as well as
contributing sectors, on three specific U5 children health outcomes in
India.We chose LBW, anaemia, and ARI to represent the health burden
of U5 children because these are common public health morbidities
reported in India, have pathophysiological frameworks that include air
pollution, andoccur in disparate frameworks of timeor organ systems.
PM2.5 is a mixture made up of various components with different
sources and toxicities. Each source may produce different PM2.5

components (either in primary form or secondary precursors), and
each component of PM2.5 may likewise come from various sources.
Our findings suggest that themajor health risk was posed by exposure

Fig. 4 | Association between per IQR of sectoral PM2.5 concentrations with an
interaction of birth weight status and health outcomes such as anaemia
and ARI. Odds ratios with their 95% confidence intervals are represented in black

dots with error bars. LBW represents low birth weight; NBW represents normal
birthweight. The analytical sample size used for eachhealth outcome isprovided in
the consort diagram (Supplementary Fig. 1).
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to NO3
-, NH4

+, EC, and OC. However, other components also indicated
a consistent risk to child health. Furthermore, we analysed the impact
of sectoral PM2.5 on all three child health outcomes. The PM2.5 expo-
sure attributable to the sectoral emissions from road dust, transport,
industry, agriculture, domestic, and others, as well as international
sources, depicted adverse effects on at least one health endpoint (see
Fig. 2). The estimated varying impacts of different PM2.5 components,
as well as those attributable to sectoral emission, can be considered as
the direct effects of each component on health, aswhen estimating the
effect for one component, the covariation of the other components
with health was adjusted indirectly by the combination of Stage-1 and
Stage-2 models.

The estimate of the effects of PM2.5 on LBW was quite similar to
the estimates observed in the current literature22,23. Sun et al.23

observed significant effects of specific PM2.5 components, including
potassium, zinc, nickel, titanium, elemental carbon, silicon, and
ammonium, to be more harmful than aggregated PM2.5. Some studies
have reported a significant positive association between anaemia and
PM2.5 among U5 children, but not much has been reported with PM2.5

constituents16,17. Several studies have reported adverse effects of PM2.5

on either occurrence or frequency of ARI in U5 children, but none have
assessed the impact of different PM components to understand their
true cumulative impact24,25. The true impact of every 10 µgm−3 increase
in PM2.5, which was an additive effect of PM2.5 chemical components
(cumulative effect), was observed to be considerably high (ORs: 1.23
for LBW, 1.49 for anaemia, and 1.35 for ARI) as compared to the esti-
mated effects by total PM2.5 mass (ORs: 1.05 for LBW, 1.10 for anaemia,
and 1.11 for ARI). Therefore, the total PM2.5mass, considered as the key

Fig. 5 | Benefits of meeting clean air targets. a Low birth weight prevalence (%)
across Indian districts, b low birth weight prevalence (%) after NAAQS imple-
mentation, c low Birth weight prevalence (%) after next air quality standards
implementation; d anaemia prevalence (%) across Indian districts, e anaemia

prevalence (%) afterNAAQS implementation, f anaemiaprevalence (%) afternext air
quality standards implementation; g ARI prevalence (%) across Indian districts,
h ARI prevalence (%) after NAAQS implementation, i ARI prevalence (%) after next
air quality standards implementation.
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surrogate marker for air pollution exposure, could substantially
underestimate the true composite effect of different components
of PM2.5.

There is a sufficiently large evidence base that the association of
PM2.5 and its components with LBW is possibly causal. It is known that
PM2.5 components can translocate into and cross the placental barrier
and can induce oxidative stress that can cause placental changes26.
Oxidative stress and placental inflammationmay impair transplacental
nutrient and oxygen exchange in the placenta, preventing enough
nutrients and oxygen from reaching the foetus at the right time during
gestation and impacting foetal growth27,28. Similarly, in U5 children, the
continuous exposure of the lung to pro-oxidants through PM2.5 or its
components causes oxidative stress leading to prolonged inflamma-
tion and lowered immunity, which is a common physiological pathway
for vulnerability to bacterial and viral infections29,30. The causality of
anaemia throughPM2.5 or its components is probably linked to chronic
inflammation. The secretion of inflammatory cytokines like
interleukin-6will signal the liver to secrete hepcidin, which reduces the
absorption of dietary iron31. It does so by binding to ferroprotein, the
cellular transmembrane iron-exporter, which prevents the inter-
nalization of dietary iron from the intestinal epithelium, as well as the
recycling of iron within the body by macrophages. These events
together reduce the amount of iron available for Hb synthesis. Equally,
erythropoiesis can be independently reduced by the inflammatory
cytokines32.

