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Spontaneous shock waves in pulse-
stimulated flocks of Quincke rollers

Bo Zhang 1,6 , Andreas Glatz 1,2, Igor S. Aranson 3,4,5 &
Alexey Snezhko 1

Active matter demonstrates complex spatiotemporal self-organization not
accessible at equilibrium and the emergence of collective behavior. Fluids
comprised of microscopic Quincke rollers represent a popular realization of
synthetic activematter. Temporal activitymodulations, realized bymodulated
external electric fields, represent an effective tool to expand the variety of
accessible dynamic states in active ensembles. Here, we report on the emer-
gence of shockwave patterns composed of coherently moving particles
energized by a pulsed electric field. The shockwaves emerge spontaneously
and move faster than the average particle speed. Combining experiments,
theory, and simulations, we demonstrate that the shockwaves originate from
intermittent spontaneous vortex cores due to a vortexmeandering instability.
They occur when the rollers’ translational and rotational decoherence times,
regulated by the electric pulse durations, become comparable. The phenom-
enon does not rely on the presence of confinement, andmultiple shock waves
continuously arise and vanish in the system.

Active matter encompasses a broad class of interacting self-propelled
particles that transduce energy from the environment intomechanical
motion1–5. With the increase in particle concentration, active matter
exhibits a transition from individual to collective behavior manifested
by various patterns of coherent locomotion: jets, bands, flocks,
vortices6–9. This behavior was observed in many realizations of active
matter, from macroscopic bird flocks, fish schools to microscopic
bacterial suspensions, cytoskeletal extracts, and field-driven Janus
particles, spinners and rollers10–20.

Microscopic Quincke rollers are a popular realization of synthetic
active matter. Quincke rollers—dielectric colloids suspended in a weak
electrolyte and energized by a static (DC) electric field—utilize the
electrohydrodynamic Quincke rotation phenomenon21,22 and inject
energy and angular momentum into the system at the microscopic
level. In the presence of a solid surface, the Quincke rotation is
transformed into a horizontal translation. Quincke rollers demonstrate

a remarkable level of complex collective behaviors and self-
organization ranging from the emergence of correlated flocks to the
formation of global vortices, polar bends, and oscillating flows under
confinement7,23–25. Temporal modulation of the activity of Quincke
rollers via a pulsed electricfield is an effective technique to control the
persistence lengths and collective behavior of rollers26–28. By manip-
ulating the duration τon and intervals τoff between the pulses of the
same polarity, a set of novel dynamic states, such asmultiple localized
vortices and lattices emerge28. The newpatterns areoften attributed to
dynamic system memory and changing interparticle force balances at
time scales comparable to theMaxwell-Wagner polarization relaxation
time τMW= (ϵp + 2ϵf)/(σp + 2σf), where ϵp,f andσp,f are respective particle
and fluid permittivities and conductivities26,28.

The suspending media also plays a significant role in active
ensembles dynamics29–33. In the case of Quincke rollers, the observed
complex dynamics of rolling colloids is always accompanied by
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electrohydrodynamic flows induced by the applied electric field pow-
ering the system. The strength of the flows grows with the amount of
charge in the media, which in the case of the majority of Quincke
experimental systems is regulated by the ionic surfactant AOT (aerosol
dioctyl sulfosuccinate sodium) salt and the absorbed water content34–36.

Here, we report on the emergence of spontaneous shockwaves
that became accessible under temporal activitymodulations in crowds
of colloidal Quincke rollers with the increased strength of the elec-
trohydrodynamic flows. In response to the increased media con-
ductivity, the electrohydrodynamic flows are no longer negligible and
promote intermittent rollers densifications (dynamic ripples) in the
system at the uncorrelated gas state. The particle shockwaves con-
tinuously emerge and dissipate on the background of spontaneous
density variations in the transition region between the gas and vortex
states. The shockwaves originate in local high-density regions where
rollers develop velocity correlations and spontaneously start to move
collectively faster than the average particle speed in the ensemble. The
dependent velocity distributions have also been observed in related
magnetic roller systems37. We combine experiments and continuum
computational modeling to demonstrate that the shock waves origi-
nate from the transient vortex cores due to vortex meandering
instability and occur when the active rollers’ translational and rota-
tional decoherence times become comparable. Multiple shock waves
continuously appear and vanish in the system.Our work highlights the
crucial importance of the interaction timescales in the emergence of
dynamic patterns under temporal modulation of the activity and
suggests pathways to manipulate and enrich collective dynamics in
active systems.

