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Evaluation of the US COVID-19 Scenario
Modeling Hub for informing pandemic
response under uncertainty

A list of authors and their affiliations appears at the end of the paper

Our ability to forecast epidemics far into the future is constrained by themany
complexities of disease systems. Realistic longer-term projections may, how-
ever, be possible under well-defined scenarios that specify the future state of
critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario
Modeling Hub (SMH) has convenedmultiple modeling teams tomakemonths
ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national
and state-level projections. Here, we find SMH performance varied widely as a
function of both scenario validity and model calibration. We show scenarios
remained close to reality for 22 weeks on average before the arrival of unan-
ticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of
participating models that preserved variation between models (using the lin-
ear opinionpoolmethod)was consistentlymore reliable than any singlemodel
in periods of valid scenario assumptions, while projection interval coverage
was near target levels. SMH projections were used to guide pandemic
response, illustrating the value of collaborative hubs for longer-term scenario
projections.

Since SARS-CoV-2 was detected in December 2019, there have been
numerous disease modeling efforts aiming to inform the pandemic
response. These activities have had a variety of goals, including mea-
suring transmissibility, estimating rates of unobserved infections and
evaluating control measures1,2. Particular attention has been paid to
models that attempt to predict the course of the pandemic weeks or
months into the future.

These predictive models can, roughly, be divided into two cate-
gories: (1) forecastingmodels that attempt to predictwhat will happen
over the future course of the epidemic, encompassing all current
knowledge and future uncertainties, and (2) scenario planningmodels
that aim to capture what would happen if the future unfolded
according to a particular set of circumstances (e.g., intervention poli-
cies). While there is no bright line between the two approaches,
there are often differences in how they are implemented. Forecasts
are typically limited to shorter time horizons, as key drivers of disease
dynamics (e.g., human behavior, variant virus emergence) can become
highly uncertain at longer horizons. In contrast, scenario projections

often attempt to provide longer term guidance by making explicit
assumptions about future changes in those drivers3, potentially at the
expense of predicting what will happen. These approaches support
decision making in different ways; for instance, forecasts can inform
near-term resource allocation and situational awareness4, while a sce-
nario approach can inform longer-term resource planning and com-
pare potential control strategies5,6.

Ensembles of independent models consistently outperform indi-
vidual models in a number of fields7,8, including infectious disease
forecasting9–12. Leveraging this multi-model approach, the US COVID-
19 ForecastHubwas formed inApril 2020, to predict the number of US
cases, hospitalizations, and deaths 1-4 weeks into the future13. Recog-
nizing that longer term planning scenarios could benefit from a similar
multi-model approach14–16, the US COVID-19 Scenario Modeling Hub
(SMH) was formed in December 2020 to produce scenario based
projections months into the future.

Between February 2021 and November 2022 SMH produced 16
rounds of projections, 14 ofwhichwere released to the public17 (Round
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8 was a “practice round”, and the emergence of the Omicron variant
invalidated Round 10 projections before their release) (Fig. 1). The
focus of each round was guided by ongoing discussions with public
health partners at the state and federal level and reflected shifting
sources of uncertainty in the epidemiology of, and response to, the
COVID-19 pandemic. Each round included four scenarios, with early
rounds focusing on vaccine availability and use of non-pharmaceutical
interventions (NPIs), and later rounds addressing vaccine uptake and
the effect of new variants.

In each round, 4-9 modeling teams provided 12 to 52 weeks
(depending on the round’s goals) of probabilistic projections for each
scenario for weekly cases, hospitalizations, and deaths at the state and
national level. Projections were aggregated using the linear opinion
pool method18, which preserves variation between model
projections19. Open calls for projections have yielded participation
from thirteen teams overall, with some teams providing projections
only for certain rounds or states.

To assess the performance and added value of this large effort we
comparedSMHprojections to realworld epidemic trajectories.Whether
scenario projections accurately matched those trajectories depends on
both how well scenario definitions matched reality, and the calibration
of the projections made conditional on those scenarios. Here we
attempt to evaluate SMH performance on both criteria (Fig. 2), while
acknowledging that there may be complementary evaluations more
specific to the many ways SMH projections were used, ranging from
informing national vaccine recommendations5,20 to planning for future
COVID-19 surges21,22. We present performance results summarized
across all SMH rounds, then synthesize these results to discuss perfor-
mance of SMH projections across different phases of the pandemic.

Results
SMH scenarios usually bracketed future epidemic drivers
In each SMH round (except Round 1), four scenarios represented the
cells of a 2 × 2 table. Each of the two axes of this table included two
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Fig. 1 | Sixteen rounds of U.S. COVID-19 Scenario Modeling Hub (SMH) pro-
jections. Between February 2021 and November 2022, SMH publicly released
fourteen rounds of projections with four scenarios per round. Each round is shown
in a different color (internal Rounds 8 and 10 not shown). aMedian (line) and 95%
projection interval (ribbon, the interval within which we expect the observed value
to fall with 95% probability, given reality perfectly aligns with the scenario) for U.S.
weekly incident hospitalizations for four scenarios per round from the SMH
ensemble. Observed weekly U.S. incident hospitalizations are represented by the
solid black line. b Timing of each round of SMH projections is represented by a
projection start date and end date (start and end of bar). In panels (a) and (b),
scenario specifications were invalidated by the emergence of Alpha, Delta, and
Omicron variants in rounds that did not anticipate emergence. Variant emergence

dates (estimated as the day after which national prevalence exceeded 50%) are
represented by dotted vertical lines. c For each round, the table specifies the
number of participating modeling teams, the turnaround time from finalization of
scenarios to publication of projections, and scenario specifications about non-
pharmaceutical interventions (NPIs), vaccination, and variant characteristics. Sce-
nario specifications are shaded gray if scenarios “bracketed” the true values in our
retrospective analysis (i.e., the true value fell between the two scenario assump-
tions on that uncertainty axis). Note, in Rounds 11 and 12 both scenario axes spe-
cified assumptions about variants, and both are included in the “variant
assumptions” cell. Not shown here, the second scenario axis for Round 13 specified
assumptions about waning immunity, which bracketed waning estimates from a
meta-analysis.
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different levels of key sources of uncertainty (e.g., low vs. high variant
transmissibility) or intervention (e.g., authorization or not of child-
hood vaccines) (Fig. 2). Typically, these levels aimed to bracket the
future values of important epidemic drivers using information avail-
able at the time of scenario design (about, e.g., vaccine hesitancy23–26,
or characteristics of emerging viral variants27,28).

We first assessed whether scenario assumptions achieved their
goal of bracketing epidemic drivers, as compared to the eventually
observed data for those assumptions at the national level (Figs. S2–S4,
Table S3). For instance, say one uncertainty axis in a round’s scenarios
stipulated vaccine coverage would increase up to a low value of 70%
and a high value of 80% (depending on the scenario) at the end of the
projection period.We say this uncertainty axis “brackets” observations
if observed vaccination coverage fell within this range (see Fig. S3 for
an example).