Our results contribute to the sparse body of evidence about the
impact of PM2.5 components onhealth, particularly in LMICs, and show
that the risk assessment purely based on PM2.5 mass may significantly
understate the impact of some of its more dangerous components.
These findings call for additional laboratory research to completely
comprehend the biological mechanisms through which the diverse
PM2.5 components affect human health. There are several limitations
of this study. First, we assumed that the child’s residence did not
change during the early life exposure period. Second, we considered
the mass fractions of each species and sectoral PM2.5 from the model
to be representative of the entire exposure duration. We combined
this model data with satellite-derived PM2.5 (see ‘Methods’) to get the
estimates of the required duration covering gestational and early life
exposures. The exposure-response curves were observed to bemostly
nonlinear and non-monotonic, unadjusted confounding could be one
of the causes. The true causes of the nonlinearity could be difficult to
explain from this study based on a cross sectional national survey with
a cluster level air pollution exposure. Therefore, the magnitude of the
varying effects may require further validation with well-planned
cohorts.

An additional aspect of our study is that it provides information
on the benefits of meeting clean air targets on child health. The ana-
lysis implies thatwith continued efforts towardsmitigating ambient air
pollution, the health burden among the children population can be
reduced. In fact, meeting the NAAQS would take the anaemia burden
closer to the ‘anaemia-free India’ mission target (reducing the pre-
valence to 40%) of the Government. The sectoral analysis that we
presented will be useful for policymakers. For example, the residential
and industrial sectors were the major contributors to ambient PM2.5,
with shares of 41% and 37%, respectively, followed by agricultural
residue burning (8%), other sectors (7%), transport (3%), and power
(2.6%) (Supplementary Fig. S5)33. Accelerating the supply of clean
energy for household activities through the Pradhan Mantri Ujjwala
Yojana scheme, imposing stricter emission norms and gradual transi-
tion to clean energy usage in the industries, efficiently managing open
burning are expected to provide a greater health benefit to the chil-
dren. We note that the modelled mass fractions of individual species
may have some uncertainties depending on the representativeness of
emission inventory, which was also highlighted in the literature33.
Nonetheless, this will not alter the broad conclusion of the study that

the cumulative impact of PM2.5 components is greater than the impact
of PM2.5 mass on child health in India.

To summarize, in a first-of-its-kind study, we demonstrated a
significant association between components and sectors contributing
to PM2.5 with LBW, anaemia, and ARI among U5 children in India. Our
study further showed that the children born with LBW aremore highly
impacted due to PM2.5 components exposure than the children born
with normal birth weight. We recommend further epidemiological and
toxicological studies to understand the biological pathways that drive
the linkage between air pollution and its causal effects and use these
data in driving clean air actions.

Methods
Health data
The health dataset was obtained from Demographic Health Survey
(DHS) version seven https://www.dhsprogram.com/data/available-
datasets.cfm, which provides national-level health data for India as
the NFHS-434. NFHS-4 was a household survey conducted between 20
January 2015 and 4December 2016 across all 640districts of India. The
survey data provided the necessary information on health and family
welfare, along with details on current threats in these areas, to aid
policies and programmes in India’s health sector over time. Informa-
tion on socioeconomic status, reproductive health and family plan-
ning, maternal and child health, breastfeeding and nutrition,
vaccination coverage, anaemia, and the symptoms of ARI were col-
lected in the survey.

The NFHS-4 sample was a two-stage stratified sample. The sam-
pling frame for the selection of Primary Sampling Units (PSU) was the
2011 census. PSUs in rural areaswere villages, andCensus Enumeration
Blocks (CEBs) were in urban areas. PSUs with less than 40 households
were combined with the closest PSU. Probability Proportional to Size
(PPS) sampling was used to select the final PSUs. Selected PSUs with
more than 300 households were divided into segments of 100–150
households, and two segments were selected at random with prob-
ability proportional to segment size. In the second stage, 22 house-
holdswere selected fromeach rural andurbancluster using systematic
sampling. Data collectionwas carried out using various questionnaires.
The survey included four questionnaires—a household questionnaire,
a woman’s questionnaire, a man’s questionnaire, and a biomarker
questionnaire. More detailed information on the sample design and
selection is available on the International Institute of Population Sci-
ences National Family and Health Survey-4 Report34.

