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Targetable lesions and proteomes predict
therapy sensitivity throughdisease evolution
in pediatric acute lymphoblastic leukemia

Amanda C. Lorentzian1,2, Jenna Rever 1,2, Enes K. Ergin 2,3, Meiyun Guo1,2,
Neha M. Akella1,2, Nina Rolf 1,2, C. James Lim 1,2, Gregor S. D. Reid 1,2,
Christopher A. Maxwell 1,2 & Philipp F. Lange 2,3

Childhood acute lymphoblastic leukemia (ALL) genomes show that relapses
often arise from subclonal outgrowths. However, the impact of clonal evolu-
tion on the actionable proteome and response to targeted therapy is not
known. Here, we present a comprehensive retrospective analysis of paired ALL
diagnosis and relapsed specimen. Targeted next generation sequencing and
proteome analysis indicate persistence of actionable genome variants and
stable proteomes through disease progression. Paired viably-frozen biopsies
show high correlation of drug response to variant-targeted therapies but in
vitro selectivity is low. Proteome analysis prioritizes PARP1 as a pan-ALL target
candidate needed for survival following cellular stress; diagnostic and relapsed
ALL samples demonstrate robust sensitivity to treatment with two PARP1/2
inhibitors. Together, these findings support initiating prospective precision
oncology approaches at ALL diagnosis and emphasize the need to incorporate
proteome analysis to prospectively determine tumor sensitivities, which are
likely to be retained at disease relapse.

Relapsed cancer is a leading disease-related cause of death for
children and adolescents1. Targeting the specificmolecular changes
that arise in cancer cells may improve patient survival2; for this
reason, clinical trials centered on next generation sequencing
(NGS)-based identification of biomarkers and targetable pathways
are currently establishing patient enrolment strategies, clinical
protocols, and critical safety data for personalized therapies. Most
trials are currently limited to high-risk or recurrent disease. How-
ever, rapidly progressing disease often limits successful treatment
options. In certain cases, precision oncology trials may be initiated
at diagnosis. But, a major challenge for prospective precision
oncology approaches is our limited understanding of the persis-
tence or evolution of targetable lesions and their associated pro-
teins or pathways, and responses to targeted agents, that may be
gained or lost at relapse.

There is now a wealth of publicly available data for genomic and
transcriptomic characterization of paired diagnosis and relapse spe-
cimens from children with cancer. Clonal evolution does occur in
pediatric leukemia wherein a minor clone, present only at low fre-
quencies at diagnosis, is selected at time of relapse3–5. While these
studies show evolution in single nucleotide variants, often through
chemotherapy-inducedmutation such asNT5C2orCREBBP6, structural
variants change less frequently with leukemia progression.

Few studies have yet investigated how protein levels change from
diagnosis to relapse, especially pertaining to therapeutic targets. A
previous proteomic analysis ofmatched diagnostic and relapsed B-cell
precursor acute lymphoblastic leukemia (ALL) specimens, sourced
from pediatric and adult patients, observed increased protein levels in
specific pathways at relapse, including glycoloysis, phosphate pentose
pathway and metabolic pathways that may contribute to chemo-
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resistance, but it was not specific to pediatric ALL and was limited to
~1400proteins7. Sinceproteins are the actual therapeutic targets8,9, it is
crucial to better understand the pediatric tumor proteome to deter-
mine how the response to therapy may change through progression.

Here, we present a comprehensive interrogation of the dynamics
of ALL proteomes and genomes from diagnosis to relapse in paired
patient specimens, specifically to understand how cancer-driving and
potentially targetable lesions persist or differentiate through disease
progression.

Results
Next-generation sequencing (NGS) reveals stability of affected
genes through ALL disease progression
To examine genomic evolution in relapsed pediatric ALL, we sourced
25 paired initial diagnosis (Dx) and relapse (R) bone marrow biopsies
from 11 pediatric patients seen at BC Children’s Hospital (BCCH)
(Supplementary Data S1) and publicly available whole-exome sequen-
cing (WES) data from 138 specimens (69 paired biopsies) collected and
analyzed by the St. Jude’s Children’s Research Hospital (SJH) (Fig. 1a,
Supplementary Fig. 1).

At time of relapse of pediatric ALL, clonal evolution is frequently
convergent, and includes the outgrowth of clones defined by a dif-
ferent mutational site within the same affected gene; for example, a
relapse clone with KRAS.A146T replaces the diagnostic KRAS.G12D
clone3. Since alternate pathogenic mutations in the same gene often
serve as biomarkers for the same targeted treatment, we focused our
analysis on the affected gene, rather than the mutation site. We first
explored the mutational landscape in paired progression samples
(n = 10 B-ALL, n = 1 T-ALL) in the BCCH cohort via targeted, pediatric
cancer-focused NGS analysis and reported all somatic mutations
identified10. We detected recurrent copy number variants (CNV) or
single nucleotide variants (SNV) in CDKN2A/B, NRAS, KRAS, IKZF, JAK1,
and JAK2 (Supplementary Fig. S2, Supplementary Fig. S2, and Supple-
mentary Data S2), which are commonly mutated in pediatric ALL
samples9. Nine of the eleven patients had at least 50% retention of
mutations and four of these patients had 100% retention of mutations
(Supplementary Fig. S2).

We evaluated the lesions grouped by detection only at diagnosis
(Dx unique), only at relapse (R unique), or at both timepoints (shared).
Here we found 67% (30 of 45) of affected genes were shared between
paired diagnosis and relapse samples in the BCCH cohort (Fig. 1b). To
determine the generalizability of this finding, we mined all mutational
findings from an additional cohort: public NGS data from ALL cases
(n = 49 B-ALL; n = 20 T-ALL) treated at St. Jude’s Hospital (SJH) (Sup-
plementary Data S3, Supplementary Fig. S4)11. Samples collected from
either the BCCH cohort or the SJH cohort showed similar distributions
of affected genes that were shared between time-points or were
unique to Dx or R (Fig. 1b and Supplementary Data S4), with the
majority of variants shared between paired diagnosis and relapse
samples (Fig. 1c). In fact, the genes that were persistently mutated
through disease progression were highly similar in both cohorts,
including CDKN2A/B, IKZF1, and N/KRAS, with structural variants being
retained with higher frequency than SNVs (Supplementary Fig. S5a–c).
NT5C2mutations were detected only at relapse in the SJH cohort (10%
of relapse samples), but were not detected in the BCCH cohort. Sur-
prisingly, retention of genetic lesions was not correlated with the time
between diagnosis and first relapse, or between relapses (Fig. 1d and
Supplementary Fig. S5d, e). However, we observed relatively higher
lesion stability for Hyperdiploid (hyper), Philadelphia + (PH), and early
T-cell precursor (ETP) sub-types (Fig. 1e).

Matched patient-derived leukemic cells respond similarly to
variant-selected agents
Persistence of affected genes suggests that sensitivity to precision
therapies may also persist with disease progression. To examine this,

we paired affected genes with targeted agents following the Pediatric
MATCH strategy and evidence from clinical trials or case reports, as
described10. For the combined analysis of the SJH and BCCH cohorts
(n = 80 paired samples), we found 64% of ALL patients (51 of 80)
retained at least one variant-agent pairing at disease relapse; in fact,
nearly 50% of patients (38 of 80) showed complete retention of
variant-agent pairings through disease progression (Fig. 1f and Sup-
plementary Data S5). The target with the highest retention was
CDKN2A deletions paired with CDK4/6 inhibitors and shared in 68.9%
of occurrences. NRAS and KRASmutations paired with MEK inhibitors
were also highly retained and were shared in 57.1% and 61.5% of
occurrences respectively, although NRAS mutations occurred in 21
patients compared to 13 for KRAS (Fig. 1f). Conversely, for the five
patients that had MTOR targets (PIK3CA, PTEN, or MTOR mutations),
none of the targets were shared. Only five patients had variant-agent
pairings unique to the diagnostic timepoint, while 13 patients harbored
no targetable mutations (Fig. 1f).