Results
In our experiments, we use polystyrene spheres (d = 4.8 μm) dispersed
in a weakly conductive liquid that are sandwiched between two

ITO-coated glass slides and energized by a static (DC) electric field (see
“Methods” for the details). Above a certain threshold value of the field
strength, Ec, the particles start to spontaneously rotate due to the
electrohydrodynamic Quincke rotation phenomenon22 and turn into
rollers exploring the bottom plate of the experimental cell. A typical
velocity of the rollers under a static electric field E = 3.2 V/μm used in
our experiment is 1.9mm/s. Themotion of the particles proceeds over
the background of the electrohydrodynamic (EHD) flows between the
electrodes. The EHD flows are always present in the energized system
and scale with the amount of charge available in the liquid and
the applied electric field. However, the effect of the EHD flows on the
observed particles dynamics under typical field conditions for the
Quincke rollers is often negligible. At high electric field, the EHD flows
may become dominant and result in lifting off the particles and three-
dimensional patterns33. Tomanipulate the electrohydrodynamic flows
in our experiments, we increase the medium’s conductivity by
absorbing water to σ = 7.8 × 10−8 S/m.

The behavior of the rollers becomes significantly different if the
activity of particles is modulated by the pulsed electric field26,28. Fig-
ure 1A demonstrates the dynamic phase diagram in our system under
pulsed electric field excitations as a function of the pulse duration, τon,
and the interval between the pulses, τoff. The magnitude of the pulses
was fixed at E = 3.2 V/μm. The system now exhibits a new striking
collective response—spontaneous shockwaves—contentiously emer-
ging at different locations of the ensemble, propagating and dis-
sipating. Typical shockwave fronts are shown in Fig. 1B (see also
Supplementary Movie 1). The new dynamic phase has not been pre-
viously observed at lower medium conductivity (σ = 5.4 × 10−8 S/m)
under identical activity modulations28 where only flocks, vortices, and
lattices have been observed (Supplementary Fig. 1). Noticeably, the
shock waves propagate on top of the spontaneous local particle
number densifications, ripples, clearly visible in Supplementary
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Fig. 1 | Dynamic phases formedbyQuincke rollers under a pulsed electric field.
A Phase diagram as a function of pulse duration τon and the pulse interval τoff. The
phases in the gray area marked with * were reported previously in ref. 26. The
average particle area fraction ϕ0 = 0.11. The conductivity of the medium
σ = 7.8 × 10−8 S/m. The fieldmagnitude E = 3.2 V/μm. See SupplementaryMovies 1–5
and Supplementary Fig. 3 for more details on dynamic phases. B Experimental
snapshot of multiple shock waves. The red arrows indicate the propagation
directions of two major waves. The scale bar is 1 mm. C Representative probability
distribution functions (PDFs) of the particle velocities for different dynamicphases:

gas (τon = 4.0ms; τoff = 2.7ms), shock waves (τon = 4.9ms; τoff = 1.8ms), flocks (τon =
5.3 ms; τoff = 1.4 ms) and vortices (τon = 6.6 ms; τoff = 0.1 ms). The period of
excitation T = 6.7ms. The second peak of PDF for the shockwaves regime is shaded
by pink, indicating fast particles (∣u∣/∣u0∣ > 2) involved in the shockwaves. ∣u0∣ is the
average particle speed in the first peak in the shock waves regime and the average
speed of all particles in other phases. D Snapshots of a shock wave propagating
from top right to bottom left. Particles with (∣u∣/∣u0∣ > 2) are colored in red. The
scale bar is 0.5 mm. Source data are provided as a Source Data file.
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Movies 1 and 2. The state of the system at exactly the same driving field
conditions as the ripples state demonstrated but at lower media con-
ductivity (σ = 5.4 × 10−8 S/m) is shown in Supplementary Movie 9.
Instead of ripples, the system organizes in a vortical motion without
significant densifications. In principle, the ripple-free gas state at low
conductivity is also achievable but at different driving conditions, see
Supplementary Movie 10. The formation of the ripples is driven by
electrohydrodynamic flows between the conductive plates that, in the
presence of the particles at the electrode distorting the local electric
field, result in tangential fluid flows directed towards the particles
giving rise to an effective interparticle attraction and local particle
densifications33,38,39. Shockwaves are spontaneously excited from the
local transient densification regions of ripples generating propagating
spiral-likewavefronts thatwill eventually dissipate or be interruptedby
another shockwave propagating in the system, see Fig. 1D and Sup-
plementary Movie 3.

