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Cross species systems biology discovers glial
DDR2, STOM, and KANK2 as therapeutic
targets in progressive supranuclear palsy

Yuhao Min 1,2,3, Xue Wang 4, Özkan İş 1, Tulsi A. Patel1, Junli Gao1,
Joseph S. Reddy 4, Zachary S. Quicksall 4, Thuy Nguyen 1, Shu Lin1,
Frederick Q. Tutor-New1, Jessica L. Chalk1, Adriana O. Mitchell1, Julia E. Crook2,
Peter T. Nelson5,6, Linda J. Van Eldik 5,7, Todd E. Golde8,
Minerva M. Carrasquillo 1, Dennis W. Dickson 1, Ke Zhang1, Mariet Allen1 &
Nilüfer Ertekin-Taner 1,9

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian
disorder characterized by cell-type-specific tau lesions in neurons and glia.
Prior work uncovered transcriptome changes in human PSP brains, although
their cell-specificity is unknown. Further, systematic data integration and
experimental validation platforms to prioritize brain transcriptional pertur-
bations as therapeutic targets in PSP are currently lacking. In this study, we
combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from
PSP and control brains with transcriptome data from a mouse tauopathy and
experimental validations in Drosophila tau models for systematic discovery of
high-confidence expression changes in PSP with therapeutic potential. We
discover, replicate, and annotate thousands of differentially expressed genes
in PSP, many of which reside in glia-enriched co-expressionmodules and cells.
We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP
with striking cross-species validations. We share our findings and data via our
interactive application tool PSP RNAseq Atlas (https://rtools.mayo.edu/PSP_
RNAseq_Atlas/). Our findings reveal robust glial transcriptome changes in PSP,
provide a cross-species systems biology approach, and a tool for therapeutic
target discoveries in PSPwithpotential application in other neurodegenerative
diseases.

Progressive supranuclear palsy (PSP) is a neurodegenerative disorder
with a relatively early age of onset and rapid progression to death1. PSP
is a primary tauopathy characterizedby the overexpression of 4-repeat
tau isoform in both neuronal and glial cells, leading to cell-specific tau

lesions including neurofibrillary tangles (NFT) in the neurons, tufted
astrocytes (TA), coiled bodies (CB) in oligodendrocytes, and tau
threads (TauTh) in white matter. Multiple genetic risk factors have
been associated with PSP, including variants in or proximal to
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microtubule associated protein tau (MAPT), myelin associated oligo-
dendrocyte basic protein (MOBP) and RUNX family transcription fac-
tor 2 (RUNX2)2,3. Some of these loci are also associated with brain gene
expression levels, suggesting that genetic variants may confer PSP risk
via transcriptional regulation4,5. We previously showed that PSP brains
have vast transcriptional perturbations6,7. PSP brain gene expression
networks have distinct association patterns with the different cell-
specific tau lesions, highlighting cell-specificity of these transcriptional
changes in PSP7,8.

While these findings nominate brain perturbations in gene
expression and transcriptional networks as potential culprits in PSP
pathophysiology, they are primarily based on microarray expression
measures of bulk brain tissue from human cohorts or do not system-
atically investigate PSP brain RNAseq changes in independent cohorts.
Additionally, complementary data from single cell/single nucleus
RNAseq (sc/snRNAseq) is necessary to assess cell-type-specific brain
gene expression changes in PSP. Further, although investigating these
transcriptome changes in model systems across different species can
increase confidence in the findings and enable experimental valida-
tions, such studies are lacking in neurodegenerative diseases with few
exceptions9,10. Consequently, the exact disease mechanism(s) and key
molecular players that underlie PSP pathogenesis remain unclear,
creating a barrier to nominating effective targets for disease-
modifying treatment.

To enable the translational discovery of potential therapeutic
targets with mechanistic insights, the myriad brain transcriptional
changes in PSP must be narrowed down by systematic prioritization
platforms that integrate multiple data modalities and experimental
validations. In this study we integrated bulk brain RNAseq data across
two large, independent human cohorts, with complementary human
brain snRNAseq and tau mouse model data to discover and prioritize
high-confidence cell-specific gene expression and network perturba-
tions in PSP followed by in vivo validations in a Drosophila tau model.
We built an interactive web application PSP RNAseq Atlas to broadly
serve the research community as a facile tool to access and utilize
these rich, complex datasets (https://rtools.mayo.edu/PSP_RNAseq_
Atlas/). Our study applies robust systems biology approaches tomulti-
omics data across species to nominate high-priority genes with ther-
apeutic potential in tauopathies, specifically in PSP.

Results
PSP brains have vast and replicable transcriptome perturba-
tions in glia-enriched genes
To identify perturbed genes in PSP, we first collected and analyzed the
bulk gene expression profile from the superior temporal gyrus of
temporal cortex (TCX) tissue for 281 neuropathologically confirmed
PSP cases and 127 controls that lack significant pathology. Due to the
relatively low degree of gross tau pathology in TCX11,12, we hypothe-
sized that this regionwould be less susceptible to confounding factors
associated with downstream consequences of the disease, such as
neuronal loss6, making the expression changes less likely to be sec-
ondary to these confounds. TCX is also amore easily accessible region,
where there is typicallymore sample availability and less susceptibility
to variations in acquisition of gray matter. Expression data was col-
lected as part of two independent studies (studies 1 and 2, Table S1). All
PSP cases have detailed measures of cell-specific tau (CB, NFT, TA,
TauTh) andoverall degree of neuropathologyquantified frommultiple
brain regions as previously described4,8.

After quality control (QC), a total of 22,560 unique genes were
detected in both studies, the majority (67%) of which are protein-
coding (Table S2, Figure S1). To identify the gene(s) associated with
PSP diagnosis, we compared the brain gene expression levels between
PSP cases and controls using multiple linear regression adjusting for
relevant covariates in each dataset separately and combined the
results using an inverse-variance meta-analysis model. Using a similar

approach, we also analyzed the association of brain gene expression
levels with the severity of tau neuropathologies measured within the
281 PSP cases. Compared to controls, 2,528 genes were differentially
expressed (DEGs) in PSP brains at an FDR-adjusted p-value of 0.05
(Fig. 1a), suggesting extensive transcriptional dysregulations in PSP
brains at the bulk tissue level, even in a brain region relatively spared
from gross tau pathology. Importantly, a secondary model that
adjusted for cell proportions (Figure S2) showed congruent expression
dysregulation, indicating that the expression perturbations are not
confounded by neuropathology-induced differences in cell popula-
tions. Neuropathology association among the PSP cases indicated the
greatest number of associations with NFT (134 genes), while 8 gene
levels were associated with TauTh (Fig. 1b). Using less stringent sig-
nificance thresholds (unadjusted p value < 0.05), associations were
also observed between gene expression levels with other tau neuro-
pathologic lesions in PSP (Fig. 1a). A complete list of all expression
associations is included in Supplementary Data 1.

Wenext focusedon the topgeneexpression changes in PSPbrains
compared to controls. We defined top expression changes as a PSP vs
control DEG with the bottom 5% FDR and top 5% |logFC| (Fig. 1b). We
observed biologically congruent gene expression associations with
both diagnosis and neuropathology such that genes that are higher in
PSP than controls are also positively correlated with tau neuro-
pathologies and those that are down in PSP have negative neuro-
pathology correlations (Fig. 1b, S3). Among all DEGs (FDR <0.05),
there is also a striking and statistically significant cell-type specificity as
many of the PSP up-regulated genes are also marker genes13 for
astrocytes (p <0.001, 229 genes) or endothelia (p =0.013, 63 genes). In
contrast, many of the PSP down-regulated genes are oligodendrocyte-
specific (p <0.001, 77 genes) (Figs. 1b, c, S4).