We sourced viably-frozen bone marrow mononuclear cells (BM-
MNC) frompaired progression events for six patients treated at BCCH,
including four paired BM-MNC that showed retention of all affected
genes and two paired specimens with partial/no retention. Within this
cohort, we identified four targeted agents (CDK4/6pathwaymutations:
Palbociclib; MEK pathway mutations: Trametinib, JAK/STAT pathway
mutations: Ruxolitinib; SMO pathway mutations: Vismodegib) and
then we treated viable patient specimens with graded doses of these
agents.Weused image-baseddrug screeningof B-ALLcells co-cultured
with mesenchymal stromal cells (MSC) to determine IC50 values for
each sample after exposure for 48–72 h to the four different targeted
agents (Fig. 1g). Overall, the measured IC50 values revealed poor
selectivity, with predicted responses to trametinib being an exception.
Trametinib IC50 values were lower for patient samples predicted to be
sensitive to MEK inhibition (Fig. 1g), although the difference was not
significant (p = 0.13). In contrast, Palbociclib IC50 values did not differ
within the primary ALL cohort (Fig. 1g), suggesting cytotoxicity is
induced in a non-targetedmanner by this agent. Overall, themeasured
IC50 values in relapsed samples correlated with values measured in
matched diagnostic samples (Pearson’s r =0.85, p = 6.0e−7, Fig. 1h).
Therefore, our genomic analysis of pediatric ALL disease progression
samples revealed stability of gene lesions that are known therapeutic
targets. Drug sensitivities within matched diagnostic and relapsed
samples were also highly correlated, though the drugs showed poor
selectivity.

Global proteome analysis shows stability through progression
and groups cases with poor outcome
To determine whether the observed persistence of cancer-associated
targetable genomic lesions and associated drug sensitivities is also
characteristic of the proteome, we next conducted a comprehensive
analysis of 48 primary (n = 39 B-ALL, n = 9 T-ALL) specimens from Dx
and R sourced from the BCCH biobank. This proteomics cohort
included 14 specimens from six patients with matched biopsies taken
at diagnostic and subsequent relapse timepoints that were also in the
BCCH genomics cohort (Supplementary Fig. 1). In addition, we inclu-
ded five ALL cell lines in our study (B-ALL = 4, T-ALL = 1). Our diverse
cohort span the major cytogenetic groups and ages ranging from 2
years to 23 years (Fig. 2a). Male patients were moderately over-
represented (65% male compared to 35% female) (Fig. 2a, Supple-
mentary Data S1).

We employed a data independent acquisition approach (DIA)
using a study specific spectral library of 10,130 proteins to quantify
8,590 proteins (Supplementary Fig. S6, Supplementary Data S6 and
S7). To determine if the proteome distinguishes leukemia types, non-
cancer monocytes and cell lines, we first filtered for proteins with
highly variable protein abundance across samples (Supplementary
Data S8). Highly variable proteins were selected by calculating the
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log2 fold-change for each protein relative to the median protein
abundance across all samples for that protein. Only the proteins with
a log2FC > 2 in at least five samples were selected for further analysis
(3907 proteins). Samples clustered distinctly by B-ALL, T-ALL and
non-cancer monocytes and cell lines (Fig. 2b). Principal component
analysis (PCA) demonstrated that age and sex did not contribute
significantly to the variation in the data and the variation is most
driven by sample type (Supplementary Fig. S7). In line with earlier

reports, B-ALL cell lines cluster away from primary samples12,13 sug-
gesting phenotypic differences, thus highlighting the importance of
direct studies of primary samples. Interestingly, therewas one cluster
comprised of several different sample types. Upon further investi-
gation of blast percentage, we found this cluster to consist entirely of
low-blast samples (the three non-cancer BMspecimens, two low-blast
T-ALL samples and one low-blast B-ALL sample). These findings
demonstrate the sensitivity of our proteomics analysis to identify
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biological differences between sample types and perform unsu-
pervised classification.

To better characterize our largest patient group, we conducted a
focused analysis of the samples in the two B-ALL clusters. Unsu-
pervised hierarchical clustering of proteins with high variability in
B-ALL (Supplementary Data S8) resulted in seven proteome clusters
(Fig. 2c). Paired samples cluster closely together for four of six patients
that had multiple timepoints (Fig. 2c) indicating high similarity con-
sistent with our genomic findings. As well, some cytogenetic subtypes
showed stronger trends in co-clustering, for example, cluster P3 pri-
marily contained ETV6-RUNX1 patients. Hypodiploid patient samples
also clustered closely together although spread across two clusters.
Cluster P4was the largest cluster and consisted almost entirely of BCP-
ALL or “other” samples, indicating similar proteomes although these
samples are not characterized by a major shared genome alteration.
The remaining clusters were a mixture of subtypes, suggesting phe-
notypic similarities across cytogenetic subtypes (Fig. 2c).

Gene ontology enrichment analysis identified distinct biological
processes with differential protein abundance between the clusters
(Fig. 2c, Supplementary Data S9). Notably clusters P5, P6 and P7 have
higher abundance of proteins involved in antigen presentation and
leukocyte activation (cluster P3). Cluster P5was enriched for processes
related to actin and cytoskeleton organization while cluster P2 had the
highest abundance in proteins relating to humoral immune response.

High-risk cases were associated with all clusters but enriched in
cluster P4. Interestingly, stratification by risk group did not yield sig-
nificant differences in 5-year event-free survival (event = relapse or
death) (Fig. 2d). However, stratification by unsupervised proteome-
cluster followed by Kaplan Meier analysis of the major proteome-
clusters showed significant differences between clusters P2, P3, P7 and
cluster P4, which was associated with a high event rate (Fig. 2e).
Overall, our findings indicate phenotypic differences that are not
solely linked to the common ALL cytogenetic subtypes, and highly
similar proteomes between paired patients, consistent with our
observation of genomic stability.

Cancer-associated proteins and processes remain stable
through disease progression
To interrogate the apparent similarity observed in patient-matched
progression samples, we further examined the proteomes for the 6
pairs that had matched Dx-R or R-R biopsies (BALL01, BALL03,
BALL04, BALL05, BALL06, BALL07) plus one additional PDX-expanded
Dx-R-R set (BALL02) (Supplementary Figs. S8 and S9, Supplementary
Data S10 and S11). To better understand inter- and intra- patient sta-
bility among the disease states, we tested proteins for statistically
significant equivalence in all possible patient and timepoint pairings by
two-one-sided t-test (TOST) and corrected for a 5% false discovery rate
(FDR). As expected, the rate of significantly equivalent proteins was
lowest when proteomes of non-cancer specimens were compared to
proteomes of cancer specimens (63% or 68% equivalent to Dx or R,

respectively) (Fig. 3a, Supplementary Fig. S10a). In contrast, >90% of
robustly quantified proteins showed equivalent abundance when
comparingproteomesofmatcheddiagnosis and relapse specimens, or
multiple relapses, from the same patient (Fig. 3a, Supplementary
Fig. S10B, Supplementary Data S12). Only BALL05 and BALL06 showed
low equivalence (59% and 69% respectively) (Fig. 3a), and these paired
samples showed similar variation in gene mutations (Fig. 1f) and pro-
teome cluster analysis (Fig. 2c). At only 75% (median equivalence),
diagnosis or relapse samples obtained from different patients show
significantly lower proteome equivalence thanmatched samples from
individual patients through progression (Fig. 3a).

To determine processes that are particularly stable throughout
progression, we next performed a gene set and pathway enrichment
analysis. Proteins found to be equivalent between cancer and non-
cancer were removed prior to the enrichment analysis to eliminate
‘housekeeping’ mechanisms that are generally stable. Pathway
enrichment analysis identified processes linked to overall cell survival
as equivalent amongst cancer proteomes, including transcription
related processes,metabolic processes, and cellular responses to DNA
(Fig. 3b and Supplementary Data S13). Investigation of proteins that
were statistically different between the pairs did not reveal any pro-
cesses as significantly enriched between diagnosis and relapse.
Instead, we found protein abundance differences between time points
to be patient-specific (Supplementary Fig. S11, Supplementary Data
S14). We next probed proteins involved in B-cell development, such as
transcription factors IKZF1, EBF1, PAX5, VPREB1, and TCF14 (Supple-
mentary Data S15), that are commonly dysregulated in ALL. Overall,
abundance of theseproteinswas significantly higher in cancer samples
than in mature B-cells isolated from non-cancer peripheral blood
mononuclear cells (PBMCs) (Fig. 3c, Supplementary Fig. S12). More-
over, for most patients, stable abundance was observed between dis-
ease states (Fig. 3c, d).