Over the 14 publicly released rounds each with two primary axes
of uncertainty (i.e., 28 total uncertainty axes), 19were considered to be
evaluable against available observed data (Table 1, see Methods). We
succeeded in bracketing at least one axis for the majority of the pro-
jection period in 9 of 14 publicly released rounds (14 of 19 evaluable
axes). In rounds where one axis specified monthly national vaccine
uptake (Rounds 1-4 and 9 for primary series, Rounds 14-15 for boos-
ters), scenarios successfully bracketed observations in 55% of projec-
tionweeks (31%Round 1, 100%Round 2, 54%Round3 and 12%Round4,
100% for Round 9, 100% Round 14, 38% Round 15, Figs. S2–S5). In 4
other rounds, scenarios specified vaccination coverage at the end of
the projection period (Rounds 5-7 for primary series, and 16 for
boosters). Assumptions bracketed observed coverage in 2 of these 4
rounds. There were 6 rounds with a scenario axis that attempted to
bracket the transmission characteristics (inherent transmissibility or
immune escape) of one or more known SARS-CoV-2 variants of con-
cern (Rounds 2, 6, 7, 11, 12, 16). Scenario specifications bracketedmost
estimates of transmissibility now available in the literature29,30 (though

one study offers an estimate above the bracketing range for the Delta
variant31) (Table S3). All rounds including assumptions about variant
severity (Rounds 11 and 12) or waning immunity (Round 13) bracketed
currently available literature estimates32–34 (Fig. S6).

The emergence of new variants was a significant challenge in
designing scenarios with long term relevance. Changes in the pre-
dominantly circulating variant resulted in major divergences from
scenario assumptions in 7 of 14 publicly released rounds. Unantici-
pated variants emerged, on average, 22 weeks into the projection
period (median 16 weeks) (Fig. S1), substantially limiting the horizon at
which our scenarios remained plausible. This challenge was exacer-
bated by the lag between when scenarios were defined and when
projections were released (5 weeks on average, range 2-10 weeks;
Fig. 1), and even led us to cancel release of one SMH round (Round 10)
when the Omicron variant emerged. However, in the post Omicron
period (Rounds 13-16) SMH scenarios consistently devoted an axis to
the emergence of immune escape variants that were deemed con-
sistent with observations, so that projections were considered to
remain valid throughout.

Conditioning on scenario plausibility as a pathway to evaluating
projections
Next we evaluated the performance of SMH projections using pre-
diction interval (PI) coverage and weighted interval score (WIS)35 (see
Methods). PI coveragemeasures thepercent of observations that fall in
a prediction interval (so coverage of a 95% PI would ideally be 95%).
WIS summarizes calibration across all projection intervals, measuring
whether a projection interval captures an observation while penalizing
for wider intervals. These standardmetrics for evaluating probabilistic
forecasts directly compare predictions to observations. In the context
of scenario modeling, however, divergences between prediction and
observation are the product of two distinct factors: (1) how well the
underlying scenario assumptions matched reality (here, scenario
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Fig. 2 | COVID-19 ScenarioModeling Hub (SMH) process. (top) Prospective SMH
process: The SMH coordination team takes input from public health partners on
key questions to design scenarios. Scenarios have a 2 × 2 structure (with the
exception of Round 1), where two levels are specified along each of two axes of
uncertainty or interventions, and all four combinations of these possibilities are
considered (scenarios A-D). Scenarios are refined in discussion with modeling
teams, after which teams each fit their model and make projections indepen-
dently. Then, after quality checks, individual model projections are aggregated
using linear opinion pool (i.e., probability averaging), and in discussion with the

teams, key messages are determined. A report is shared with public health
partners and projections are released on the public SMH website (https://
covid19scenariomodelinghub.org). (bottom) Retrospective evaluation: Evaluat-
ing the SMH effort involves comparing SMH scenario assumptions to reality, and
comparing SMH projections to observations. Comparing scenarios to reality is
used to identify the most plausible scenario-weeks, namely the set of “plausible”
scenarios in projection weeks where scenario specifications about variants did
not diverge from actual variant prevalence. Horizontal dotted lines represent
emergence of an unanticipated variant.
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plausibility), and (2) howwell models would perform in a world where
those scenario assumptions are perfectly correct (i.e., model calibra-
tion). For instance, if a scenario’s definition is highly divergent from
real world events, poor predictive accuracy is not necessarily a sign of
poormodel calibration, and vice versa. Hence, to assess the calibration
of SMHmodels and the ensemble, we need to identify those scenarios
and projected weeks where the majority of observed error is likely
driven by model miscalibration (i.e., when scenarios are close to rea-
lity). We refer to this intersection of scenarios and projected weeks as
“plausible scenario-weeks”.

To identify the set of plausible scenario-weeks, we first excluded
weeks where an emergent variant that was unanticipated in the sce-
nario specifications reached at least 50% prevalence nationally. For
evaluation purposes, we considered this to be an invalidation of all
remaining scenario-weeks in the round, and thereby removed79outof
400 (20%) projection weeks from the plausible set. Thenwe compared
scenario specifications to data on US vaccination coverage and variant
characteristics, this time to identify those scenarios that were closest
to realized values during non-excluded weeks (see Methods, Table S3
for details). This yielded a total of 292 plausible weeks for calibration
analysis (31% of all scenario-weeks), 173 of which (from Rounds 2-4, 13-
16) had two plausible scenarios for the same week, which were equally
weighted during evaluation.

SMH ensemble consistently outperformed component and
comparator models
An initial question is whether we benefit from aggregating multiple
models. To answer this, we assessed the relative calibration of indivi-
dualmodels and various ensemblingmethods across projections from
plausible scenario-weeks using overall relative WIS, a metric of per-
formance relative to othermodels which adjusts for varying projection
difficulty across targets (from Cramer et al.11, see Methods). We
assessed variations of two common ensembling techniques: the linear
opinion pool (LOP)18 and the Vincent average36,37. The LOP assumes
that individual model projections represent different hypotheses
about the world and preserves variation between these differing
projections19. In contrast, the Vincent average assumes that each pre-
diction is an imperfect representation of some commondistributionof

interest (like a sample), and accordingly cancels away much of the
variation. In practice, as SMH projections started to accumulate, we
believed the former assumption better represented the set of SMH
models and chose to use a variation of the LOP as our primary
approach beginning in Round 4 (where the highest and lowest values
are excluded, called the “trimmed-LOP”, see Methods). Hereafter, the
trimmed-LOP will be referred to as the “SMH ensemble”.

