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Temporal chromatin accessibility changes
define transcriptional states essential for
osteosarcoma metastasis

W. Dean Pontius 1,2 , Ellen S. Hong1, Zachary J. Faber 1, Jeremy Gray1,
Craig D. Peacock 1, Ian Bayles1, Katreya Lovrenert1, Diana H. Chin 1,
Berkley E. Gryder1, Cynthia F. Bartels1 & Peter C. Scacheri1,3

The metastasis-invasion cascade describes the series of steps required for a
cancer cell to successfully spread from its primary tumor and ultimately grow
within a secondary organ. Despite metastasis being a dynamic, multistep
process, most omics studies to date have focused on comparing primary
tumors to the metastatic deposits that define end-stage disease. This static
approach means we lack information about the genomic and epigenomic
changes that occur during themajority of tumor progression. One particularly
understudied phase of tumor progression is metastatic colonization, during
which cells must adapt to the newmicroenvironment of the secondary organ.
Through temporal profiling of chromatin accessibility and gene expression in
vivo, we identify dynamic changes in the epigenome that occur as osteo-
sarcoma tumors form and grow within the lung microenvironment. Further-
more, we show through paired in vivo and in vitro CRISPR drop-out screens
and pharmacological validation that the upstream transcription factors
represent a class of metastasis-specific dependency genes. While current
models depict lung colonization as a discrete step within the metastatic cas-
cade, our study shows it is a defined trajectory through multiple epigenetic
states, revealing new therapeutic opportunities undetectable with standard
approaches.

Over 90% of cancer deaths occur due tometastasis, or the spreading
of tumor cells from their original location to other sites within the
body1. While the clinical need to target metastasis is clear, the
development of anti-metastatic therapies has proved to be difficult
for two main reasons. First, large-scale sequencing studies have
failed to find genetic aberrations that drive metastatic progression.
Unlike tumorigenesis, whose causal mutations are well character-
ized in a variety of cancers, metastasis is associated with few
recurrent genetic events2–4. Second, the spread of cancer cells to a
distal site is a complex, multistep process known as the metastasis-

invasion cascade5. Not only is the mechanism required for initial
dissemination distinct from that required for successful growth and
survival at the distal site, but each individual stagemay be a complex
biological process in itself6. For example, the final stage of the
metastasis-invasion cascade, known as colonization, encompasses
everything from the formation of clinically undetectable micro-
metastases to full-blown metastatic disease. During this period of
metastasis development, tumor cells are actively adapting to the
stresses of a different organ’s cellular millieu in order to ultimately
grow in an uncontrolled manner. This transitional middle phasemay
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provide a unique clinical opportunity, yet the underlying biology
remains largely unexplored.

Cancer cells accumulate genetic and epigenetic changes during
metastatic progression. At the level of the enhancer epigenome,
these pro-metastatic changes have been characterized by our lab
and others across numerous cancer types7–9. Despite recognition
that these changes occur sometime during the evolution of the
tumor, when, why, and how they occur remain open questions. Prior
studies have relied on profiling and comparing primary tumors to
clinically resectable metastases. By limiting comparison to these
endpoints, the natural history of cellular states throughout the
metastatic cascade is lost. Additionally, while such an approach may
be sufficient to capture inherited and somatic geneticmutations that
persist in the final output, epigenetic changes are inherently plastic
and context-dependent. Thus, they could easily be missed. This
leaves the potential for transient intermediate cell states that are
undetectable with these static comparisons. Temporal profiling over
a defined time course of metastatic colonization is required to
investigate this. Genetically engineered mouse models are ideal
systems for studying tumor evolution from a single cell, but the
stochastic nature of lesion formation makes isolating defined stages
of metastasis development challenging. To chart the landscape of
epigenetic changes that occur during metastatic colonization, we
need a tractable and controlled experimental system with well-
characterized growth dynamics from metastatic seeding to full
colonization. Further, a system amenable to functional perturbation
acrossmultiple different human cancer specimens, within the in vivo
microenvironment, would be ideal.

The lung is the second-most frequent site of cancer metastasis,
with twenty-five to thirty percent of all patients with cancer at autopsy
having visible lung metastases10. This occurs across many primary
tumor types. One of these is osteosarcoma—a particularly aggressive
bone cancer that is the second leading cause of cancer deaths in
adolescents and young adults11. Despite its favorable prognosis in
patients with localized disease, osteosarcoma that has metastasized
portends a five-year survival rate below 30%—a statistic that has not
improved in the last four decades.

Here, leveraging osteosarcoma models and functional genomics
to study regulatory programs that underlie lung metastasis, we find
that colonization is not a single step defined by a single transcriptional
program. Instead, it is a trajectory of cell states regulated by distinct
factors essential for metastatic progression.

Results
Temporal profiling of gene regulation during osteosarcoma
metastasis
We performed ATAC-seq and RNA-seq on the metastatic human
osteosarcoma cell line MG63.3-GFP grown in vitro, as well as har-
vested from mouse lung at 1 and 22 days after intravenous inocula-
tion (Fig. 1A). Although this model of metastasis bypasses
dissemination from the primary tumor and intravasation into the
circulation, the growth dynamics of subsequent metastases are
reproducible and well characterized. Fully formed tumors are pre-
sent after threeweeks,withmice succumbing tometastatic disease at
onemonth7,12,13. The reproducible nature of this systemmakes it ideal
for studying the regulatory mechanisms underlying colonization. In
addition, functional validation is flexible and straightforward due to
the ability to perturb gene function in any lung-metastatic human cell
line prior to injection. As expected, tumor burden within the lung is
visibly different at the two time points assessed, with single cancer
cells dispersed throughout the lung at day 1, and larger tumors
observed at day 22 (Fig. 1A). We reasoned that profiling these two
time points would capture changes associated with both migration/
colonization (early steps) and proliferation/outgrowth within the
metastatic organ (late steps). Through principal component analysis
of the log2 normalized ATAC-seq profiles, we observed clustering of
biological replicates from each of the three conditions (Fig. 1B). This
indicated robust and reproducible epigenomic changes at the time
points analyzed. The corresponding analysis of the matched tran-
scriptomes showed similar clustering. These data indicate that the
regulatory programs of osteosarcoma cells at the early and late
stages of lung metastasis are largely distinct.

