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Genome-wide CRISPR off-target prediction
andoptimizationusingRNA-DNA interaction
fingerprints

Qinchang Chen 1,2,3,8, Guohui Chuai2,4,8, Haihang Zhang 5,8, Jin Tang3,
Liwen Duan3, Huan Guan3, Wenhui Li 3, Wannian Li1, Jiaying Wen1,
Erwei Zuo 5 , Qing Zhang6,7 & Qi Liu 1,2,3,4

The powerful CRISPR genome editing system is hindered by its off-target
effects, and existing computational tools achieved limited performance in
genome-wide off-target prediction due to the lack of deep understanding of
the CRISPR molecular mechanism. In this study, we propose to incorporate
molecular dynamics (MD) simulations in the computational analysis of CRISPR
system, and present CRISOT, an integrated tool suite containing four related
modules, i.e., CRISOT-FP, CRISOT-Score, CRISOT-Spec, CRISORT-Opti for
RNA-DNA molecular interaction fingerprint generation, genome-wide CRISPR
off-target prediction, sgRNA specificity evaluation and sgRNA optimization of
Cas9 system respectively. Our comprehensive computational and experi-
mental tests reveal that CRISOT outperforms existing tools with extensive in
silico validations and proof-of-concept experimental validations. In addition,
CRISOT shows potential in accurately predicting off-target effects of the base
editors and prime editors, indicating that the derived RNA-DNA molecular
interaction fingerprint captures the underlying mechanisms of RNA-DNA
interaction among distinct CRISPR systems. Collectively, CRISOT provides an
efficient and generalizable framework for genome-wide CRISPR off-target
prediction, evaluation and sgRNA optimization for improved targeting speci-
ficity in CRISPR genome editing.

The CRISPR genome-editing system, for example the CRISPR-Cas9
system, has broad applications in biology and medicine1,2. Although
such anRNA-guided systempermits precise genomeediting, it presents
a great challenge for off-target effects3. Studies have demonstrated that

Cas9 can tolerate a number of base pair (bp) mismatches, and incor-
rectly cleave sites do not fully complement the sgRNA (off-target sites)4.
Off-target effects can lead to potential side effects, whichwill hinder the
development and clinical applications of CRISPR system.
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Many in silico tools have been developed to design sgRNAs to
avoid off-target effects. Generally, the related methods can be divi-
ded into two categories: hypothesis-driven (e.g. CRISPRoff5,
uCRISPR6, MIT7 and CFD8) and learning-based (e.g., deepCRISPR9,
CRISPRnet10 and DL-CRISPR11). Hypothesis-driven methods score off-
target effects using empirically derived rules, while learning-based
methods predict off-target effects by using machine learning
models. Despite their differences, these tools achieved limited per-
formance in genome-wide off-target prediction due to the lack of
deep understanding and investigating of the CRISPR molecular
mechanism. The molecular mechanism of Cas9 mainly includes two
essential processes:12–15 1) the binding of a Cas9-sgRNA riboprotein to
the target sequence to form a stable complex of Cas9-sgRNA-DNA;
and 2) the allostery of the two nuclease domains of Cas9 to cleave the
DNA. These two processes are driven by a series of intermolecular
and intramolecular interactions within the Cas9-sgRNA-DNA com-
plex, including the protein-protein16, nucleic acid-protein17 and
nucleic acid-nucleic acid18 molecular interactions. Such molecular
interactions can be used to predict CRISPR editing processes as
well; however, limited works have been presented. It has been
reported that the binding energy of the Cas9-sgRNA-DNA complex,
which is a kind of molecular interaction derived from experimental
measurements, has enabled more accurate CRISPR off-target
predictions5,6, while such molecular interactions are waiting to be
further elucidated for improved genome-wide CRISPR off-targeting
prediction.

To characterize the RNA-DNA molecular interaction features of
the CRISPR system and address the issue of accurate prediction of
the genome-wide CRISPR off-target effects, in this study, we propose
CRISOT (CRISPR Off-Target), an integrated computational
framework for genome-wide CRISPR off-target prediction, evaluation
and optimization based on the RNA-DNA molecular interactions
of the CRISPR system. The main contribution of this study is to
derive an efficient and generalizable RNA-DNA molecular
interaction fingerprint characterizing the underlying interaction
mechanisms of the RNA-DNA hybrid of CRISPR system by molecular
dynamics (MD) simulations19, which is a mature computational
method for investigating the molecular mechanism and the mole-
cular interactions of biomolecules20. The idea of using MD simula-
tions and molecular interactions to empower CRISPR technology
was recently highlighted19,21. Although several studies existed to
performedMD simulations on the Cas9 system13,22–24, its full potential
in CRISPR off-target modeling has not been evacuated. In addition,
the previous off-target reducing strategies, e.g., protein
engineering25–27 and delivering additional sgRNAs28, are complex and
require additional experimental works, indicating a requirement
for a simple yet powerful strategy to improve targeting specificity.
Furthermore, by incorporating MD simulations as a prior in the
CRISPR modeling, the issue of lack of sufficient off-target labeling
information in the building of off-target prediction model can be
alleviated. To this end, CRISOT contains four related modules, i.e.,
CRISOT-FP, CRISOT-Score, CRISOT-Spec, CRISOT-Opti for RNA-DNA
molecular interaction fingerprint generation, genome-wide
CRISPR off-target prediction, sgRNA specificity evaluation and
sgRNA optimization of Cas9 system respectively. Our comprehensive
computational and experimental tests revealed that CRISOT exhib-
ited great advances over existing tools. In addition, CRISOT showed
potential in accurately predicting off-target effects of the base edi-
tors and prime editors, indicating that the derived RNA-DNA
molecular interaction fingerprint captures the underlying mechan-
isms of RNA-DNA interaction among distinct CRISPR systems. Col-
lectively, CRISOT provides an efficient and generalizable system for
genome-wide CRISPR off-target prediction, evaluation and sgRNA
optimization for improved targeting specificity in CRISPR genome
editing.

Results
Conceptual framework of CRISOT
The conceptual framework of CRISOT is shown in Fig. 1 and the related
methods are described in the Methods section. CRISOT is initially
designed for CRISPR-Cas9 system which involves the interaction of
RNA-DNA hybrids, while its potential utility in other RNA-guided
CRISPR system including base editors and prime editors are also
demonstrated. Since the interaction of RNA-DNA hybrid is the key for
Cas9 activation12,29–31(Fig. 1a), the basic idea of CRISOT is to understand
the molecular interactions of the RNA-DNA hybrid at atom level using
MD simulations, and to incorporate such information in the genome-
wide CRISPR off-target prediction, evaluation and optimization.

Specifically, we firstly calculated several kinds of molecular
interaction features from the MD trajectories of RNA-DNA hybrids,
including hydrogen bonding, binding free energies, atom positions
(atom-atom distances, angles and dihedral angles) and base pair/base
step geometric features (Fig. 1b). These features were used to derive
the interaction fingerprints (CRISOT-FP) of an RNA-DNA hybrid
(Fig. 1c). We collected annotated off-target datasets from various
genome-wide off-target sequencing including Change-seq, Site-seq,
Circle-seq, Guide-seq etc. and trained XGBoost (XGB) classification
models using CRISOT-FP, which is proven to outperform existing off-
target predicting methods in the following study. Then, three related
flexible modules based on CRISOT-FP were developed, including (1)
CRISOT-Score was developed by identifying key features derived from
CRISOT-FP models, which can quickly calculate the off-target score of
a given pair of sgRNA and off-target sequences (Fig. 1d). (2) CRISOT-
Spec was developed to calculate the specificity score of a given sgRNA
(Fig. 1e), by aggregating the CRISOT-Scores of the high-scored off-
target sequences among all possible off-target sites. (3) CRISOT-Opti
wasdeveloped for sgRNAoptimization (Fig. 1f). For an sgRNAwithhigh
editing efficiency and poor targeting specificity, CRISOT-Opti intro-
duces a single nucleotide mutation for this given sgRNA by reducing
the off-target effect of the given sgRNAwhile maintaining its on-target
effect.

