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Sensorimotor transformation underlying
odor-modulated locomotion in walking
Drosophila

Liangyu Tao 1, Samuel P. Wechsler1,2 & Vikas Bhandawat 1

Most real-world behaviors – such as odor-guided locomotion - are performed
with incomplete information. Activity in olfactory receptor neuron (ORN)
classes provides information about odor identity but not the location of its
source. In this study, we investigate the sensorimotor transformation that
relates ORN activation to locomotion changes in Drosophila by optogeneti-
cally activating different combinations of ORN classes and measuring the
resulting changes in locomotion. Three features describe this sensorimotor
transformation: First, locomotion depends on both the instantaneous firing
frequency (f) and its change (df); the two together serve as a short-term
memory that allows the fly to adapt its motor program to sensory context
automatically. Second, themapping between (f, df) and locomotor parameters
such as speed or curvature is distinct for each pattern of activated ORNs.
Finally, the sensorimotor mapping changes with time after odor exposure,
allowing information integration over a longer timescale.

Since animals can smell odors emanating from ecologically important
resources—such as food and mates that is important for their
survival1—for long distances from the resource, odors are important
for locating and assessing resources. While odors can signal the pre-
sence of a resource from a long distance, because of turbulent flow,
they provide precise navigational information only in the immediate
proximity to odors as odor gradients dissipate a short distance from
the odor source2. Therefore, finding the source of an odor requires
animals to act on incomplete information; anodorencounterwill often
result in an exploratory search rather than navigational movements2,3.
During an exploratory search, at each instant, the animal chooses
between many possible actions; each action does not result in a
defined outcome but might either yield new information or close the
door to this information. Many real-world behaviors have a similar
structure and require continuous decision-making over extended
periods with incomplete information4; odor-guided locomotion pro-
vides a great opportunity to further understand this important and
poorly understood class of behaviors.

Odor-gated exploratory search is characterized by varied and
distance-dependent effects on locomotion5. At long distances from

the source, odors stimulate locomotion and can direct locomotion
in an upwind direction; these and other changes in locomotion
often bring the animal closer to the odor source6–12. At short dis-
tances from the source, decreased walking speed, increased turn-
ing, and other changes keep the animal close to the resource13,14.
Overall, animals use a suite of locomotor mechanisms to locate
odor sources, home in on them, and interact and utilize resources
important for survival5.

Characterizing odor-driven changes in locomotion is a challen-
gingproblembecauseof two reasons, both related to stimulus control:
First, because of the nature of odor transport, the spatial and temporal
pattern of odor experienced by the animal is varied and changes with
environmental conditions and distance from the odor source; this
diversitymakes the characterization of the odor stimulus difficult2,15–18.
Second, how olfactory neurons encode a given odor is dependent not
just on odor identity but also on its concentration: Odors are detected
by olfactory receptor neurons (ORNs), which each express one to few
receptors that determine the ORN’s response profile and therefore
forms an ORN class. The complement of ORN classes activated by a
given odor depends on the odor concentration19.
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The first challenge of defining the odor stimulus experienced by
the animal was addressed in work done in moths when it became
possible to record odor stimulus in flying moths20,21. Similar work has
been performed in other animals, including other insects22–24, both in
flight8,25 and in walking11,12,26–32 revealing many conserved mechanisms
at play. These experiments represent significant progress in our
understanding. However, two limitations remain. One limitation is
relating these mechanisms to a model for locomotion. Attempts to
model behavior have suggested that these mechanisms work well
when the environment is predictable33 but may not work well in an
unpredictable environment7. Another limitation is that few studies
have connected behavior to neural response because of the problem
of replicating odor stimulus in an electrophysiological rig. These lim-
itations mean that neural algorithms underlying odor-modulated
locomotion remain poorly understood.