The build-up of the particle velocity correlations in the system
resulting in collective phases is controlled by the activity modulations.
A particle activity and retained polarization memory increase with
increasing τon and/or shortening τoff (see Supplementary Fig. 2). The
probability distribution function (PDF) of the particle velocities in
different dynamic phases of the system are shown in Fig. 1C. The
regime of shockwaves has two distinctive peaks in its distribution
corresponding to the particles in a gas phase performing uncorrelated
motion (low-velocity peak) and fast particles involved in the inter-
mittent shockwaves characterized by a short-lived correlated motion

of the particles (high-velocity peak). The short-lived correlations
between the particles in a shockwave are promoted by the particle
densifications of the ripples driven by the electrohydrodynamic flows.
Those correlations decay as the interparticle distances increase with
the wave propagation, resulting in the eventual dissipation of the
wavefront. The shock waves appear at the narrow transition region
before the system switches to a vortex phase.

The excitation process of a shockwave is illustrated in Fig. 2 and
Supplementary Movie 6. Rollers first slowly accumulate to dense ver-
tices of ripples via constrained random walks under electro-
hydrodynamic flows (Fig. 2C). Accidentally, rollers gain high velocities
(∣u∣/∣u0∣ > 2) and form small dynamic clusters with particle velocities
aligned (t = 0).Mostdynamic clusters dissipate over timeor explode as
ripples while a small cluster fraction merges (t =0.02 s), grows
(t =0.05 s), and eventually forms a vortex (t = 0.1 s). Due to the vortex’s
meandering instability in an unconfined environment, the unstable
vortex quickly breaks into a spiral shock wave (t =0.2 s) which pro-
pagates (t = 0.3 s) and eventually dissipates. The excitation process is
also presented by typical particle trajectories, which show the circular
motion of the initial transient vortex and spiral trajectories of the final
shock wave (Fig. 2D).

Rollers accelerate when a shockwave propagates through and
forms a densified region associated with higher particle velocities. The
shape of the shockwave is shown in the corresponding microscopy
image, the particle density, and the particle velocity map in Fig. 3A–C.
The shockwave bulges in the propagation direction, causing typical
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Fig. 2 | Emergence of a shock wave. A Snapshots illustrating the excitation of a
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B Velocity vectors of fast particles colored according to the velocity directions.
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before transformation into a shockwave. C,D Trajectories of the particles inside of
a square indicated in (A) before (C) and after (D) the shockwave excitation. Particle
positions at t =0 are marked with circles. d is the particle diameter. Only 10%
particle trajectories are shown for a better visualization.
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asymmetric density and velocity profiles with sharply curved wave-
fronts and relatively shallow tails. To better understand the effect of
the shockwave on individual rollers, we track a few selected particles
andmeasure their instantaneous positions and velocities when a shock
wave passes through (see Fig. 3D–E). Rollers first perform Brownian-
like movements, showing random trajectories and slow speeds. When
the shock wave arrives, particles move smoothly and collectively for
about 50d before returning to their random motion (Fig. 3D). The
distance for collective displacement is comparable to the width of the
shockwave indicated by the particle density map or velocity map.
During this process, the particle speeds dramatically increase to about
5 times and thendecay relatively slowly to the original level, see Fig. 3E.