Our review of the DEGs revealed genes previously implicated in
PSP or Alzheimer’s disease (AD) (Fig. 1d, e). One of the top perturbed
genes is the antisense RNA KANSL1-AS1 which is significantly lower in
PSP brains (logFC = −1.00, FDR = 8.790E-5, Figs. 1d, e, S5, Table S3).
Both KANSL1-AS1 and its sense gene KANSL1 are located within the PSP
risk genome-wide association study (GWAS) locus near tau-encoding
MAPT2,4. Another top perturbed gene, astrocyte-enriched YAP1, which
is significantly higher in PSP brains, was identified as a regulatory
network hub gene that is higher in AD brains14. We previously showed
the astrocyte-enriched CLU, an AD risk GWAS gene, to be higher in
both AD and PSP brains6, whereas the oligodendrocyte-enriched
MOBP, a PSP risk GWAS gene, is lower in both diseases7. Our current
DEG results confirm prior work and demonstrate remarkable replica-
tion between the two brain cohorts (Fig. 1d). Collectively, these find-
ings highlight robust transcriptome perturbations in PSP brains in glia-
enriched genes.

Glial cell-enriched gene co-expression network modules are
associated with PSP
To identify and characterize groups of co-expressed genes associated
with PSP we performed harmonized weighted gene co-expression
network analysis (WGCNA)15 across both studies. A total of 16modules
were detected using the consensus network construction algorithm
after harmonized gene assignments (Fig. 2, Supplementary Data 2).
These consensus network modules were robust with high agreement
between the gene expression clusters and module assignments (Fig-
ure S6a) and high preservation of modules between the two studies
(Figure S6b). We correlated the module eigengenes (ME), a summary
measure of all gene expression values in the module, with PSP diag-
nosis and each neuropathology phenotype (Fig. 2a). We identified 6
modules that are significantly (Bonferroni adjusted p <0.05) asso-
ciated with PSP diagnosis. Among them, 3 modules have higher (M4,
M6, and M12) and 3 modules have lower (M3, M10, M11) expression in
PSP cases. These associations were consistent across both studies
(Figure S7).
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We hypothesized that these modules represent gene expression
perturbations indistinct cell types and biological pathways (Fig. 2b–d).
Indeed, three of the PSP-associated modules were enriched for glial
genes.We found an enrichment of oligodendrocyte genes (Bonferroni-
adjusted p < 2.22E-16) in the down-regulated M3, consistent with our
prior work8. M6, which is up in PSP, is enriched for endothelial (Bon-
ferroni-adjusted p < 2.22E-16) and microglial (Bonferroni-adjusted
p = 5.29E-4) marker genes, whereas M4, also up in PSP, is an astrocyte-
enriched module (Bonferroni-adjusted p < 2.22E-16). Gene ontology
(GO) terms enriched in co-expression modules were broadly con-
sistent with their cell types (Fig. 2d, S8, Supplementary Data 3).
Microglial/endothelial M6 is enriched for immunity- and vascular-
related GO terms, while astrocytic M4 has metabolic, and oligoden-
droglial M3 has RNA processing/splicing GO term enrichment. These
findings suggest that cell-type specific transcriptional changes in PSP
may be indicators of disrupted biological processes including immune
activation, angiogenesis, cell energetics and RNA metabolism.

Single-nucleus RNAseq captures glial expression changes in
PSP brains
We sought to further replicate the glial gene expression changes from
bulk brain RNAseq detected in our two independent studies by con-
ducting snRNAseq experiments in brain tissue samples from the TCX
of PSP and control patients (Table S4). After QC (Figure S9), we
obtained26,241 nuclei from34brain samples comprising 18 PSP and 16
controls. To ensure cell populations can be reliably identified across
each sample, we integrated the snRNAseq data, treating each sample

as a batch variable. Nuclei were clustered based on the integrated PCA
embedding using the Louvain algorithm implemented in Seurat16,
which yielded 28 nuclei clusters. (Fig. 3a). There was no statistically
significant enrichment of nuclei from either sex or diagnosis in any
cluster (Figures S10, 11). Although a few sampleswere statistically over-
represented in 8 clusters, 7 of these clusters were small, and each
contributed to <1% of the total nuclei in the snRNAseq dataset, indi-
cating homogeneity for most of the nuclear clusters with respect to
sex, diagnosis, and samples.

We annotated each cluster based on the overlap of their highly
overexpressed cluster-marker genes and a list of (see Methods) well-
known cell-type marker genes curated from the literature (Fig. 3b) or
via published databases (Figure S12, 13)13,17, which yielded consistent
annotations. All major brain cell types were identified (Fig. 3c). All
clusters could be annotated according to their cell type except three
small clusters (CL23, CL24, CL26), which constitute <1% of total
nuclei.

Upon comparison of the expression levels between PSP and
control nuclei in each cluster, we identified significant DEGs at
FDR < 0.05 for genes expressed in >10% of the nuclei in the cluster
analyzed. We detected significantly up- or down-regulated DEGs in
both neuronal and glial clusters (Table S5, Supplementary Data 4). To
provide additional context and annotations for the genes from the
three glial-marker enriched WGCNA co-expression modules, M3, M4
and M6, that are replicably associated with PSP in bulk RNAseq from
two studies, expression scores, calculated based on the average
expression levels of these modules’ genes for each nucleus in the

Number of Significant Differentially Expressed Genes 
Phenotype

Unadjusted p < 0.05FDR < 0.10FDR < 0.05

Lower in PSPHigher in PSPLower in PSPHigher in PSPLower in PSPHigher in PSP

Diag
no

sis

2,4332,7031,7411,9811,1451,383PSP vs Ctrl

Negative
Correlates

Positive
Correlates

Negative
Correlates

Positive
Correlates

Negative
Correlates

Positive
Correlates

Neu
rop

ath
olo

gy
9389410000TA

3613510000CB

1,2191,1111751597262NFT

1,1391,165194135TauTh

8547730200Overall

a

Dx Neuropathology

KANSL1−AS1
ENOSF1

AC072052.7
CIRBP

RP11−752G15.9
RP11−61L19.3

PRR22
RP3−434O14.8

KCNE4
CAPSL

YAP1
AK4P1
PRELP

RP11−211G3.3
RP11−864G5.3

DDIT4L
RANBP3L

RP11−696D21.2
RP11−215A19.2

RP1−4G17.2
SLC7A2

EZR−AS1
CTD−2195M15.1

GEM
LRP4−AS1

Top
Genes

b

PS
Pv

sC
trl C
B TA

N
FT

Ta
uT

h

O
ve

ra
ll

CLU
YAP1

MOBP
KANSL1−AS1

Highlight
Genes

e

Cell
Marker

ast
end
mic
neu
oli
none

−0.5
0.0
0.5
1.0

Assoc
Strength

0.0180.136 0.164 9e−050.018 0.007

5e−040.021 0.041 5e−040.037 0.023

YAP1 CLU
−2

−1

0

1

2

3

−2

−1

0

1

MOBP KANSL1−AS1

Ctrl PSP Ctrl PSP Ctrl PSP
Study 1 Study 2 Meta

Ctrl PSP Ctrl PSP Ctrl PSP
Study 1 Study 2 Meta

−2

0

2

4

−2

−1

0

1

2

Ex
pr

es
si

on
 R

es
id

ua
ls

Higher in PSPLower in PSP

1

2

3

4

−1.0 −0.5 0.0 0.5 1.0

DiagnosislogFC

−l
og

10
(F

D
R

)

Cell Type
Marker ast end mic neu oli none

c d

Fig. 1 | Bulk RNAseq analysis identifies vast and replicable differentially
expressed genes in PSP brains. a Number of differentially expressed genes with
respect to different phenotypes at different threshold. b Heatmap of logFC (for
PSPvsCtrl) and association beta (for neuropathology) of the top genes defined as
lowest 5% FDR and top 5% |logFC|. Top genes that are also marker genes for
astrocyte, endothelia, and oligodendrocyte are color-coded. c Volcano plot for all
DEGs with FDR <0.05 comparing gene expression levels between PSP and control.
The color of the dots represents cell type enrichment of the DEGs: blue = astrocyte,
orange = endothelia, red = microglia, yellow = neuron, green = oligodendrocyte,
gray = no cell type specificity. d Distribution of the expression levels of MOBP,