CRISOT-FP serves as a generalizable molecular interaction fin-
gerprint to represent RNA-DNA hybrids in Cas9 system
Designing of CRISOT-FP. We proposed that the RNA-DNA hybrids
contain information on molecular interactions governing the activa-
tion of Cas9. Therefore, we systematically designed a series of RNA-
DNA hybrids and performed MD simulations to develop the RNA-DNA
molecular interaction features (Fig. 2a). Detailed descriptions on the
development and engineering of RNA-DNA molecular interaction fea-
tures can be found in Methods section (Fig. 2b, c and Figs. S1, 2). As a
result, a total of 193 features (Supplementary Data 1) were collected to
encode sgRNA-DNA hybrids (Fig. 2c). We encoded each pair of sgRNA
and DNA nucleotides with the 193 molecular interaction features
(Supplementary Data 1). The 20-bp sgRNA-DNA hybrid was therefore
encoded with 193*20 = 3860 features, which made up the RNA-DNA
molecular interaction fingerprints, i.e., CRISOT-FP, of the hybrid.
Because the sequences were position-dependent, the encoding pro-
cess made the CRISOT-FP position-dependent. We proposed that
CRISOT-FP could be applied in various machine learning models as a
basic and generalizable feature representation to capture the essential
of RNA-DNA hybrids in Cas9 system. This point is demonstrated in the
subsequent analysis.

Comparison of CRISOT-FP with state-of-the-art feature encoding
methods. To evaluate the performance of CRISOT-FP, we curated the
Group I benchmark datasets derived from in vitro genome-wide off-
target detection techniques including Change-seq and Site-seq data-
sets (Table 1). The sgRNAs in these datasets are different from each
other, thus they are independent to each other. Detailed description
on the Group I datasets was given in Methods.
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Fig. 1 | Overview of the conceptual framework of CRISOT. a Left, structure of the
Cas9-sgRNA-DNA complex. The sgRNA-DNA hybrid is colored red and the interac-
tions are detailed in the box. Right, conceptual representation of the systematic MD
simulations. b Illustration of the interaction features. From left to right: hydrogen
bonding, binding free energy, atom position, base pair/step geometric features.
cMiddle panel, encoding of RNA-DNA molecular interaction features to CRISOT-FP
formachine learning. Right panel, benchmarking theCRISOT-FPmodels on different
benchmark datasets. Left panel, analysis of the key RNA-DNA molecular interaction

features. d Key features are used to develop CRISOT-Score for off-target scoring.
e For a given sgRNA, the genome-wide off-target sites are scored by CRISOT-Score,
and those high-scored off-target sites are summarized to derive a specificity eva-
luation schema - CRISOT-Spec. CRISOT-Spec can be used to evaluate the targeting
specificity and the quality of the sgRNA. f When the specificity of an sgRNA is not
satisfactory, CRISOT-Opti introduces single nucleotide mutations to change the off-
target profile. By comparing different mutated sgRNAs, CRISOT-Opti can determine
the optimized sgRNA as a substitution for the wild-type (WT) sgRNA.
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We compared the performance of CRISOT-FP in CRISPR off-
target prediction with three state-of-the-art feature encoding
schemes, i.e., Crista_feat, One-hot and Two-hot encoding. Crista_feat
features are the features used by CRISTA32, which contain a wide
range of features, including genomic content features, thermo-
dynamics of the sgRNA, and the pairwise sgRNA-target similarity et
al. One-hot and Two-hot encoding methods converts every bp of the
sgRNA-target hybrid into a 16-bit and 8-bit vector (Fig. S2). We per-
formed two leave-ones-out tests to evaluate CRISOT-FP and the
existing encoding methods (Fig. S3). The leave-group-out (LGO) test
randomly held out 1/5 of the inputs as testing data, so that the
training and testing datasets contain all sgRNAs and different
sequences of their corresponding on-/off-target sites. The leave-
group-out (LGO) test randomly held out 1/5 of the sgRNAs and the
corresponding on-/off-target sequences as testing data, so that
training and testing datasets contained different sgRNAs and off-
target sequences. In this case, LSO is taken as a stricter and more
challenging prediction task compared to LGO. The LGO test esti-
mated the prediction on unseen off-target sequences, whereas the

LSO test ensured that the sgRNAs and off-targets were totally dif-
ferent between training and testing datasets.

We applied the XGB33 classification algorithm for both tests
(Fig. 2d, e and Fig. S4) for its great prediction performance andmodel
interpretation ability (see Methods). For the LGO tests, both CRISOT-
FP and the sequence-based encodings showed good performance in
terms of area under curve (AUC) analysis. CRISOT-FP achieved slightly
better receiver operating curve (ROC) performance than the previous
features, with ROC-AUCs higher than 0.984 (Fig. 2d). The precision-
recall (PR) analysis indicated that CRISOT-FP achieved remarkably
higher PR-AUCs than the other encodingmethods, with PR-AUC scores
of 0.698 and 0.690 for Change-seq and Site-seq datasets, respectively
(Fig. 2e). For the LSO tests, CRISOT-FP still performed better than
the previous features, and the differences in both ROC and PR were
more remarkable than those in the LGO tests (Fig. 2d, e). Furthermore,
we also tested CRISOT-FP and the other feature encoding methods by
using different machine learning algorithms (Fig. S5). In this case,
CRISOT-FP trained within the XGB algorithm outperformed the other
features and the other machine learning algorithms. These results
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Source data are provided as a Source Data file.
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indicate the great potential of CRISOT-FP to identify real off-targets
among the background sequences in a highly imbalanced scenario.
Therefore, the XGB models trained on the Group I datasets in this
sectionwere used for further evaluations on the independent datasets.

Comparison of CRISOT-FP with state-of-the-art off-target predic-
tionmethods.We further evaluated the ability of CRISOT-FP topredict
genome-wide off-target effects in independent testing datasets (the
Group II datasets, Table 1, see Methods) with no overlaps with the
training datasets, and compared with state-of-the-art off-target pre-
dictionmethods. The score values of CRISOT-FPwere themeans of the
leave-ones-out models trained on Group I datasets described in the
first benchmark study. Four hypothesis-driven off-target scoring tools
(KinPred34, CRISPRoff5, uCRISPR6 and CFD8) and four learning-based
off-target prediction tools (MOFF35, CRISPRnet10, DLcrispr11 and
CNN_std36) were used for comparison. The learning-based models
were taken from their original studies that were trained on their own
datasets. Two of the compared learning-based methods, i.e., DLcrispr
and CRISPRnet models, were trained on datasets containing several
sgRNAs that were included in the testing datasets. For fair compar-
isons, we presented both the results on the complete testing datasets
and the results excluding the overlapped sgRNAs for these models
(Fig. 3 and Fig. S6–S11). In the case that all testing sgRNAs were con-
tained in the training datasets of the compared methods, we have
indicated this case by using the bars in gray. In the case that the testing
sgRNAs partially overlapped with the training datasets of the com-
pared methods, we have presented additional bars in slash hatch. The
overlapped sgRNAs are summarized in Supplementary Data 3. Since
the off-target datasets were highly imbalanced, the PR-AUC results
rather than ROC-AUC were more convincing. Three benchmarking
scenarios were performed.

In the first evaluation scenario, we tested the performance of
CRISOT-FP in predicting the in vitro Circle-seq datasets (Fig. 3a, Figs.
S6, S7). Although the performances of DLcrispr and CRISPRnet (the
gray bars in Fig. 3a and Fig. S7) were higher/comparable to those of
CRISOT-FP, this is attributed to that the testing sgRNAs were already
contained in their training datasets, thus the colors of their bars were
changed to gray to indicate potential data leakage. The MOFF model
achieved the best performance among the other compared methods.
The PR-AUC results showed that theMOFFmodel achieve comparable
performance on circleseq_u2os dataset, while CRISOT-FP surpassed it
in the other three datasets. The fair comparison of CRISOT-FP with the
MOFF and CNN_std models and the hypothesis-driven methods
showed that CRISOT-FP outperformed them, with an average PR-AUC
of 0.46 (p <0.05, Fig. S7c). Therefore, the CRISOT-FP achieved better

performance than the comparedmethods in predicting the in vitro off-
target datasets.