We found that the SMH ensemble consistently outperformed
component models (Figs. 3c and S48). This ensemble performed
better than average, with an overall relativeWIS < 1 for all targets, and
was the top performermore frequently than any individual model (19
of 42 targets, across 14 rounds with 3 targets per round). It was best
or second best 69% of the time (29/42), and in the top 3 performers
93% of the time (39/42). Further, the SMH ensemble partially com-
pensated for the overconfidence of individual models. Across all
locations and rounds, overall 95% PI coverage was 79% compared to
the ideal 95% for the SMH ensemble versus a median of 40% (inter-
quartile range (IQR) 31-49%) across individual models for incident
cases, 80% versus 42% (IQR 31-54%) for incident hospitalizations, and
78% versus 42% (IQR 31-49%) for incident deaths. The trimmed-LOP
SMH ensemble also outperformed the two alternative ensembling
methods considered (untrimmed-LOP and median Vincent average,
Fig. S58).

To assess the added value of SMH, it is important thatwecompare
projections to possible alternatives38. In many settings (e.g., weather
forecasting) past observations for a similar time of year can be used as
a comparator9,39. Lacking such historical data for SARS-CoV-2, we
chose to compare our projections to two alternate models: (1) a naive
model that assumes cases will remain at current levels for the entire
projection period with historical variance (the same comparator
model used by the COVID-19 Forecast Hub11), and (2) amodel based on
the set of 4-week ahead ensemble predictions from the COVID-19
Forecast Hub (i.e., for any given week predictions from the SMH
ensemble were compared to those of the COVID-19 Forecast Hub
ensemblemade4-weeks prior). It shouldbe noted that thenaivemodel
uses information available at the time of projection, while the 4-week
ahead forecast uses more recent observations for most of the pro-
jection period.

Table 1 | Scenario bracketing

Round Axis 1 Axis 2

1 bracket weekly vaccination coverage in 8 weeks out of 26 weeks (31%) and 8 out of 13 plausible
weeks (61%)

no second bracketing axis

2 bracket weekly vaccination coverage in 26 out of 26 weeks (100%) and 22 out of 22 plausible
weeks (100%)

bracket variant transmissibility estimates

3 bracket weekly vaccination coverage in 14 out of 26 weeks (54%) and 4 out of 16 plausible
weeks (25%)

unable to assess NPI scenarios

4 bracket weekly vaccination coverage in 3 out of 26 weeks (12%) and 3 out of 13 plausible weeks (23%) unable to assess NPI scenarios

5 bracket vaccination coverage at end of projection period unable to assess NPI scenarios

6 bracket vaccination coverage at end of projection period bracket variant transmissibility estimates

7 underestimate vaccination coverage in both scenarios bracket variant transmissibility estimates

9 bracket weekly vaccination coverage in 19 out of 19 weeks (100%) and 13 out of 13 plausible
weeks (100%)

no second bracketing axis

11 bracket variant transmissibility estimates bracket variant severity estimates

12 bracket variant transmissibility estimates bracket variant severity estimates

13 bracket immune waning estimates unable to assess immune-escape variant scenarios

14 bracket vaccination coverage in 23 of 23 (100%) evaluated weeks (through March 20, 2023) unable to assess immune-escape variant scenarios

15 bracket vaccination coverage in 9 of 24 (38%) evaluated weeks (through March 20, 2023) unable to assess immune-escape variant scenarios

16 overestimate vaccination coverage in both scenarios unable to assess immune-escape variant scenarios

For each of two axes per round, bracketing (or not) of reality by U.S. COVID-19 Scenario Modeling Hub (SMH) scenarios. Bold text denotes successful bracketing, and italics text denotes axes where
bracketingwas not assessed.When vaccination scenarios specified coverageweekly, we considered bracketing in 50% ormore of all projectionweeks to be bracketing overall. For Round 4,weuse
coverage of mRNA doses only to determine bracketing, as this makes up almost all of the assumed doses (i.e., we do not consider coverage of Johnson & Johnson). NPI non-pharmaceutical
intervention. Visualization of scenario assumptions and bracketing are provided in Figs. S2-S6.
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The SMH ensemble outperformed the naive model across all
targets, by 46% for incident cases (relative WIS 0.54, range across
rounds 0.14-3.33), 39% for hospitalizations (relative WIS 0.61,
range 0.19-1.69) and 58% for deaths (relative WIS 0.42, range 0.07-
1.46) (Fig. S22). The SMH ensemble performed worse than the
4-week forecast model overall (relative WIS 1.48, range 0.34-5.79
for cases, 1.41, 0.40-2.85 for hospitalizations, and 2.04, 0.92-3.55
for deaths) (Figs. 3a, b and S22). Occasionally, the SMH ensemble
outperformed the 4-week ahead forecast model for cases and
hospitalizations, for instance in the highly truncated Round 5
addressing the Alpha variant and the two Omicron rounds (Rounds
11, 12) (Figs. 3a, b, 4, and S14). Some teams that contributed pro-
jections to SMH also submitted forecasts to the COVID-19 Forecast
Hub, although modeling methodology varied by intended use. In
particular, model projections for SMH were conditioned on

specific assumptions that would not necessarily be accounted for
in forecasting models.

To better understand the interaction between scenario assump-
tions and projection performance, we compared average WIS for
projections from plausible scenario-weeks with (A) truncated pro-
jections from scenarios that were not selected as “most plausible” and
(B) all projections, not truncated based on variant emergence. If the
ensemble was well calibrated and our selected most plausible sce-
narios were closest to reality, we would expect projections from
plausible scenario-weeks (with truncation) to have the best perfor-
mance. We found this expectation to be correct in 57% (24/42) of
round-target combinations (the other 43% suggesting that SMH
ensemble was sometimes “right” for the wrong reasons). Occasionally
scenario selection had little effect on performance (e.g., Round 9 and
Round 12, Fig. 4). In general, performance for truncated scenarios was
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better than if we had not truncated (normalized WIS was the same or
lower in 64 of 84 scenario-round-target combinations with trunca-
tion), though some of this difference may be attributable to longer
projection horizons. Similar conclusions held for 95% PI coverage
(Figs. S51–S53).

While adding value over comparators, SMH projections strug-
gled to anticipate changing disease trends
Projections may have utility beyond their ability to predict weekly
incidence. For instance, projections thatpredictwhether incidencewill
increase, decrease, or stay the same may be useful even if they are
inaccurate in predicting the magnitude of those changes. Based on a
method proposed by McDonald et al.40, we classified projected and
observed incident cases, hospitalizations, and deaths in eachweek and
jurisdiction as “increasing”, “flat”, or “decreasing” using the percent
change from two weeks prior (Fig. 5, see Methods).