Regions that change in accessibility during metastatic progres-
sion are distributed throughout the genome, with some changes
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Fig. 1 | RNA expression and open chromatin are dynamic during osteosarcoma
lung metastasis. A Experimental schematic of gene regulation profiling during
lung metastasis. Metastatic osteosarcoma cells were injected intravenously.
B Principal component analysis of the open chromatin profiles and transcriptomes

of cells isolated from threemetastasis timepoints. Each individual point represents
a distinct biological replicate. C Representative genome-browser screenshots of
dynamic accessible regions and corresponding transcripts.
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occurring at gene promoters, and others occurring at intergenic or
intronic regions (Fig. 1C). Many of the associated genes have been
investigated in the context of osteosarcomametastasis, but underlying
mechanisms contributing to their aberrant expression remain unclear.
For example, the gene IL32, which encodes a cytokine shown to pro-
mote osteosarcoma cell invasion and motility, displays an increase in
chromatin accessibility at its promoter primarily at the early time
point14 (Fig. 1C). This increase in accessibility is reflected in the gene’s
expression. In addition, the collagenase encoded by MMP2 has been
associated with osteosarcoma pulmonary metastasis15. Our data
demonstrate that MMP2 expression increases at the late in vivo time
point, and is associated with an increase in chromatin accessibility at a
putative intronic enhancer element (Fig. 1C).

To determine if these findings generalize to other specimens, we
repeated the experiment using another metastatic osteosarcoma cell
line model: 143b-HOS-GFP (Supplementary Fig. 1). This revealed that
dynamic changes in chromatin accessibility also occur in 143b-HOS-
GFP, with the three different conditions again clustering separately at
both the chromatin and RNA levels (Supplementary Fig. 1A, B). While
the exact regions that changed in accessibility were not identical
between the two cell lines, there was some overlap (Supplementary
Fig. 1C). For example, the promoter of IL32 again displayed an early-
specific increase in accessibility (Supplementary Fig. 1D). This implies
common biology underlies the different stages of osteosarcoma
metastasis despite genetic and epigenetic variation, and that these
programs are regulated by reproducible changes in the epigenomes of
metastasizing cells.

Dynamic shifts in chromatin accessibility during osteosarcoma
progression correlate with temporally distinct metastatic
programs
We used k-means clustering to partition the dynamic epigenome of
MG63.3-GFP cells based on how each region changes in chromatin
accessibility over the metastasis time course. We found eight robust
clusters (Fig. 2A, B). The first four clusters contained regions more
accessible at one or more of the in vivo time points, compared to
in vitro. We thus annotated them as early (cluster 1), pan in vivo
(clusters 2 & 3), and late (cluster 4), and will refer to them as such
throughout the rest of the text. In addition to the clusters of peaks
gained in vivo, we also identified clusters that were lost throughout
metastasis (cluster 6), or at a specific time during metastatic pro-
gression. Cluster 5, for example, contains regions that transiently
decrease in accessibility early, while cluster 8 is composed of regions
that are relatively inaccessible late.

Positive cis-regulatory elements like enhancers and promoters lie
within regions of accessible chromatin16. However, accessible chro-
matin also houses insulator elements that help constrain three-
dimensional genomic interactions within confined regions, and are
bound by structural transcription factors such as CTCF16. If the regions
we identified are acting predominantly as functional enhancers or
promoters, we would expect the expression of their target genes to
change in a similar fashion.

Analysis of the expression of target genes predicted by the
Genomics Regions Enrichment of Annotations Tool (GREAT) revealed
a general correspondence between accessibility and gene expression
changes for clusters 1–4 (Fig. 2C)17. We found that genes associated
with the early cluster (1) displayed the highest level of expression at the
early time point. Similarly, genes paired with the pan in vivo clusters (2
& 3) showed higher expression in both in vivo conditions when com-
pared to in vitro. This same phenomenon held true for the late cluster
(4), whose target genes were expressed highest at the late time point.
However, correlation between expression and accessibility was weak
for the other clusters, potentially due to nuances in the relationship
between chromatin accessibility and gene expression. For example, a
substantial change in the accessibility of an enhancer may not

correspond to a similarly substantial change in the expression of the
linked gene. In addition, accessible enhancers are not always engaged
in active gene regulation at the moment of profiling and are instead
poised for future activity. Lastly, as mentioned before, these clusters
may be enriched for other regulatory elements that do not positively
correlatewith associated gene expression, such as insulators elements.
Despite these intricacies, chromatin accessibility profiles still provide
meaningful insights into genes that could play vital roles during
metastasis.

We used GREAT to identify biological processes associated with
the three in vivo gained clusters (early, pan in vivo, and late; Clusters
1–4) (Fig. 2D)17. Biological terms for each cluster were quite distinct,
and included processes with clear ties tometastasis. This suggests that
the clusters regulate gene programs corresponding to distinct stresses
faced throughout metastasis. The early regions (cluster 1) regulate
genes associated with fluid shear stress, a likely response to the
mechanical forces present during migration through the circulation,
and extravasation into the secondary organ. Additionally, this same
cluster seems to be responsible for regulating apoptosis and senes-
cence—two pathways critical for survival of micrometastases in the
stressful newmicroenvironmentof the lung18,19. Thepan invivo regions
(clusters 2 & 3) are enriched for terms involving extracellular stimuli,
such as response to growth factors and cell-to-cell interactions. These
are biological processes required for osteosarcoma cells to interact
with the new cell types that make up the milieu of the metastatic
microenvironment. Interestingly, cluster 3 shows specific enrichment
for many terms involved with lymphocyte and regulatory T cell dif-
ferentiation in spite of our in vivo model lacking functional lympho-
cytes. This could imply lung colonization depends on an immune
suppressive phenotype mediated by changes in the osteosarcoma
epigenome. Lastly, the late regions (cluster 4) associate with pathways
important for the growth of larger metastatic lesions. These pathways
include remodeling of the local extracellularmatrix, activation of bone
development programs important for osteosarcoma growth, and
activation of vasculogenic programs required to support the increased
nutrient and waste transport needs of larger tumors.

To confirm the robustness of these results, we used an ANOVA to
determine the number of peaks that were significantly different
between time points (p <0.05). This analysis showed 96.6% of peaks
used in GREATwere significantly different across time points. Redoing
the GREAT analysis with only those peaks yielded the same results,
reinforcing the validity of these findings.