Finally, we identified 45 cancer-associated proteins (CAPs) to be
significantly more abundant in diagnosis specimens (n = 6) or relapse
specimens (n = 12) compared to non-cancer controls (n = 3) (Supple-
mentary Fig. S13a-d and Supplementary Data S16), including several
proteins that are commonly overexpressed in acute lymphoblastic
leukemias such as FLT3, CDK6, and EBF115. Given that the 45 CAPs are
significantly more abundant in the ALL specimens than in the non-
cancer specimens, they are likely linked to tumorigenic processes in
our samples and would be of interest to determine their stability
through disease progression. The majority (n = 36 proteins) showed
increased abundance at both disease time-points (Fig. 3e) and their
abundance levels were positively correlated between diagnosis and
relapse (or relapse-relapse) (Pearson’s r = 0.75, p < 2.2e−16); similarly,
proteins with lower abundance (n = 10 proteins in either disease state)
showed significant positive correlation between disease states (Pear-
son’s r =0.70, p < 3.5e−15) (Supplementary Data S17 and Supplemen-
tary Fig. S13e–f). Further investigation of the few outliers revealed that
FLT3 was commonly over-abundant at Dx and lower abundant at

Fig. 1 | Stability of affected genes and targeted drug response through ALL
disease progression. a Flow-chart depicting the number of samples from each
cohort that were included for each analysis. b Circos plot for all mutations identi-
fied in the BCCH and SJH cohorts demonstrating mutations that were Dx unique
(dark gray), R unique (light gray), or shared between Dx and R samples (blue).
Genes in blue text indicate genes with detected lesions in both cohorts. c Fraction
of variants identified as D unique, R1 unique, or shared within paired samples
sourced from 80 ALL patients (n = 11 patients from BCCH represented by squares,
n = 69 patients from SJH represented by circles). The black bar represents the
median of the population. d Dot plot for fraction of shared variants versus time to
relapse for 80 ALL patients (n = 11 patients from BCCH represented by squares,
n = 69 patients from SJH represented by circles). e Dot plot for fraction of shared
variants separated by disease subtype for 80 ALL patients (n = 11 patients from
BCCH representedby squares,n = 69patients fromSJH representedby circles). The

black bar represents the median of the population. f Predicted sensitivity to tar-
geted agents in paired Dx-R samples (or Dx-R2, R2-R3 indicated by an asterisk)
taken from 80 ALL patients treated at BCCH (n = 11 patients, red) or SJH (n = 69
patients, dark pink). B-ALL (light brown) and T-ALL (dark brown) samples are
indicated. Shared variants (blue), Dx unique variants (dark gray), or R unique var-
iants (light gray) are indicated. Agent-variant pairs were assigned following the
strategy outlined in the Pediatric Match Trial9. g Dot plots for IC50 [µM] values
measured for primary samples or cell lines for each of four inhibitors. Measure-
ments represent the mean of n = 2 replica wells from a single experiment. Samples
are separated based on the presence or absence of a genomic variant predicted to
augment drug sensitivity (ns= not significant by unpaired, two-sided t-test).
h Correlation of IC50 [M] values measured for paired Dx and R samples. Individual
drugs are indicated by unique identifiers. r = Pearson correlation coefficient.
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Relapse (observed in BALL 01R4-R5P, BALL02, BALL03, BALL05) sug-
gesting the loss of FLT3 may be a relapse-specific mechanism. Other
outliers were patient-specific, such as the higher abundance of SELP at
Dx for BALL04. Restricting the comparisons to matched specimens
(n = 7 patients) confirmed that the high correlation was retained at the
level of individual patients (Fig. 3f, Pearson’s r = 0.67 − 0.90), indicat-
ing the stability observed through disease progression across the
global proteome is also observed when restricting the analysis to sig-
nificantly more abundant CAPs. To determine if this high level of sta-
bility is similar at a transcript level, we performed amplicon-based
transcriptome sequencing for four paired Dx-R patients (BALL01,

BALL04, BALL06, & BALL07) (Supplementary Data S18). BALL06 had
the lowest correlation, consistent with low gene mutation and protein
level stability observed in these samples. But, the other three pro-
gression pairs were highly correlated (Pearson’s r >0.85) and clustered
together by hierarchical clustering (Supplementary Fig. S14a). This
conclusion was confirmed with the analysis of a larger publicly avail-
able dataset (TARGET)16, which included pairedDx andR samples from
35 patients with pediatric ALL (n = 70 samples) (Supplementary Data
S19). Hierarchical clustering of samples based on Pearson correlation
revealed 51% of pairs clustered either as neighbors (34%) or within the
same cluster (17%) (Supplementary Fig. 14b). Similar to our proteome
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Fig. 2 | Global proteome analysis shows stability through progression and
groups cases with poor outcome. a Descriptive summary of the cohort for pro-
teome analysis. The bar plot represents the total number of each cytogenetic
subtype and the donut plots represent the age (top) and sex (bottom) of the
patients. b Hierarchical clustering of 3907 variable proteins represented by the
relative log2FC (protein intensity/median protein intensity). The color bars indi-
cate sample type (bottom) and leukemic blast percentage (top). c Themajor B-ALL
clusters were selected for in-depth characterization. Hierarchical clustering of 935
proteins based on log2FC defined seven sample clusters (horizontal) and five
protein clusters (vertical). The other color bars indicate main cytogenetic sub-
group (second from the bottom), followed by clinically assigned risk group (SR =
standard risk, HR = high risk), and current survival status on top. The five most

significant GO terms for each cluster of proteins were selected for visualizations.
The annotation to the right of each cluster of proteins is the summary of the top
significant terms. Bars represent the adjusted p-value for each GO term. d Kaplan
Meier survival curve with up to 5 year follow-up data for B-ALL clusters (n = 38)
grouped by clinically assigned risk group (SR = standard risk, HR = high risk), ns =
not significant by logrank test for trend. Black tick marks on the survival curve
represent data that has been censored due to follow-up data <5 years. e Kaplan
Meier survival curvewith up to 5 year follow-up data for B-ALL samples grouped by
proteome cluster for clusters with >4 samples (n = 30). Significance assigned by
logrank test for trend. Black tick marks on the survival curve represent data that
has been censored due to follow-up data <5 years.
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Fig. 3 | Cancer-associated proteins and processes remain stable through dis-
ease progression. a Summary of tests for equivalence (Two-one-sided t-test
(TOST) for equivalence, boundaries between log2FC < −1 and log2FC > 1, FDR< 5%)
of protein abundance between different groups and pairings. Only statistically
measurable proteins are represented. Each dot represents themean equivalence or
difference of all protein abundance for a pairing. The Mann–Whitney U test (two-
sided)was used to test the difference between the two groups’percent equivalence
boxplots (same patient-different timepoint vs different patient-same timepoint).
The number of comparisons in each group from top to bottom are n = 21 pairs,
n = 45 pairs, n = 76 pairs, n = 98 pairs, n = 17 pairs, and n = 210 pairs. Box represents
the interquartile range (IQR), the middle line represents the median and the
whiskers extend to 1.5 × IQR. b Pathway enrichment analysis of the stable popula-
tion of proteins. The color of the circles indicates the enrichment FDR and size
represents the number of identifications for the term. cAbundanceof transcription
factors of interest for each sample separated by timepoint (T1 or T2, black) com-
pared to protein abundance in mature B-cells (n = 2 samples) isolated from per-
ipheral blood mononuclear cells (gray). Box represents the IQR, the middle line

represents the median and the whiskers extend to 1.5 × IQR. d Dot plots represent
the log2FC of timepoint 1(T1)/timepoint 2(T2) for each of the proteins for each
sample. The shaded blue area indicates the stable range of −1 to 1FC. *For patients
with multiple timepoints (BALL01 and BALL02) only the log2ratio of the earliest
timepoint/the latest timepoint is represented for simplicity. e From the list of 269
pediatric cancer-associated proteins (CAPs), 141 proteins were detected in our data
and 45 proteins were deemed significant (LIMMA analysis of Dx samples vs. non-
cancer bonemarrow (BM) samples and R vs non-cancer BM samples (log2FC > 1, p-
value adjustedBH-FDR<0.05). Circos plot summarizes significantly over-abundant
cancer-associated proteins (CAPs). f The protein abundance for each protein that
was over-abundant at Dx (n = 22 proteins), was plotted as timepoint 1 (T1) vs
timepoint 2 (T2), where T1 is the earliest timepoint available (log2(protein
expression/the average protein expression in the non-cancer BM)). Pearson’s r
correlation was calculated for all sample pairs. In cases of multiple time-points the
correlation was calculated for consecutive pairings and are represented by the
different colored dots.
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findings of stability in cancer-associated proteins, correlations for
expression of cancer-associated gene products (mRNA) for each
patient (BCCH and TARGET) were also highly stable with 82% of pairs
having a Pearson’s r > 0.85 (Supplementary Fig. 14c).