The median of the SMH ensemble correctly identified the
observed trend in 43% of plausible scenario-weeks, comparable to the
4-week forecast model (43%) and better than randomly assigning
categories (33%) or assuming continuation of the current trend (34%)
(Fig. 5). A classification can also be assessed by the number correctly
classified relative to the number predicted (so-called “precision”) or
the number observed (“recall”, see Methods)41. Performance on these

metrics was similar across targets and classifications, with the excep-
tion of correctly anticipating periods of increasing incidence (48%
precision and 44% recall for decreasing, 39%/57% for flat, and 45%/24%
for increasing, where lower numbers are worse). Although increases
were challenging to predict, they have particular public health
importance, as these are the periods when interventions or additional
resourcesmay be needed.Whilemisseswere common, it was relatively
rare for the SMH ensemble to predict a decrease when incidence
increased (23% of increases) or vice-versa (10% of decreases). A sensi-
tivity analysis based on alternate projection quantiles (other than the
median) revealed similar overall performance, though upper quantiles
were better at capturing increasing phases (e.g., 95th quantile had 38%
precision and 46% recall for increases), at the expense of reduced
performance in flat periods (37%/46%, Figs. S36–S37).

Performance and goals varied over a changing pandemic
SMH performance varied across different stages of the pandemic. The
earliest SMH scenarios (Rounds 1-4) confronted a period of high
uncertainty about vaccine supply and the ongoing effect of NPIs. Still,
ensemble performance on forecast metrics (WIS, coverage) for plau-
sible scenario-weeks was comparable to average performance across
all rounds (Figs. 3 and S42). Of note, the ensemble did not anticipate
the increasing and decreasing trends of the Alpha wave well despite
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including the variant in scenario definitions, with Round 3 missing
increases and Round 4 anticipating an overly long and large wave
(Fig. S38).

In Rounds 6-7, SMH projectionsmissed the timing andmagnitude
of the Delta wave, despite scenario assumptions bracketing Delta’s
transmissibility in both rounds, and vaccine assumptions in Round 6.
SMH ensemble performance on forecast metrics was the worst of any
period, and trend classification was below par. This miss is likely the
result of multiple factors, including unexpectedly rapid waning of
vaccine protection, differences in the epidemiology of the Delta var-
iant and earlier viruses (serial interval, intrinsic severity), and changing
human behavior in response to the early-summer lull in cases. Asmore
information became available about the Delta variant, SMH projec-
tions improved in Round 9 both for forecast metrics and anticipation
of epidemic trends (Fig. S45).

During the initial Omicron wave (Rounds 11-12), SMH scenarios
anticipated properties of the Omicron variant (all axes bracketed
reality), and projections captured weekly trajectories and trends par-
ticularly well over the 3 month time horizon. Notably, these were the
only rounds without significant truncation where the SMH ensemble
outperformed the 4-week ahead forecast for cases and hospitaliza-
tions. It is not completely clear why the SMH was able to perform so
well during this period. However, scenario designs were well informed
by preliminary data from South Africa and heterogeneity in epidemic
drivers was low over the projection period (due to high immune
escape and relatively stable human behavior), mitigating many of the
types of uncertainty that cause particular difficulties for long term
epidemic projections.

The first SMH round of the post-Omicron era, Round 13, con-
sidered uncertainties about waning immunity and the emergence of a
hypothetical immune escape variant. Performance was poor on all
statistics and degraded quickly with projection horizon, despite wan-
ing assumptions that were consistent with later literature34. There was
substantial disagreement betweenmodels, and projections from some
models were highly sensitive to subtle differences in assumptions
about the exact trajectory of waning immunity, even when average
duration and minimum levels of immune protection were held

constant (Fig. S60). Model disagreement and poor performance may
have been further driven by low incidence (hence low information) at
the time of calibration.

In contrast, the last three rounds considered here (Rounds 14-16)
performedwell on forecastmetricsover the 18-41 evaluableweeks (key
sources of ground truth data became unavailable in March 2023,
truncating evaluation). These rounds considered variants with differ-
ent levels of immune escape and the approval and uptake of bivalent
boosters. In these rounds, the SMH ensemble anticipated the occur-
rence of subsequent waves, was roughly accurate as to their scale, but
was less accurate in projecting their timing. Of note, in Round 16 the
focus shifted from individual new variants to broad categories of
variants with similar levels of immune escape, in an attempt to account
for the increasingly complex landscape of SARS-CoV-2 genetic diver-
sity. Still, competition between variants and the resulting dynamics of
strain replacement presented challenges for scenario design.

Discussion
Since December 2020, SMHhas convenedmultiplemodeling teams to
produce frequent, real-time, probabilistic projections of COVID-19
outcomes over a 3-12 month horizon based on well-defined scenarios.
Scenario assumptions bracketed future conditions (where evaluable)
the majority of the time, but the relevance of scenarios was frequently
truncated by the emergence of unanticipated variants. For projected
weeks where scenario assumptions were considered closest to subse-
quently observed reality, a trimmed linear opinion pool ensemble was
far more reliable than any individual model, though anticipating epi-
demic trends, especially in periods of increasing incidence, remained a
challenge. The broad reliability of the ensemble, combined with the
alignment of multiple teams on shared questions, helped SMH to
become an important source of information for a variety of groups
ranging from the media42 to federal and local public health agencies
(e.g., 1,5,20).

SMH projections have played an important role in informing the
pandemic response to new variants21,22 and vaccine interventions5,20.
While the emergence of unanticipated variants presented a challenge
to long-term projections, SMH often showed strength in an ability to
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anticipate the impact of new variants that were emerging elsewhere in
the world. For example, projections from Rounds 6 and 7 sounded an
important warning about likely resurgences due to the Delta variant22,
even though performance was poor. Similarly, Round 11 provided
important (and ultimately accurate) information about the size and
speed of the coming Omicron wave. Notably, SMH projections also
provided key information to guide policy recommendations by
allowing us to compare different intervention strategies while simul-
taneously accounting for major uncertainties, such as modeling the
emergence of a hypothetical variant. Round 9 addressed potential
population-level benefits of childhood vaccination21, and Rounds 14
and 15 directly informed the decision to recommend bivalent boosters
for a wide age range starting September 202220. These public health
impacts depended on the timely release (Fig. 1) of projections from
scenarios that were both relevant to emergent policy questions and
tractable to modeling teams. Consistently fulfilling these goals
required frequent meetings and conversations between the coordi-
nation team, public health collaborators and modeling teams43. This
process fostered a vibrant scientific community that has been critical
to SMH’s success.