Strikingly, when we assessed how expression of the genes asso-
ciated with these specific GREAT terms changed over our metastatic
time course, there was an even closer association between gene
expression and chromatin dynamics (Fig. 2E). In the 143b-HOS-GFP cell
line, not only do we see partial overlap of the significantly enriched
terms for each cluster, but of the specific accessible regions within
each cluster as well (Supplementary Fig. 2). These overlaps are statis-
tically significant, indicating that even in tumors with genetically
diverse backgrounds, common transcriptional programs are required
to successfully navigate the different stages of lung metastasis repre-
sented in our model (Supplementary Fig. 2C, D).

Distinct transcription factors regulate temporal chromatin
clusters
Transcription factors mediate the regulation of genes through
context-specific interactions with enhancers and promoters20. To
identify transcription factors controlling the temporally distinct
changes in chromatin accessibility, we analyzed the DNA sequence
within each cluster of accessible regions to find differentially enri-
ched motifs (Fig. 3A). This analysis revealed unique sets of TFs
predicted to bind to the various accessible chromatin clusters.
While the early regions were highly enriched for FOX motifs and
NFkB motifs, the pan in vivo regions showed specific enrichment of
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motifs for a variety of KLF factors. Interestingly, the late peaks were
enriched for knownmesenchymal factors like TWIST1 and SOX9/10,
which have been previously shown to play a role in bone and car-
tilage development21,22. Of note, regions of the genome that lose
accessibility early in metastasis (cluster 5) are highly enriched for
CTCF motifs. Since CTCF is a structural factor involved in securing
three-dimensional chromatin interactions, the loss of CTCF-
enriched accessible sites may represent a loss of insulation and
reorganization of chromatin topology23. To determine if these
transcription factors were regulating the equivalent chromatin
dynamics in other contexts, we performed the same analysis on the
accessible chromatin clusters characterized in 143b-HOS-GFP
(Supplementary Fig. 3A). NFkB family motifs were again enriched
in the cluster 1 (early), while SOX9 and TWIST1motifs were enriched
for cluster 4 (late). In fact, the significantly enriched motifs for each

cluster were highly correlated between the two cell lines, demon-
strating generalizability of our findings (Supplementary Fig. 3B).

To further narrow the list of putative regulators, we used the
time course RNA-seq data to identify TFs whose expression dynamics
mirrored the accessibility of the peaks within their respective cluster
(Fig. 3B). Out of the factors enriched in the early-specific cluster,
NFKB2, NFKB1, and RELB stood out as having an early-specific
increase in expression, indicating a potential for differential activ-
ity at this time point. Excitingly, two of these genes, NFKB2 and RELB,
converge at the pathway level, as both are components of non-
canonical NFkB signaling - a known driver of metastasis in other
chromosomally unstable cancers24. For the putative pan in vivo
cluster regulators, KLF4, KLF12, and KLF13 all show an increase in
expression at both in vivo time points compared to the same cells
profiled in vitro. Lastly, we identified SOX9, EBF1, and TWIST1 as likely
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Fig. 2 | Dynamic shifts in chromatin accessibility during osteosarcoma pro-
gression regulate temporally distinct metastatic programs. A Diagram illus-
trating representative genome-browser views for peaks within each dynamic
cluster.B K-means clustering partitions the “universe” of open chromatin based on
their accessibility dynamics over time. Gray lines represent the dynamics of an
individual peak, while the orange line represents the mean change for all peaks
within a given cluster.CZ-scoredmRNAexpression for genes associatedwith peaks
within each cluster. Boxplots represent the interquartile rangewhere the top of the
box is the third quartile, the bottomof the box is the first quartile, and the dot is the

median. Whiskers extend to 1.5 times IQR. D Peak ontology based on GREAT for
peaks within each cluster. Top significant terms are shown. E Z-scored mRNA
expression for genes involved in the significant GREAT terms for each cluster.
Cluster 1n = 127, cluster 2n = 146, cluster 3n = 140, cluster 4n = 359, cluster 5n = 85,
cluster 6n = 91, cluster 7n = 27, cluster8n = 53. Boxplots represent the interquartile
rangewhere the topof the box is the thirdquartile, the bottomof the box is the first
quartile, and the midline is the median. Whiskers extend to 1.5 times IQR and dots
represent outliers.
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late-cluster regulators through this same approach. Many of these
time point-specific patterns of TF gene expression were also
observed in another metastatic osteosarcoma cell line (MNNG-HOS)
when the cells were grown within lung explants (Supplementary
Fig. 4). This supports the idea that a common set of regulators are
responsible for the microenvironment-induced epigenomic repro-
gramming events across osteosarcomas.

While these accessibility dynamics could be due to active chro-
matin changes in vivo, they could also result from selection of sub-
populations of cells that already possess the observed profiles in vitro
(Supplementary Fig. 5A). We performed single-cell ATAC-seq on
MG63.3-GFP cells grown in vitro to investigate these two possibilities
(Supplementary Fig. 5B). Using the above TFs as markers for the
temporal accessible chromatin landscapes, we projected either (1)
their motif enrichment or (2) their promoter accessibility onto the
scATAC-seq UMAP space (Supplementary Fig. 5C). This showed the
unbiased clusters identified in vitro were not defined by temporal TF
activity, indicating the dynamic peaks are likely a result of
microenvironment-dependent reprogramming events, and not sub-
clonal population shifts.

The middle phase of lung colonization harbors condition-
specific dependencies
While our data and integrated analyses define a sequence of epige-
nomic reprogramming events that occur during metastatic pro-
gression, it is unclear if these changes are necessary formetastasis to
occur. We hypothesized if these changes were indeed driving
metastasis, the upstream regulators would be essential. In vitro
genome-scale CRISPR dropout screens have emerged in the past
decade as a powerful way to assess gene dependency in a high-
throughput manner. However, in vivo-specific biology is not cap-
tured with traditional workflows that solely use in vivo models to
validate in vitro dependencies. In addition, screening coverage, and
thus data quality, are limited by the number of cells that initially
engraft within the lung. This makes genome-scale dropout screens in
models of lung metastasis experimentally infeasible. To overcome
these barriers, we designed a single guide RNA (sgRNA) library to
target 78 TFs (along with 11 positive controls and 25 nontargeting
negative control sgRNAs), and performed parallel experiments
in vitro and in an in vivo model of lung metastasis (Fig. 4A, Supple-
mentary Fig. 6). By combining 4 mice per replicate, we were able to
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achieve a screening coverage of 400× in vivo. Both screens were
performed using the MG63.3-GFP-Cas9i cell line previously
described13.