Another limitation of the work described above is that experi-
ments were performed on a single odor or a single odor blend;
therefore, the second challenge of relating the complement of ORNs
activated by different odors and behavior remained unaddressed.
Relating activation of different ORN classes to the movement of freely
locomoting animals has predominantly been addressed only in Dro-
sophila because of the genetic tools and the relative ease with which
experiments can be performed on many flies. Much of this work has
focused on valence or what makes an odor attractive or repulsive34–37.
To probe the locomotor mechanism that leads to attraction—i.e., how
are activities in different ORN classes related to changes in locomotion
—wecreated a ring arenawhose center had a fixed odor concentration,
and the periphery did not have any odor13. Flies only experienced
odorswhen theywent inside the central odor-zone; therefore, both the
timing and concentration of odorwere known. This study showed that
different ORN classes activate many different motor parameters
independently13. Independent control of motor parameters by differ-
ent ORN classes can be executed by parallel pathways that connect
eachORNclass tomultiple higher-order neurons: ORNsof a given class
project to a single glomerulus in the antennal lobe. Each glomerulus is
innervated by multiple types of second-order neurons called projec-
tion neurons (PNs) including excitatory and inhibitory uniglomerular
PNs and multiglomerular PNs, implying multiple parallel pathways
downstream of each ORN class38,39. Each PN contacts multiple third-
order neurons, providing even more opportunities for parallel
computations40.

Although the previous study showed that different ORNs affected
motor parameters independently, much of the analysis was based on
averages over minutes and did not explain how moment-by-moment
firingofORNs affects afly’s locomotion.Neither did it connect changes
in motor parameters to changes in the distribution of the fly in the
arena. Equally significantly, locomotion itself would affect sensory
experience because the fly’s locomotion affects odor sampling: if the
fly darts in and out of the odor quickly, the responses to subsequent
pulses of odors will be affected by the ongoing response to the first
odor encounter. Sampling dynamics play an important role in mam-
malian odor coding41.

In this study, we address three unsolved problems. First, we
obtain a moment-by-moment record of both the sensory and beha-
vioral information by recording from ORNs and measuring changes in
locomotion, respectively. Second, we create a generative model of
locomotion to show that the measured changes in motor parameters
indeed describe the fly’s overall behavior. Finally, we systematically
activate multiple patterns of ORN classes to unravel the logic between
patterns of active ORN classes and the resulting behavior change. We
solve the above problems by optogenetically activating different ORN
classes and measuring behavioral changes in Drosophila. We also
measure theORN response to the stimulus experienced by the fly. This
experimental design provides an accurate estimate of the temporal
pattern of ORN activity and the identity of the ORN activated and

allows us to accurately characterize the underlying sensorimotor
transformation. We discover that the fly automatically adapts its
locomotor strategy on both short and long timescales and that its
behavioral response depends on the complement of ORNs activated.

Results
Changes in the distribution of the fly depend on the combina-
tion of active ORN classes
We focused on subsets of ORN classes activated by a powerful
attractant, apple cider vinegar. Apple cider vinegar activates seven
ORN classes13. We activated five of theseORN classes either singly or in
combinations of two or three ORN classes using genetic lines that
express the transcription factor Gal4 under the control of olfactory
receptor promoters42–45; each genetic line expresses the transcription
factorGal4 in a singleORNclass.Gal4wasused to drive the expression
of CsChrimson (Chrimson for short), a red light-activated channel46.
Flies that express Chrimson under the control of known ORN classes
were placed in a small circular arena (8 cm in diameter) whose central
region—a circular region 2 cm in diameter—had a fixed intensity of the
light47 (Fig. 1a). As theflywalked into the regionwith the red light (light-
zone or stimulated region), the red light activated specific sets of
ORNs; the resulting behavioral change was assessed. Because flies’
photoreceptors have low sensitivity in the long wavelength, their
behavioral response to red light itself is small. Chrimson requires ret-
inal to respond to light. Retinal is fed to the flies by raising them on
food containing retinal; flies raised on non-retinal food served as
controls. As in previous studies13,47, we first measured the fly’s baseline
behavior for a 3-min period during which the light in the central area
was off. We then turned the light on, and measured its behavior for an
additional 3min.