Here we have evaluated how SMH scenarios and projections
compared to real-world events, with a specific focus on incident cases,
hospitalizations and deaths. However, scenario projections may be
used in a myriad of ways, and the value of SMH outputs for many of
these uses may not directly depend on scenario bracketing or cali-
bration to incident outcomes in plausible scenario-weeks as assessed
here. For instance, if the primary goal is to inform a decision about
whether or how to implement some intervention, it is the contrast of
scenarios with and without that intervention that is important5,15,16.
Alternatively, one might use the full set of scenarios to allocate
resources or inform response plans to potential surges in disease
incidence; in this case, we might evaluate how well SMH projections
identified states with highest need or the extent to which planning
around extremes from pessimistic projections would have led to over-
or under-allocation of resources. Our current analysis makes no
attempt to directly assess SMH performance for either of these goals
(nor to the many other possibilities). Assessing the value added by
SMH in these settings would require targeted analyses, and remains an
important avenue for future research.

Our analysis of scenario bracketing and model calibration has
methodological limitations. We lacked data to evaluate scenario defi-
nitions regardingNPIs and certain characteristics of emergent variants,
limiting our ability to identify a single most plausible scenario. Teams
also had discretion on how to apply vaccination specifications and
other scenario assumptions at finer spatial scales; consequently, we
did not evaluate scenario plausibility at the state level, although this
may have varied substantially. We chose to evaluate SMH projections
based on a set of plausible scenario-weeks, but did not account for
variability in how closely these plausible weeks matched reality. A
complementary approach that may offer better assessments of model
calibration would be to re-run scenario projections retrospectively
with updated assumptions based on subsequently observed data.
Qualitative understanding of the relationship between model
assumptions, scenario specifications, and resulting projections can
also be useful44. In addition, despite the fact that forecast models
projecting over a shorter time horizon can use more recent informa-
tion, post-hoc selection of plausible scenario weeks has the potential
to “tip the scales” of evaluation in favor of scenario projections, as
forecast models are not given the opportunity to project under mul-
tiple scenarios. There also remain many open questions about the
predictability of infectious disease systems, such as the relative ben-
efits of recent calibration data (which would benefit forecast models)
versus knowledge of key drivers of disease dynamics (which would
benefit scenario projection models that consider multiple possibi-
lities). Lastly, without a good comparator model it is hard to evaluate

the added value of the SMH projections, and lack of historic data and
the nature of planning scenarios makes design of such a comparator
difficult.

The scenario approach is an attempt to provide useful projections
in the face of the many complexities that make predicting epidemics
difficult. One of the most important complexities is the multiple,
interacting drivers of disease dynamics that are themselves difficult to
predict, such as ever evolving pathogen characteristics and human
behavior. Although the scenario approach allows us to provide pro-
jections despite these complexities, only a subset of possible futures
are explored. Therefore, it is essential to design scenarios that are
useful – narrowing in on the possible futures that will best inform
present actions. The fast timescale andmulti-wave nature of infectious
disease outbreaks often means we have little time to deeply consider
both scenario design and model implementation in real time, but it
allows us to learn about the system and refine our approaches to
scenario design and epidemic modeling more quickly than is possible
in other systems (e.g., climate45).

Since its inception, SMH has disseminated nearly 1.8 million
unique projections, making it one of the largest multi-team infectious
disease scenario modeling efforts to date (other notable efforts
include multi-model estimation of vaccination impact46–48, planning
for future influenza pandemics49, and COVID-19 response in South
Africa50 and the UK44). The SMH process, which uses the power of
multi-model ensembles and strategic selection of future scenarios to
manage uncertainty15, has already been replicated in other settings51

and for other pathogens52. Looking to the future, the lessons learned
and the emerging shared hub infrastructure53 can help to provide a
more effective, coordinated, and timely response to new pandemic
threats and improve mitigation of endemic pathogens. It will be
advantageous to launch multi-model efforts for scenario planning,
forecasting, and inference in the early stages of future pandemics,
when the most critical, time-sensitive decisions need to be made and
uncertainty is high. To do this effectively, we can build on the SMHand
other efforts from the COVID-19 response by continuing “peace time”
research into how to better collect and use data, construct scenarios,
build models, and ensemble results. As part of an evidence-based
pandemic response, scenario modeling efforts like SMH can support
decision making through improved predictive performance of multi-
model ensembles and well-defined shared scenarios.

Methods
Overview of evaluation approaches for scenario projections
When evaluating the distance between a scenario projection and an
observation, there are two potential factors at play: (1) the scenario
assumptions may not match reality (e.g., scenario-specified vaccine
uptakemay underestimate realized uptake), and (2) if there were to be
alignment between the scenario specifications and reality, model
predictions may be imperfect due to miscalibration. The difference
between projections and observations is a complex combination of
both sources of disagreement, and importantly, observing projections
that are close to observations does not necessarily imply projections
are well-calibrated (i.e., for scenarios very far from reality, we might
expect projections to deviate from observations). To address both
components, we evaluated the plausibility of COVID-19 Scenario
Modeling Hub (SMH) scenarios and the performance of SMH projec-
tions (ensemble and componentmodels). A similar approach has been
proposed by Hausfather et al.45. Below, we describe in turn the com-
ponent models contributing to SMH, the construction of the ensem-
ble, the evaluation of scenario assumptions, and our approaches to
estimating model calibration and SMH performance.

Elicitation methods and models submitting projections to SMH
SMH advertised new rounds of scenario projections across various
modeling channels, using an open call to elicit projections from
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independent modeling teams. Scenario specifications were designed
in collaboration with public health partners and modeling teams, and
final specifications were published on a public GitHub repository
(https://github.com/midas-network/covid19-scenario-modeling-hub).
Teams then submitted projections to this same repository. For addi-
tional discussion about the philosophy and history of SMH, as well as
details about SMH process, see Loo et al.43.

Over the course of the first sixteen rounds of SMH, thirteen
independent models submitted projections, with most submitting to
multiple rounds. Of participating models, prior experience in public
health modeling varied substantially, ranging from teams with newly
built models to address the COVID-19 pandemic and those with long-
established relationships with local, state, and national public health
agencies. The majority of submitting models were mechanistic com-
partmental models, though there was one semi-mechanistic model
and two agent-based models. Some models were calibrated to, and
made projections at, the county level, whereas others were calibrated
to and made projections at the state level; many, but not all, had age
structure. We have provided an overview of eachmodel in Table S1. As
models changed each round to accommodate different scenarios and
adapt to the evolving pandemic context, we chosenot to focus here on
model-specific differences (in structure, parameters, or performance).
For more information on round-specific implementations, we direct
readers to other publications with details5,22.