KANSL1-AS1, YAP1, and CLU between PSP and control in each study cohort. We
highlighted these genes given their known association with PSP risk or other neu-
rodegenerative diseases. Statistics: differential expression analysis using linear
regression adjusting for covariates. FDR-adjusted p values are presented. Unad-
justed p values are provided in Supplementary Data 1 and source data. Study 1:
N = 257 PSP and Control individuals; Study 2: N = 151 PSP and Control individuals;
Meta: N = 408 PSP and Control individuals. Also see Supplementary Table 1.
e Heatmap for the 4 genes highlighted in d also showed consistent expression
changes with PSP diagnosis and neuropathology. Source data are provided as a
Source Data file.
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snRNAseq, were analyzed across clusters for each cell type (Fig. 3d).
For completeness, all clusters were included in the analysis, even for
those that accounted for less than 1% of the total nuclei. Module
genes have high expressions in the nuclei corresponding to the
enriched cell type of each module. Oligodendrocyte-enriched mod-
ule M3, astrocyte-enriched M4 and microglia/endothelia-enriched
M6 genes have the highest expression in oligodendrocyte, astrocyte,
and endothelia snRNAseq clusters, respectively, thus validating

module cell-type annotations. There was expression of these module
genes in other cellular clusters, underscoring that they are enriched
in but not exclusive to specific cell types.

We subsequently evaluated the overlap between the snRNAseq
DEGs in each nuclear cluster with genes from the three modules
(Fig. 3e, S14). Oligodendrocyte-enriched M3 genes have the most sig-
nificant overlap (p = 2.74E-10) with DEGs of the oligodendrocyte clus-
ter CL0. Further, 86.76% of these overlapping snRNAseq genes were
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Fig. 2 | Glial cell-enriched gene co-expression network modules are associated
with PSP. a The associations between the module eigengenes (ME) and PSP diag-
nosis or quantitative tau neuropathology were assessed. b Enrichment of cell type
specific genes was detected in seven modules, three of which (M3=oligoden-
drocyte, M4=astrocyte, and M6=microglia/endothelia) were significantly asso-
ciated with PSP. Statistics: one-sided Fisher’s Exact Test. Unadjusted p values are
provided in Supplementary Data 2 and source data. c Associations were robust and

consistent across both studies and significant in the consensus network modules
M3, M4, M6. Statistics: two-sided t-test comparing PSP and control module
eigengenes. Bonferroni-adjusted p values are presented. Study 1: N = 257 PSP and
Control individuals; Study 2: N = 151 PSP and Control individuals; Combined:
N = 408 PSP and Control individuals. Also see Supplementary Table 1. d Top enri-
ched gene ontology biological process terms in the PSP-associated glial cell-
enriched modules. Source data are provided as a Source Data file.
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down in PSP, consistent with the negative association between M3
eigengene and PSP (Fig. 2a). Astrocyte-enriched M4 genes overlap
mostly with astrocyte CL2 DEGs (p = 4.48E-49). These overlapping
genes have a slightlyhigher proportionof upDEGs (54.52%), consistent
with the positive association between M4 eigengene and PSP (Fig. 2a).

Microglia/endothelia-enriched M6 genes significantly overlap with
microglia CL3 DEGs (p = 2.34E-10), pericytes CL12 DEGs (p = 3.90E-4)
and astrocytes CL2 DEGs (p = 3.35E-20). Their direction of change is
mostly up in astrocytes (82.36% up) and mixed in the other clusters
(microglia: 49.57% up, pericytes: 53.85% up).
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In summary, snRNAseq data corroborates the cell-enrichment
annotations for the PSP-associated bulk RNAseqmodules M3, M4, and
M6. Directionality of gene expression changes for these modules’
genes is highly consistent between bulk RNAseq and snRNAseq oli-
godendrocyte cluster, although other glial clusters have DEGs that
change in both directions, suggesting that single nucleus data may
capture more subtle gene expression changes that may be missed in
bulk data.

Cross-species prioritization and screening of glial gene expres-
sion changes in PSP
Our bulk RNAseq data analyses yielded expression perturbations,
highlighting glial cell-enriched co-expression modules (M3, M4, M6)
comprising 4,969 genes. The subset of these module genes that are

also significant snRNAseq DEGs in the same glial cell clusters still
constitute a large number for experimental validations (Figure S14).
We, therefore, applied a systematic data-driven prioritization
approach to further narrow down and select genes using the human
brain transcriptome data from this study and a published tau mouse
model18.

Our prioritization approach is schematized in Fig. 4a. Among the
4969 genes from modules M3, M4 and M6, we focused on those that
are central and highly connected within each module, defined as hub
genes with module membership (MM)>0.7. There are 550 hub genes
that are also DEGs (FDR <0.05) based on themeta-analysis of two bulk
brain RNAseq studies. We further filtered these genes by selecting
those that are also significant DEGs in the snRNAseq data cluster cor-
responding to the bulk module cell type and that have a concordant
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Fig. 4 | Prioritization and experimental validation strategy for PSP brain
transcriptome changes. a Prioritization approach using bulk brain human RNA-
seq, snRNAseq and rTg4510 tau mouse brain transcriptome data which led to 21
high confidence glial perturbed genes in PSP. Of these, 11 had available Drosophila
ortholog geneswith RNAi for in vivo screening.bUpset Plot showing the overlap of
different validation methods and the number of genes selected at each filtering
stage fromeachmodule. c Summary results of theDrosophila screen of the 11 genes
in using the GMR-Gal4 system. d Circos plot visualization of genes from the three
glial cell-enriched, PSP-associated gene expression modules. Modules M3, M4, M6

(outer-most = first ring) and their bulk DEG directions of PSP associations (second
ring, red = up and blue = down-regulated modules), module membership (third
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Red text indicates the 11 high confidence PSP glial perturbed hub genes that have
available Drosophila orthologs and were screened experimentally in vivo. Source
data are provided as a Source Data file.
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directionof changebetweenbulk and snRNAseq. For oligodendrocyte-
enriched M3 and astrocyte-enriched M4 hub genes, we filtered for
snRNAseq DEGs that are down in PSP in oligodendrocyte and up in
astrocyte clusters, respectively, resulting in 56 and 59 genes, respec-
tively (Fig. 4a). For the microglia/endothelia-enriched M6 hub genes,
given the enrichment of snRNAseq DEGs from this module genes
within these cell types (Fig. 3e),we selected those that are up-regulated
snRNAseq inmicroglia, endothelia, pericytes or astrocytes, resulting in
40 genes. In total, there are 155 such genes which reflect robust glial
gene expression changes in PSP brains.

To determine the gene expression changes that are preserved in a
mousemodel of tauopathy, we utilized brain transcriptome data from
a mouse model that overexpresses a mutant form of human tau
encoding MAPT and develops tau neuropathology by 4 months of
age18. We analyzed brain gene expression data from 24 transgenic
(rTg4510) mice and their wild-type control littermates sacrificed at 4.5
or 6months of age (Table S6), available on the AD Knowledge Portal19.

Among the 155 genes with robust glial expression changes in PSP
brains, 21were also significantDEGs perturbed in the samedirection as
humans in either 4.5- or 6-month rTg4510 mouse brains (Fig. 4a, b).
The rTg4510-validated genes are significantly over-represented in the
astrocyte-enrichedmoduleM4 (p = 1.97E−3) andmicroglia/endothelia-
enriched module M6 (p = 4.63E−18), whereas only one DEG from the
oligodendrocyte-enriched M3 was validated in the mouse data. The
cell-type-specific overrepresentation of validated genes suggests that
the rTg4510 mouse model may best recapitulate tauopathy-related
glial expression changes in astrocytes, endothelia, and microglia but
not oligodendrocytes. The 21 genes that passed through the human
andmousemodelfilters represent high-confidencePSP glialDEGswith
cross-species validation.