In the second evaluation scenario, we used the in cell datasets
(Table 1, see Methods) for evaluation, which include the Guide-seq37,38,
Surro-seq39 and TTISS40 datasets that are independent to the training
datasets. The results (Fig. 3b, Figs. S8, S9) showed that CRISOT-FP
outperformed all learning-based models and hypothesis-driven
methods on the PR-AUC results (p <0.05, Fig. S9c), even though data
leakage may exist because the training datasets of the DLcrispr and
CRISPRnet models contained sgRNAs that were in the testing Guide-
seq datasets (Supplementary Data 3). For a fair comparison, we
removed the sgRNAs in the testing datasets that were contained in the
training datasets of DLcrispr and CRISPRnet, and the same sgRNAs
were removed in the testing datasets for CRISOT-FP. The results
showed that excluding the overlapped sgRNAs slightly decreased the
performances of DLcrispr and CRISPRnet while increased those of
CRISOT-FP (bars with slash hatch in Fig. 3b and Fig. S9). Therefore, the
CRISOT-FP achieved better performance than the compared methods
in predicting the in cell off-target datasets.

In the third evaluation scenario, we set 6 fold-change (FC) cutoffs
to the targeted dataset (the Surro-seq39 dataset) to obtain 6 datasets
with various sensitivities (see Methods). The results (Fig. 3c, Figs. S10,
S11) showed that the performances of all methods but CRISPRoff
slightly increased as the FC cutoff increased. CRISOT-FP surpassed all
learning-basedmodels and hypothesis-drivenmethods on the PR-AUC
results (p <0.05, Fig. S11c). The results indicated that CRISOT-FP
achieved better performance than all comparedmethods in predicting
the targeted Surro-seq datasets with various sensitivities.

Taking together, the benchmark validation results indicated the
high generalization capability of CRISOT-FP, and that CRISOT-FP out-
performed the existing learning-based andhypothesis-drivenmethods
in predicting the off-target effects of Cas9.

CRISOT-Score provides effective off-target scoring of
Cas9 system
Feature importance analysis and the designing of CRISOT-Score.
We started our study by identifying the key features related to CRISPR
off-target scoring. To this end, the XGB models were connected with
SHapley Additive explanation (SHAP) algorithm41 to identify the key
interactions among all the features used in CRISOT-FP (see Methods).
A higher SHAP importance value indicates a higher contribution of the
feature to the predicted result. Some of the key features showed high
SHAP importance values at most bp positions, indicating that these
features and the related RNA-DNAmolecular interactions were shared
by different positions of the RNA-DNA hybrid in Cas9 (Fig. 4a,

Table 1 | Details of the benchmark datasets

Group Dataset Experiment Subset sgRNAs Genome-wide Potential Off-targets Detected Off-targets Ref.

I Change-seq in vitro - 110 1384929 21645 68

Site-seq in vitro - 12 153478 2047 14

II Circle-seq in vitro K562 6 60658 751 60

HEK293 4 57026 857

U2OS 5 92113 2844

Guide-seq in cell Tsai 10 158169 341 37

Listgarten 23 187934 53 38

Surro-seq Targeted in cell - 105 6709 819 39

TTISS in cell - 59 669648 866 40

III PE2 in vitro - 9 120021 1493 55

BE3 in vitro Kim 7 93510 76 58

in vitro Liang 2 19917 3 57

ABE7.10 in vitro Kim 7 63306 212 56

in vitro Liang 6 94902 44 57
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Fig. 3 | Comparison of CRISOT-FPwith the state-of-the-art off-target prediction
methods in predicting independent (the Group II) datasets. PR-AUC results for
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datasets contained all sgRNAs in the testing datasets. Bars with slash hatch are
presented by excluding the overlapped sgRNAs. Of note, for fair comparisons, the
same sgRNAs were removed from the testing datasets for CRISOT-FP. The over-
lapped sgRNAs are summarized in Supplementary Data 3. The CRISOT-FP models
are trained on theGroup I datasets, which are independent to theGroup II datasets.
Source data are provided as a Source Data file.
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Supplementary Data 2). The sumof all SHAP importance values at each
position indicated that the PAM-proximal positions were more
important than the PAM-distal positions (Fig. 4a, left panel), which is
consistent with previous studies on the molecular mechanism of
Cas942,43. The results also indicated that positions 5, 8 and 9weremore
important among the PAM-distal positions, which was consistent with
the previous study using a free energy model44.

The interaction features were sorted by the sums at all positions
(Fig. 4b). Among the top 5 features, E_surf (nonpolar solvation free
energy), resA@N1 resB@N1 (the distance between N atoms on the
bases of RNA and DNA nucleotides) and hbond_bp5 (hydrogen bonds)
were related to the binding stability of the hybrid, indicating the
importance of the binding stability to the activation of Cas9. These
results were consistent with those in previous studies14,43,45. The cur-
vature of the RNA-DNA hybrid is important to Cas9 and might affect
the binding affinity of Cas9 with the RNA-DNA hybrid because the
curvature of DNA was proven to influence the protein-DNA affinity46.
We also summarized the contributions of different types of interaction
features (Fig. 4c). The results showed that the hydrogen bonding fea-
ture contributed up to 4.3% (at position 12) to the model, even though
the hydrogen bonding feature contained only one feature. The atom
position and binding free energy features contributed averages of
54.1% and 23.5%, respectively, indicating the importance of the atom
position features and the potential molecular mechanisms other than
binding stability. In fact, we noticed that the positions of some atoms
on the DNA nucleotide indicated by the distance and angle features
(resB@C1’ resB@N9, ang:resB@C1’ resB@O5’ resB@C3’_cos,
ang:resB@O5’ resB@N9 resB@C1’_cos, resB@P resB@C5’ and
resB@C5’ resB@O5’) were among the top 10 key features (Fig. 4b). The
positions of these atoms might influence the interactions between the
sgRNA-DNA hybrid and specific residues in Cas9, thus affecting the
cleavage.

Finally, we used the key interaction features to design a flexible
off-target scoring function, i.e., CRISOT-Score. For each position, we
collected the top features (Supplementary Data 2) and their SHAP
score values (Supplementary Data 2). These values were then
aggregated to score specific bp types at specific positions. For
example, to calculate the score of AA (sgRNA vs. off-target sequence)
at position 5 using the top 5 key features, the mean SHAP score
values related to the top 5 features at position 5 were collected, and
their products were then aggregated as a final score (see Methods).
We then determined how many features were needed to achieve
considerable off-target prediction performance. Score maps were
computed using the top 1 to the top 30 features at each position. The
off-target scoring performances on different datasets were com-
pared to those of the CRISOT-FP models (Fig. 4d and Fig. S13). As the
feature number increased, the performance of CRISOT-Score
increased sharply and achieved average ROC-AUC and PR-AUC
scores of 99.2% and 76.0%, respectively, when the top 16 features
were used. The ROC-AUC score remained at a high level, and the PR-
AUC score slightly increased as the features increased. Therefore, we
selected the top 24 features (Fig. S12) of each position to construct
CRISOT-Score. The score map (Fig. S14) indicated that different
positions favored different complementary bps. For example, posi-
tions 11 and 13 preferred AA over TT, positions 19 and 20 preferred
TT over AA, and position 20 preferred CC over GG47,48. Different
positions varied greatly in their sensitivity to mismatches. The PAM-
distal positions, especially positions 1 and 2, were not sensitive to
mismatches, whereas positions 13 to 17, which are within the seed
region, were sensitive to mismatches.

Comprehensive evaluations of CRISOT-Score. The effectiveness of
CRISOT-Score are evaluated comprehensively. In the first evaluation,
CRISOT-Score was compared with 7 state-of-the-art hypothesis-driven
off-target scoringmethods including KinPred34, CRISPRoff5, uCRISPR6,

MIT7, CFD8, CCTop49 and CROPit50 (learning-based methods were not
included).We compared their performanceon theGroup II benchmark
datasets (Table 1) with the measurements of ROC and PR (Fig. 4e, Fig.
S15 and Fig. S16). CRISOT-Score significantly surpassed all seven
existing off-target scoringmethods inpredicting off-target activities of
all benchmark datasets (p <0.05, Fig. S16). Of note, KinPred and
CRISPRoff are mechanism-based scoring method that were derived
from kinetic models34 and the binding energy of the Cas9-sgRNA-DNA
complex5. In comparison, CRISOT-Score included not only the binding
free energy features, but also the atom position, hydrogen bonding
and base pair/step geometric features that systematically reflect the
interactions of the Cas9-sgRNA-DNA complex. Therefore, incorporat-
ingmoredetails of themolecular interactions ofCas9couldbenefit the
prediction of off-target effects.