Inclusion criteria and projections used for evaluation
Our analysis included state- and national-level projections of weekly
incident cases, hospitalizations, and deaths from individual models
and various ensembles for fourteen of the first sixteen rounds of SMH
(Rounds 8 and 10 were not released publicly, and therefore are not
included; see also Table S2 for a list of jurisdictions included). Each
round included projections frombetween4 and9 individualmodels as
well as ensembles. For a given round, modeling teams submitted
projections for all weeks of the projection period, all targets (i.e.,
incident or cumulative cases, hospitalizations, and deaths), all four
scenarios, and at least one location (i.e., states, territories, and
national). Here, we evaluated only individual models that provided
national projections in addition to state-level projections (i.e.,
excluding individual models that did not submit a national projection,
though projections from these models are still included in the state-
level ensembles that were evaluated). Submitted projections that did
not comply with SMH conditions (e.g., for quantifying uncertainty or
defining targets) were also excluded (0.8% of all submitted projec-
tions). Detailed description of exclusions can be found in Table S2.

Probabilistic projections and aggregation approaches
Modeling teams submitted probabilistic projections for each target via
23 quantiles (e.g., teams provided projected weekly incident cases for
Q1, Q2.5, Q5, Q10, Q20, …, Q80, Q90, Q95, Q97.5, and Q99). We
evaluated 3 methods for aggregating projections: untrimmed-LOP,
trimmed-LOP (variations of probability averaging or linear opinion
pool18, LOP), and median-Vincent (variation of quantile or Vincent
averaging36,37 which is also used by other hubs11).

The untrimmed-LOP is calculated by taking an equally weighted
averageof cumulative probabilities across individualmodels at a single
value. Because teams submitted projections for fixed quantiles, we
used linear interpolation between these value-quantile pairs to ensure
that all model projections were defined for the same values. We
assumed that all projected cumulative probabilities jump to 0 and 1
outside of the defined value-quantile pairs (i.e., Q1-Q99). In other
words, for a projection defined by cumulative distribution FðxÞ with
quantile function F�1ðxÞ, we assume that FðxÞ=0 for all x<F�1ð0:01Þ
and FðxÞ= 1 for all x>F�1ð0:99Þ:

The trimmed-LOP uses exterior cumulative distribution function
(CDF) trimming54 of the two outermost values to reduce the variance

of the aggregate, compared to the untrimmed-LOP (i.e., the prediction
intervals are narrower). To implement thismethod, we follow the same
procedure as the untrimmed-LOP, but instead of using an equally-
weighted average, we exclude the highest and lowest quantiles at a
given value and equally weight all remaining values in the average.
Under this trimmingmethod, the exclusions at different valuesmay be
from different teams.

The median-Vincent aggregate is calculated by taking the median
value for each specified quantile. These methods were implemented
using the CombineDistributions package19 for the R statistical
software55.

Scenario design and plausibility
Projections in each SMH roundweremade for 4 distinct scenarios that
detailed potential interventions, changes in behavior, or epidemiolo-
gic situations (Fig. 1). Scenario design was guided by one or more
primary purposes56, which were often informed by public health
partners and our hypotheses about the most important uncertainties
at the time. SMH scenarios were designed approximately one month
before projections were submitted, and therefore 4-13 months before
the end of the projection period, depending on the round’s projection
horizon. Scenario assumptions, especially those about vaccine efficacy
or properties of emerging viral variants, were based on the best data
and estimates available at the timeof scenario design (thesewereoften
highly uncertain). Here, our purpose was to evaluate SMH scenario
assumptions using the best data and estimates currently available,
after the projection period had passed. We assessed SMH scenarios
from two perspectives:
1. based on their prospective purpose: we identified whether sce-

narios “bracketed” reality along each uncertainty axis (i.e., one
axis of the 2 × 2 table defining scenarios, based on one key source
of uncertainty for the round). Scenarios inmost SMH roundswere
designed to bracket true values of key epidemic drivers (though
the true value was not known at the time of scenario design). In
other words, along each uncertainty axis in an SMH round, sce-
narios specified two levels along this axis (e.g., “optimistic” and
“pessimistic” assumptions). Here we tested whether the realized
value fell between those two assumptions (if so, we called this
“bracketing”).

2. for retrospective evaluation of calibration: we identified the set of
plausible scenario-weeks for each round.Oneof our primary goals
in this analysis was to assess and compare the calibration of
different approaches (e.g., individual models, SMH ensemble,
comparator models). To assess this in the most direct way
possible, we chose scenarios andprojectionweeks thatwere close
to what actually happened (i.e., we isolated error due to
calibration by minimizing deviation between scenarios and
reality; see Overview of evaluation approaches for scenario
projections for details).

An “evaluable” scenario axis was defined as an axis for which
assumptions could be confrontedwith subsequently observed data on
epidemic drivers; in some instances, we could not find relevant data
and the axis was not considered evaluable (e.g., NPI, see below). To
evaluate scenario assumptions, we used external data sources and
literature (Table S3). Due to differences across these sources, we
validated each type of scenario assumption differently (vaccination,
NPI, and variant characteristics; Fig. 2), asdescribed in detail below and
in Table S3. Vaccine specifications and realized coverage are shown in
Figs. S2–S5, while details of our round-by-round evaluation are
provided below.

Rounds 1-4 concentrated on the early roll-out of the vaccine in the
US and compliance with NPIs. To evaluate our vaccine assumptions in
these rounds, we used data on reported uptake from the US Centers
for Disease Control and Prevention database57. For these rounds,
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scenarios prescribed monthly national coverage (state-specific uptake
was intentionally left to the discretion of the modeling teams), so we
only used national uptake to evaluate the plausibility of each vacci-
nation scenario (Fig. S2). In these scenarios, “bracketing” was defined
as reality falling between cumulative coverage in optimistic and pes-
simistic scenarios for 50% or more of all projection weeks. The “plau-
sible” scenario was that scenario with the smallest absolute difference
between cumulative coverage in the final projection week (or in cases
of variant emergence, the last week of projections before emergence;
details below) and the observed cumulative coverage. We also con-
sidered choosing the plausible scenario via the cumulative difference
between observed and scenario-specified coverage over the entire
projection period; this always led to selecting the same scenario as
plausible.

When scenarios specified a coverage threshold, we compared
assumptions with the reported fraction of people vaccinated at the
end of the projection period. For instance, in Round 2 scenario C and
D, we stipulated that coverage would not exceed 50% in any priority
group, but reported vaccination exceeded this threshold. In Rounds 3-
4, the prescribed thresholds were not exceeded during the truncated
projection period.

By Round 5 (May 2021), vaccine uptake had started to saturate.
Accordingly, in Rounds 5-7, vaccine assumptions were based on high
and low saturation thresholds that should not be exceeded for the
duration of the projection period, rather than monthly uptake curves.
For these rounds,we evaluatedwhichof the prescribed thresholdswas
closest to the reported cumulative coverage at the end of the projec-
tion period (Fig. S3). Later rounds took similar approaches to speci-
fying uptake of childhood vaccination (Round 9) and bivalent boosters
(Round 14-16). Rounds 9 (Fig. S4), and 14-15 (Fig. S5) specified weekly
coverage and Round 16 specified a coverage threshold; we followed
similar approaches in evaluating these scenarios.