Ambient PM2.5 exposure data
Our primary exposure metric was ambient PM2.5 exposure. Monthly
average PM2.5 concentrations at PSU level were used to construct long-
term exposure for three different health outcomes. For low birth
weight, the average of monthly PM2.5 ambient concentrations at the
PSUduring thepregnancywith number ofmonths beingderivedbased
on individual gestational age was considered as pregnancy period
exposure. For anaemia and ARI, the PM2.5 exposure was derived by
averaging monthly ambient PM2.5 concentration at the PSU over the
period of individual life course. We therefore, estimated the exposure
throughout the gestational period and life courseof U5 children across
all 636 districts from the national PM2.5 database created at a 1 km× 1
km spatial scale for India35. This database was created by converting
MODIS-MAIAC aerosol optical depth to surface PM2.5 using a dynamic
scaling factor from MERRA-2 reanalysis data. The instantaneous PM2.5

(representing the satellite overpass time) was then converted to a 24-h
average using the diurnal scaling factor from MERRA-2. Both these
scaling factors were calibrated against the data from the existing
ground-based network of the Central Pollution Control Board of India
(CPCB). At the annual scale, satellite-derived PM2.5 concentration
showed a correlation coefficient of 0.97, and a rootmean square error
of 7.2 µgm−3 with the coincident ground-based measurements from
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the CPCB network. The Individual level exposure to ambient PM2.5 was
calculated by clustering the exposure using geocode information of
each PSU in the NFHS-4 data.

PM2.5 composition
Satellite data cannot provide direct information on PM2.5 composition,
and very sparse ground measurements are available in India, that too
for a very limited duration. Therefore, we integrated satellite-PM2.5

data with outputs from a published study which employed WRF ver-
sion 3.9.1-CMAQ version 5.3.1 setup to simulate ambient PM2.5 con-
centrations at 36 × 36 km2 spatial resolution with 25 vertical levels33.
The modelling set-up (Supplementary Table 3) employed ERA5
meteorology and emissions estimated using Greenhouse Gas and Air
Pollution Interactions and Synergies (GAINS)-ASIA model (https://
gains.iiasa.ac.at) in which government reported energy consumption
data for the different sectors was used as an input for the year 2016.
ECLIPSE (version 5) database of IIASA (2014) had been used for the
national ammonia emissions, ship emissions, and the emissions emit-
ted from the neighbouring countries which fall within the study
domain that, includes Bhutan, Nepal, Myanmar, Bangladesh, Sri Lanka,
Pakistan, and parts of China and Afghanistan. In addition, trans-
boundary pollutants coming from outside the study domain were
taken from boundary conditions developed by the Community
Atmosphere Model with Chemistry (CAM-chem) model (https://www.
acom.ucar.edu/cam-chem/cam-chem.shtml). The ambient PM2.5

simulated concentrations showed a significant agreement for the
coefficient of determination when compared with the observed con-
centrations at ground-based monitoring stations33. The coefficient of
determination between the observed versus simulated monthly aver-
aged concentrations was found to be 0.81, while the index of agree-
ment was 0.94.

We estimated the mass concentrations of each PM2.5 component
(Mi) as

Mi =
Mi,model

PM2:5,model
× PM2:5,satellite ð1Þ

where Mi,model and PM2.5,model are the mass of component ‘i’ and total
PM2.5 mass derived from the model and PM2.5,satellite is the satellite-
derived PM2.5. Since the model estimates were available at 36 km ×
36 km resolution, we bilinearly re-gridded the model data to 1 km× 1
km to match its resolution with the satellite-based PM2.5 dataset
resolution. Once the griddedmass concentrations of each component
were estimated, we calculated the exposure for the NFHS clusters.

Sectoral contribution to PM2.5

The sectoral contributions to annual PM2.5 were estimated by the
subtraction method in the modelling framework. First, the control
simulation was carried out with all sectoral emissions on, and then in
each subsequent simulation, emissions from a particular sector were
switched off, and the difference provided the contribution from that
sector. The model outputs33 were analysed to derive PM2.5 contribu-
tions of the transport, small and medium-scale industries, brick
industry, major industries, power, domestic (due to solid fuel used for
cooking and heating), agriculture residue burning, construction, road
dust, and others (which includes refuse burning, construction, cre-
matoria, NH3, biogenic emissions, refineries, and evaporative non-
methane volatile organic compounds). Here we used these model
outputs and combined themwith satellite-PM2.5 following the method
explained in the previous section (for PM2.5 components) to estimate
the exposure to a specific sectoral PM2.5 for the NFHS clusters.

Outcome data
For U5 children, the primary health outcomes considered in this study
were LBW, anaemia, and ARI. For LBW, the NFHS-4 recorded birth

weight from either written records or the mother’s oral report. LBW
was defined by the WHO as a birth weight <2500g36. Children with
LBW were coded as 1, whereas the children with birth weight greater
than 2500g were coded as 0.

Information on anaemia prevalence among U5 children was
obtained from NFHS-4, which used the finger or heel prick method to
collect blood samples. Haemoglobin concentrations were measured
on-site using the HemoCue Hb 201+ analyzer37. Children with hae-
moglobin levels <11 g/dL were considered anaemic, and children with
haemoglobin levels >11 g/dL were considered non-anaemic38. These
were coded as 1 and 0, respectively.