In the second evaluation, we tested how CRISOT-Score scores the
active and inactive off-targets (Fig. 4f and Fig. S17). Among all potential
off-target sites of the datasets, the experimentally validated off-target
sites were defined as active off-targets, whereas the rests were inactive
off-targets. The violin plots showed the CRISOT-Score distributions of
the active vs. inactive off-targets (Fig. 4f). For the in vitro Change-seq,
Site-seq and Circle-seq datasets, the CRISOT-Score of the active off-
targets distributed generally distinct from the inactive off-targets. The
peaks of the active off-targets were near the peaks of the inactive off-
targets. In comparison, the CRISOT-Score of the active off-targets
distributed greatly distinct from those of the inactive off-targets on the
in cell Guide-seq andTTISS datasets. The peaks of the active off-targets
of these datasets were approximately 0.7, and few active off-targets
were scored less than 0.6. The results indicated that CRISOT-Score
identified the active and inactive off-targets well, especially on the
Guide-seq andTTISS datasets. In comparison, all of the other off-target
scoring methods, but CRISPRoff, were not able to identify the active
and inactive off-targets (Fig. S17).

In the third evaluation, we tested the proportions of active off-
targets at different ranges of CRISOT-Score (Fig. 4g and Fig. S18).
Generally, the frequency of active off-targets increased as the CRISOT-
Score increased for all of the Group I and Group II datasets. The
average frequencies summarized in Fig. 4g showed that the fre-
quencies of active off-targets at CRISOT-Score ranges greater than 0.8
were higher than 0.9, and the frequencies of active off-targets at
CRISOT-Score ranges lower than 0.5 were almost 0. It was indicated
that a CRISOT-Score value that is higher than 0.8 almost indicates an
active off-target, and a CRISOT-Score that is less than 0.5 almost
indicates an inactive off-target. In comparison, CRISPRoff scores (Fig.
S19) did not show a tendency that higher score sites were more likely
to be active off-targets, and the frequency of active off-targets at the
highest score range was 0, indicating its poorer scoring ability over
CRISOT-Score.

CRISOT-Spec provides effective sgRNA targeting specificity
evaluation of Cas9 system
While CRISOT-Score evaluates the off-target effect of a specific off-
target site, a specificity score is commonly designed to evaluate the
specificity of a given sgRNA in terms of its genome-wide off-target
profile. There are several CRISPR specificity scoring tools, e.g., MOFF-
aggregrate35, CRISPRspec5, MIT7 and CFD8, which aggregate the off-
target scores of the genome-wide off-target sites and calculate sum-
mary scores as the specificity scores. Thus, the existing specificity
scores may relate to the number of potential off-target sites, i.e., a
greater number of potential off-target sites usually results in a poorer
specificity score. However, only a small fraction of the potential off-
target sites are active off-target sites. As shown in Fig. 5a, the fractions
of active off-targets were almost zero when the CRISOT-Score values
were less than 0.5, while were almost one when CRISOT-Score higher
than 0.85. Take the higher and lower specificity sgRNAs in Change-seq
datasets (Fig. 5b and Fig. S20) as an example, although their total
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numbers of potential off-target sites were similar, the lower specificity
sgRNAs have a greater number of off-target sites that were scored
higher than 0.5. That meant severe off-target effects could occur if a
significant portion of the potential off-target sites scored higher than
0.5, indicating that during the evaluation of the genome-wide off-tar-
get profile of a given sgRNA, more attention should be given to those
with a higher CRISOT-Score.

To this end, we developed a specificity scoring method, i.e.,
CRISOT-Spec. For a given sgRNA, CRISOT-Spec searched its genome-
wide off-target sites and calculated their CRISOT-Score values. The
numbers of potential off-target sites at different ranges of CRISOT-
Score values (Fig. 5b) were then calculated, and multiplied by
the relative probability of being active off-targets (Fig. 5a). The pro-
duct values were aggregated to derive the CRISOT-Spec values as a

a b

e

c

f g

Comparison of CRISOT-Score with various off-target prediction methods

d

Datasets

Distance Binding free energy Angle, dihedral angle
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specificity score (see Methods). Because the probability of active
off-targets with CRISOT-Score values lower than 0.5 was almost
zero, CRISOT-Spec focused on off-target sites with CRISOT-
Score values higher than 0.5, which were the most likely active off-
targets.

To evaluate the performance of CRISOT-Spec, the CRISOT-Spec
specificity score was compared to MOFF-aggregate, CRISPRspec, MIT
and CFD specificity scores. The specificity scores were compared to
the number of experimentally validated off-target sites in Groups I and
II datasets. Off-target cleavage of a specific site would lead to great
issues in clinical therapies, even when the cleavage efficiency is low.
Thus, the number of validated off-target sites is important to evaluate
the specificity of an sgRNA. CRISOT-Spec correlated well with the
experimentally validated off-target sites (Fig. 5c) and achieved the best
performance in predicting the off-target read fraction of the Site-seq
dataset, with Spearman’s correlation of −0.853. When compared with
the other specificity score approaches, CRISOT-Spec significantly
surpassed the CRISPRspec, MIT and CFD specificity scores (p <0.05,
Fig. 5d, e and Fig. S21), and was comparable to the only learning-based
method, the MOFF-aggregate.

CRISOT-Opti optimizes a sgRNA to reduce off-target effects
while maintaining its on-target effects
Despite considerable on-target efficiency, an sgRNA may still have
severe off-target effects (Fig. 5). In fact, the CRISPR system can tol-
erate a few mismatches, and the influence of a single mismatch on
the targeting efficiency may be small8,47. In contrast, a single muta-
tion in the sgRNA may significantly change the off-target profile and
thus the specificity of a sgRNA. As the saying goes, “Better a diamond
with a flaw than a pebble without”. CRISOT-Opti was designed to find
out such “a diamond with a flaw” - an sgRNA not perfectly match the
target while present better targeting specificity. For a given sgRNA,
CRISOT-Opti introduced 3 kinds of mutations to each of the 20
nucleotides (Fig. 5f). These mutated sgRNAs were paired with the
target sequence to calculate the CRISOT-Score values. Although
different types of mutations on the sgRNA generally decreased the
CRISOT-Score value (Fig. S22), the results of CRISOT-Score indicated
that a sequence with CRISOT-Score value of higher than 0.8 was
always cleaved (i.e., active off-target) in most off-target detection
experiments (Fig. S18), and a sequence with CRISOT-Score value of
higher than 0.85 was cleaved in all of the off-target detection
experiments. Therefore, to ensure considerable cleavage of the tar-
get DNA, we can set the threshold of CRISOT-Score to 0.8, 0.85 or
higher, so that CRISOT-Opti only considered mutated sgRNAs with
CRISOT-Score values higher than the threshold. Since the sgRNAs
were mutated, the off-target profiles were changed. CRISOT-Opti
calculated the CRISOT-Spec scores of the mutated sgRNAs based on
their new off-target profiles. The scores were compared to the score
of the wild-type (WT) sgRNA. Because higher CRISOT-Spec values
indicate higher targeting specificity of an sgRNA, those mutated
sgRNAs with increased CRISOT-Spec could be considered better
substitutions for the WT sgRNA.