To determine whether experimentally perturbing levels of high-
confidence PSP glial genes would impact tau-related neurodegenera-
tion, we carried out a knockdown screening experiment with the 21
genes using a Drosophilamodel of tauopathy with GMR-Gal4 driver20.
Of the 21 high-confidence PSP glial DEGs, 11 have aDrosophila ortholog
and available RNAi stocks (Tables S7, 8). Using a semi-quantitative
scoring system,where negative scores reflect suppression andpositive
scores reflect enhancement of the neurodegenerative eye morphol-
ogy, we determined that RNAi suppression of 10 of the 11 tested genes
suppressed the neurodegenerative eye morphology (Fig. 4c). The
prioritization and gene information is summarized in Fig. 4d.

Validation of top tau toxicity suppressing PSP glial
perturbed genes
Three of the 11 screened genes, DDR2, KANK2, and STOM, have the
strongest suppressive effect on the Drosophila tau eye phenotype
(Score < −1.5) when down-regulated with RNAi (Fig. 4c, d). DDR2 is a
hub gene in the astrocyte-enriched M4, whereas KANK2 and STOM are
hubs in the microglia/endothelia-enriched M6 (Fig. 5, Figures S15, 16).
We first examine the gene expression perturbation of these three
genes in our human brain transcriptome data. In alignment with the
prioritization paradigm, all three genes have higher expression levels
(FDR <0.05) in PSP brains based on bulk RNAseq (Fig. 5a). The up-
regulation in bulk tissue is also consistent across both studies, sug-
gesting the results are not driven by a particular cohort. The three
genes are up-regulated even after adjusting for differences in cell
proportions (Table S7), indicating that the expression perturbations
are not driven by this but are likely associated with disease patho-
genesis. In snRNAseq (Fig. 5b), all three genes are significantly upre-
gulated in astrocytes. Pseudobulk DEG analysis using the snRNAseq
datasets also supported the up-regulation of the three genes in
astrocytes (Table S8). Interestingly, the subclustering analysis (Fig-
ure S17) indicated DDR2 and KANK2 are up-regulated in specific
populations of astrocytes including reactive astrocytes, whereas the
up-regulation of STOM is universal to all astrocytes. Our transcriptome

data demonstrate that STOM, KANK2, and DDR2 are up-regulated in
glial cells in PSP.

Consistent with the results that DDR2, KANK2, and STOM are all
upregulated in human PSP and rTg4510 mouse brain transcriptome,
our initial tauDrosophila screening experiment (Fig. 4c) demonstrated
that RNAi inhibition of these genes suppressed tau-mediated cell
toxicity in thismodel. To further validate and confirm theseDrosophila
screening results, we repeated the RNAi experiments for these three
genes, and quantified the severity of tau-mediated toxicity using two
blinded independent evaluators (Fig. 5c, d). As expected, the expres-
sion of tau in Drosophila under the GMR-Gal4 driver led to significant
eye degeneration compared to wild type (WT) flies (two-sided Wil-
coxon rank sum test, p = 6.16E-5). Importantly, expression of RNAi
against DDR2, KANK2, or STOM in tau Drosophila significantly reduced
the tau-mediated cell toxicity in fly eyes. These results suggest that
these three genes can be targeted in PSP or other tauopathies as a
potential therapeutic avenue to ameliorate tau-mediated
neurodegeneration.

We built an interactive web application tool PSP RNAseq Atlas
(https://rtools.mayo.edu/PSP_RNAseq_Atlas/), which houses human
bulk and snRNASeq transcriptome, mouse and Drosophila results. Our
application can quickly report the key statistics for queried genes and
is built to facilitate the dissemination of our results to the broader
research community.

Discussion
To translate the growing amount of multi-omics data into high-
confidence candidate therapeutic targets with mechanistic implica-
tions, systematic prioritization platforms that integrate large-scale,
multi-modal data and experimental validations are required. In this
study, we applied a cross-species systems biology approach to large-
scale human brain transcriptome data at bulk tissue and single nucleus
resolutions, a tau mouse model18 and experimental validations in a
Drosophila tau model20, which revealed robust glial transcriptome
perturbations and nominated therapeutic targets in PSP.

Using bulk brain transcriptome, we discovered 2528 differentially
expressed genes (DEGs) that are robustly detected across two studies
of 408 donors, comprised of PSP cases, and controls without neuro-
degenerative diseases. PSP up-regulated DEGs are enriched for astro-
cyte- or endothelia-specific genes, whereas down-regulated genes are
enriched for oligodendrocyte markers. This human bulk brain tran-
scriptome is organized into 16 co-expression network modules, three
of which have both robust PSP association and cell-type enrichment.
Consistent with the DEG findings, the PSP down-regulated module M3
is enriched for oligodendrocyte genes, whereas the up-regulated M4
and M6 are astrocyte and microglia/endothelia enriched modules,
respectively. In our prioritization paradigm, we first focused on 550
bulk DEGs that are also highly connected hub genes in these glial
modules, based on the rationale that these centrally linked genes with
perturbed expressions may represent targetable disease pathway
molecules.

With brain snRNAseq of PSP and control donors, we further fil-
tered down these 550 hub bulk DEGs by selecting the subset of 155 that
are snRNAseq DEGs with concordant expression changes in the cell
cluster corresponding to the bulk module cell type (Figure S18). Of
these 155humanbulkbrain and snRNAseq glial DEGs, 21 hadconsistent
changes in the rTg451018 tau mouse model brain RNAseq. Eleven of
these had Drosophila orthologues and when tested in an RNAi-based
screening of Drosophila tau model20, they significantly influenced tau-
related neurodegeneration. We prioritize STOM, and KANK2 from the
microglia/endothelia enriched (M6) and DDR2 from the astrocyte-
enriched (M4) modules, as potential therapeutic targets with both
multi-omics and model system validation in our study.

STOM encodes stomatin, which belongs to an evolutionarily
conserved superfamily of proteins, is oligomeric, localizes to
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membrane lipid rafts, functions as a membrane scaffold through actin
binding and regulates activities of ion channels and receptors21. Sto-
matin has anti-cancer properties22, is upregulated with hypoxia in the
rat brain23 andhasknownchemical ligands, highlighting its potential as
a druggable target24. KANK2 is a primarily mesenchymal member of an
evolutionarily conserved gene family25,26, interacts with actin and
serves in multiple roles acting as a scaffold within the cortical micro-
tubule stabilizing complexes25 including cell migration27.

The emergence of two microtubule-associated membrane scaf-
fold proteins, STOM and KANK2, as top prioritized potential ther-
apeutic targets for PSP, a primary tauopathy characterized by
microtubule-associated protein tau neuropathology, is noteworthy.
Both genes are enriched in biological processes involved in the
immune response (Figs. 2, 3) within module M6, which has greatest
overlap of bulk DEGs with astrocyte, microglial, and endothelial
snRNAseq DEGs. Collectively, these results suggest that these proteins
may be involved in the pathogenesis of PSP by promoting glial tau
neuropathology via disrupting microtubule structure and function.

DDR2, which encodes discoidin domain receptor, is a collagen-
activated receptor tyrosine kinase that regulates multiple functions

including cell migration, proliferation and tissue modelling28 through
MAP kinase pathway, leading to the activation of transcriptional factor
RUNX229, which itself is a PSP risk gene30. Besides its functions in bone
modelling29 and cancer28, DDR2 has also been implicated in
neurodegeneration31. Consistent with our findings, it was shown that
DDR2 levels are upregulated in the astrocytes from MAPT mutant
organoids32. DDR2 knockdown in vitro and in vivo led to increased
clearance of neurodegenerative proteins including tau, reduced cell
loss and attenuated immune response including TREM2 positive
microgliosis31. DDR2 was previously shown to oppose the osteoclas-
togenic effect of TREM2 by sequestering its signalling partner
PlexinA133. Intriguingly, DDR2 shares signalling partners with the neu-
rodegenerative disease risk gene, TREM234, and both genes have
functions in bone metabolism and neurodegeneration. Our findings
add DDR2 to the growing list of neurodegenerative disease genes also
involved in bone modelling.