In all, we activated 13 combinations ofORNswhich included single
ORN classes activated individually (five different ORNs), 2 ORN classes
activated in pairs (3 combinations), and combinations of three ORN
classes (two combinations) (Fig. 1). Because Or42b-ORNs were acti-
vated at the lowest odor concentration13, the original experimental
design was to activate two other ORNs along with Or42b—Ir64a and
Or92a—to sample from ORNs that belong to different receptor
classes45. This experimental designwould imply six combinations in all,
all of which are in this dataset. We added three more combinations—
Ir75a, Ir64a Ir75a, Ir64a Ir75aOr42b—to test specific ideas; the ideas that
led us to choose these specific combinations were all based on testing
particular hypotheses about rules of integration. These hypotheses are
irrelevant to the manuscript and will not be discussed further. The
conclusions in this manuscript do not depend on the combination of
ORNs activated. Apart from thesenine combinations, we also activated
larger sets of ORN classes by driving Chrimson under the control of
Ir8a, Orco, and Ir8a and Orco together. These three receptors are co-
receptors expressing in a much larger fraction of ORNs than olfactory
receptors themselves. In all, we performed recordings from 314 retinal
flies and 289,290 control flies to give us 3624min of data.

Activation of even a single ORN class can change the distribution
of flies in the arena. Most combinations that we studied showed some
change in the distribution of the flies, such thatflies spentmore time in
and around the central light-zone than at the arena border (Figure S1).
Controlflies showa small difference in their distributionwhen the light
is turned on. This difference might reflect some attraction to light
itself. But the attraction to light is unlikely given that many genotypes
do not show any change. The attraction is more likely to be due to a
small increase in the activity of the ORNs in the control flies. Regard-
less, except for Ir75a, Or42a, and Or42a; Or42b; Or92a, there is a
noticeable change in the time spent inside the odor-zone.

However, each ORN combination differentially affected the fly’s
spatial distribution. Two examples are shown in Fig. 1b: Flies whose
Or42b and Or92a neurons were activated explore the entire light-zone
and make frequent forays outside the stimulated region. In contrast,
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flies whose Ir64a, Ir75a, andOr42b are activated stay near the border of
the light-zone; the difference in the distribution of these two geno-
types is significant (Figure S2). These differences in the fly’s behavior
can be assessed by plotting how the fly’s density in different regions of
the arena changes as a function of time after its first encounter with
odor (Fig. 1c, Figure S3). Different combinations of activated ORN
classes produced different distributions at the light-zone border,
within the border, or around the stimulated area. Another difference in
behavior is how the fly’s behavior adapts over time (Fig. 1c, Figure S4);
as an example, behavior downstream of Ir8a activation adapts faster
such that the flies spend less time inside the stimulus zone at later
times in the stimulus (Fig. 1c, also see Figure S4).

Consistent with most previous work36,48, activating single ORN
classes either causes no change in the time spent inside (Ir75a, Or42a)
or a small change in the time spent inside (Or42b, Ir64a, Or92a). Acti-
vating two ORN classes produces a larger increase in the time spent
inside. The time spent in the vicinity of the stimulated zone when all
Orco ORNs—consisting of 70% of all ORNs—are activated larger than

the attraction produced by a smaller number of ORNs36. Despite the
large fraction of ORNs activated by Orco, we observed an even larger
change in behavior when we activated both the Orco and Ir8a ORNs.
This stronger attraction is surprising because many studies suggest
that activating some ORNs cause attraction and others cause repul-
sion; based on this idea activating a majority of ORNs would be
expected to produce some cancelation between attractive and repul-
sive ORN classes. Overall, the attraction produced in this arena
increases with the number of ORN classes activated; this result is
consistent with what others have observed36,48 and is also consistent
with the idea of parallel sensorimotor transformation driving a fly’s
overall behavior.