Take the GAGTCCGAGCAGAAGAAGAAGGG sequence on the
human EXM1 gene as an example of sgRNA optimization, which was

also investigated by previous Guide-seq study37,38 (Fig. 5g, h). The WT
sgRNA could cleave several off-target sites (CRISOT-Spec = 0.364),
especially the three sites with CRISOT-Score values higher than 0.75.
In this case, CRISOT-Opti mutated each nucleotide of the 20-nt
sgRNA. Among a total of 60 mutated sgRNAs, 38 sgRNAs with
CRISOT-Score values higher than 0.85 were chosen for the specificity
evaluation (Supplementary Data 4). The CRISOT-Spec scores indi-
cated that the A11 > C mutation (A at position 11 of the sgRNA was
mutated to C) was the best substitution, of which the CRISOT-Spec
score increased to 0.720, while the CRISOT-Score is still high at
0.867. In comparison, if the sgRNA was improperly mutated (e.g.,
C6 > A in Fig. S23), the targeting specificity would greatly decrease.
Similarly, when targeting another site (e.g., GGGAAA-
GACCCAGCATCCGTGGG in Supplementary Data 4), we also found an
optimized substitution using CRISOT-Opti.

To validate the optimization result, we performed Guide-seq
screening to detect genome-wide off-targets of the WT and A11 > C
sgRNAs (Supplementary Data 5). Although the on-target efficiencywas
reduced when the mutated sgRNA was used instead of the WT sgRNA,
the mutated sgRNA still maintained sufficient on-target efficiency
(Fig. 5h, lower panel), which is consistent with the previous study that
A11 > C sgRNA would maintain about 38% targeting activities38. On the
other hand, the results showed that the A11 > C sgRNA greatly reduced
off-target editing (Fig. 5h, i). The number of off-target reads was
reduced from 51967 to 1072 by approximately 50 folds. The off-target
read fraction was significantly reduced from 0.653 to 0.162, and the
active off-target sites from 57 to 11. Most of the off-target sites were
either eliminated or greatly reduced. For example, the off-target site
on gene HCN1, which detected 35129 off-target reads when the WT
sgRNA was used, detected a 281-fold reduction when the mutated
sgRNA was used; and the off-target site on gene SEMA5A, which
detected 3064 off-target reads when the WT sgRNA was used, was
totally eliminated when the mutated sgRNA was used. The HCN1 gene
is involved in spontaneous rhythmic activity in both heart and brain51,
and the SEMA5A gene contributes to axonal guidance during neural
development52. The optimized sgRNAwell protected these genes to be
targeted, whichwill greatly reduce side effects when using theCRISPR-
Cas9 system in clinical trials.

Experimental validation of sgRNA optimization for two impor-
tant therapeutic genes PCSK9 and BCL11A using CRISOT
In this study, we further performed additional proof-of-concept
experimental validation to demonstrate the effectiveness of applying
CRISOT for off-target evaluation and sgRNA optimization in gene
therapy. To this end, two important therapeutic genes, PCSK9 and
BCL11A, are tested here. CRISPR has been used to knockdown the
PCSK9 gene in primates to lower the level of cholesterol53, and the
editing of the BCL11A gene to treat transfusion-dependent β-thalasse-
mia and sickle cell disease are in clinical trials54. The safety of CRISPR
editing on these genes are of high concern. As a proof-of-concept
example, we used CRISOT to evaluate the off-target profile of the gene
editing and optimize two sgRNAs that have unsatisfying specificities
targeting the PCSK9 and BCL11A genes. We performed whole genome
screening (WGS) experiment, an unbiased and direct method for

Fig. 4 | Feature importance analysis and the evaluation of CRISOT-Score.
aOverall SHAP feature importance of the RNA-DNAmolecular interaction features.
The position importance values on the left are the sums of the rows on the right.
bTop 30 important features. The importance values are the sums of the lines in (a).
cThe ratio of feature importanceof various types of features ondifferent positions.
d PR-AUC Performances of CRISOT-Score developed using different numbers of
key RNA-DNA molecular interaction features for each position. Results on the dif-
ferent benchmark datasets are compared to the results achieved by the CRISOT-FP
models. e Comparison of CRISOT-Score with the state-of-the-art off-target scoring
methods. The PR-AUC results indicate that CRISOT-Score surpasses the existing

off-target scoring methods. f Violin plots of CRISOT-Score scores on active and
inactive off-target sites of different datasets. Thenumbers of active and inactive off-
target sites can be found in Table 1. Among all potential off-target sites of the
datasets, the experimentally validated ones were defined as active off-targets, and
the rests were inactive off-targets. The three dashed lines in each violin show the
quartiles of the data. g Frequencies of active and inactive off-target sites that are in
different CRISOT-Score ranges. The presented result is averaged fromGroups I and
II benchmark datasets (Fig. S18, n = 11). Source data are provided as a Source
Data file.
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assessing off-target effects of Cas9, on the HEK293T cell line to
experimentally validate the off-target profiles of sgRNAs.

We selected two optimized sgRNAs for PCSK9 (G10 > T muta-
tion) and BCL11A (G11 > T) using CRISOT, with CRISOT-Score scores
of about 0.8 (Fig. 6a and Fig. S24). We performed WGS experiments
and found that the off-target effects of the optimized sgRNAs were
greatly reduced, while the on-target frequencies weremaintained in a

considerable level (Fig. 6a, Fig. S25 and Supplementary Data 6).
Notably, the on-target frequency (0.351) of the optimized sgRNA
for PCSK9 was comparable to that of the WT sgRNA (on-target
frequency = 0.365). Collectively, this study indicates that CRISOT can
be used for optimized sgRNA design to improve the gene editing
safety, while maintaining the on-target efficacy of CRISPR
therapeutics.
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CRISOT facilitates genome-wide off-target prediction for base
and prime editors
Base (BEs) and prime editors (PEs) enabled precise editing of the target
sequence without DNA double-strand breaks (DSBs), while they also
involve the interaction of RNA-DNAhybrid. Although not quite proper,
off-target prediction methods of Cas9 were usually used to evaluate
theoff-target effects of BEs andPEs includingBE3,ABE7.10 andPE2 etc.
Here, we curated Group III (PE255, ABE7.1056,57 and BE357,58) off-target
datasets (Table 1, see Methods), and evaluate the performance of
CRISOT in predicting the off-target effects and targeting specificities
of BEs and PEs59 since CRISOT captures the common mechanisms of

these various CRISPR systems by characterizing the interaction of
RNA-DNA hybrid. The Group III datasets were independent to the
training (Group I) datasets.

Using these datasets, we found that CRISOT achieved better
performance than the comparedmethods in predicting the off-target
effects of BEs and PEs as expected (Fig. 6b and Fig. S26, S27). For the
learning-based models, although they achieved comparable perfor-
mance with CRISOT-FP on the ROC-AUC results, CRISOT-FP out-
performed MOFF, CNN_std and CRISPRnet models on the PR-AUC
results. The CRISOT-FP also surpassed DLcrispr after removing the
overlapped sgRNAs to avoid data leakage of DLcrispr (p < 0.05,

Fig. 5 | CRISOT-Spec for scoring the targeting specificity and CRISOT-Opti for
sgRNA optimization. a Probabilities of being active off-target sites. The prob-
abilities of different CRISOT-Score ranges are shown as the average fractions of
active off-targets in the benchmark datasets.bNumbers of potential off-target sites
in different CRISOT-Score ranges. We sort the 110 sgRNAs of Change-seq dataset
according to the numbers of potential off-target sites and divide them into 11
groups to minimize the difference of numbers of potential off-target sites in each
group. Top and bottom three sgRNAs with the least and most experimentally
validated off-target sites are selected as the higher and lower specificity sgRNAs,
respectively, for each group. The presented result is a summary of the 2-nd to the
10-th groups. c Spearman’s correlations between the CRISOT-Spec scores and the
experimentally validated numbers of off-target sites reported by the different
experiments. The error bands represent the confidence intervals of 95% for the
regression estimates. d, e Comparison of CRISOT-Spec with existing sgRNA spe-
cificity evaluation tools for predicting the number of off-target sites. Absolute
Spearman’s correlation scores are shown. The gray bars are results of MOFF-

aggregate, a learning-based method. e The results of one-sided paired t-test (n.s.:
Not significant, p >0.05; **p <0.01; n = 5). The p-values are 0.007, 0.002, 0.001 and
0.757, respectively. f Conceptual framework of CRISOT-Opti optimization.
g Comparison of off-target profiles of the WT and optimized sgRNAs. The circos
plots show the off-target sites with CRISOT-Score values > 0.6. The scatter points
indicate off-targets with CRISOT-Score values > 0.6, and the lines indicate those
CRISOT-Score values >0.65. The blue and green colors indicate the off-target sites
of WT and optimized sgRNAs, respectively. The optimized sgRNA is optimized by
setting a CRISOT-Score threshold to 0.85. h Summary of the CRISOT prediction
results (higher panel) and the Guide-seq experimental results (lower panel).
i, Comparison of experimental off-target profiles of theWT and optimized sgRNAs.
The blue and green lines of the circos plot indicate the off-target sites of WT and
optimized sgRNAs, respectively, which are detected by Guide-seq. Line length
indicates the log10-transformed off-target reads. Source data are provided as a
Source Data file.
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a
CRISOT Prediction Results WGS Experimental Results

sgRNA CRISOT-Score (0.65, 0.7] (0.7, 0.75] (0.75, 0.8] (0.8, 1.0] CRISOT-Spec On-target Frequency Off-target Frequency Off-target Sites