Potent small molecule inhibitor of DDRs, nilotinib replicated the
experimental outcomes of DDR knockout models31. Nilotinib was
shown to be safe in randomized clinical trials for Parkinson’s
disease35–37 and Alzheimer’s disease38, with a reduction of
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cerebrospinalfluid (CSF) tau reported in some studies35,38. Our findings
suggest that nilotinib or other small molecules inhibiting DDR2 may
also be viable therapeutic candidates in PSP. We provide a list of small
molecule inhibitors retrieved from theDrugGene Interaction database
(DGIdb) in Supplementary Data 5.

Our collective findings demonstrate glial expression changes in
PSP in a brain region relatively spared from gross neuropathological
changes in this condition11,12, suggesting these changes are less likely to
be driven by neuropathology including neuronal loss or gliosis. We
detected a smaller number of genes significantly associated with
neuropathology than with PSP diagnosis. This is likely because the
analysis was carried out only in PSP cases, which has lower power both
owing to smaller sample size and smaller effect size. Furthermore, the
neuropathology phenotypes represent specific cellular tau pathology
in PSP, whichmaybe associatedwith less transcriptional perturbations
than the binary overall disease phenotype. Nevertheless, our cross-
species multimodal systems biology approach prioritized three genes
as potential therapeutic targets in PSP. Additionally, the internal
replication of the PSP bulk transcriptome changes in two independent
studies with confirmation in snRNAseq provides the field with hun-
dreds of high-confidence genes well-annotated for their module
membership, cell-type enrichment, and biological processes.

Our findings also replicate prior transcriptome changes reported
in PSP including down-regulation of oligodendrocyte-enriched myeli-
nation gene networks7 and up-regulation of immune networks with
astrocytic tau pathology8. Some of the most perturbed genes in PSP
brains have been implicated in the risk of PSP and shown to have
regulatory changes, namely oligodendrocyticMOBP2,4,7, KANSL-AS12,4,10

and astrocyte-enriched YAP114. Another astrocyte-enriched AD risk
gene, CLU, is also significantly higher in PSP brains and AD6, under-
scoring common transcriptome changes in these two neurodegen-
erative diseases6 that may point to shared disease mechanisms. Our
findings and web tool are therefore expected to be useful across dif-
ferent neurodegenerative disorders.

Despite these strengths and insights, there are limitations to our
study. We acknowledge that single-nucleus RNAseq captures only the
transcriptional activity within the nucleus and might potentially miss
biological changes relevant to PSP, which may be detectable by single
cell RNAseq (scRNAseq). Nevertheless, we were still able to validate in
snRNAseq the bulk RNAseq expression changes in the corresponding
nuclei type that led to the discovery of DDR2, KANK2, and STOM as
potential therapeutic targets for PSP.Moreover, snRNAseq allowed the
use of frozen brain tissue, which made it possible to include as many
PSP samples as possible. There are no PSP-specific mouse models. We
used a single mouse model of tauopathy rTg451018 that despite age-
dependent brain deposition of human 4-repeat tau, neuronal, and
synaptic loss, is not strictly a model of PSP. Further, factors other than
human tau overexpression may be contributing to these mouse
phenotypes39. However, thismodelwas still valuable for thepurposeof
screening human DEGs with concordant changes in a mouse model of
tauopathy. We note that although many of the astrocytic, microglial,
and endothelia genes from modules M4 or M6 were validated in
rTg4510, this was not the case for oligodendrocytic DEGs. This sug-
gests that the rTg4510 tauopathy model may be capturing some but
not all aspects of the glial perturbations in PSP. Our available data will
enable future studies for conducting systematic cross-species com-
parisons to identify models that recapitulate different aspects of
human brain molecular perturbations. This will be useful in selecting
appropriate models for experimental validations and pre-clinical
therapeutic trials. Moreover, carrying out cell-type-specific over-
expression or knockdown of the target genes in mouse models and
assessing the clinical impact will be informative to validate the ther-
apeutic target prior to clinical applications.

In our study, we elected to use a well-established Drosophila
model of tau-mediated neurodegeneration20,40 for experimental

validations. Although this model has the advantage of facilitating a
relatively rapid and cost-effective medium-throughput experimental
screen, it is not a one-to-one translation to human brain disease.
Additionally, unlike the repo-Gal4 driver41, the Drosophila GMR-Gal4
driver is not glia specific as it drives the expression of tau in all cell
types. Nevertheless one of the top prioritized genes DDR2, has con-
gruent findings in Drosophila when suppressed with RNAi as in other
in vitro and in vivomodels31 and human clinical trials35,38. This provides
proof-of-principle for the utility of the fly as a facile screening tool to
prioritizefindings for further validations bymore cumbersome though
also more complex models.

In summary, our systems biology approach that integrates mul-
timodal omics and phenotype data across species with experimental
validations discovered DDR2, STOM and KANK2 as potential ther-
apeutic targets in PSP. Our findings demonstrate robust transcriptome
changes in glia thatmay underlie the striking glial tau-pathology in this
disease. Our findings and data wemake available in the interactive web
application PSP RNAseq Atlas (https://rtools.mayo.edu/PSP_RNAseq_
Atlas/) highlight the complex pathophysiology of PSP. Our web
application, data and results are also expected to serve as a resource
for the research community to apply their own paradigms for ther-
apeutic target or biomarker prioritizations in PSP or other neurode-
generative diseases.

Methods
Sample information
This study was approved by the Mayo Clinic Institutional Review
Board (IRB). The use of samples from the University of Kentucky and
Banner Sun Health Research Institute has been approved by the
appropriate review boards. Additional data used in this study from
the AD Knowledge Portal (https://adknowledgeportal.synapse.org)
were accessed under the data usage agreement (https://
adknowledgeportal.synapse.org/DataAccess/DataUseCertificates).
All personally identifiable information has been removed. Written
informed consent was obtained from all participants, their qualified
caregivers or next of kin.

We have collected RNAseq from bulk brain tissue of 408 frozen,
post-mortem, temporal cortex (superior temporal gyrus) tissue sam-
ples consisting of 127 control and 281 PSP patients from two inde-
pendent study cohorts (Table S1). All PSP caseswereobtained from the
Mayo Clinic Brain Bank and received a neuropathologic diagnosis of
PSP11,12 by a single neuropathologist (DWD). All PSP samples also
underwent neuropathological evaluation for the overall and cell-
specific tau lesions (TA, CB, NFT, TauTh). The semi-quantitative tau
pathology scores were transformed and normalized as previously
described4,8. Amongst brain donors with PSP, there was only one
patient with a MAPT mutation, namely the A152T variant which is
considered a rare risk factor for tauopathies and not a fully penetrant
pathogenic mutation42,43.

Control samples were obtained from Banner Health Research
Institute (Banner), Mayo Clinic Brain Bank (Mayo), and University of
Kentucky (UKy). Controls were defined as those brain samples with
Braak44 NFT stage of 3.0 or less; CERAD45 neuritic and cortical plaque
densities of 0 (none) or 1 (sparse) and lacked any of the following
pathologic diagnosis: AD, Parkinson’s disease (PD), DLB, VaD, PSP,
motor neuron disease (MND), CBD, Pick’s disease (PiD), Huntington’s
disease (HD), FTLD, hippocampal sclerosis (HipScl) or dementia lack-
ing distinctive histology (DLDH), as previously described46.