Whole proteome discovery-driven analysis identifies pan-ALL
protein targets
The measured cytotoxicity was disappointing for agents informed by
the Pediatric Match genetic variant-agent prioritization strategy
(Fig. 2c) leading us to probe our proteome datasets for alternative
targets. To discover pan-ALL protein targets, we first filtered for pro-
teins identified in more than 40% of specimens and with a high overall
abundance (log10 intensity) and strong abundance increase over non-
cancer (log2 FC) (cut-off: at least 95th percentile for both metrics)
(Fig. 4a). We defined stable protein abundance between paired diag-
nostic and relapsed samples as a model variable for target discovery;
using this criterium, and representing patient BALL01 as an example
(Fig. 4b), we generated a ranked list of pan-ALL targets,which included
HSPB1, PARP1, and PRDX1 as top-ranked candidates (Fig. 4c). We
selected to further characterize PARP1 as a candidate target since
PARP1/2 inhibitors are already developmental therapeutics for a vari-
ety of pediatric tumors17. The efficacy of PARP1/2 inhibitors has also
previously been demonstrated in AML18, ALL cell lines19, and other pre-
clinical leukemic models20, however their usage for pediatric ALL with
elevated PARP abundance has not yet been shown. In addition, PARP1
is activated by DNA damage as a repair mechanism21, and “cellular
responses to DNA damage” showed enrichment in our prior pathway
enrichment analysis, providing further confirmation that this pathway
is overexpressed and stable (Fig. 3e).

To validate the hypothesis that PARP1 elevation is reflective of an
increased dependency on DNA repair in response to DNA damage, we
examined the cellular response to genotoxic stress in viably-frozen
ALL cells (n = 3 patients) or non-cancer bone marrow-derived stem
cells (BMSC) (n = 2 donors). We co-cultured primary cells on hTERT-
MSCs for 24 h without (sham) or following exposure to genotoxic
ionizing radiation (1 Gy X-ray) (Fig. 4d). After 30min or 24 h to allow
induction or resolution of damage respectively, expression of the DNA
damage marker gamma-H2AX or PARP1 was examined by immuno-
fluorescence and the intensity of staining was normalized to the
baseline levels measured at 30min in sham treatment (Supplementary
Fig. S15a). This analysis revealed an expected increase of gamma-H2AX
foci (DNA damage) 30min after X-radiation in both BMSC and B-ALL
samples (Fig. 4e, Supplementary Fig. S15B). The number of gamma-
H2Ax foci was significantly elevated at 30min after 1 Gy X-radiation in
B-ALL samples relative to control BMSCs (Fig. 4e) potentially indicat-
ing their hypersensitivity to genotoxic stress. The number of gamma-
H2AX foci was reduced in both populations by 24 h following
X-radiation (Fig. 4e), albeit to a lesser extent in B-ALL cells, indicating
either repair or clearance of damaged cells. However, the pattern of
PARP1 expression was distinct for B-ALL cells relative to BMSC,
increasing significantly in response to X-radiation (measured at
30min) as well as following proliferative stress (at 24 h in sham)
(Fig. 4f)(Supplementary Fig. S15c), suggesting a reliance on PARP1
expression for B-ALL cell survival following stress.

To test a possible reliance on PARP1 for survival and its potential
suitability as a target for therapeutic intervention we treated primary
patient specimens with graded doses of two PARP1/2 inhibitors, Ola-
parib andPJ34.We sourced viably-frozenALL samples (n = 18) from the
BCCH Biobank, including matched specimens used in our discovery
cohort (n = 4), additional ALL specimens (n = 13), and non-cancer
pediatric stem cell samples (n = 5). Image-based drug screening of ALL
cells co-cultured with MSC demonstrated high cytotoxic specificity of
PARP1/2 inhibitors for ALL relative to non-cancer BMSC samples, as
determined by IC50 values for each sample (Fig. 4g, h). To investigate
whether this result is an effect of increased cell proliferation, we

measured the percentage of phospho-histone H3 positive cells in
culture. We found, however, <2.5% of cells in the in vitro drug
screening assays are mitotic (Supplementary Fig. S16a–b) suggesting
cell proliferation is not the target for PARP inhibition. We next mea-
sured the protein abundance of key mitotic and cell cycle regulators
shown to differentiate cells in G2 andMphases22. While the expression
level of PARP1 was universally higher in B-ALL samples, we found the
levels of key mitotic and cell cycle regulators were not elevated in Dx
and R samples relative to non-cancer BM controls (Supplementary
Fig. S16c, d). The significant increase in sensitivity of ALL cells to
PARP1/2 inhibitors relative to non-cancer cells indicates that this may
be a potential pan-ALL therapeutic target that was discovered through
protein abundance analysis.

Discussion
Molecularly guided targeted therapies have a high potential to
improve outcomes for pediatric cancer patients. Yet, only 3–58% of
patients receive molecularly guided therapies and even fewer report a
positive response to treatment in NGS-guided trials23. These unsa-
tisfactory outcomes can be ascribed to multiple limitations, including
the reliance on genomics for target identification, which cannot cap-
ture the plasticity of downstream transcriptional, translational and
post-translational processes that impact target abundance and drug
sensitivity, and the restricted enrollment for high-risk or relapsed
cancers, which often progress quickly. Several initiatives, including
ZERO and INFORM, have recently exemplified the use of precision
oncology at diagnosis to help refine, or even change subtype diagnosis
for several cancer types, whichcan lead tomore appropriate treatment
options24,25. It is actively debated whether initiatingmolecular analyses
for precision oncology at diagnosis is beneficial23. Here, we advance
the debate by contributing additional evidence of high retention of
potential drug targets in pediatric ALL. We show that the stability
extends to andmay even bemore pronounced at the protein level and
that proteome analysis can inform target selection in addition to and
independent of genomic analysis.

One challenge to initiating precision medicine at diagnosis is the
prospect that the dominant relapse clones contain distinct mutations
and unique drug sensitivities. Genomic analysis of paired B-ALL sam-
ples has inferred clonal structure and evolution through disease
progression3,26–28; thus, for example, a transition from amajor clone at
diagnosis carrying a KRAS.G12D mutation is distinguishable from a
major clone at relapse carrying a KRAS.A146T mutation3. Our analysis
did not focus on the gain/loss of clone-defining mutations. Rather, we
measured the durability of actionable genomic mutations and stable
proteomic features over the course of the disease; in the example of a
transition for KRAS.G12D to KRAS.A146T highlighted above, for
instance, our analysis did not distinguish between site-specific muta-
tions in the same actionable target. In our cohort, mutations in IKZF1,
KRAS and NRAS were persistent at 80%, 75% and 60% of samples,
although these have been described as relapse-enriched mutations3,29.
Although indeed, we identified IKZF1 and KRAS mutations that were
unique to relapse, we found aswell that if themutationwas detected at
Dx it persisted to relapse 100% of the time.

We show that in primary ALL that progresses (80patients), 64%of
patients retain at least one potential drug target at relapse, although it
is estimated that 37% of primary tumors retain druggable events at
relapse23. This high level of persistence was further reflected in the
overall correlation of drug sensitivities between diagnosis and relapse.
In our assay, genome variants predicted sensitivity to a targeted MEK
inhibitor, which is consistent with prior studies26,27. However, we found
no correlation between the presence of CDKN2A deletion in primary
ALL samples and sensitivity to CDK4/6 inhibition. Indeed, the utility of
CDKN2A deletion to act as a predictive biomarker for sensitivity to
CDK4/6 inhibitors is currently unresolved28,30–32. Taken together, our
data supports the notion that common genomic biomarkers are not
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Fig. 4 | Whole proteome discovery-driven analysis identifies pan-ALL protein
targets. a Correlation of log2 fold-change (FC)/non-cancer vs protein abundance
for all proteins in samples from the paired Dx-R dataset. Dashed lines represent
cut-offs for top five percent of the population. Proteins thatmeet both cut-offs are
black and PARP expression is represented by green triangles. b Representative
figure showing all proteins that are >log2FC of 1.7. Only the proteins that have
log10 intensity >6.0 (top 5%) are in green.n = 1 experiment from the two samplesof
patient BALL01. Box represents the IQR, themiddle line represents themedian and
the whiskers extend to 1.5 × IQR. c All proteins of interest plotted by percentage of
samples the proteinmeets the indicated parameters (black), was identified but not
meeting the parameters (gray) or not detected (white). PARP1 is highlighted in
green. d Experimental timeline and protocol (above) with image analysis pipeline
(below) for primary B-ALL and BMSC cocultures followed by immunofluorescence
analysis to quantify γH2Ax foci per cell and PARP1 nuclear fluorescence. e Log2
γH2Ax foci per cell normalized to sham treatment at 30min, quantified from
immunofluorescenceanalysis of 2 BMSC(red) samples and 3B-ALL (black) samples