ARI in U5 children was diagnosed by the reporting of symptoms
like cough, accompanied by short rapid breathing and/or difficulty in
breathing that was thought to be chest related. The interviewer asked
mothers whether their children experienced any ARI symptoms in the
two weeks preceding the survey. ARI was used as a dichotomous
variable with the presence of ARI symptoms coded as 1 and the
absence of ARI symptoms coded as 0.

Covariates
Several individual-level and household-level variables were identified
as potential covariates of LBW39,40, anaemia41 and ARI42. These vari-
ables were included in the analysis based on their significance with
the respective health outcome. The following individual-level vari-
ables were considered for all three outcome variables: sex of the
child (male or female), mother’s education (no education, primary,
secondary, and higher), and parity (1, or >1). In addition, for the
outcome variable ARI, we accounted for the age of the child, for LBW,
mother’s age (<20, 20–35, >35) and body mass index (BMI) of the
mother (underweight, normal weight, overweight and obesity),
lastly, for anaemia, maternal haemoglobin levels, and per capita iron
intake. Daily dietary iron intake (per capita) was obtained by con-
verting monthly food purchases captured by the 9th quinquennial
Household Consumer Expenditure survey of the 68th round of the
NSSO43 which was further triangulated with NFHS-4 by Swaminathan
et al.44. Household-level covariates used for both ARI and anaemia
were the following: socioeconomic status, which is classified into five
wealth quintiles (poorest, poor, middle, rich, and richest), type of
residence (rural or urban), and passive smoking (yes or no). Since
studies have shown that ambient20 and household36 air pollution are
associated with anaemia, we also included the type of cooking fuel in
the household as a covariate. This was classified as clean fuel (elec-
tricity, LPG/natural gas, biogas), solid fuel (coal/lignite, charcoal,
wood, straw/shrubs/grass, agricultural crop waste, and dung cakes),
kerosene, and others. For LBW, only the wealth index was used as the
household-level covariate.

Statistical analysis
Gestational period exposure was associated with LBW, and life course
exposure was associated with ARI and anaemia. PSU level ambient
concentration was assigned as the exposure to air pollutants for chil-
dren residingwithin thePSU. Toaccount for this cluster effect,weused
a logistic mixed effects regression model. We also wanted to estimate
the direct effects of all PM2.5 components adjusted for other covari-
ates. Owing to high collinearity among the PM2.5 components, we used
a two-stagemodel to avoid potentialmulti-collinearity. In thefirst step,
we regressed PM2.5 mass concentration on each component at a time
and extracted the residuals as an alternative metric that can capture
the total variability of PM2.5 except variability explained by the com-
ponent. These PM2.5-residuals were then adjusted in the second stage
logistic mixed model.

Stage-I:

ResPM2:5

� �
i =PM2:5 � δ̂0 � δ̂1Pi
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Stage-II:

logit Prob Y ij = 1jui

� �n o
=β0 +β1Pi +β2 ResPM2:5

� �
i + γ confoundersð Þij +ui

Where δ̂0 and δ̂1 were the estimates of intercept and slope from the first
stage model. Y ij represented the binary outcome (anaemia/LBW/ARI)
for the jth individual in ith PSU, Pi was one of the PM2.5 components,
(ResPM2.5)i was the residuals at ith PSU, ui was a random intercept
corresponding to ith PSU with ui ∼N 0,σ2

u

� �
and γ confoundersð Þij

represents the linear terms for all confounders adjusted.
Further, the estimates of PM2.5 components on anaemia and ARI

were stratified by birth weight status (LBW vs. Normal) using an
interaction component of LBW with the component in 2nd stage
model. Stratified analysis wasperformedby adding an interaction term
to the stage-II model. Potential nonlinear associations of pollutants on
health outcomes were explored by replacing Pi with a penalized cubic
smoothing spline function of Pi [i.e., f ðPiÞ] in the stage-II model.

To compare PM2.5 components specific estimate against the
effects estimate for elevation of whole PM2.5 mass we also estimated
adjustedORof PM2.5mass for LBW, anaemia andARI by cluster-logistic
regression, cluster being the PSU.

R version 4.1.2 (R Core Team, 2022 Vienna, Austria)45 was used for
all statistical analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Demographic Health Survey data used in this study can be
accessed through a restricted access system in accordance with the
data access guidelines of the DHS programme. To obtain access, a
request should be submitted after registering on the DHS website at
the following link: https://dhsprogram.com/data/Using-Datasets-for-
Analysis.cfm. Source data are provided as a Source data file and have
also been deposited in figshare under accession code https://doi.org/
10.6084/m9.figshare.2351375746. Exposure datasets used in this study
can be accessed using the same figshare accession code. Source data
are provided with this paper.

Code availability
R codes for the statistical models in the main text are available at
https://doi.org/10.6084/m9.figshare.23513757. R codes for data pro-
cessing techniques are available on request from the corresponding
authors.
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