Study 1 comprises 199 PSP and 58 control samples (43 UKy, 15
Mayo), whereas study 2 has 82 PSP and 69 control samples (44 Banner,
25 Mayo). RNAseq and DEG from study 2 were previously reported6,46.
Within each study cohort, there was well-balanced sex distribution
between PSP and controls. However, therewere significant differences
in donor age at death, RNA integrity number (RIN) and brain bank
source, all of which were adjusted for in the analyses.
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For the snRNAseq, all samples were obtained from theMayo Brain
Bank. The PSP cases (N = 18) received a neuropathologic diagnosis of
PSP11,12 by a single neuropathologist (DWD). The control samples
(N = 16) are defined as those brain samples that lack any of the fol-
lowing pathologic diagnosis: AD, Parkinson’s disease (PD), DLB, VaD,
PSP, motor neuron disease (MND), CBD, Pick’s disease (PiD), Hun-
tington’s disease (HD), FTLD, hippocampal sclerosis (HipScl) or
dementia lacking distinctive histology (DLDH), as previously
described4,8. Samples for snRNAseq were selected to ensure that the
PSP and control donors had comparable sex and age at death. Addi-
tionally, we prioritized samples with available bulk tissue RNAseq and/
or whole genome sequencing data and for those that had sufficient
amount of available frozen tissue. Lastly, for the PSP samples, we
selected samples that represented the quantitative neuropathology
score distribution of the larger pool of available PSP samples.

RNAseq of the bulk human brain
Generation of raw bulk RNAseq data in the study 2 cohort was pre-
viously described6,46. Briefly, libraries were prepared from total RNA
using the TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA) and
sequenced on Illumina HiSeq 2000 instruments. For study 1, cDNA
libraries were prepared using 200ng of total RNA according to the
manufacturer’s instructions for the TruSeq RNA Sample Prep Kit v2
(Illumina, San Diego, CA). The concentration and size distribution of
the completed libraries were determined using an Agilent Bioanalyzer
DNA 1000 chip (Santa Clara, CA) and Qubit fluorometry (Invitrogen,
Carlsbad, CA). Libraries were sequenced at six samples per lane, fol-
lowing Illumina’s standard protocol using the HiSeq 3000/4000 PE
Cluster Kit. The flow cells were sequenced as 100 ×2 paired-end reads
on an Illumina HiSeq 4000 using the HiSeq 3000/4000 sequencing kit
andHCS v3.3.20 collection software. Base-callingwasperformed using
Illumina’s RTA version 2.5.2.

Single nucleus RNAseq of human brains
Frozen temporal cortex tissue samples were obtained from the Mayo
Clinic Brain Bank. Total RNA from ~20mg collected tissue was isolated
to evaluate the quality of tissue. RNA integrity number (RIN) was
determined via Agilent 2100 Bioanalyzer using RNA Pico Chip assay,
and tissues that have RIN> 6.0 were utilized in nuclei isolation and
single nucleus RNA sequencing (snRNAseq).

For each participant, 100mg tissue sample was used for nuclei
isolation using a modified protocol47,48. Samples were homogenized
with 25 strokes of loose and tight pestle sequentially using dounce
homogenizer in homogenization buffer (0.25M sucrose, 25mM KCl,
5mM MgCl2, 20mM tricine-KOH, pH 7.8, 1mM DTT, 0.15mM sper-
mine, 0.5mM spermidine, protease inhibitors, 5 μ g/mL actinomycin,
5 u/ μL recombinant RNAase inhibitor, and 0.04% BSA). IGEPAL (5%,
Sigma, I8896) solutionwas added following strokewith the tight pestle
to a final concentration of 0.32%. After 10 additional strokes, the tissue
homogenate was filtered using a 30 μm cell strainer. Debris was pel-
leted by centrifugation at 500 g for 5minutes and washed with Wash
and Storage Buffer (WSB, 1XPBS with 2%BSA and 5 u/μL recombinant
RNAase inhibitor (Takara Bio, 2313 A)). The nuclei-containing super-
natant was filtered again with a 30 μm cell strainer, followed by cen-
trifugation at 500 g for 10minutes. After re-suspending the pallet in
700μl cold PBS with 5 U/μl RNAse inhibitors, 300μl debris removal
solution (Miltenyi Biotech) was added, and the solution was gently
mixed. Another 1mL WSB was carefully overlaid on top of the nuclei
solution. The supernatant was removed after centrifugation at 3000 g
for 10minutes. The nuclei were washed once with WSB and pelleted
after centrifugation for 10minutes at 1000 g.

Isolated nuclei were sorted using fluorescence-activated nuclei
sorting (FANS). Human Nuclear Antigen [235-1] (ab191181, Abcam)
antibody was applied to the nuclei at 1:50 and incubated for 1 hour on
ice. Concurrently, mouse IgG1, kappa monoclonal [15-6E10A7] isotype

was included as controls (ab170190, Abcam, 1:50). Goat anti-mouse
Alexa488 secondary antibodies (ab150113, Abcam, 1:200) were incu-
bated with the nuclei for 30minutes on ice. The stained nuclei were
reconstituted in WSB and sorted using BD FACSAria II sorter using the
70-micron nozzle with 70psi sheath pressure and 1.5 ND filter. Exam-
ples of the gating strategy are shown in Figure S19. After quantifying
the sorted nuclei using a hemocytometer in 0.04% trypan blue, a total
of 1000 estimated nuclei at 700 nuclei/μl were loaded on the 10x
Chromium microchip. Single cell gel beads-in-emulsion (GEMs) were
generated by running Single Cell Instrument (10X Genomics) on the
sorted nuclei. Chromium Single Cell 3’ Gel Bead and Library Kit v3.1
(10X Genomics, No. 120237) and the Single Index Kit T Set A (10X
Genomics, No. 1000213) were used to prepare the single nucleus
RNAseq libraries according to the manufacturer’s instructions. Quali-
ties of libraries were checked using Agilent High Sensitivity DNA Kit
(Agilent Technologies, 5067-1504) via Agilent 2100 Bioanalyzer. DNA
libraries were sequenced at the Mayo Clinic Genome Analysis Core
(GAC) using the Illumina NovaSeq 6000 sequencer.

Bulk human brain RNAseq analyses and differential gene
expression
Alignment and processing of the bulk RNAseq data in study 2 were
previously described46. For study 1, raw paired-end reads were pro-
cessed throughMAP-RSeq pipeline v2.049.MAP-RSeq removes reads of
low base-calling Phred scores, aligns remaining reads to reference
genome hg19 using TopHat aligner v2.050, and counts reads in genes
and exons using subread. It obtains QC measures from pre- and post-
alignment reads using the RSeQC toolkit and fastQC51. Subsequently,
we identify samples for exclusion defined as those samples with high
RNAdegradation, lowmappability, discordance between recorded sex
and estimated sex, or based on principal component analysis (PCA)
such that samples whose PC1 or PC2 are outside mean +/− 3*SD.

After excluding samples that fail QC, raw RNA read counts from
remaining sampleswerenormalized usingRpackageCQN,which gives
library size, gene length, and GC content adjusted expression values in
the log2 scale. Based on the bimodal expression distribution, genes
with low CQN values (CQN< 2 for study 1, CQN< −1 for study 2) were
filtered out (Figure S1). Only genes that are expressed in both cohorts
are used in the following analysis. Batch effect due to the source of the
samples (the brain bank from which the sample was obtained) was
corrected using the combat function from R package sva52. The asso-
ciations between the batch-corrected, normalized, bulk gene expres-
sion and different clinicopathological traits (PSP diagnosis, TA, CB,
NFT, TauTh, and overall pathology) were assessed for study 1 and
study 2 separately using amultiple linearmodel adjusting for technical
and biological covariates including sex, age at death, RIN, and
sequencing flowcell. Gene expression levels were treated as a con-
tinuous dependent variable, while the traits of interestswere treated as
independent variables, coded as binary (PSP = 1, control = 0) or con-
tinuous (quantitative pathology scores) variables. For the association
of gene expression levels with quantitative pathology scores, the tests
were performed within PSP cases only, as controls do not have
pathology scores. The association effect sizes (regression beta coeffi-
cients) in studies 1 and 2 were combined using an inverse-variance
weighting meta-analysis, implemented in R package ‘meta‘53. A fixed-
effect model was used for gene-trait associations when Higgin’s and
Thompson’s I2 heterogeneity value54 was less than0.3, while a random-
effect model was used otherwise. Lastly, we adjusted for multiple
testing using the Benjamini-Hochberg false discovery rate55 (FDR).