We confirmed significant depletion of sgRNAs targeting all 11
positive controls inboth armsof the screen. In addition, the non-target
negative controls did not affect cell fitness, collectively demonstrating
the quality of both screens (Fig. 4B). In total, the knockout of 17 TFs
were shown to reduce cell growth both in vitro and within the lung
microenvironment. Excitingly, 8 TFs were classified as metastasis-
specific dependency genes, with fewer classified as in vitro-specific (3
genes) or common dependencies (6 genes other than the positive
controls) (Fig. 4C). The 8 metastasis-specific dependency genes
included multiple TFs from the AP−1 factor family, which has pre-
viously been implicated in osteosarcoma metastasis7,25. Besides these,
we foundKLF4, STAT3, BCL6, TFAP2A, and TFAP4 as potential drivers of
osteosarcoma metastasis. To further investigate the context-
specificity of our genes of interest, we probed publicly available
whole genome CRISPR screen data in 990 cell lines from the Depen-
dency Map (DepMap) database26,27. While TFAP4was an essential gene
in 48% of the cell lines and BCL6 was a lymphoma-specific essential
gene, the other 6 in vivo hits showed little evidenceof depletion across
all cancer types, including 9 osteosarcoma cell lines (Supplementary
Fig. 7). This finding further highlights the importance of screening
directly in the metastatic microenvironment, and that our in vivo hits
are selectively important for lung metastasis, and not other osteo-
sarcoma growth contexts.

Genetic and pharmacological inhibition of pro-metastatic
transcription factors prevents lung metastasis
We reasoned that if the TF-hits in the CRISPR screen were genuine
metastasis-specific dependencies, then inhibiting them should impair

lungmetastasis but spare in vitro growth. We first sought to show that
these factors demonstrated context-specific importanceoutside of the
screening setting. Since KLF4 was not only an in vivo-specific hit from
our screen, but also a likely mediator of the in vivo-specific chromatin
changes observed, we chose to start with this factor. Using the top
sgRNA from our screening library, we knocked out KLF4 in a pooled
format in MG63.3-GFP-Cas9i (Fig. 5A). As a control, we transduced the
same cell line with a nontargeting sgRNA. We observed that knocking
out KLF4 did not decrease the viability of metastatic osteosarcoma
cells grownover the course of 7 days in vitro (Fig. 5B). In linewith these
findings, knocking out KLF4 also had no impact on the in vitro
enhancer landscape of MG63.3-GFP cells (r =0.98) (Supplementary
Fig. 8A, B). Using CRISPResso2, we determined the majority (85%) of
ChIP-seq reads mapped to the KLF4 locus in our knockout cells con-
tained edits predicted to disrupt KLF4 expression (Supplementary
Fig. 8C)28. This was not the case for the KLF4 wild-type ChIP-seq. This
confirmed the similarity of the enhancer landscapes between the two
cell lines was not simply due to outgrowth of KLF4 wild-type cells
within our pool.

In order to study the effect of KLF4 knockout on metastatic
capability, we used an ex vivo Pulmonary Metastasis Assay (PuMA)—
secondary model of lung metastasis13,29. In this system, metastatic
osteosarcoma cells are injected into the lungs of mice through the
tail vein (Fig. 5C). Themice are immediately euthanized, after which
lung slices are grown at an air liquid interface ex vivo. Bymonitoring
the tumor burden by GFP-positive area within each lung slice, we
saw that knocking out KLF4 decreased the ability of the cells to grow
within the context of the metastatic microenvironment. At every
time point imaged, the level of tumor burden was significantly lower
in the KLF4 knockout cell line than the non-target control line
(Fig. 5D, E). While tumor burden did increase over time for both
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sgRNA library targeting
78 TFs predicted to bind met-VELs
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Fig. 4 | Targeted CRISPR screen reveals condition-specific transcription-factor
dependencies in metastatic osteosarcoma. A Experimental workflow for in vitro
and in vivo CRISPR screens in a metastatic osteosarcoma cell line. B One-sided
volcano plots and marginal density plots displaying distribution of gene targets

included in the screens. Gene-level statistics are shown.C Set of genes called as hits
in each screen. The cutoff used for calling hits was an fdr neg <0.05 and log(fold-
change) < -1.
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conditions, this could be representative of cells within the pool of
KLF4 knockout cells that escaped editing of the KLF4 locus. How-
ever, we cannot rule out the possibility that KLF4 is only partially
essential for lung metastasis, or that metastasizing cells can cir-
cumvent KLF4 dependence through usage of alternative transcrip-
tional machinery.

Despite the clear importance of KLF4 in promoting metastasis in
our models, therapeutic inhibitors of this factor have not yet been
developed. However, other in vivo dependencies from our screen,
such as STAT3, have chemical probes that can be used to impair their
function. We thus sought to determine if a STAT3 inhibitor could
selectively target osteosarcoma lung metastasis.
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Using the PuMA system, we found that the STAT3 inhibitor TPCA
−1 prevented ex vivo lungmetastasis at 5 μMand 1 μMover the course
of 21 days (Fig. 6A, B). Confirming our genetic findings that STAT3 is an
in vivo-specific dependency, the same cells were unaffected by TPCA-1
when grown outside of the lung microenvironment (Fig. 6C). These
data demonstrate that our approach identified druggable metastasis
dependency genes that may serve as therapeutic targets for treating
metastatic osteosarcoma.

Metastasis dependency transcription factors represent a
transcriptional addiction
While some of the pro-metastasis TFs are targetable with specific
inhibitors, not all TFs are able to be directly targeted in thismanner.
However, many of the metastasis-specific hits from our in vivo
screen are upregulated at the mRNA level within the lung micro-
environment in 2 cell lines (Fig. 7A, B). This indicates that meta-
static osteosarcoma cells may depend on the increased expression
of these TFs for successful lung colonization. In other words, the
dependence on this specific set of transcription factors may
represent a metastasis-specific transcriptional addiction. We

wondered whether this increase in expression of pro-metastasis
TFs could be a potential vulnerability for metastatic osteo-
sarcoma cells.