Besides tracking the particles, the influence of shock waves is also
monitored by the evolution of the average velocity (dark red line with
square symbols in Fig. 3E) and local particle area fraction (Fig. 3F) at a
fixed position indicated by a red square in Fig. 3A. The shape of the
average velocity evolution is similar to those of individual particles
(colored lines) with an exception of a slightly delayed increase due to
different objects ofmeasurements.When the shockwave arrives at the
selected position (t ≈0.2 s), the average velocity increases dramati-
cally, accompanied by an abrupt increase in local particle density. The
wave nature is confirmed by the fact that the speed of the shock waves
(uwave = 2.1 mm/s) is about 40% higher than the peak particle speed
(u = 1.5 mm/s). This makes the shock waves very different from other
traveling density bands observed inmany activematter systemswhere
the particle velocity is the same as the band front velocity7,8,40.

While the phenomenology seems somewhat similar to the activity
waves reported recently in ref. 36, there are several crucial differences
between our shockwaves and the activity waves observed in popula-
tions of subcritical Quincke rollers. Firstly, the shock waves of rollers
are driven by a pulsed electric field with a field amplitude higher than
the criticalfield strength Eq. In contrast, activitywaves are observed for
a constant electric field slightly lower than Eq. Therefore, rollers in
shockwaves performsteady rotations and induce hydrodynamicflows

during τon. In contrast, in activity waves, the transient motion of par-
ticles is triggered by repulsion from nearest neighbors due to the
Quincke instability. Secondly, the wave propagation mechanisms are
also different. Rollers in shock waves interact via electrostatic and
hydrodynamic interactions, while electrostatic interactions and hard-
core collisions are dominant for the particle motion in activity waves.
Due to long-range interactions via hydrodynamic flows, shock waves
can be excited in relative dilute systems (ϕ ~ 0.1), while activity waves
are only observed at very high-density systems (ϕ ~ 0.4) to trigger a
domino-like effect due to hard-core collisions.

Modeling and simulations
To study and understand the dynamical behavior of the system in
response to variations of the τon and τoff of the excitation electric field
in the experiments, we investigate the behavior of the roller system
using a continuum model and perform computational studies. Within
the model, variations of the translational and rotational diffusion con-
stants are directly affected by the activity modulation procedure. See
the “Methods” section for details of the computational model. We
study the steady-state behavior of the system depending on the para-
meter δ = ~D=~Dr , where the tilde denotes dimensionless parameters.

The particle density becomes homogeneous for smaller δ≲0.5,
which we associate with the gas states, whereas for large δ ≳ 1.16, the
system develops a stable global vortex. We find shockwave states for
the region δ∈ [0.6, 1.16], as shown by the snapshots of the steady-
states for different δ values in Fig. 4A–D. The shockwave state becomes
fully developed with multiple waves traversing the system at
δ approaching 1, corresponding to the state where the roller’s trans-
lational and rotational decoherence times become comparable. The
dynamics of the shockwaves, as obtained in the simulations, is also
shown in Supplementary Movies 7 and 8.

Since we are particularly interested in the shockwave regime, we
performed a detailed analysis of this state in analogy to the experi-
ments. Figure 4E, G shows the evolution of the particle density in the
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selected region of interest. In this analysis region (outlined), we cal-
culate the particle speed ∣u∣ as a function of time while a shock wave
travels through it. A detailed animation of this process can be found in
the Supplementary Movie 8. For the particular shock wave shown in
Fig. 4F, thewave passes through the analysis region at time t ~ 10with a
maximum local particle speed ∣u∣ of umax =0:68 (Fig. 4G), while the
wave travels at speed uwave = 0.97 (dashed black line), i.e., 42% faster
than the local particle speed. The analysis was performed for several
shock waves with comparable ratios of uwave=umax, which agrees with
the experimental observation.

Analysis of the shockwave excitation in the simulations reveals
local instabilities that lead to non-zero vorticity, producing localized
densification of particles forming short-lived vortices. The emission of
radial shockwaves then dissolves these whirling, denser spots. Local
densifications leading to the emergence of shockwave fronts also
occurwhenflocks collidewith eachother orwith the boundaries of the
confinement potential creating intermittent density hot spots in the
density map.