Cell proportions were estimated based on the expression values
of the top 100 BRETIGEA cell type marker genes13 for astrocyte,
endothelia, microglia, neuron, and oligodendrocyte using the Digital
Sorting Algorithm (DSA)56. The association between PSP vs Control
diagnosis andgeneexpressionwas assessed in a comprehensivemodel
that adjusted for key covariates (sex, age at death, RIN, sequencing
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flowcell) and the estimated cell proportions in each study. Meta-
analysis was carried out using the same strategy outlined for the main
model. Multiple testing was adjusted using FDR.

Bulk human brain RNAseq co-expression network analyses
Gene expression networks were constructed using the R package
WGCNA15. Before the network analysis, residuals from the batch-cor-
rected, normalized gene expression data after adjusting for technical
and biological covariates (sex, age, RIN, flowcell number) were gen-
erated for study 1 and study 2 separately. We calculated the adjacency
matrices Aij using the pairwise biweighted midcorrelation (bicor),
whose element aij = bicorðgi,gjÞ, for study 1 and study 2 separately.
Topological overlap matrices (TOMs) were calculated based on their
adjacency matrices as a signed network with a soft power threshold of
12 for studies 1 and 2 separately. Subsequently, after applying quantile
scaling, we calculated the consensus TOM as the component-wise
minimum of the TOMs from study 1 and study 2. The modules were
identified using hierarchical clustering and dynamic treecut algorithm
provided in the WGCNA package from consensus TOM.

From these initial modules, we identified the final modules as
follows. We calculated the module eigengenes (ME) as the signed first
principal component using gene expression of initial modules. The
module memberships (MM) were calculated as the biweighted mid-
correlation of the ME and gene expression. Closely related modules,
defined as biweighted midcorrelation of ME higher than 0.8, were
merged. We further examined and reassigned genes in each module
based on their MM. Specifically, genes with negative MM were moved
to the background module (module 0). In contrast, genes in the initial
background modules were reassigned to the module with maximum
MM if the maximumMMwas greater than 0.5. We recalculated the ME
and MM values using the final module definitions.

A t-distributed Stochastic Neighbor Embedding (t-SNE) plot (Fig-
ure S6) was made for final modules using gene expression of the
combined cohort of study 1 and 2 through R package Rtsne as
described in other studies57. In addition, statistics were calculated
regarding the preservedness of final modules in studies 1 and 2 sepa-
rately (Figure S6). We assessed the module preservations using the
WGCNA::modulePreservation() function58, and calculatedpreservation
Z statistics with 100 permutations.

Biweighted midcorrelation between the ME and traits (PSP diag-
nosis, TA, CB, NFT, TauTh, and overall pathology) were calculated for
each module. The association significance p values were adjusted to
the number of modules using Bonferroni correction. Based on the
module assignment, we tested if therewere any significant enrichment
of the top 100BRETIGEA13 cell typemarker genes in anyof themodules
using a one-sided version of Fisher’s exact test and a Bonferroni
adjusted p-value cut-off of 0.05. Additionally, we calculated the gene
ontology (GO) terms enriched in the modules using the R package
anRichment15, which calculates the statistical significance of the over-
representation of GO terms based on hypergeometric distribution
with an FDR-adjusted p-value of 0.05. Modules were manually anno-
tated with the top GO terms from the list. (Figures S7, 8).

Human Brain Single Nucleus RNAseq (snRNAseq) Validations
Raw snRNAseq data were processed and aligned using Cell Ranger
version 4.0 (10X Genomics). Raw reads were mapped to the human
reference genome hg38 using the STAR aligner. We obtained an
average of 924 nuclei (standard deviation: 469,N = 36) per sample and
performed quality control for each individual (Figure S9). First, nuclei
with an extreme number of mapped UMIs (lower bound 1000, upper
bound 98th percentile, or >=85,906.5, Figures S9a, b) or detected
genes (lower bound 500, upper bound 98th percentile >=9,648.8,
Figures S9c, d) were removed. Nuclei with more than 10% mitochon-
drial genes were also excluded (Figure S9e, f). At a sample level, PSP
sample 12117 was removed from the analysis because it has an

abnormal distribution in terms of the number ofmappedUMIs and the
number of detected genes (Figure S9g). PSP sample 12051 was
removed due to the low number of nuclei (N = 117, Figure S9h). Genes
that are only expressed (defined as having a count of greater than 0) in
less than 6 nuclei are excluded (Figure S9i). The recorded sex for each
individual was compared against that of the median expressions of 4
chromosome Y genes RPS4Y1, EIF1AY, DDX3Y, and KDM5D59 to identify
any potential mislabeled samples (Figure S9j).

Using Seurat R package16, we merged UMI counts from each
sample, performed library size normalization, and log transformation.
We integrated the dataset using the Harmony package60, treating each
sample as its own batch. Nuclei were clustered using a Shared Nearest
Neighbor (SNN) Graph implemented in Seurat16 at a resolution of 0.4
with default parameters. We checked if there was significant enrich-
ment (fold-enriched > 5, unadjusted p-value < 0.05) of nuclei from any
diagnosis, sex, or sample in each cluster (Figures S10, 11).

To elucidate cluster cell type, we first identified cluster marker
genes that are significantly (FDR <0.05) over-expressed (logFC > 0.5)
and universally expressed (percent nuclei > 70%) in each cluster
compared to other clusters. We annotated each cluster based on the
overlap of their highly overexpressed cluster-marker genes and known
cell-typemarker genes61–66 (Fig. 3b):GFAP andAQP4 for astrocyte,VWF,
PECAM1, FLT1 for endothelia, NRGN and SLC17A7 for excitatory neu-
rons, GAD1 and GAD2 for inhibitory neuron, C3, CD74, and CSF1R for
microglia, GRIN1, SNAP25, and SYT1 for neurons,MBP,MOBP, and PLP1
for oligodendrocyte, CSPG4, PDGFRA, and VCAN for oligodendrocyte
progenitor cells (opc), and PDE5A and PDGFRB for pericyte. Additional
cluster cell type assignment was performed with published databases
(Figure S12, 13)13,17, which yielded consistent annotations.

Differentially expressed genes (DEG) between PSP and control
nuclei were identified for each cluster through a hurdle model imple-
mented in MAST R package67, with adjustment of sex and age. We
required DEG to be detected (UMI >0) in at least 20% of the nuclei in a
cluster. Multiple testing was adjusted for using FDR <0.05. We per-
formed pathways enrichment analysis using FUMA GWAS web service
(v1.4.0)68 using all 22,431 expressed snRNAseq genes as background.
Multiple testing was adjusted for using the Benjamini-Hochberg
method. MigSigDB v7.0 is used. A minimal overlap of 2 genes was
required.

Pseudobulk DEG comparing the expression between PSP and
control participants was performed for each cell type separately
(Supplementary Data 4, Table S9). Briefly, the pseudo-count matrix
was obtained by adding the read count from all the nuclei of the same
individual. The pseudo count between PSP and control individuals was
compared using a negative binomial generalized linear model imple-
mented in R package edgeR69, with adjustment of sex and age. P-values
were corrected for multiple testing using FDR.

For each nucleus in the snRNAseq analysis, its expression scores,
which reflect the expression levels of a selected set of genes, were
calculated as the average expression levels of the module genes based
on the module definition from the 16 WGCNA modules using the
AddModuleScore() function implemented in Seurat16. We assessed the
overlap betweenmodule genes and PSP vs Control DEGs in all clusters.
Significance was calculated using a one-sided Fisher’s exact test. Only
single-nucleus DEGs that are also detected in bulk RNAseq are used in
the analysis.