Experimental probes that target the transcriptional machinery
such as JQ1 and THZ1 have been used to determine transcriptional
addictions in cancer cells30–32. Treatment of the metastatic osteo-
sarcoma cell lineMNNG-HOSwith JQ1 has been shown to block tumor
growth within the lung microenvironment7. To determine if the anti-
metastasis property of JQ1 correlated with downregulation of any of
the pro-metastatic transcription factors identified, we reanalyzed
data profiling the transcriptome of MNNG-HOS grown in the PuMA
system with and without drug. Strikingly, 6 of the 8 in vivo hits from
MG63.3 showed an increase in expression when MNNG-HOS cells
were grown within the context of the lung microenvironment
(Fig. 7B). The increase in expression of all 6 of these factors was
attenuated by exposure to JQ1 (Fig. 7C, D). Of these 6 factors, KLF4,
STAT3, and JUN were further upregulated in metastases in an inde-
pendent cohort of osteosarcoma samples from St. Jude (Fig. 7E).
Altogether, these data indicate that transcription-factor dependen-
cies identified in one cell line could be more broadly relevant to
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human osteosarcoma, and transcriptional inhibition may serve as a
general therapeutic strategy.

Discussion
Despite metastasis being a devastating clinical problem, our under-
standingof the epigeneticmechanisms associatedwith theprocess have

been limited to the biological bookends. While mutational drivers of
cancer processes are preserved during tumor progression, the plasticity
of the epigenome means epigenetic drivers can be transient. This can
make them invisible with traditional end point comparisons. The past
focus on comparing primary tumors to late-stagemetastatic disease has
limited our understanding of the complex phase of lung colonization,
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which remains a black box. Here we show this critical period of osteo-
sarcoma metastasis is composed of a continuum of changes that occur
as cancer cells interact with their new microenvironment.

Waddington’s epigenetic landscape for embryonic development
depicts a series of ridges and valleys that represent paths a pluripotent
cell can take to differentiate into a variety of somatic cell types. Along
each of these paths, the differentiating cell encounters branch points
that end in different tissues, with the apex of this branch point
representing intermediate cell states. In a similar way, we envision a
metastasizing cell as rolling down an analogous epigenetic landscape.
Where fully differentiated normal tissue is present at the bottom of
Waddington’s landscape, our model places metastatic lesions indica-
tive of end-stage disease. Our work defines the epigenetic path an
osteosarcoma cell takes to colonize the lung, identifying multiple
intermediate cell states along the way.

Importantly, we found these specific epigenetic reprogramming
events present vulnerabilities that can be targeted at multiple distinct
levels of gene regulation. Upstream transcription factors driving this
reprogramming can play temporally specific roles in the process of
lung colonization. However other factors like themaster transcription-
factor KLF4 are ubiquitously important. We show through an in vivo
functional genomics approach and subsequent validation experiments
that KLF4 is indeed required for successful outgrowth in a murine
pulmonary metastasis xenograft model. This same factor was totally
dispensable for the same cells to grow in vitro, emphasizing its
context-specific importance. More work is required to determine
correlates of KLF4 dependence, such as patient sex, tumor location, or
specific genomic/epigenomic alterations (i.e. amplification of MYC,
mutations in TP53, specific variant enhancers, etc.).

In addition to KLF4, we identify seven other transcription factors
that are essential for lung metastasis, but unimportant for in vitro
proliferation. One of these factors, STAT3, can be directly targeted in
an experimental setting using the drug TPCA-1. However, more
broadly, the general addiction of metastasizing cancer cells to the

expression of TF dependency genes is indirectly targetable through
transcriptional inhibition with JQ1. This provides further evidence
that multiple different approaches to targeting the transcriptional
axis show promise as therapeutic strategies in metastatic
osteosarcoma.

Although we focus mostly on pan in vivo dependencies, another
exciting finding fromourwork is that the different stages ofmetastasis
may be targeted by inhibiting the specific transcriptional machinery
required for each phase of lung colonization (Fig. 8). This indicates
targeting the various clinical manifestations of the disease will likely
require different drugs. For example, targeting early regulators will
likely be optimal for preventing early phases of colonization, whereas
late regulators may be better targets for more established metastatic
disease.

Our work also provides insights into the basic biology underlying
osteosarcoma lung metastasis. Both SOX9 and KLF4 have been shown
toplay key roles innormal bonedevelopment. KLF4 inhibits osteoblast
differentiation to regulate bone homeostasis, while SOX9 serves as a
master regulator of chondrocytes - an intermediate cell type during
osteoblastogenesis33,34. Thus, our data suggest metastatic competence
may depend on osteosarcoma’s ability to transiently dedifferentiate
from an osteoblast-like state. This is in line with findings in prostate
cancer showing early developmental programs are important for
metastasis35.

In totality, we develop a strategy combiningmetastasis time point
experiments and in vivo functional genomics to elaborate on seminal
work describing the importance of the epigenome to the metastatic
phenotype across multiple cancers7–9,36. While other studies focused
on end point comparisons, we are the first to show distinct changes at
the level of chromatin occur multiple times throughout lung coloni-
zation. Furthermore, these temporally resolved changes point in the
direction of a host ofmetastasis dependency genes that lie throughout
the dynamic epigenomic landscape of metastasizing cells. Experi-
mentally, this study demonstrates the importance of using in vivo
models of cancer processes in the earliest stages of discovery research.
Translationally, we believe the gap in knowledge this study fills is a
critical step towards improving treatments for osteosarcoma patients.
Many osteosarcoma patients present with undetectable micro-
metastases, limiting the utility of therapies targeting dissemination
and seeding from the primary tumor, as this stage of disease has
passed and is largely irrelevant to the patient’s outcome. Established
macrometastases mean the cancer cells already have a stronghold in
the patient’s lung and through accelerated growth are ready to evolve
resistance to therapies. In both scenarios we have likely missed a key
therapeutic window of opportunity. Defining intermediate epigenetic
states and upstream regulators required for cells to successfully
colonize the secondary organ allows us to target metastasis when it is
at its most vulnerable. Since patients are likely to possess metastatic
cells at different stages of progression simultaneously, a combination
therapy tailored to address each distinct biology may be optimal.
Although our work identifies reproducible epigenetic changes during
osteosarcoma lung colonization, additional studies are needed to
assess if the same regulators play roles in other lung-metastatic can-
cers, or even other cancers of the same lineage. This same approach
could also be used to probe the dynamic nature of other aspects of
cancer progression, such as primary tumor formation or colonization
of other distal organs.