Discussion
We have demonstrated that active ensembles of Quincke rollers with
enhanced role of electrohydrodynamic flows exhibit the onset of
spontaneous shockwaves that became accessible under temporal

modulations of activity by a pulsed electric field. The shock waves
continuously emerge, propagate, and dissipate at different locations
of the ensemble. The electrohydrodynamic flows are no longer negli-
gible andpromote intermittent rollers densifications (dynamic ripples)
in the system.We have shown that shockwaves emerge at high-density
regions and, like shockwaves in gases, propagate at a speed exceeding
the average particle speed. These emergent waves originate from the
transient vortex cores due to vortex meandering instability. The
computational modeling sheds light on the origin of the observed
shockwaves and reveals that this unconventional dynamic state
becomes accessiblewhen the translational and rotational decoherence
times are comparable. The presented computational model does not
consider the 3D electrohydrodynamic flows33. The current version of
the model operates with the hydrodynamic flows in the shallow water
approximation, i.e., quasi-two-dimensional geometry. The effect of the
electrohydrodynamic flows can be further included via an additional
vertical fluid velocity component similar to that in ref. 41. The exten-
dedmodelwill likely provide a better agreementwith the experimental
observations.

In the context of shock waves, the Burgers equation is often used
to describe their formation due to the competition between the visc-
osity and the convective nonlinearity v∇ v. Since our equations con-
tain the convective nonlinear terms, it is reasonable to assume, at least,
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at the qualitative level, some resemblance of the shockwave formation
mechanism as in the Burgers equation. The main difference, however,
is that the shockwaves are not the steady-state solutions in the Burgers
equation. On the contrary, due to energy injection in our system, the
shock waves propagate without change of shape. It would also be
interesting to compare our results to a Burgers’ equation approach
akin ref. 42, since the nonviscous Burgers’ equation gives rise to dis-
continuities resulting in shockwaves. Our findings highlight the
importance of the interplay between transient system memory,
manipulated by a pulsed field, and electrohydrodynamic flows in
accessing unconventional dynamic phases that are not accessible
under a continuous energy input. The results suggest new approaches
for controlling and manipulating active colloidal materials at the
microscale.

Methods
Experimental details
In our experiments, spherical polystyrene particles (d = 4.8 μm) are
suspended in 0.15 mol/L AOT/hexadecane solution and injected into
an open cell constructed by two parallel ITO-coated glass slides and
spacers with a typical thickness of 95 μm. The electric field is supplied
by a function generator (Agilent 33210A, Agilent Technologies) and a
power amplifier (BOP 1000M, Kepco Inc.). The water content of the
host fluid is controlled by the relative humidity (RH) of the closed
environment andmonitored by real-time conductivity measurements.
The pulsed field amplitude was set to E = 3.2 V/μm. The sample cell is
observed under a microscope with a 4× microscope objective. Videos
are recorded by a fast-speed camera (IL 5, Fastec Imaging) at 1057
frames per second (FPS). Particle tracking velocimetry (PTV) and fur-
ther data analysis are carried out with custom codes in Python and
Trackpy43.

Computational approach
Herewe employ a continuummodel for Quincke rollers. The approach
is adapted from our previous work44,45, which we developed for mag-
netic roller systems.Within thismodel, the particles are described by a
coarse-grained particle density field ρ(r) and their velocity-field u(r).
The fluid is described by the fluid velocity v(r) and fluid height profile
h(r). The host fluid is described by the depth-averaged in-plane velo-
city �v= �vðx,y,tÞ, i.e., we use a shallow water approximation here, and
the depth of the solvent h = h(x, y, t). The gravity role is auxiliary and
used for simplification purpose. The term ~g∇ h in Eq. (2) is due to the
shallow-wave approximation and is required to satisfy the fluid
incompressibility condition, Eq. (3). It is possible to set h = const, and,
correspondingly, ∇�v=0. However, it would result in a more compu-
tationally challenging algorithm without affecting the observed
behavior. The particle dynamics is described by a Ginzburg-Landau-
like equation for u:

∂tu=αu� β uj j2u+D∇2u+
1

ρm0
∇ � Π+ γρ�v+Ω×u: ð1Þ

where m0 is the mass of a roller, D=u2
0τdif=4 is the translational dif-

fusion coefficient of the particles. The Ginzburg-Landau parameters
are determined by the mean collision and diffusion times,
τcol = ð2ρa0u0Þ�1 and τdif, respectively, as α = τ�1

col � τ�1
dif and

β= ðu2
0τcolÞ

�1
. The former is described in dimensionless units as

~α =ηu0~ρ� ~Dr , where ~Dr is the dimensionless rotational diffusion
constant, ∼ τ�1

dif ,η a numerical constant, and ~ρ the dimensionless
particle density. The last two terms characterize the coupling between
active rollers and a passive host fluid (solvent), where the γ = 3