We utilized the snRNAseq data to validate and filter the bulk
RNASeq DEGs based on our prioritization approach (Fig. 4a). We
focused on the significant bulk DEGs (FDR <0.05 in the meta-analysis
of study 1 + 2) from the PSP-associated co-expressionmodules that are
also enriched in brain cell types (i.e., modules 3, 4 and 6). There were
4969 such DEGs, 550 of which were also highly-connected network
hub genes with module membership (MM) > 0.7. We filtered these
550 significant PSP DEG hub genes by selecting those that are also
significant DEGs in the snRNAseq data cluster corresponding to the
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bulk module cell type and that have a concordant direction of change
between bulk and snRNAseq. Specifically, for M3 candidate genes, we
selected those that are significantly down-regulated in any of the oli-
godendrocyte clusters (CL0 or CL26). For the M4 candidate genes, we
selected those that are upregulated in the astrocyte cluster (CL2).
Lastly, for the M6 candidate genes, we selected those that are upre-
gulated in any of the microglia (CL3, CL27), endothelia (CL19), peri-
cytes (CL12, CL17), or astrocytes (CL2) clusters.

To elucidate additional cell population, the astrocyte nuclei were
subjected to subclustering analysis (Figure S17). Briefly, read counts of
nuclei from astrocyte cluster CL2 were normalized, log-transformed,
and harmonized using the same procedures for the full dataset. Clus-
tering was carried out at a resolution of 0.3 with default parameters.
Subclustermarker genes were identified using theWilcoxon Rank Sum
test. Differentially expressed genes between PSP and Control nuclei in
each subcluster were identified with the same approach used for the
full dataset.

Validation with rTg4510 TauopathyMouse Model Brain RNAseq
Bulk brain RNAseq data of the tauopathy mouse model rTg451018 was
retrieved from the AD Knowledge Portal (syn3157182). Briefly, the
dataset consists of bulk RNAseq from forebrain samples of rTg4510
mice overexpressing human P301L tau (4R0N) and wild-type non-
transgenic (nonTg) littermate control mice. Using the RNAseq data
from the 4.5- and 6-month-old (Table S6) mice, we normalized the
gene expression values using CQN, followed by QC to check for out-
liers or mismatched sex (Figures S20, 21). Read counts between
rTg4510 and nonTg mice were compared in each dataset within each
age group using a negative binomial generalized linear model imple-
mented in R package edgeR69, with adjustment of sex and RIN. DEGs
were identified based on an FDR-adjusted p-value of 0.05. Mouse
genes were mapped to their human orthologs using R package
biomaRt70 and ensemble version 105.

Using themouse DEG information, we investigated the 155 human
DEGs (Fig. 4a) that were significant and had congruent changes in both
bulk and snRNAseq and were also hubs in the prioritized modules M3,
M4, and M6. These human DEGs were considered validated in the
mouse model if significant at an FDR-adjusted level of 0.05 in either
4.5- or 6-month rTg4510 mouse brains and had the same direction of
change as in humans.

Validation with Drosophila Tau Model Experiments
High confidence PSP glialDEGswith significant and congruent changes
in human bulk and snRNAseq and rTG4510 mouse model brains were
experimentally validated in a Drosophila melanogaster model expres-
sing human wild-type Tau protein20. Briefly, Drosophila orthologs of
the human gene are obtained by querying DIOPT71 version 8. We
obtained all available RNAi lines against theDrosophila homologues of
the high confidence PSP glial DEGs (Fig. 4a) from the Bloomington
Drosophila Stock Center (BDSC), Transgenic RNAi Project (TRiP) col-
lection or requested from laboratories within the fly research
community72 (Tables S9, 10). We crossed the GMR-GAL4/CyO; UAS-
hTau/TM3, to RNAi lines and selected progeny that co-expressed both
human Tau and RNAi (GMR-GAL4/+; UAS-hTau/UAS-RNAi, where the
UAS-RNAi can be on any chromosome). We first compared the mor-
phology of their eyes with the control flies expressing only the tau
protein using a −4 to 4 semi-quantitative scale where 0 indicated no
change compared to the tau-expressing control. A positive score
indicates enhancement/exacerbation of the well-described eye neu-
rodegeneration pathology, whereas a negative score indicates sup-
pression/rescue of this pathology. A score of 4 indicated that the flies
had no eyes, whereas a score of −4 indicated that the eyes were
indistinguishable from that of the wild-type control. If the flies fail to
eclose, we indicate the phenotype as being lethal as previously
described40.

To assess the impact of the three top tau-toxicity suppressor
genes, we aged the progenies for 5 days at 25 °C before pictures of the
fly left eyes were taken. The severity of the tau-induced eye degen-
eration was assessed blindly based on the following categories: loss of
bristle (0-1), size (0-1), color (0-2), the presence of necrotic patterns (0-
2), the collapse of the eye (0-2), and the loss of ommatidia (0-2), where
a higher score indicates a more severe phenotype. Scores were pro-
vided by two independent evaluators separately, and the average
scores were used for analysis.

Data sharing and interactive web tool
We built a web application to enable the interactive exploration of our
data called the PSP RNAseq Atlas (https://rtools.mayo.edu/PSP_
RNAseq_Atlas/), which is freely available to the broad research com-
munity. The PSP RNAseq Atlas is searchableby gene nameandprovides
results for humanbulk RNAseq PSPDEG, neuropathology associations,
snRNAseq, rTG4510 brain associations, Drosophila tau model results
and any available therapies against the prioritized genes based on the
Drug Gene Interaction Database (DGIdb) v4.073. In addition, all human
and mouse RNAseq data in this manuscript is available via the AD
Knowledge Portal (https://adknowledgeportal.synapse.org). The AD
Knowledge Portal is a platform for accessing data, analyses and tools
generated by the AcceleratingMedicines Partnership (AMP AD) Target
Discovery Program and other National Institute on Aging (NIA)-sup-
ported programs to enable open- science practices and accelerate
translational learning. Data is available for general research use
according to the following requirements for data access and data
attribution (https://adknowledgeportal.synapse.org/DataAccess/
Instructions).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All human and mouse RNAseq data in this manuscript is available via
the AD Knowledge Portal (https://adknowledgeportal.synapse.org).
TheADKnowledge Portal is a platform for accessing data, analyses and
tools generated by the Accelerating Medicines Partnership (AMP AD)
Target Discovery Program and other National Institute on Aging (NIA)-
supported programs to enable open-science practices and accelerate
translational learning. Data is available for general research use
according to the following requirements for data access and data
attribution (https://adknowledgeportal.synapse.org/DataAccess/
Instructions). An overview of all the data generated and used in this
study can be found on the manuscript landing page (https://doi.org/
10.7303/syn51361408). The bulk brain and single-nucleus RNAseq data
generated in this study have been deposited in the AD Knowledge
Portal under the Mayo RNAseq study (accession ID: syn5550404) and
the Mayo Clinic Brain Molecular Signatures of Alzheimer’s Disease
(MC-BrAD) study (accession ID: syn51298412) [https://doi.org/10.7303/
syn2580853]. The rTg4510 mouse RNAseq data used in this study are
available in the AD Knowledge Portal under the Tau and APP mouse
model (TAUAPPms) study (accession ID: syn3157182). All summary
results for humanbulk RNAseq PSPDEG, neuropathology associations,
WGCNA analysis, snRNAseq, rTg4510 brain associations, Drosophila
taumodel results, and any available drugs against the prioritized genes
based on the Drug Gene Interaction Database (DGIdb) v4.063 is
available through our web application (https://rtools.mayo.edu/PSP_
RNAseq_Atlas/) and the Supplementary Information. Source data are
provided with this paper.

Code availability
The analysis and visualization codes are available via the AD Knowl-
edge Portal (https://doi.org/10.7303/syn51671671). The source code
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powering the web application is also hosted on the AD Knowledge
Portal (https://doi.org/10.7303/syn51674938).
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