(n = 30 cells per sample). Significance is assigned by unpaired, two-sidedWelch’s t-
test. f Average PARP1 nuclear fluorescence per cell normalized to sham treatment
at 30min, quantified from immunofluorescence analysis of 2 BMSC (red) samples
and 3 B-ALL (black) samples (n = 30 cells per sample Significance is assigned by
unpaired, two-sided Welch’s t-test. g Measured IC50 values for Olaparib or PJ34
measured against ALL or non-cancer samples from patients treated at BCCH (n = 5
non-cancer, 8 diagnostic samples, 10 relapse samples). IC50 [µM] are colored by
most sensitive in yellow to least sensitive in blue. Measurements represent the
mean of n = 2 replica wells from a single experiment. Bolded Patient IDs indicate
patient samples analyzed in the pan-ALL target proteomic analysis. h Dot plots for
IC50 [µM] values for Olaparib or PJ34 measured against non-cancer speci-
mens (n = 5) (red), primary diagnostic specimens (n = 9) (light brown) or primary
relapse specimens (n = 9) (black). Points represent the mean of n = 2 replica wells
from a single experiment for each specimen. Significance is assigned by unpaired,
two-sided student’s t-test.
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sufficient to predict tumor sensitivity to variant-targeted
monotherapies33.

To supplement NGS-guided target identification, some precision
oncology initiatives are complementing genome analysis with addi-
tional molecular strategies such as RNA-seq or Methyl-seq23,24,34. Our
study conducted comprehensive targeted andnon-targeted, pairedDx
and Relapse proteome analyses of pediatric ALL. Global quantitative
proteome analysis identified clusters that span across established
subgrouping based on cytology and risk with one cluster being parti-
cularly associated with poor 5-year event free survival. This observa-
tion further adds to the emerging notion that proteome-based
molecular subtypinghas the potential to identify larger groups that are
more reflective of the actionable phenotype35.

Combining tumor proteome insights with genomic data enables
an even deeper understanding of disease progression. For example,
targeted sequence analysis indicated considerable evolution in
BALL03, but the CAP proteome analysis was highly stable (r =0.78,
p < 4.1e−07). Similarly, the relapse BALL04 sample gained a TP53
mutation, but CAP stability, proteome stability (equivalence of 90%),
and drug responses were highly correlatedwith the diagnostic sample.
Thus, the evolution of minor clones through disease progression may
not dramatically impact the expressed proteomes.

Proteomic analysis can also reveal potential targets36–38. Con-
sistently, we identified PARP1, PRDX1, ANAPC1 and HSPB1 as over-
expressed pan-ALL target candidates. PARP sensitivity has previously
been linked tomarkers of ongoing replicative stress in AML cells18, and
we find similar evidence of ongoing replicative stress in primary B-ALL
sensitizing to PARP inhibition. Mechanisms to overcome such stres-
sors enable leukemic cells to maintain active cell proliferation and
prolong cell survival39–41. Moreover, we validated the sensitivity of
B-ALL samples to PARP1/2 inhibition in vitro. Similarly, the other top-
ranked, proteome-based, pan-ALL targets warrant further investiga-
tion of their actionability in pediatric ALL. The pro-survival antioxidant
activity of PRDX142 and anti-apoptotic activity of HSPB143 may, like
PARP1, be necessary for B-ALL cell survival. Overexpression of these
proteins appear to be biologically relevant and may be of interest for
further exploration.

Our retrospective design was useful for studying matched Dx-R
samples,which are relatively rare anddifficult to predict prospectively.
We note that the conclusions drawn from our proteome analyses and
image-based drug screening are limited by the number of matched
patient samples examined, the variety of genetic subtypes, and the
ethnic diversity of the patients treated in our single site cohort. In
addition, image-based drug screening of ex vivo ALL-MSC co-cultures
may not accurately reflect responses in patients although it has been
shown to capture leukemia-intrinsic differences in cell proliferation
and survival and, in the case of Venetoclax, ex vivo responses correlate
with strong in vivo antileukemic activity44.With these potential caveats
inmind, thefindings fromthis studydemonstrate clear potential utility
for prospective proteogenomic variant identification for the targeted
treatment of pediatric relapse ALL to be initiated at first diagnosis.

Methods
Patient samples and non-cancer controls
Patient specimens were collected by Biobank staff at BC Children’s
Hospital. Sampleswere takenwith informedconsent frompatients and
their parents during routine clinical care. Sample collection and
experiments were performed as approved by the University of British
Columbia Children & Women’s Research Ethics (H17-01860), and
conformedwith standards defined in theWMADepartment of Helsinki
and the Department of Health and Human Services Belmont Report.
Sex was taken into consideration of the study design. Sex was self-
reported by the patient or the patient’s parents.

Mononuclear cells containing leukemic blasts were isolated by
Ficoll-Paque PLUS density centrifugation, and then viably frozen and

preserved. Aliquots of patient samples, and patient clinical informa-
tion were de-identified prior to release for this study. Leukemia sam-
ples were immunophenotyped at the clinical hematopathology
laboratory using established ALL subtype-specific 10-color flow cyto-
metry panels according to clinical standard operating procedures.
Patient bone marrow morphology was assessed by hematopatholo-
gists and cytogenetics studies were performed by clinical cytogeneti-
cists. Upon receipt of the specimens, patient mononuclear cells were
thawed at 37 °C for 1–2min, washed 1× in warm RPMI-1640 medium
containing 10% fetal bovine serum (FBS, Invitrogen, Waltham, Massa-
chusetts, USA) and washed 2× with PBS and stored as 0.5 × 106–1 × 106

cells per cell pellet.
Bone marrow stem cells (BMSC) from five non-cancer individuals

were initially collected following routine procedures for bone marrow
stem cell transplantation, and remaining material was stored viably
with the BCCH Biobank. In addition, we obtained bone marrow
mononuclear cells from one healthy individual (non-cancer BM).
Finally, for analysis ofmatureB-cells, PBMCs fromfive patients that did
not have any hematological malignancies that were in a similar age
range were combined.

Cell lines
The following cell lines were used in the study; Nalm6 (M), Jurkat (M),
RS411 (F), BV173 (M), 697 (M). All cell lines were purchased from the
American Type Culture Collection (ATCC) and have been sequenced
with a targeted NGS sequencing panel to confirm identity. ALL cell
lines were cultured in RPMI-1640 media supplemented with 10% fetal
bovine serum (FBS) and 2mML-Glutamine (Gibco, Grand Island, NY)
and maintained at 37 °C in 5% CO2. Cell lines were maintained at con-
centrations recommended by ATCC and passaged every 2–3 days. Cell
lineswere not tested formycoplasm.To collect the cells forMS sample
preparation, cells were washed 2× with PBS and stored as
0.5 × 106–1 × 106 cells per cell pellet.

DNA/RNA extraction and sequencing
DNA and RNA extraction were performed using an Allprep (Qiagen)
workflow. Library preparation and targeted sequencing was per-
formed using the Oncomine Childhood Cancer Research Assay
(OCCRA) on an Ion Chef and Ion Torrent S5 platforms (Thermo Fisher
Scientific) following the manufacturer’s protocols. OCCRA comprises
2031 uniqueDNA-based amplicons to detect SNVs, andCNVs, and 1701
RNA-based amplicons to detect unique fusion or structural variants10.
The average read depth for the OCCRA panel was 5 × 106–7 × 106 per
sample for DNA and 1 × 106–2 × 106 for RNA.

SNVs were retrieved with Ion Reporter software (version 5.2).
Copy number measurements were retrieved with Ion Reporter soft-
ware (version 5.2) for genes with >5 probes, including those that were
validated for copy number gains as described elsewhere10.