Limitations of study
First, our study is focused primarily on two different osteosarcoma
models (MG63.3 and 143b). Despite commonality between these
well-established and genetically distinct cell lines, we know osteo-
sarcoma is a heterogeneous cancer. Similar experiments in other
models that represent the larger spectrum of osteosarcomas would
reinforce the broad applicability of these findings. Second,

Early Late

Fig. 8 | Model for transcription-factor driven lungmetastasis in osteosarcoma.
Schematic model illustrating the role of dynamic modulation of the epigenome
during metastatic colonization in osteosarcoma.
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although we identify intermediate transcriptional states that occur
during lung colonization, our study is limited to three time points
and thus represents only a snapshot of the full epigenetic trajectory
of lung colonization. Higher-resolution temporal profiling could
help pinpoint additional dependencies. Third, the current study
does not consider the contribution of the immune system to the
metastatic colonization process, given our experimental system
whereby human cells are seeded to the lungs of immunocompro-
mised mice. Analogous approaches using syngeneic models could
help in this regard. Lastly, the epigenetic states characterized in our
study reflect responses to numerous stresses the osteosarcoma
cells encounter in the lung microenvironment. Future studies pro-
filing the epigenome of osteosarcoma cells under specific stresses
(shear stress, hypoxia, co-culture, anchorage independent growth,
etc.) could further refine the basis of the temporal chromatin
changes observed here.

Methods
Ethics statement
All animal experiments were performed in accordance with the Case
Western Reserve University (CWRU) Institutional Animal Care and Use
Committee’s guidelines.

Cell culture
The human osteosarcoma cell lines MG63.3-GFP, MG63.3-GFP-Cas9i,
and 143b-HOS-GFP were obtained, generated, and cultured as pre-
viously described13. The MNNG-HOS data was a reanalysis of a public
dataset. Therefore, methods regarding this cell line are the same as
previously described7. Routine testing to ensure the absence of
mycoplasma was performed using a custom PCR-based assay. Unique
cell lines described in this paper are available from the authors upon
request.

Mouse studies
All mouse experiments were performed using NOD scid gamma mice
purchased from the CWRU Athymic Animal & Preclinical Therapeutics
core facility. Mice were housed in ultraclean facilities in accordance
with protocols approved by the CWRU Institutional Animal Care and
Use Committee. Experiments were designed to minimize mouse use,
while optimizing statistical power, based on our extensive experience
with xenograft models of metastasis. Mice were standardized for sex
and age for each individual experiment. Since no subjective mea-
surements were used for any of the described experiments, research-
ers were not blinded to group assignments.

Ex vivo lung metastasis assay
The ex vivo pulmonary metastasis assay was performed as previously
described7,29. In brief, 1 × 106 cells were injected into 10–12 week old
female NOD scid gamma mice through the lateral tail vein. Mice were
immediately sacrificed post-injection. The lungs of the mice were
insufflated with a 50% medium/agarose solution. The lungs were then
resected and placed in ice cold 1× PBS for 30min to allow themedium/
agarose solution to polymerize. After 30min, individual lobes of the
lung were cut into transverse sections and placed on Gelfoam (Pfizer,
catalog 00300090315085) that had been equilibrated in medium in
6-well plates for 24 h at 37 °C. Sections were then cultured ex vivo for
21 days at 37 °C and 5% CO2. Each section was removed from the Gel-
foam and imaged in a new cell culture plate at the time points listed in
each experiment to assess relative tumor burden by GFP+ area.
Fluorescent imaging was performed on the Operetta High Content
Imaging System (PerkinElmer), and quantification of tumor burden
was done via the Acapella Image Analysis software (PerkinElmer). For
the KLF4 knockout experiment, three mice were used per condition,
with 6 lung sections cultured per mouse.

In vitro cell viability assay
To measure the effect of KLF4 knockout on cell viability in vitro, 500
KLF4 knockout cells or non-target control cells were plated in 96-well
plates in 90μL ofmedium,with sixwells seeded per condition. In total,
five 96-well plates were seeded to allow measuring of viability at days
0, 1, 3, 5, and 7. After seeding, cells were allowed to adhere overnight
before measuring viability at day 0 using PrestoBlue reagent (Ther-
moFisher, A13261). To do this, 10μL of PrestoBlue was added to each
well and allowed to incubate at 37 °C for 1 h. Fluorescence was then
measured on a Synergy Neo2 plate reader (BioTek). For cells cultured
past day 0, medium with 1 μg/mL doxycycline was added on day 0.
Viability was measured at each time point as described above.

Western blot
Cells were lysed at 4 °C in RIPA buffer supplemented with protease
inhibitors (Roche, 4693159001). Protein concentrations were mea-
sured using a BCA Assay Kit (Thermo Fisher, 23225), and 30μg of total
protein was resolved on precast 4–12% Bis-Tris gels (Invitrogen,
NP0321BOX) and transferred to PVDF membranes (Bio-Rad, 1704157)
using the trans-blot turbo transfer system (Bio-Rad, 1704150). The
membranes were blocked with 5% dry milk in PBS supplemented with
0.2% Tween-20 (PBS-T) at room temperature for 1 h and then incu-
bated overnight at 4 °C with the following primary antibodies: KLF4 at
0.5 μg/mL (R&D, AF3640) and cyclophilin B at 1:10,000 dilution
(abcam, catalog ab16045). Chemiluminescent detection was per-
formed with HRP-conjugated secondary antibodies purchased from
Thermo Scientific at 1:10,000 dilution (anti-goat, RA2143996; anti-
rabbit, 31460) and developed using Genemate Blue Ultra-
Autoradiography film (VWR, 490001-930).

CRISPR screen and individual inducible knockout cell line
generation
The custom CRISPR-screen library was generated as previously
described37. Three hundred and sixty sgRNAs targeting the TF targets
were pulled from the genome-wide Brunello library38. In addition,
25 sgRNAs without recognition sites in the human genome were
included as negative controls. All sgRNAs were synthesized (Custo-
mArray) and cloned into pLV-U6-gRNA-UbC-DsRed-P2A-Bsr; a gift
from Charles Gersbach (Addgene, plasmid 83919). Lentivirus was
produced with LentiX Packaging Single Shots (Clontech, 631278)
according to the manufacturer’s protocol and was used to transduce
MG63.3-GFP-Cas9i cells at an MOI of ~0.3. After selection of the suc-
cessfully transduced cells with 5 μg/mL blasticidin, screening pools
were expanded and used for the in vitro and in vivo screens. All single
knockout cell lines were generated as described above, with the
exception that single guides were cloned into pLV-U6-gRNA-UbC-
DsRed-P2A-Bsr according to the Broad institute protocol. Knockout
induction was performed in vitro by exposing cells to 1 μg/mL dox-
ycycline hyclate (Cayman, 14422).

sgRNA sequences
sgRNA sequences were as follows: KLF4, forward, KO: CACCGAGCGAT
ACTCACGTTATTCG; KLF4, reverse, KO: AAACCGAATAACGTGAGTA
TCGCTC; nontargeting control-1, forward, KO: CACCGAAAAAGC
TTCCGCCTGATGG; and nontargeting control-1, reverse, KO:
AAACCCATCAGGCGGAAGCTTTTTC.