PCSK9 Target: CGTGCGCAGGAGGACGAGGACGG

WT 0.928 126 16 0 0 0.401 0.365 122.035 1875

G10>T 0.794 7 1 0 0 0.837 0.351 45.290 703

BCL11A Target: GGCGAGACATGGTGGGCTGCGGG

WT 0.926 74 18 4 0 0.390 0.432 60.984 1332

G11>T 0.808 15 3 0 0 0.752 0.149 41.799 804

PR-AUC evaluations using PE and BE datasets Specificity scores vs. number of off-target sites 

NOTE: MOFF-aggregate (the gray bars) is a deep learning based method 
NOTE: Bars in gray color are those the training datasets contained all  sgRNAs in the testing datasets. 

Bars with slash hatch are presented by excluding the overlaps.

Fig. 6 | Applications of CRISOT for therapeutic gene editing optimization and
off-target prediction in BE and Prime editors. a The CRISOT prediction results
and WGS experimental results of wild-type and optimized sgRNAs targeting the
PCSK9 and BCL11A genes. b Comparison of CRISOT-FP and CRISOT-Score with
the existing off-target prediction methods for predicting the off-target effects of
base and prime editors using PR-AUC. Learning-based methods are colored in
blue, hypothesis-driven methods are colored in green. Bars in gray color are
those the training datasets contained all sgRNAs in the testing datasets. Bars
with slash hatch are presented by excluding the overlapped sgRNAs. Of note,

for fair comparisons, the same sgRNAs were removed from the testing
datasets for CRISOT-FP. The overlapped sgRNAs are summarized in Supple-
mentary Data 3. The CRISOT-FP models are trained on the Group I datasets,
which are independent to the Group III datasets. c Comparison of CRISOT-Spec
with existing sgRNA specificity evaluation tools for predicting the number of
off-target sites detected in base and prime editing. The gray bars are results
of MOFF-aggregate, a learning-based method. Source data are provided as a
Source Data file.
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Fig. 6b and Fig. S27). For the hypothesis-driven models, CRISOT-
Score surpassed the existing hypothesis-driven off-target scoring
methods in terms of PR-AUC and ROC-AUC (p < 0.05, Fig. 6b and Fig.
S27). We also tested the performance of CRISOT-Spec in predicting
the targeting specificities of BEs and PEs (Fig. 6c and Fig. S28).
CRISOT-Spec achieved the best performance in predicting the tar-
geting specificity of the ABE7.10 and BE3 datasets. Although the
performance of MIT and MOFF-aggregate specificity scores were
higher than CRISOT-Spec in the PE dataset, the MOFF-aggregate is a
learning-based method and CRISOT-Spec greatly surpassed them in
the ABE7.10 and BE3 datasets. Collectively, the application of CRISOT
in BEs and PEs indicated that CRISOT achieved good generalizability
in the prediction of the off-target effects and targeting specificities of
BEs and PEs.

Discussions
ThemolecularmechanismofCas9-mediatedDNAcleavage is drivenby
the interactions of the Cas9-sgRNA-DNA complex14,15. In this study, we
systematically analyzed the RNA-DNA molecular interaction features
using MD simulations, and the CRISOT suite was developed based on
the RNA-DNA molecular interaction fingerprints. The CRISOT suite is
designed as a generalizable system for off-target prediction, targeting
specificity evaluation and sgRNA optimization by the integration of
artificial intelligence (AI) andMD technology. In summary, CRISOT can
be taken as a one-stop platform to greatly improve in silico sgRNA
design and reduce off-target effect for various CRISPR system by
investigating the molecular interaction mechanism.

Various applications were presented to demonstrate the utility of
CRISOT. The CRISOT suite was used to optimize two sgRNAs targeting
the PCSK9 and BCL11A genes. The WGS off-target detection experi-
ments validated the optimization results and indicated that CRISOT
couldhelp users to find anoptimized sgRNAwith almost no sacrificeof
on-target efficacy. In addition, the CRISOT suite can also be used to
evaluate the off-target effects of BEs and PEs, indicating the general-
izability of CRISOT among distinct CRISPR systems.

Despite the success of CRISOT, several improvements are
expected in future work. First, this study only considered off-targets
with NGG PAMs and without DNA/RNA bulges. Apart from the
canonical NGG PAM, Cas9 has been reported to cleave off-target
sequences with alternative PAM sequences, such as NAG and NGA60,
although the cleavage rates were much smaller than those of the
canonical PAM sequences. Future work should take into account
various PAM sequences and DNA/RNA bulges. Second, our RNA-DNA
molecular interaction features and CRISOT-FP could provide a deep
understanding of the molecular mechanism of Cas9; however, the
molecular mechanism of Cas9, especially the allosteric and cleavage
mechanisms, contains molecular interactions that could not be
reflected by the RNA-DNA hybrid. More comprehensive simulations
and investigations on the Cas9-sgRNA-DNA complex are still
required. Thirdly, features reflecting the target accessibility, e.g.,
chromatin-opening information and DNA methylation information,
would improve the performance if they were properly augmented,
however, such information are not guaranteed to be obtained.
Therefore, we did not consider such information in this version to
make CRISOT tools generally usable. Fourthly, we trained XGB
models because they are simple and powerful, suitable for training
tabular data, and provide great interpretations of the model. Various
complex machine learning algorithms, especially deep learning
algorithms can be incorporated in CRISOT in a flexible way in the
future. Finally, the validations of our study are mainly performed in
silico in the current stage and the experimental validation is served as
a complementary. Additional large-scale experimental validations on
sgRNAs targeting important therapeutic genes using Guide-seq,
Change-seq, WGS etc. will make the results more convincing, while it
is waiting to be performed in the future.

Methods
Preparation of RNA-DNA hybrids
We designed a of RNA-DNA hybrids containing 256 RNA-DNA hybrids
(Fig. 2a) to calculate the RNA-DNA interaction features. Sixteen types
of RNA-DNA base pairs, including matched and mismatched ones,
were designed for feature calculation. Two additional base pairs were
addedup-anddown-streamof thebasepair (4 * 4 types,matchedonly),
forming 4*16*4 = 256 types of 3-mer RNA-DNA hybrids for feature
calculation to make the resulted features more representative. Finally,
because the terminal base pairs were more likely to break during the
simulations, we added 3-mer padding base pairs (rG-dC, the most
stable base pair) up-anddown-streamof the corebase pairs to stabilize
the simulation system. The original structure of the 9-bp RNA-DNA
duplex was extracted from a high-resolution crystal structure of the
Cas9-sgRNA-DNA ternary complex (PDB [5y36])13. We used the web
3DNA platform61 to perform the three steps of nucleic acid base
mutations to construct initial RNA-DNA hybrid structures for MD
simulations. First, the original sequence was mutated to construct a
(r5’-GGG-GGG-GGG)(d3’-CCC-CCC-CCC) hybrid (GGG-CCC, which
indicates the 3 bps in the middle). Then the fourth and sixth bps were
mutated, and variousWatson–Crick bpsweremaintained, to construct
16 DGD-RCR hybrids (D and R represent DNA and RNA nucleotides,
respectively). Finally, thefifth bpwasmutated, and various nucleic acid
bases were generated to construct a total of 256 9-bp hybrids. Short
MD simulations (10 ns) were performed to optimize the structures
before and after the mutations. The constructed hybrid structures
varied only in the 4th-6th bps, in which only the middle bps contained
bp mismatches.