For vaccine efficacy assumptions, we consulted population-level
studies conducted during the period of the most prevalent variant
during that round (Table S3). Similarly, for scenarios about emerging
viral variants (regarding transmissibility increases, immune escape,
and severity) and waning immunity, we used values from the literature
as a ground truth for these scenario assumptions. We identified the
most realistic scenario as that with the assumptions closest to the
literature value (or average of literature values if multiple were avail-
able, Table S3).

Rounds 1-4 included assumptions about NPIs. We could not
identify a good source of information on the efficacy of and com-
pliance to NPIs that would match the specificity prescribed in the
scenarios (despite the availability of mobility and policy data, e.g.,
Hallas et al.58). Rounds 13-15 included assumptions about immune
escape and severity of hypothetical variants that may have circulated
in thepost-Omicron era. Round 16 consideredbroadvariant categories
basedon similar levels of immuneescape, in response to the increasing
genetic diversity of SARS-CoV-2 viruses circulating in fall 2022. There
were no data available for evaluation of immune escape assumptions
after the initial Omicron BA.1 wave. As such, NPI scenarios in Rounds
1-4 and immune escape variant scenarios in Rounds 13-16 were not
“evaluable” for bracketing analyses, and therefore we considered all
scenarios realistic in these cases. Overall, across 14 publicly released
rounds, we identified a single most realistic scenario in 7 rounds, and
two most realistic scenarios in the other 7.

Finally, in some rounds, a new viral variant emerged during the
projection period that was not specified in the scenarios for that
round.We considered this emergence to be an invalidation of scenario
assumptions, and removed these weeks from the set of plausible
scenario-weeks. Specifically, emergence was defined as the week after
prevalence exceeded 50% nationally according to outbreak.info var-
iant reports59–61, accessed via outbreak.info R client62. Accordingly, the
Alpha variant (not anticipated in Round 1 scenarios) emerged on 3

April 2021, the Delta variant (not anticipated in Rounds 2-5) emerged
on 26 June 2021, and the Omicron variant (not anticipated in Round 9)
emerged on 25 December 2021.

Comparator models
To assess the added value of SMH projections against plausible alter-
native sources of information, we also assessed comparator models or
other benchmarks. Comparator models based on historical data were
not available here (e.g., there was no prior observation of COVID-19 in
February in the US when we projected February 2021). There aremany
potential alternatives, and here we used three comparative models:
naive, 4-week forecast, and trend-continuation.

The baseline “naive” model was generated by carrying recent
observations forward, with variance based on historical patterns
(Figs. S13–S15). We used the 4-week ahead “baseline” model forecast
from the COVID-19 Forecast Hub11 for the first week of the projection
period as the naive model, and assumed this projection held for the
duration of the projection period (i.e., this forecast was the “naive”
projection for all weeks during the projection period). Because the
COVID-19 Forecast Hub collects daily forecasts for hospitalizations, we
drew 1000 random samples from each daily distribution in a given
week and summed those samples to obtain a prediction for weekly
hospitalizations. The naive model is flat and has relatively large pre-
diction intervals in some instances.

As a forecast-based comparator, we used the COVID-19 Forecast
Hub “COVIDhub-4_week_ensemble” ensemble model (Figs. S7–S9).
This model includes forecasts (made every week) from multiple
component models (e.g., on average 41 component models between
January and October 202111). We obtained weekly hospitalization
forecasts from the daily forecasts of the COVID-19 Forecast Hub using
the same method as the naive model. This 4-week forecast model is
particularly skilled at death forecasts11; however, in practice, there is a
mismatch in timing between when these forecasts were made and
when SMH projections were made. For most SMH projection weeks,
forecasts from this model would not yet be available (i.e., projection
horizons more than 4 weeks into the future); yet, for the first 4 weeks
of the SMH projection period, SMH projections may have access to
more recent data. It should also be noted that the team running the
COVID-19 Forecast Hub has flagged the 4-week ahead predictions of
cases and hospitalizations as unreliable63. Further, SMH may be given
an “advantage” by the post-hoc selection of plausible scenario-weeks
based on the validity of scenario assumptions.

Finally, the trend-continuation model was based on a statistical
generalized additive model (Figs. S10–S12). The model was fit to the
square root of the 14-day moving average with cubic spline terms for
time, and was fit separately for each location. We considered inclusion
of seasonal terms, but there were not enough historic data to mean-
ingfully estimate any seasonality. For each round, we used only one
year of data to fit themodel, and projected forward for the duration of
the projection period. The SMH ensemble consistently outperformed
this alternative comparator model (see Figs. S16–S21).

Projection performance
Prediction performance is typically based on a measure of distance
between projections and “ground truth” observations. We used the
Johns Hopkins CSSE dataset64 as a source of ground truth data on
reported COVID-19 cases and deaths, and U.S. Health and Human
Services Protect Public Data Hub65 as a source of reported COVID-19
hospitalizations. These sources were also used for calibration of the
component models. CSSE data were only produced through 4 March
2023, so our evaluation of Rounds 13-16 ended at this date (1 week
before the end of the 52 week projection period in Round 13, 11 weeks
before the end of the 52 week projection period in Round 14, 9 weeks
before the end of the 40 week projection period in Round 15, and
8 weeks before the end of the 26 week projection period in Round 16).
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We used two metrics to measure performance of probabilistic
projections, both common in the evaluation of infectious disease
predictions. To define thesemetrics, let F be the projection of interest
(approximated by a set of 23 quantile-value pairs) and o be the cor-
responding observed value. The “α% prediction interval” is the interval
within which we expect the observed value to fall with α% probability,
given reality perfectly aligns with the specified scenario.
1. Ninety-five percent (95%) coverage measures the percent of

projections for which the observation falls within the 95% pro-
jection interval. In other words, 95% coverage is calculated as

C95%ðF,oÞ=
1
N

XN

i = 1

1 F�1ð0:025Þ≤ o≤ F�1ð0:975Þ
� �

ð1Þ

where 1ð�Þ is the indicator function, i.e.,
1ðF�1ð0:025Þ≤ o≤ F�1ð0:975ÞÞ= 1 if the observation falls between the
values corresponding to Q2.5 and Q97.5, and is 0 otherwise. We cal-
culated coverage over multiple locations for a given week (i.e., i= 1:::N
for N locations), or across all weeks and locations.
2. Weighted interval score (WIS) measures the extent to which a

projection captures an observation, and penalizes for wider pre-
diction intervals35. First, given a projection interval (with uncer-
tainty level α) defined by upper and lower bounds, u= F�1 1� α

2

� �

and l = F�1 α
2

� �
, the interval score is calculated as

ISαðF ,oÞ= ðu� lÞ+ 2
α
ðl � oÞ1ðo< lÞ+ 2

α
ðo� uÞ1ðu < oÞ ð2Þ

where again, 1ð�Þ is the indicator function. The first term of ISα repre-
sents the width of the prediction interval, and the second two terms
are penalties for over- and under-prediction, respectively. Then, using
weights that approximate the continuous rank probability score66, the
weighted interval score is calculated as

WISðF,oÞ= 1
K + 1=2

1
2
jo� F�1ð0:5Þj+

XK

i= 1

αK

2
ISα

 !
ð3Þ

Each projection is defined by 23 quantiles comprising 11 intervals
(plus the median), which we used for the calculation of WIS (i.e., we
calculated ISα for α =0:02, 0:05, 0:1, 0:2,:::,0:8, 0:9 and K = 11). It is
worth noting that thesemetrics do not account formeasurement error
in the observations.