ORN responses are shaped by locomotion, making firing rate a
poor measure of sensory experience
Based on the position of the fly’s head and the intensity of light at each
point in the arena (Fig. 1a), we recreated the intensity of light that a fly
experiences as a function of time (Fig. 2a) and replayed the stimulus
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Fig. 1 | Activation of different ORN classes affect a fly’s spatial-temporal dis-
tribution in the ring arena in distinct ways. a Schematic of the arena. Line and
error bars represent the mean and range of values measured intensity values.
b Example trajectories where different ORN combinations are activated show that
when Or42b and Or92a ORNs are activated, the flies spend their timemore equally

throughout the arena. In contrast, activationof Ir64a, Ir75a, andOr42b results in the
flies spending more time at the border. c Spatio-temporal distribution of flies after
first encounter with light. The plots show the probability offinding the fly at a given
radial distance from the center as a function of time. Note that the color maps are
different for eachfly but theZ-axis is kept the same for easy comparison acrossflies.

Article https://doi.org/10.1038/s41467-023-42613-8

Nature Communications |         (2023) 14:6818 3



LFP filter rate filterstimulus

local field potential

firing rate (f)a

b

0 5 10 15 20 25
-150

0

150
0

20

40
f (

sp
ik

e 
/ s

)
∆f

 (s
pi

ke
 / 

s²
)

time (seconds)

time (s)0 60

time (s)0 60

predicted
raw

0 5 10 15
time (seconds)

d

path 1 path 2

IIIIII

IVV

III. - ∆ firing rateI. + ∆ firing rate II. high firing rate

IV. inhibition V. low firing rate baseline firing rate

stimulus

4 0 44 0 44 0 4
0

0.5
1

0
0.2

0

0.2

4 0 44 0 44 0 4
0

0.5

0
0.2

4

0

4

4

0

4

ra
di

al
 d

is
ta

nc
e 

(c
m

)
ra

di
al

 d
is

ta
nc

e 
(c

m
)

radial distance (cm) radial distance (cm) radial distance (cm)

∆f (spike / s²)
0-100 100

f (
sp

ik
e 

/ s
)

f (
sp

ik
e 

/ s
)

0

20

40

0

20

40

time (s)0 60

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

c

pr
ob

ab
ilit

y
pr

ob
ab

ilit
y

probability

baseline f

0
0.5

1

entering leavinginside

leaving exploring outside

Fig. 2 | Sensory experience is approximated by immediate ORN firing rate and
change in firing rate. a Linear filters were used to predict ORN responses from
behavioral tracks.bTwo track segments and the firing rate and change infiring rate
for the black and yellow show that locomotion affects ORN responses. State space
plots showing that sensory experience is a trajectory in the f–Df state space
(extreme right). Red star indicates the beginning of each trajectory. Dotted line
shows baseline firing rate. c Randomly selected 10,000 (gray dots) instantaneous
firing rate (f) and change in firing rate (Df). The numbers represent different

regions. Although each entry into the arena results in a unique trajectory though
the f–Df space, most entries will result in sequential progression from region I to V
of the state space. d Color maps: The arena was split into 60 × 60 bins where each
bin represents the probability of a state-space region (I–V) given the spatial loca-
tion. The labels—entering, leaving etc. are based on dominant behavior of the fly in
each of those states. Probability plots: Probability of being in each region (I to V) as
a function of radial distance. The nominal radial light border of 1.25 cm is
shown in red.

Article https://doi.org/10.1038/s41467-023-42613-8

Nature Communications |         (2023) 14:6818 4



back to a fly in an electrophysiological rig, to measure ORN responses
using single-sensillum recording, a method to perform extracellular
recording from the olfactory sensilla49 that produces a slow current
(referred to as local field potential or LFP) likely resulting from the
opening of the channels encoded by Chrimson, and the resulting
spiking response (Figure S5). We measured responses to 6 different
stimulus patterns. Based on these recordings, we created a neural
encoder to predict the responses of theORNs to any arbitrary stimulus
profile (Fig. 2a). The neural encoder was a cascade of two linear filters
as previously described50: the first filter described the relationship
between the stimulus and LFP, and the second the relationship
between LFP and firing rate (Fig. 2a and S5). There was little difference
in the temporal response from different ORN classes (Figure S6). This
similarity is consistent with previous work showing that much of the
difference in response dynamics results from the odor-receptor
interaction, a step that the use of optogenetics bypasses50. There is
some variability in the amplitude of the ORN responses across ORN
classes, but in all cases, the responses are large and are likely to satu-
rate the PNs. To test whether control flies (no retinal) respond to light,
as reported by others, we recorded from projection neurons (PNs)
downstream to the ORN as they integrate inputs frommany ORNs and
represent an amplified version of the ORN response. We found that
most PNs respondedwith an increase in activity (Figure S7), implying a
small increase in ORN activity in the control flies.