Molecular dynamics simulations
The all-atom RNA-DNA hybrids were solvated in TIP3P explicit water,
and Na+ and Cl- ions were added to neutralize the systems. The DNA
strands adopted the AMBER/parmbsc1 force field62, whereas the RNA
strands adopted Shaw’s force field63. The combination of the parmbsc1
force field and Shaw’s force field demonstrated good quality in MD
simulations of RNA-DNAhybrids64. AllMD simulationswereperformed
with theGROMACS2016package65. The systemswerefirstpreparedby
energy minimization, followed by 1 ns NVT and 1 ns NPT simulations
with the RNA-DNA hybrids fixed. The systems were then equilibrated
by 20nsNPT simulations. Theproduction simulationswereperformed
at 310K for 100ns. The simulation time step was set to 2 fs, and the
simulation trajectories were collected every 10 ps. Electrostatic inter-
actions were calculated using the PME algorithm, with a cutoff radius
of 1.2 nm. The temperature coupling was calculated using a Berendsen
thermostat, with a coupling time of 0.1 ps. Lincs constraints were
applied to all bonds. The production simulations were performed for
3 structures randomly chosen from the equilibration simulations.
Therefore, the final features for each type of base pair were calculated
based on 16*3*100 = 4800ns of MD simulations. The MD simulations
were performed using Xeon E5-4640 CPU on the National Super-
computer Center in Guangzhou, China. The computational time for a
single production run was about 20.5 hours, and the total computa-
tional time for all simulation systems was about 15,744 h.

MD trajectories analysis
Three replications of the MD trajectories of each RNA-DNA hybrids
were analyzed to calculate the interaction features. An analysis of the
base pair (e.g., shear, stretch, and stagger) and base step (e.g., twist,
rise, and slide) parameters wasperformed using the do_x3dna package
and dnaMD Pythonmodule66. The atom position features represented
by distances, angles and dihedral angles of atoms were calculated
using pytraj, a python package of CPPTRAJ67 from AmberTools. P, C5’,
C3’, O5’, C1, N9 and N1 atoms and P, C5’, C3’, O5’, C1, N1 and N3 atoms
were selected for purines and pyrimidines, respectively (Fig. S29). The
position parameters were calculated using the pytraj packages.
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Hydrogen bonds were calculated using the GROMACS package65. The
binding free energies and free energy decompositions of the RNA-DNA
hybrids were calculated using Molecular mechanics/Generalized-Born
Surface Area (MM-GBSA) method using the gmx_MMPBSA40 program.
The gmx_MMPBSA program is a GROMACS tool based on AMBER’s
binding free energy calculation engine to perform free energy calcu-
lations with GROMACS files.

Feature engineering
The feature values varied between different types of bps, but were
similar when the nearest bps changed (Fig. S1). However, some feature
values may vary greatly among the different nearest bps (e.g., CA’s
hydrogen bonds in Fig. S2a). Therefore, we compared the correlation
among features derived from different nearest bps (Fig. S1, right
panels). The boxplots of Pearson’s correlation scores of all features
indicated that the mean values correlated best to different types of
nearest bps (Fig. 2b). Themean valueswere calculated to represent the
16 bp types. These features were then engineered. For angles, dihedral
angles and other angle features in the base pair/step geometric fea-
tures, the valuesmight not properly represent their differences. To this
end, we took the sin and cos values of the angles instead, and the other
featureswere scaled to a rangeof−1 to 1. Variances of the featureswere
calculated and the features with variances less than 0.01 were elimi-
nated. The feature engineering resulted in a total of 193 features
(Supplementary Data 1), including 1 hydrogen bonding feature, 42
binding free energy features, 114 atom position features and 36 base
pair/step geometric features, which were used to encode sgRNA-DNA
hybrids (Fig. 2c).

CRISPR off-target benchmark datasets
We constructed nine off-target benchmark datasets that contain data
detected by different experiments (Table 1). The first two datasets
(Group I) are in vitro datasets, namely the Change-seq and Site-seq
datasets, which contain sgRNAs that are different from each other,
are developed for training. The Change-seq dataset68 contains
110 sgRNAs accounting for 21545 validated off-targets. The Site-seq
dataset14 contains 12 sgRNAs accounting for 2047 validated off-
targets.

The second group of datasets (Group II) contained four datasets
that are independent to the Group I datasets, namely the Circle-seq,
Guide-seq, Surro-seq and TTISS datasets, are used as independent
testing datasets to validate the models. The in vitro Circle-seq
dataset60, is comprised of Circle-seq data of three cell types, i.e., the
K562 dataset containing 6 sgRNAs and 751 off-targets, HEK293 dataset
containing 4 sgRNAs and 857 off-targets, and U2OS dataset containing
5 sgRNAs and 2844 off-targets. The in cell Guide-seq dataset, is com-
prised of Guide-seq data from two independent studies, i.e., Tsai’s
dataset containing 10 sgRNAs and 341 off-targets37 and Listgarten’s
dataset containing 23 sgRNAs and 53 off-targets38. The Surro-seq
dataset39 is a targeted in cell dataset that contains 105 sgRNAs and 714
validated off-targets. Because the cutoff of fold-change (FC) would
change the sensitivity of the Surro-seq dataset, we set 6 FC cutoffs (2,
4, 8, 16, 32, and 64), and ignored those sites with p-values > 0.05,which
resulted in various datasets with different sensitivity (validated/
potential ratios: 819/6540, 549/6741, 371/6763, 263/6764, 207/6764
and 174/6764, respectively). The in cell TTISS dataset40 contains
59 sgRNA and 866 off-targets.

The last three datasets (Group III) contained in vitro off-target
datasets of base and prime editors, which are independent from the
Group I datasets, were used as testing datasets for further validations.
The PE2 dataset55 contains 9 sgRNAs accounting for 1493 validated off-
targets. The BE3 dataset is comprised of Kim subset58 containing
7 sgRNAs accounting for 76 validated off-targets and Liang subset
containing 2 sgRNAs accounting for 3 off-targets. The ABE7.10 dataset
is comprised of Kim subset56 containing 7 sgRNAs accounting for 212

validated off-targets and Liang subset57 containing 6 sgRNAs
accounting for 44 off-targets.

The genome-wide off-target loci with a maximum of six nucleo-
tide mismatches were calculated. The benchmark datasets represent
different experimental genome-wide CRISPR off-target detection
techniques. The experimentally validated off-target sites were defined
according to themethods described in the corresponding articles. For
example, Change-seq is a highly sensitive in vitro technique, thus, only
those data with more than 100 Change-seq reads were considered as
active off-targets, following the research of Change-seq68. The Cas-
Offinder program69, which is a versatile tool that searches all potential
off-target sites, was used to search for genome-wide off-target
sequences with amaximumof 6mismatches (with no bulges). Because
CRISOT-FP did not encode the PAM sequence, we considered only off-
target sites with NGG PAMs. Models are trained on Group I datasets,
and tested using Groups II and III datasets. All datasets are available in
Zenodo repository70. The compared learning-based methods were
trained on various datasets that were different from CRISOT-FP. The
overlapped sgRNAs between the datasets in this study and the training
datasets used by the other learning-based methods were summarized
in Supplementary Data 3.

Building machine learning models for CRISPR off-target pre-
diction based on CRISOT-FP
The XGB algorithm is based on tree boosting33, which is a fast and
scalable learning algorithm and has shown great ability in feature
interpretation. We used the XGB classifier to train leave-ones-out
models, and predicted off-target effects of independent datasets using
the average scores of the trainedmodels. The XGBmodels used gbtree
method as booster, and used logistic regression for binary classifica-
tion. For benchmark purposes, we also trained supporting vector
machine (SVM), logistic regression (LR) and random forest (RF) algo-
rithms models using the scikit-learn package. The SVM classifier
models used radial basis function (rbf) kernel, the LR classifier models
used limited-memory BFGS (lbfgs) solver, and the RF classifier models
used the Gini impurity as criteria. The detailed hyperparameter tuning
and configurations are shown in Supplementary Data 7.