In vitro CRISPR dropout screen
For the in vitro screen, 5 × 105 cells were seeded in triplicate in T75
flasks. Cells were maintained for 21 days in the presence of 1 μg/mL
doxycycline hyclate, with 5 × 105 cells reseeded at each passage to
maintain 500× library coverage. At the end of the 21 days, 5 × 105 cells
were collected for genomic DNA extraction using red blood cell lysis
solution (Qiagen, 28606).
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In vivo CRISPR dropout screen
Fifteen mice were placed on water with 2mg/mL doxycycline hyclate
for 4 days prior to the beginning of the experiment. In parallel, 1 × 106

cells were seeded in triplicate and cultured in the presence of 1 ug/mL
doxycycline hyclate to induce Cas9 expression. Cells were then
expanded in vitro for 4 days prior to injection. Three groups of 5 mice
(15 total) were seeded with 1 × 106 cells each. Mice weremaintained on
2mg/mL doxycycline for the duration of the experiment. After 21 days
of in vivo growth, cells were isolated from the lungs of individual mice.
In brief, lungs were removed from post-mortem mice and dissociated
using the Miltenyi Human Tumor Dissociation kit (Miltenyi, 130-095-
929) andGentleMACS dissociator (Miltenyi, 130-093-235) according to
the manufacturer’s protocol for medium tumors. To enhance the
purity of human cells within the final cell suspension, mouse cells were
removed through negative selection using the Miltenyi Mouse Cell
Depletion Kit (Miltenyi, 130-104-694). Genomic DNA was then extrac-
ted from the purified population of human cells with red blood cell
lysis solution and used to prepare sequencing libraries as previously
described37. In brief, 2000 μg of genomic DNA was used as a template
for PCR, split across 8 separate reactions for each sample. Phusion
high-fidelity master mix was used for all PCR reactions. Libraries were
then purified using PCR Clean DX beads (Aline Biosciences), pooled,
and paired-end sequenced on a MiSeq (Illumina) using custom read
and index primers. Although each group of 5 mice was analyzed as a
single replicate to obtain a screening coverage of 500×, individual
libraries were generated for each mouse.

Analysis was performed using the web-based CRISPRCloud239.
Dropout for both the in vivo and in vitro screens were calculated
compared to an inputday0 timepoint. For the invivo screen, all 5mice
from each of the three groups were assigned as a single replicate. Hits
for each screenwere called based on a false-discovery rate <0.05, and a
log2(fold-change) < −1.

Single-cell ATAC-seq
MG63.3 cells were isolated and processed according to the Nuclei
Isolation for Single Cell ATAC Sequencing Demonstrated Protocol
(10X Genomics, CG000169) with the following modifications: 1% BSA
in PBS was used for the washes, and cells were lysed for 3min on ice.
Sequencing libraries were created using the Chromium Single Cell
ATAC Reagent Kits User Guide (10X Genomic, CG000168). Briefly,
5000 nuclei were targeted and tagmented in bulk. Nuclei were then
portioned into Gel Beads-in-emulsion (GEMs) with a unique cell bar-
code per single nucleus. GEMs were amplified first in a linear amplifi-
cation PCR, after which GEMs were broken and PCR was used to add a
sample index and Illumina sequencing handles (P5/P7). Libraries were
sequenced at the University of Chicago Genomics Facility on an Ilu-
mina HiSeq 4000 with paired-end 100 bp reads.

Single-cell ATAC-seq data were aligned and processed using Cell
Ranger ATAC v1.2 with the hg19 reference genome. The peak cell
matrix and fragment file were further processed using Seurat v4.0.1 to
create a Seurat object of the class ChromatinAssay40. Using Seurat
v4.0.1, latent semantic indexing (LSI) was used to perform normal-
ization, feature selection, and linear dimensional reduction. UMAP
reduction was performed using LSI on dimensions 2 through 30 and
cells were plotted in UMAP space.

To assess promoter accessibility of marker TFs for each cluster at
the single-cell level, Seurat’s FeaturePlot function was used. The pro-
moter for each gene was defined as the genomic region 1 kb upstream
and downstream from the transcription start site obtained from the
UCSCGenome Browser. For visualization, the accessibility score at the
promoter of each genewas projected onto the single-cell UMAP space.

To determine the distribution of motif enrichment for each mar-
ker TF, chromvar was used. First, the motif position frequency matrix
was created using motif information from the JASPAR database

(JASPAR2020matrix for species 9606, homo sapiens). Next, chromvar
was used to calculate a motif score per cell for each TF. Seurat’s Fea-
turePlot function was then used to visualize the motif enrichment
score per cell for each of the cluster defining transcription factors in
the UMAP space.

ATAC-seq
ATAC-seq was performed using the omni-ATAC-seq protocol pre-
viously described41. For cells profiled in vitro, 2.5 × 104, 5 × 104, or 1 × 105

cells were used. For the in vivo conditions, 1 × 105 cells were used. Prior
to preparation of the in vivo libraries, human osteosarcoma cells were
isolated from mice 1 day or 22 days post-tail vein injection. In brief,
lungs were surgically removed from post-mortem mice and dis-
sociated using the Miltenyi Human Tumor Dissociation kit (Miltenyi,
130-095-929) and GentleMACS dissociator (Miltenyi, 130-093-235)
according to the manufacturer’s protocol for medium tumors. To
enhance the purity of human cells within the final cell suspension,
mouse cells were removed through negative selection using the Mil-
tenyi Mouse Cell Depletion Kit (Miltenyi, 130-104-694). For the early
condition, the final cell suspensions from 4mice were combined prior
to performing ATAC-seq for each replicate (3 replicates, 12 mice). For
the late condition, each replicate was generated from an individual
mouse (5 replicates, 5 mice). MG63.3 libraries were sequenced at the
CWRU Genomics Core Facility on an Illumina NextSeq (high-output
flowcell) with paired-end 75 bp reads. 143b-HOS-GFP libraries were
sequenced at MedGenome with paired-end 100 bp reads.