St. Jude’s Hospital (SJH) data curation
Data was downloaded from www.stjuderesearch.org/site/data/
relapsed-all in December 2018. For our analysis, we included patients
with Dx-R1 progression. To determine gene mutations as Dx unique,
Shared, of Relapse unique, we included genes listed as “rise” as a
shared mutation and genes listed as “fall” as Dx unique (Supplemen-
tary Data S3).

Cytotoxicity analysis of variant-predicted drug response in
paired Dx-R ALL samples
hTERT-immortalized mesenchymal stromal cells (MSCs) were pro-
vided byD. Campana (St. Jude’s Hospital). hTERT-MSCswere seeded at
5000 cells per well in 200μL of RPMI-1640 medium containing 10%
fetal bovine serum (FBS, Invitrogen) and 1μM hydrocortisone (Sigma)
in a 96-well plate (Corning, Corning, New York, USA), 24 h prior to
seeding with primary B-ALL or non-cancer bone marrow stem cells.
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Primary samples were thawed at 37 °C for 1–2min, washed 1× in warm
RPMI-1640 medium containing 10% FBS and washed 2× with PBS, and
stained with DAPI CFSE stain (Invitrogen) used to distinguish the ALL
cells from the hTERT-MSC cells45. The media was removed before
adding 5 × 104 B-ALL cells in 100μL of AIM-V medium (Thermo Fisher
Scientific).

Drug dilutions were prepared at 2× the final concentration (1 nM,
10 nM, 100 nM, 1μM, 20μM, and 30μM) and 100μl of each drug
dilution was added to 100μl of primary cells in each well. Cells were
incubated with the drugs for 72 h at 37 °C in a 5% (v/v) CO2 incubator.
Drugs used in the study: Palbociclib, Trametinib, Ruxolitinib, and Vis-
modegib (Selleck Chemicals LLC, Houston, TX, USA). For PARP1/2
inhibitors, the drugs were prepared for final concentrations of 1 nm to
100 µM in 10-fold increments PJ34 (SelleckChem), 0.1 nM to 10 µM in
10-fold increments for Olaparib (SelleckChem).

After 72 h, CyQUANT Direct (Green) (Thermo Fisher Scientific)
was added and incubated at room temperature for 1 hour. The plate
was analyzed by a high content image analysis system (ImageXpress
Micro XL). Images were taken using a 40×0.75 NA dry objective with
the MetaXpress 5.0.2.0 software (Molecular Devices Inc) on the Ima-
geXpress Micro XL epifluorescence microscope (Molecular Devices
Inc). DAPI and GFP (green fluorescent protein) emissions were
acquired simultaneously with a 505DCXR beam splitter (Dual-View;
Optical Insights, LLC) with the optical filters for DAPI excitation or GFP
emission, respectively. For the analysis of the proportion of living cells,
images were taken once per site using 50-ms exposures, 2 × 2 binned
resolution, with 100% of full lamp intensity for each channel, and 25
optical sections spaced 500 μm apart. Post-acquisition processing of
images was performed using MetaXpress offline.

Viability was calculated by taking the mean of (DAPI and GFP
double-positive (DP) cells)/ (DAPI single-positive cells) for each drug-
treated well. To account for relative viability of the primary cells in the
assay, the drug-treated viability was normalized to the calculated via-
bility for the vehicle-treated (DMSO) cells. After 72 h in this platform,
viability was generally >70% in vehicle-treated cells, but viability can
vary between samples44. Thus, we set a viability of 45% as aminimum in
vehicle-treated cultures. For PARP1/2 inhibitors, normalized viability
was assessed by the summation of DP cells across four sites in drug-
treated wells / summation of DP cells across 4 sites in DMSO-treated
wells. IC50 concentrations were calculated in GraphPad PRISM version
9 (GraphPad Software, San Diego, CA, USA) with the method “log
inhibitor concentration vs normalized response”.

Protein extraction and LC-MS/MS acquisition
Unless otherwise stated, reagents were purchased from Sigma Aldrich
(St. Louis, Missouri, United States). Pellets of 0.5 × 106–1 × 106 cells
were lysed in 50 µl buffer containing 1% SDS (Fisher BioReagents,
Pittsburgh, Pennsylvania, United States), 1X Pierce protease inhibitor
(ThermoFisher Scientific) in 50mMHEPES (pH 8.0), followed by 5min
incubation at 95 °C and 5min on ice. The sample was incubated with
benzonase (EMD Millipore/Novagen, Massachusetts, USA) at 37 °C for
30min to shear chromatin. Following benzonase treatment, each
sample was reduced with 10mM Dithiothreitol (DTT) dissolved in
50mM HEPES pH 8.0 (37 °C, 30min) and alkylated with 40mM
Chloroacetamide (CAA) dissolved in 50mM HEPES pH 8.0 (30min in
the dark) and quenched in 40mMDTT for 5min at room temperature.

Lysates were cleaned using single-pot solid-phase-enhanced (SP3)
bead technique46 using hydrophilic and hydrophobic Sera-Mag Speed
Beads (GE Life Sciences, Issaquah, Washington, United States). Pro-
teins were bound to paramagnetic beads with 80% ethanol (v/v),
incubated for 18min at room temperature, andwashed twicewith 90%
ethanol using magnetic isolation. Beads were then resuspended in
30μl 200mM HEPES, pH 8.0, and incubated with sequencing-grade
trypsin (Promega Madison, Wisconsin, United States) at 1:50 protein
ratio for 16 h at 37 °C, and afterwards acidified to pH 3–4 with formic

acid. Peptide digests were de-salted on Nest Group Inc. C18 spin col-
umns with 0.1% trifluoroacetic acid (TFA), eluted with 60% acetonitrile
in 0.1% FA and dried in a vacuum concentrator. Dried samples were
resuspended in 0.1% formic acid (FA).

Library preparation—high pH reverse-phased fractionation (for
BCCH cohort 1)
Depending on final protein amount, 1–4 µg of protein was taken from
each sample and combined into one pool for fractionation. Fractio-
nationwas performed on a Kinetic EVOC18 column (2.1mm× 150mm,
1.7 µm core shell, 100Å pore size, Phenomenex) connected to an Agi-
lent 1100HPLC systemequippedwith a diode arraydetector (254, 260,
and 280 nm). A flow rate of 0.2ml per minute was maintained on a
60min gradient using mobile phase A (10mM ammonium bicarbo-
nate, pH 8, Fisher Scientific, cat. no. BP2413-500). Elution was with
mobile phase B (acetonitrile, Sigma-Aldrich, cat. no. 34998-4 L) from 3
to 35%. Peptide fractionswere collected eachminute across the elution
window. A total of 48 fractions were combined to a final set of 24 (e.g
fraction 1 + 25 as final fraction 1), and dried in a SpeedVac centrifuge.
Peptides were resuspended in 0.1% FA in water (SC235291, Thermo
Scientific) prior to mass spectrometry analysis.

Peptides were analyzed using a Thermo Scientific Easy-spray
PepMap™RSLC C18 column (75μm× 50 cm, 2 μm, 100Å; ES803),
maintained at 50 °Con an Easy-nLC 1200 connected to aQ Exactive HF
mass spectrometer (Thermo Scientific). Peptides were separated over
a 3 h gradient consisting of Buffer A (0.1% FA in 2% acetonitrile) and
3–30% Buffer B (0.1% FA in 95% acetonitrile) at 250 nL/min. MS
acquisition was performed with full scan settings between 400 and
1800m/z, resolutionof 60,000, AGC target of 5 e4, andMaximum ITof
75ms. Stepped collision energy (NCE) was 28. MS2 scan settings were
as follows: isolationwindowof 1.4m/z, AGC target of 5 e4,maximum IT
of 50ms, at resolution of 15,000 and dynamic exclusion of 20.0 s.

Library preparation—gas phase fractionation (for BCCH
cohort 2&3)
Online gas-phase fractionation was performed. 1–2μg de-salted pep-
tides from select samples were combined into a single pool and ana-
lyzed in ten fractions, 1μg per fraction, 3 h gradient. The first eight
fractions (340–760m/z) were analyzed over a 60m/z window (i.e.,
340–400m/z is fraction 1) each with a loop count of 30 and window
size of 2m/z. The final two fractions (820–1180m/z) were analyzed
over 180m/zwindow each, with a loop count of 30 and 6m/zwindow.