WIS values are on the scale of the observations, and therefore
comparison of WIS across different locations or phases of the pan-
demic is not straightforward (e.g., the scale of case counts is very
different between New York and Vermont). For this reason, we gen-
eratedmultiple variations ofWISmetrics to account for variation in the
magnitude of observations. First, for average normalizedWIS (Fig. 3b),
we calculated the standarddeviationofWIS,σs,w,t,r , across all scenarios
and models for a given week, location, target, and round and divided
theWIS by this standard deviation (i.e.,WIS=σs,w,t,r). Doing so accounts
for the scale of thatweek, target, and round, a procedure implemented
in analyses of climateprojections67. Then,we averagednormalizedWIS
values across strata of interest (e.g., across all locations, or all locations
and weeks). Other standardization approaches that compute WIS on a
log scale have been proposed68, though may not be as well suited for
our analysis which focuses on planning and decision making.

An alternative rescaling introduced byCramer et al.11, relativeWIS,
compares the performance of a set of projections to an “average”
projection. This metric is designed to compare performance across
predictions from varying pandemic phases. The relativeWIS formodel
i is based on pairwise comparisons (to all other models, j) of average
WIS. We calculated the average WIS across all projections in common
between model i and model j, where WISðiÞ and WISðjÞ are the average
WIS of these projections (either in one round, or across all rounds for

“overall”) for model i and model j, respectively. Then, relative WIS is
the geometric average of the ratio, or

relative WIS=
YN

j = 1

WISðiÞ
WISðjÞ

 !1=N

ð4Þ

When comparing only two models that have made projections
for all the same targets, weeks, locations, rounds, etc. the relative
WIS is equivalent to a simpler metric, the ratio of average WIS for
each model (i.e., WISðiÞ

WISðjÞ). We used this metric to compare each sce-
nario fromSMH ensemble to the 4-week forecastmodel (Fig. 4). For
this scenario comparison, we provided bootstrap intervals by
recalculating the ratio with an entire week of projections excluded
(all locations, scenarios). We repeated this for all weeks, and ran-
domly drew from these 1000 times. From these drawswe calculated
the 5th and 95th quantiles to derive the 90% bootstrap interval, and
we assumed performance is significantly better for one scenario
over the others if the 90% bootstrap intervals do not overlap. We
also used this metric to compare the ensemble projections to each
of the comparative models (Fig. S22).

Trend classification
In addition to traditional forecast evaluation metrics, we assessed the
extent to which SMH projections predict the qualitative shape of
incident trajectories (whether trends will increase or decrease). We
modified amethod fromMcDonald et al.40 to classify observations and
projections as “increasing”, “flat” or “decreasing”. First, we calculated
the percent change in observed incident trajectories on a twoweek lag
(i.e., logðoT + 1Þ � logðoT�2 + 1Þ for each state and target). We took the
distribution of percent change values across all locations for a given
target and set the threshold for a decrease or increase assuming that
33% of observations will be flat (Fig. S23). Based on this approach,
decreases were defined as those weeks with a percent change value
below −23% for incident cases, −17% for incident hospitalizations, and
−27% for incident deaths, respectively. Increases have a percent
change value above 14%, 11%, 17%, respectively. See Fig. S34 for clas-
sification results with a one week lag and different assumptions about
the percent of observations that are flat.

Then, to classify trends in projections, we again calculated the
percent change on a two week lag of the projected median (we also
consider the 75th and 95th quantiles because our aggregation
method is known to generate a flat median when asynchrony
between component models is high). For the first two projection
weeks of each round, we calculated the percent change relative to
the observations one and two weeks prior (as there are no projec-
tions to use for reference in the week prior, and two weeks prior,
projection start date). We applied the same thresholds from the
observations to classify a projection, and compared this classifica-
tion to the observed classification. This method accounts for
instances when SMHprojections anticipate a change in trajectory but
not the magnitude of that change (see Fig. S44), and it does not
account for instances when SMH projections anticipate a change but
miss the timing of that change (this occurred to some extent in
Rounds 6 and 7, Delta variant wave). See Figs. S24–S33 for classifi-
cations of all observations and projections.

We assessed how well SMH projections captured incident trends
using precision and recall, two common metrics in evaluating classi-
fication tasks with three classes: “increasing”, “flat”, and “decreasing”41.
To calculate thesemetrics, wegrouped all projections by the projected
and the observed trend (as in Fig. 5d). Let Npo be the number of pro-
jections classified by SMH as trend p (rows of Fig. 5d) and the corre-
sponding observation was trend o (columns of Fig. 5d). All possible
combinations are provided in Table 2. Then, for class c (either
decreasing, flat, or increasing),
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1. precision is the fraction of projections correctly classified as c, out
of the total number of projections classified as c, or

precisionc =
NccP3
j = 1Ncj

ð5Þ

For example, the precision of increasing trends is the number of
correctly classified increases ðNII Þ divided by the total number of
projections classified as increasing ðNID +NIF +NII Þ.

2. recall is the fraction of projections correctly classified as c, out of
the total number of projections observed as c, or

recallc =
NccP3
j = 1Njc

ð6Þ

For example, the recall of increasing trends is the number of
correctly classified increases ðNII Þ divided by the total number of
observations that increased ðNDI +NFI +NII Þ.

In some instances, we provide precision and recall summar-
ized across all three classes; to do so, we average precision or
recall across each of the three projected classes (decreasing, flat,
increasing). The code and data to reproduce all analyses can be
found in the public Github repository69.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data analyzed in the present study can be viewed online at https://
covid19scenariomodelinghub.org/ and downloaded at https://github.
com/midas-network/covid19-scenario-hub_evaluation/tree/main/
data-raw.

Code availability
All analyses were performed in R, version 4.2.0. All necessary data and
code to reproduce analyses is available at https://github.com/midas-
network/covid19-scenario-hub_evaluation/ and deposited at https://
zenodo.org/record/8415147. For a complete list of packages used, and
corresponding versions, see renv.lock file in this repository.
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