Reads were aligned to human genome reference hg19 with BWA-
MEM42. Although the purity of human cells was enriched experimen-
tally through magnetic sorting, a residual population of mouse cells
were still present in the purified population. To discount these cells
from downstream analysis, we also aligned each sample to mouse
genome reference mm9 and used the R package XenofilteR to selec-
tively remove reads with better alignment to the mouse genome than
human43. Duplicate reads were removed from the filtered BAM files.
The de-duplicated BAMs were then used to call peaks with Genrich
(https://github.com/jsh58/Genrich) on ATAC-seq mode with default
settings. Bigwig tracks were generated using deeptools “bamCover-
age” with normalization by RPGC.

To partition the landscape of open chromatin identified based on
accessibility dynamics, a z-scored matrix was created from the
quantile-normalized fpkm values across the universe of ATAC-seq
peaks across all time points. Peaks with a coefficient of variation <10%
were binned into a pseudo “static” cluster. The remaining dynamic
regions were then clustered with k-means clustering. Bedtools2 was
used for all genome arithmetic during the analysis process.

RNA-seq
Cells grown invitroand cells remaining after the in vivoATAC-seqwere
lysed using TRIzol (Invitrogen, 15596026). RNA was subsequently
extracted by transferring the aqueous phase from the TRIzol-
chloroform extraction to RNeasy columns (Invitrogen, 74104). The
rest of the RNA extraction was performed according to the RNeasy
manufacturer protocol. Purified RNA was sent to MedGenome for
library preparation and sequencing. MG63.3 libraries were prepared
using the Takara SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input
Mammalian (Takara, 634411) while 143b-HOS-GFP libraries were pre-
pared using the SMART-Seq v4 Ultra Low Input RNA Kit (Takara). All
libraries were sequenced paired-end 100/150bp.

Raw RNA-seq reads were aligned to hg19 and mm9 using HISAT2,
and XenofilteR was again used to remove reads that aligned better to
the mouse genome than the human genome43,44. Transcripts per mil-
lion were calculated for each gene across all time points.

For the patient analysis, bulk RNA-seq data for paired primary and
metastatic tumorswereobtained from the St. JudeChildren’s Research
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Hospital Childhood Solid Tumor Network (CSTN)45. Clinical details
from the samples used are available in Supplementary Table 1. Tran-
script per million reads (TPM) of each gene wasmeasured using RSEM
version 1.3.3 that calculated TPMby reassigningmultiple alignments of
STAR version 2.5.3a to target genes via a maximum likelihood esti-
mation framework. Expected counts of coding genes from RSEMwere
totaled by sample to yield a sum of all expected counts. The expected
counts for each gene were then divided by the total sum of expected
counts and multiplied by 100,000. The resulting gene expression
values were then plotted in GraphPad PRISM, binned into groups
depending on metastatic status of the tumors.

ChIP-seq
ChIP-seq was performed as previously described using an antibody
targeting H3K27ac (Abcam, ab4729)46. In brief, 5 million
MG63.3 sgKLF4 or sgNT cells were fixed with methanol free for-
maldehyde for 10minutes. Nuclei were extracted and chromatin was
sheared for 7min using the Covaris S2 AFA focused ultra sonicator
(Duty factor 5%, intensity 4, 200 cycles/burst). Libraries were prepared
as previously described46,47. Libraries were sequenced with paired-end,
150 bp reads.

ChIP-Seq data processing
Cutadapt v1.9.1 was used to remove paired-end adapter sequences and
discard reads with a length less than 20bp48. FASTQs were aligned to
hg19 using BWA-MEM with default parameters in paired-end mode.
Output SAM files were converted to binary (BAM) format, sorted,
indexed, and PCR duplicates were removed using SAMtools v1.1049.
Peaks were detected with MACS v2.1.2 with the --broad flag set50.
DeepTools v3.2.0 was used to generate RPGC-normalized bigWig
tracks with 50bp bin sizes from the final sample BAM files51. BigWigs
were visualized on the Integrative Genomics Viewer in order to assess
pronounced track irregularities or low signal-to-noise ratio52. Bed-
tools2 was used for all genome arithmetic involving ChIP-seq data.
CRISPResso2 was used to confirm editing of KLF4 within the sgKLF4
H3K27ac ChIP-seq data28.

GREAT analysis
Bed files for each cluster were uploaded individually, using whole
genome (hg19 assembly) as the background. To assign genomic
regions to genes, all regions from each cluster were uploaded and
genomic regions were associated with genes based on a window of
5.0 kb upstream and 1.0 kb downstream of the gene TSS (Basal
+extension setting). The resultant gene-region pairings were
downloaded. To determine enriched biological programs for each
cluster, only those regions that showed a log2fc > 1 when comparing
either in vivo time point to in vitro were used. To assess the biolo-
gical enrichment for only significant peaks, we performed an
ANOVA for each individual peak across the three time points.
GREAT was then performed again with the pared down list of peaks
with p < 0.05.

Motif analysis
Putative cluster-specific transcription-factor regulatorswere identified
through differential motif-mining analysis using GimmeMotifs
maelstrom53. Peak lists for each cluster were catted together and
reformatted according to the two-column input option. Gimme
maelstrom was then run with default parameters. Motifs visualized in
the heatmap are those that meet a z-score threshold of 6.

Statistics
Data in Fig. 5 are displayed as mean ± SD. Significance values are cal-
culated by student’s t-test. *** <0.0005, ** <0.005, * <0.05, n.s≥0.05.
Confidence intervals and p-values from a two-sided fisher test are

displayed in Supplementary Fig. 2C. *** <0.0005. P-values in figure
Supplementary Fig. 2D were generated by a one-sided
hypergeometric test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data generated for this manuscript can be found at the
Gene Expression Omnibus (GEO) under the accession number
GSE215765. The MNNG-HOS JQ1 RNA-seq data that was previously
published is also available on GEO under the accession number
GSE74230. Source data are provided with this paper.

Code availability
All custom code used in this manuscript can be found at the following
GitHub repository: https://github.com/wdpontius/temporal_
chromatin_accessibility_osteo54.
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