Peptides from cohort 1 were separated on a Thermo Scientific
Easy-spray PepMap™RSLC C18 column (75 μm × 50cm, 2 μm, 100Å;
ES803) and from cohort 2&3 were separated on a PharmaFluidics
50 cm uPACTM (ESI Source Solutions, Woburn, MA, United States),
maintained at 50 °Con an Easy-nLC 1200 connected to aQ Exactive HF
mass spectrometer (Thermo Fisher Scientific). The peptides were
separated over a 3 h gradient consisting of Buffer A (0.1% FA in 2%
acetonitrile) and 2–80% Buffer B (0.1% FA in 95% acetonitrile) at 300
nL/min. MS acquisition consisted of a MS1 scan ranges specified above
for each fraction (AGC target of 3e6 or 60ms injection time), and
resolution of 120,000. DIA segment spectra were acquired with a AGC
target 3e6, resolution 30,000, auto ms injection time, and stepped
collision energy of 25.5, 27, 30. The library was also supplementedwith
DIA data from each individual sample.

Sample MS acquisition
1μg of peptides was injected for analysis for each sample. Samples
were randomized and we obtained duplicate injections (cohorts 2&3)
when possible. The DIA method consisted of a MS1 scan from 300 to
1650m/z (AGC target of 3e6 or 60ms injection time), and resolution of
120,000. DIA segment spectra were acquired with a 24-variable win-
dow format, (AGC target 3e6, resolution 30,000, auto for injection
time), and stepped collision energy of 25.5, 27, 30. We added indexed
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retention time (iRT) peptides (Biognosys, Schlieren, Switzerland) to
each sample for retention time normalization and quality control.

Full BCCH cohort—proteomics data analysis
The BCCH cohort consisted of three sample sets. The spectral library
for each of the three sample sets was combined in Spectronaut into
one library of 10,130 proteins. All DIAfiles were searched togetherwith
the combined spectral library. Briefly, the raw DIA files were analyzed
with Spectronaut Pulsar X (Biognosys, Schlieren, Switzerland) using a
human FASTA file from UniProt (reviewed 20200309). This FASTA file
includes common contaminants. In addition, a FASTA file for iRT
peptides, provided by Biognosys, was included in the search. Search
was performed using the factory settings including specificity for
Trypsin, Carbamidomethyl (C) as a fixed modification, and Acetyl
(protein N-term) and Oxidation (M) as variable modifications. Pre-
cursor, and protein identifications false discovery rate (FDR) threshold
was set to 1%, while the threshold for peptide was 0.5%. The data was
normalized in Spectronaut based only on proteins identified in all
samples and then further processed for batch effect removal by Har-
monizR (version 0.0.0.9000)47.We utilizedHarmonizR for batch effect
correction is that it allows the retention of the proteins that otherwise
would be dropped due to containing missing values (Supplemen-
tary Fig. S5).

For the analysis of the full cohort, data was filtered for proteins
identified in at least 25% of each cohort, and the remaining missing
values were imputed using a “down-shifted normal” imputation strat-
egy resulting in a total of 7307 proteins used for analysis. For hier-
archical clustering we filtered for highly variable proteins by
calculating the relative FC (protein intensity/median protein intensity)
for each protein, and selected only the proteins with a log2FC > 2 in at
least 6 samples (3907 proteins).

TheB-ALL analysis was restricted toproteins identified in all B-ALL
samples (3857proteins). Highly variable proteinswith a log2FC > 1 in at
least 5 samples were selected (935 proteins). For gene ontology ana-
lysis we used g:Profiler (BIIT! Research Group, g:Profiler version
e104_eg51_p15_3922dba, database updated on 07/05/2021) with an
FDR threshold of 5%. To attain better resolution of the pathway
visualization, we followed a similar strategy previously described48; we
limited the terms to GO: Biological Process (BP) and limited the
number of intersections to 1000. The five terms with most significant
adjusted p-value were selected for visualization.

Survival analysis
Kaplan Meier survival analysis was performed in GraphPad Prism.
Patients that had <5 year follow-up data were censored, meaning the
sample was still included but the end of the follow-up data is indicated
on the survival curve. A long rank test for trend was used to determine
significance.

Paired Dx-R cohort—proteomics data analysis
For a summary of data quality and filtering, refer to Supplementary
Figs. S4, S5. The data was analyzed in Spectronaut as described above.
A minimum of two peptides were required for quantitation. Protein
intensities were normalized in Spectronaut using the “global” setting,
which normalizes by median protein intensity per sample. Duplicate
injections were averaged (mean). A pool of samples was created as a
“standard” that was injected periodically throughout the course of the
sample run, to measure data reproducibility and monitor MS perfor-
mance. Proteins that were quantified with >50% CV in the 10 standards
were removed from all samples as they are presumed to be un-reliably
quantified. Furthermore, proteins identified in <10% of the samples
were removed. Finally, missing values were imputed using a “down-
shifted normal” imputation strategy. Briefly, a normal distribution was
created out of the overall sample distribution, then shifted to lower
values using magnitude of 3.5.

To summarize, we identified a total of 8153 unique proteins with
an average of 6600 proteins per sample using a data independent
acquisition approach (DIA) with a spectral library of 8183 proteins
derived from gas-phase fractionated sample pool (Supplementary
Fig. S6A). After quality assessment and data filtering (Supplementary
Fig. 6B), we quantified an average of 5100 proteins per sample with at
least two peptides at <0.05% FDR.

Fluorescence-activated cell sorting to isolate mature B-cells
To investigate comparison to B-cells, we included data from naïve and
memory B-cells isolated by flow cytometry from age-matched PBMCs.
To decrease processing and patient-specific variability and increase
sorting efficiency, we combined PBMCs from five patients that did not
have any hematological malignancies and were in a similar age range
(see SupplementaryData S1). Briefly, we thawed 1 vial (~5 × 106–10 × 106

cells per vial) and washed once with sterile FACS buffer (PBS (Thermo
Fisher Scientific) + 2% FBS (ThermoFisher Scientific)).We used 25 × 106

live cells for staining. Cells were pelleted and resuspended in
approximately 100 µl of FACs buffer. We utilized a 8-color flow panel
designed to identify CD45+ lymphocytes and then optimally separate
T-cells and B-cells and their respective subpopulations; for this
experiment we aimed to isolate two different mature B-cell popula-
tions, naive B-cells (CD45 + CD3-CD19 +CD10-CD20+CD27−). and
memory B-cells (CD45 +CD3-CD19 +CD10-CD20 +CD27+). The panel
consists of CD45-AF488 (HI30, 1:14)), CD3-BV510 (UCHT1, 1:10), CD19-
APCFire (HIB19, 1:5), CD4-AlexaFluor700 (SK3, 1:10), CD8-PECy7 (RPA-
T8, 1:10), CD10-BV421 (HI10a, 1:8), CD20-APC (2H7, 1:14), CD27-PE
(O323, 1:10) (BioLegend). We added BV staining cocktail for optimal
performance of the BV dye and human FC blocker to reduceunspecific
binding. Staining was performed for 20min at 4 °C in the dark. After
staining, the cells were washed with FACS buffer, centrifuged at
1500 rpmand resuspended in 1mLof FACSbuffer. Just prior to sorting,
we added 7AAD (1:3) for viability. Sorting was done at the Center for
Molecular Medicine and Therapeutics flow sorting core at BCCHR on
an Astrios FACS sorter.

Statistical analysis
We developed a hybrid method for comparing quantified proteins to
assess protein stability. Our method employs equivalence and differ-
ential expression testing to create a robust comparison between sta-
tistically different and equivalent proteins for a given pair of samples.

First, we normalized the quantitative protein data by median
centering and removed samples 1, 2, 3, and 9. Next, weused coefficient
of variation (CV) based filtration to filter out proteins with unstable
quantification. We removed proteins with >20% CV between the
technical replicates for each sample. Only proteins that passed this
threshold in eachpairwise comparison remained, resulting in all values
and imputed data.