Feature importance analysis in CRISOT-FP
The feature importance was calculated by the tree SHAP algorithm41,
which interprets feature importance scores from the tree-based XGB
models. SHAP is a unified approach that can be used to explain the
output of the XGB models71. SHAP feature importance values were
calculated as the mean absolute values of the SHAP scores for each
XGB model. The presented SHAP feature importance values were the
combination of the SHAP importance values of the models trained on
the three datasets. Analysis were performed on models trained on the
Change-seq and Site-seq datasets. The SHAP importance values are
shown as features vs. positions (Supplementary Data 2). The SHAP
importance values of different positions were the sums of all the
importance values at different positions. SHAP importance values of
different features were the sums of importance values at all 20
positions.

Design of CRISOT-Score
We selected the top N features of each position to calculate the
CRISOT-Score values. For a bp RD (R denotes the representation of
sgRNA sequence (U - > T) andDdenotes theDNA sequence) at position
i, its score was computed as

SRD,i =
XN

j = 1

mean ½VFRD, j

i 1,V
FRD, j

i 2, . . . ,V
FRD, j

i n�
� �

ð1Þ

where FRD, j is the top j-th feature; V
FRD, j

i n is the n-th SHAP score values
for FRD, j at position i. The meanð½VFRD, j

i 1,V
FRD, j

i 2, . . . ,V
FRD, j

i n�Þ values are
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summarized in Supplementary Data 2. The score of a pair of target and
off-target sequences canbe calculated by aggregating the scores at the
20 positions.

S=
X20

i = 1

SRD,i ð2Þ

Finally, we introduce two constants a and b tomake that the final score
is in the range of [0, 1]. Therefore, theCRISOT-Score value is computed
as

CRISOT� Score=aS +b ð3Þ

An off-target sequencewith a higher CRISOT-Score valuemeans that it
is more likely to be cleaved.

Design of CRISOT-Spec
CRISOT-Spec collects all of the off-target sites that are the most likely
to be cleaved and aggregates their probabilities of being active off-
targets. An off-target site is rarely cleaved if its CRISOT-Score value is
less than 0.6 (Fig. 5a). For a given sgRNA, CRISOT-Spec calculates the
CRISOT-Scores values of all of thepotential off-target sites (whichwere
determined by Cas-Offinder with no more than 6 mismatches).
CRISOT-Spec then counts the numbers of off-target sites that are
scored in the ranges presented in Fig. 5a, and multiplies them by their
probabilities of being active off-targets. The aggregated off-target
probability is the sum of the products.

Poff =
X20

k = 1

NkPk ð4Þ

where Nk and Pk are the number of potential off-target sites and the
off-target probability of the k-th range. Finally, the CRISOT-Spec value
is calculated as

CRISOT� Spec =
10

10+ Poff
ð5Þ

This equation was modified from the MIT specificity score7. The range
of the CRISOT-Spec score is (0, 1]. An sgRNA with a higher CRISOT-
Spec score has higher specificity across the whole genome. For
comparison, we rebuilt the CRISPRspec5, MIT7 and CFD8 specificity
scores. The MIT and CFD specificity scores were rebuilt based on the
CRISPOR package72.

Design of CRISOT-Opti
The CRISOT-Opti is based on the CRISOT-Score and CRISOT-Spec
values. For a given sgRNA, CRISOT-Opti mutates each of the nucleo-
tides at the 20 positions of the sgRNA and calculates the CRISOT-Score
values of themutated sgRNAs vs. the target DNA. Themutated sgRNAs
with CRISOT-Score values higher than 0.8 are considered to be satis-
factory with considerable cleavage and are chosen for further evalua-
tion, whereas those with CRISOT-Score values lower than 0.8 were not
used for further evaluation. Then, CRISOT-Spec values were computed
to sort the mutated sgRNAs. The high-ranking sgRNA is the optimized
sgRNA with the least off-target effects. A higher CRISOT-Score
threshold allows for a more reliable sgRNA substitution with more
reliable on-target efficiency. Furthermore, several additional rules, e.g.,
the targeting activity of amutated sgRNA, can be set to achieve amore
reliable substitution.

Guide-seq off-target detection
We used Guide-seq, a powerful off-target detection technique, to
detect the genome-wide off-target sites of both WT and optimized
sgRNAs37. HEK293 cells (SCSP-5209, obtained from Cell bank of

Shanghai Institute of Biochemistry and Cell biology, Chinese Academy
of Sciences) were used for Guide-seq experiments. HEK293 cells were
cultured in Dulbecco’s modified Eagle medium (DMEM, Gibco) sup-
plemented with 10% FBS (BI) and 1% penicillin/streptomycin (Beyo-
time) at 37 °C in 5% CO2 incubators. Two complementary
oligonucleotides (oGS1 and oGS2, Table S1) was used to generate the
standard Guide-seq double-stranded oligodeoxynucleotide (dsODN).
Cas9 and sgRNA encoding plasmids, and dsODNwere transfected into
the HEK293 cells using electroporation method. Genomic DNA was
then isolated and the completed Guide-seq library was quantified by
qPCR. After sequencing, the sequencing data were analyzed based on
the Guide-seq analysis package (https://github.com/tsailabSJ/
guideseq). The off-target sites (Supplementary Data 5) with no more
than 6 mismatches were mapped to human genome reference (hg38).

Whole genome sequencing (WGS) off-target detection
U6-gRNA scaffold-chicken β-actin-SpCas9-CMV-EGFP (Donated by Hui
Yang lab) was used as the backbone. The annealed sgRNAs (Fig. 6a)
were inserted into the backbone plasmid using T4 ligase kit (Vazyme).
HEK293T cells (SCSP-502, obtained from Cell bank of Shanghai Insti-
tute of Biochemistry and Cell biology, Chinese Academy of Sciences)
were cultured in DMEM supplemented with 10% FBS and 1% penicillin/
streptomycin at 37 °C in 5% CO2 incubators. The SpCas9-sgRNA plas-
mids were transfected using polyethyleneimine (PEI, Polyscience)
according to the manufacturer’s protocols. 48 h after transfection,
cells were washed with PBS and digested with 0.25% trypsin (YEASEN).
Then cells were filtered with a 40μm cell strainer. The EGFP positive
cells of 1 million were sorted by flow cytometer (BD FACS AriaI III).
Genomic DNA was extracted using TIANamp Genomic DNA Kit
(TIANGEN) according to the manufacturer’s protocols. Nest primers
were designed around target sites, and the inside PCR products were
sent to Azenta for sanger sequencing. The sequences of nest primers
used in theWGS experimentswere listed inTable S2. Then 2μg of each
sample was prepared for whole-genome sequencing in Azenta.

After sequencing, the sequencing data were analyzed. The off-
target sites with no more than 6 mismatches were mapped to human
genome reference (hg38). The analysis resultswere the combinationof
three independent replications for each sgRNA. Off-target sites with
total reads less than 10, or with background INDEL frequency greater
than 50% were excluded. Off-target frequencies were fixed using the
background INDEL frequencies, and those with fixed frequencies
greater than 0.01 were considered as off-target sites (Supplemen-
tary Data 6).

Statistics & reproducibility
Sample sizes were determined based on literature precedence for
genome editing experiments. No data were excluded from the ana-
lyses. The experiments were not randomized. The Investigators were
not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All data supporting the
findings of this study are available in the paper and the Supplementary
Information files. Additional original data that support the findings are
available from the corresponding author upon request. The Guide-seq
sequencing data for sgRNAs targeting EMX1 generated in this study
have been deposited in the NCBI Sequence Read Archive under
accession number PRJNA785744, and the WGS data for sgRNAs tar-
geting PCSK9 and BCL11A generated in this study have been deposited
under accession number PRJNA921906. Supplementary data for the
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features, feature importance values, overlapped sgRNAs, sgRNA opti-
mization, off-target data, et al. are available as SupplementaryData 1–7.
The training/testing datasets have been deposited in the Zenodo
repository70. Source data are provided with this paper.

Code availability
All code of the CRISOT suite is available at https://github.com/bm2-
lab/CRISOT or via Zenodo73. The web server of CRISOT is available at
https://crisot.aigene.org.cn/.
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