4
a0
h τ�1

col
term results from the over-damped roller dynamics, and the last term
describes the rotation of rollers in a hydrodynamic flow with vorticity
Ω= 1

2∇× �v46. For the Quincke roller system, the stress tensor Π takes
the form Π= 3

64a0
p� p� 3

2p
2I

� �� PI, where p(r) is the polarization

field, I is the identity tensor, and P the pressure, which phenomen-
ologically accounts for the finite size of colloids. The latter results in a
term −Q(ρ)∇ ρ in Eq. (1), where Q(ρ) takes into account hard-core
repulsion at high densities (i.e., when two particle overlap) and
attraction for intermediate densities, which accounts for polarization
effects being linear in ρ, and a small repulsion at very low densities47.
The polarization field p is itself a dynamic quantity, similar to u, and
therefore described by a related Ginzburg-Landau equation with
Landau-Lifshitz-like term aligning p and u, see ref. 44.

In weakly-conducting fluids, the interactions between dipoles
scale as separation distance in power four48. In the so-called leaky-
dielectric model48,49, the fluid’s conductivity decreases the dipole
strength. The dipolar interactions are small compared to the hydro-
dynamic interactions that decay much slower41. Thus, unlike in a
magnetic system, the electrostatic dipolar interactions between
Quincke rollers become negligible compared to the hydrodynamic
interactions and we can neglect the dipolar contribution to the stress
tensor Π in Eq. (1).

For the dynamics of suspending fluid, we use the two-dimensional
depth-averagedNavier-Stokes equation (shallowwater approximation)50

∂t�v+ �v � ∇ð Þ�v= � g∇h+ ν∇2�v� 3
ν

h2
�v+3πρa2

0
ν

h2 u, ð2Þ

where g is the gravitational acceleration and ν the kinematic viscosity.
The last two terms on the RHS originate from the no-slip condition at
the rollers-solvent interface. u0 also determines the scale of the fluid
velocity.

Equations (1) and (2) have to be solved together with the con-
tinuity equations for the

∂tρ+∇ � ρu =0, ð3Þ

∂th +∇ � h�v=0: ð4Þ

All equations are integrated using quasi-spectral split-step meth-
ods, which calculate all second-order spatial derivatives in Fourier
space. Technically, the solver is implemented on the general-purpose
graphics processing units (GPU) using complex fast-Fourier-
transforms (FFT; here the cuFFT implementation) for the x and y
components of u, �v, and the combined (h, ρ) vector. Compared to
general-purpose CPU finite-element solvers, this method allows for an
integration speed-up of 3 to 4 orders of magnitude and naturally uses
periodic boundary conditions due to the FFTs.

Simulations parameters. Using τdif as unit of time and u0τdif as unit of
length the above equations are rewritten in dimensionless units. The
roller density is normalized by themean value �ρ = νp=ðπa2

0Þ, where νp is
the surface fraction of the particles. A dimensionless parameter ρ0 < 1
determines then the average density in the system.

The units are defined by their experimental values, which set the
following dimensionless parameter ranges for the simulations

D ≈ 1

Dr ∼0:8� 2:0

ρ0 ≈0:4

To solve the above equations numerically, a time unit is dis-
cretized in 250 steps, and the system is partitioned spatially on a
regular, squaremesh with up to 2048 × 2048 grid points. Additionally,
the equation for the particle velocity has an additional circular con-
finement force, which is zero inside the circular region of diameter
comparable to linear system size. This confinement is used to mimic
the experimental geometry and to avoid an overall transversal mode
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due to the needed periodic boundary conditions for the FFT used to
solve the equations of motion. The equations are then integrated for
up to 107 time steps, corresponding to about 5min experimental time.

Data availability
All data that support the findings of this study are provided in this
paper and the Supplementary Information. Source data are provided
with this paper.

Code availability
Custom codes used for numerical modeling are available at github.-
com/activematerials/Shockwave_continuum.
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