We conducted statistical tests on each pair of sample compar-
isons and their two technical replicates. Differential expression testing
was performed using an independent two-sample t-test with the ttes-
t_ind function from the stats package. Equivalence testing was done
with two one-sided t-tests using the TOST two_raw function from the
TOSTER package. We set logFC < −1 and logFC > 1 as boundaries for
equivalence. Proteins for a given pair are run through both tests, and
both p-value sets are corrected using the pvalue.adjust function’s FDR
method with a cutoff of 0.05. To identify which protein is statistically
different, equivalent, or unexplained, we look at the logFCs. If the
logFC for a given protein is outside of the −1, 1 boundary, then the
adjusted p-value from the different test is considered. If the logFC is
inside the −1, 1 boundary, the adjusted p-value from the equivalence
test is considered. The protein is labeled as statistically different or
equivalent if the corresponding adjusted p-values are lower than the
0.05 cutoff. Proteinswith higher than0.05 adjustedp-value are labeled
as statistically unexplained.
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To obtain a list of equivalent proteins for gene ontology enrich-
ment, we first ensured the protein was equivalent in at least two of the
seven Dx-R pairings. We next removed the proteins attributed to
“housekeeping” functions by creating a cancer vs. non-cancer pairings
equivalent list, which also required the protein was detected in at least
two pairings. Housekeeping proteins were then removed from our
paired Dx-R equivalence list. To obtain the “difference” list, we com-
piled all proteins that were deemed significantly different in eachDx-R
pairing (BALL01was excluded since thispatient does not contain aDx).

Gene ontology enrichment analyses was performed as described
above. For visualization of the enriched terms, we employed
Cytoscape49 (version 3.8.2) and utilized the “EnrichmentMap” and
“AutoAnnotate” packages. The background list for all GO analyses was
a list of all proteins quantified in the data set.

Identification of cancer-associated proteins
Proteins were selected from two large-scale pediatric cancer studies
that identified commonly mutated genes, genes of prognostic
importance, and potential cancer drivers9,10 (Supplementary Data S6).
In addition, targets were included from the OCCRA panel, which is
similar to the Oncomine panels used in NCI-COG Pediatric MATCH
precision medicine trial21 (Supplementary Data S6).

For statistical analysis, the “LIMMA” package for R (version 3.52.2)
was used50. P-valuewas adjusted using the Benjamin-Hochberg and the
FDR thresholdwas 5%. Circos plotswere created inRusing the package
“Circularize” (version 0.4.15); data was first filtered for proteins that
were overexpressed relative to the non-cancer controls. Pearson cor-
relation coefficient was calculated for each pairing based on proteins
that were overexpressed in Dx.

RNA sequencing
BCCH Cohort: RNA was extracted from cell pellets of 1 × 106 cells
using the RNeasy Mini kit (QIAGEN)) and the concentration of RNA
was determined using Qubit 3.0 Fluorometer (Invitrogen). RNA
quality was measured by bioanalyzer (Agilent). Library preparation
from these RNA samples was performed on the Ion Chef and Ion
Torrent S5 platforms using the Ion AmpliSeq™ Transcriptome
Human Gene Expression Panel, Chef-Ready Kit (A31446, Thermo
Fisher Scientific) following Ion AmpliSeqTM Library Preparation on
the Ion ChefTM System Quick Reference. Each sample was prepped
and sequenced in duplicate. The resulting cDNA library was quanti-
fied using Ion Library TagManTM Quantification Kit (Thermo Fisher
Scientific). Targeted sequencing was performed on the Ion Chef and
Ion Torrent S5 platforms (Thermo Fisher Scientific) following man-
ufacturer’s protocols (TFS). The Ion AmpliSeq TranscriptomeHuman
Gene Expression Assays measure gene expression of over 20,000
RefSeq genes in a single assay simultaneously. An average of nine
million reads per sample was obtained. Data processing and quality
control was performed using the AmpliSeqRNA plug-in for Ion
Torrent S5.

RNA-sequencing analysis
BCCH Cohort: All data was normalized by reads per million for each
sample. The data was also scaled by log2(x + 1). The data was filtered
for transcripts that were measured in all samples, then duplicate
measurements were combined by mean for each transcript. Pearson
correlations were performed using the “pheatmap” package in R
(version 1.0.12) and the T1vsT2 scatter plots were plotted with ggplot2
using stat_cor(method=pearson).

TARGET Cohort16: The data was downloaded from the Treehouse
Childhood Cancer Initiative at the UC Santa Cruz Genomics Institute.
Only paired Dx and R pediatric ALL samples were selected for analysis.
The data was already normalized by parts per million and scaled by
log2(x + 1). Pearson correlations were performed as described above
for the BCCH cohort.

Primary cell irradiation
hTERT-MSCs were seeded at 70% confluency per well in 4mL of RPMI-
1640medium containing 10% fetal bovine serum (FBS, Invitrogen) and
1μMhydrocortisone (Sigma) 24 h prior to seeding with primary B-ALL
or stem cells from bone marrow. To seed primary cells, RPMI-1640
complete medium was removed before adding 3.2 × 106 primary cells,
recovered from cryopreserved samples, in 4mL of AIM-V medium.
Both primary cells and hTERT-MSCs were incubated at 37 °C in a 5% (v/
v) CO2 incubator. After 24 h co-culture, primary cells were removed
fromco-culture and treatedwith 1 GyX-irradiation or shamconditions.
Primary cells were then added back to hTERT-MSC co-culture. Half of
the primary cells were fixed 0.5hrs after irradiation, with the other half
fixed 24 h after irradiation. Cells were concentrated onto a slide using
the Epridia Cytospin 4 centrifuge (Fisher) and fixed in methanol at
−20 °C for 5min before storage at −20 °C.

Primary cell immunofluorescence
Cells were concentrated onto slides using the Epridia Cytospin 4
centrifuge (Fisher) andfixed inmethanol at−20 °C for 5min.Cellswere
outline with a PAP pen (abcam) and blocked in PBS with 0.2% Triton
X-100and 3%BSA for 1 h at room temperature. Antibodieswerediluted
in PBS with 0.2% Triton X-100 and 3% BSA. Primary antibodies were
diluted (γH2Ax 1:500, PARP1 1:250) and incubated with slides over-
night at 4 °C. Cells were then washed three times in PBS. The slides
were incubatedwithdiluted secondary antibodies (Alexa Fluor 1:2000)
at room temperature for 1 h in thedark. Slideswerewashed three times
in PBS and incubated with Hoechst stain for 15min. Slides were then
washed two times in PBS and coverslips were mounted with ProLong
Gold Antifade (Invitrogen) reagent.

Confocal microscopy and image analysis
Fixed cells were imaged using the Fluoview software (Olympus) con-
nected to the Olympus Fluoview FV10i confocal microscope. Image
stacks of 5 optical sections with a spacing of 0.5 μm through the cell
volumewere taken using a 60 × 1.2NAoil objective. PARP1 stainedwith
AlexaFluor 594 was imaged at 50% sensitivity, and 40% laser power.
γH2Ax stained with Alexa Fluor 647 was imaged at 50% sensitivity, and
40% laser power. Hoechst nuclear stain was imaged at 40% sensitivity
and 13% laser power. ImageJ v1.46j (National Institute of Health) was
used to generate maximum intensity Z-projection of the fluorescent
channels, and subsequent analysis. Nuclear masks were generated for
each cell (Make Binary) and the resulting region of interest (Analyze
Particles) was used to identify the nuclear region of analysis for γH2Ax
and PARP1 channels. γH2Ax foci per cell was quantified using the Find
Maxima process (prominence > 750). PARP1 nuclear fluorescence was
quantified using the Measure analysis. Statistical analysis was per-
formed using GraphPad Prism with Welch’s t-test, as indicated in each
figure. The results were considered statistically significant at P <0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw MS data generated in this study have been deposited to the
Proteome Consortium (http://www.proteomexchange.org) via the
MassiVE (https://massive.ucsd.edu/) partner repository data set
MSV000091012. The raw OCCRA targeted DNA and RNA-fusion
sequencing data generated in this study have been deposited to the
National Center for Biotechnology information (NCBI) Sequence
Research Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) with the
project ID PRJNA985851 and the raw OCCRA RNA-sequencing data
generated in this study have been deposited to the NCBI SRA (https://
www.ncbi.nlm.nih.gov/sra) with the project ID PRJNA985381. Source
data areprovidedwith this paper.Thepublicly availableWESdata from
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69 pediatric ALL patients from SJH used for the genomics analyses is
available in the SJH cloud and can be accessed individually with the
patient IDs listed in Supplementary Data 3. The publicly available RNA
sequencing data for the 35 pediatric ALL patients from the TARGET
cohort was downloaded from the Treehouse Childhood Cancer
Initiative at the UC Santa Cruz Genomics Institute, from the data set
titled “Tumor cohorts for Vaske et al. publication (October 2019)”.
Source data are provided with this paper. The remaining data are
availablewithin theArticle, Supplementary InformationorSourceData
file. Source data are provided with this paper.
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