Although the light-zone is static, since the animal enters and exits
the light-zone on its own, the time course of stimulus experienced by
the fly is complex. The complex stimulus time course, in turn, makes
the ORN response profile complex (Fig. 2b): The ORN response when
the animal transits quickly through the light-no-light boundary
(Fig. 2b, yellow trace) is different from when the fly transits through
this boundary slowly (Fig. 2b, black trace). Locomotion also affects the
neural responsewhen flies return to the light-zone soon after they exit.
In this case, the adaptation from the last excursion to the stimulated
region affects the current response, and the peak response is lower.
Therefore, the fly’s sensory experience is dynamic, and its behavior is
likely modulated by recent stimulus history. To model this sensory
motor transformation, we first started by assessing whether we can
describe the transformation between ORN firing rate and kinematic
parameters such as speed or curvature. This approachdid notwork for
most flies (Figure S8) as either the temporal structure of the filter did
not make sense or the predictions based on the filter were poor. Next,
we tried approaches successfully employed to model the behavior of
Drosophila larvae: We first used reverse-correlation to estimate the
relationship between ORN responses and sharp turns51,52. The analysis
resultsmade qualitative sense andwas consistent with previous work53

as the turn probability increases when the spike rate or the stimulus
decreases (Figure S9). However, because the spike distribution was
non-Gaussian, this approach cannot be employed to analyze the data
collected in this study quantitatively as the resulting filter would be
erroneous, a well-known limitation of reverse-correlation
approaches54. Next, we tried another approach that was successful in
describing behavior in larvae55 where a logistic Generalized Linear
Model (GLM) was employed to predict the relationship between ORN
responses and behavior. This approach failed to describe the data
(Figure S10). This failure is likely due to the fact that this GLM is
instantaneous and has no history. It is possible that GLMs that incor-
porate time history might describe the data better. Finally, we focused
on obtaining linear filters that seek to model the average kinematics
during a state based on thefiring rate before the state transition. These
filters failed to predict the time averaged state trajectory kinematic
parameters (Figure S11). Thus, commonly employed methods failed
either because the assumptions made when employing those data did
not hold for our data, variability amongst flies, and the fly’s behavioral
response to the same stimulus.

Because the previously employed methods failed, we decided to
take a novel approach. Analyses aimed at estimating the linear filter
gave us a hint. Because the filters that we obtained as the fly is leaving
or entering were transient and returned to 0 within 200ms, and we
described the fly’s behavior as it entered or exited the arena quite well.
But, these filters failed to explain the fly’s overall behavior. We rea-
soned that the fly’s behavior is driven by recent ORN activity, but the
relationship between ORN activity and behavior changes with the time
it spends inside the stimulated region. This dependence can be mod-
eled by making the animal’s behavior dependent on the immediate (f)
and change in firing rate (Δf) history. Each entry into the arena is
characterized as a trajectory in the (f,Δf) state space (Fig. 2b). Different
entries into the light-zone often led to different neural responses
(Fig. 2B2), which can be described as different trajectories through the
(f, Δf) space. Each entry into the arena goes through a similar transi-
tion, starting with a high firing rate and rapid increase in firing rate
(region I, entering) to a high firing rate with adaptation (region II,
inside) to a high firing rate with a decrease in firing rate (region III,
leaving) to inhibition (region IV, left recently), and finally low firing rate
(V, exploring border). Therefore, (f, Δf) contains an approximate
representation of the sensory experience, and it is a computationally
inexpensive method for keeping track of odor history.

The usefulness of (f, Δf) is further illustrated in the spatial dis-
tribution of the flies in each of these regimes (Fig. 2d), i.e., where are
the flies when they are in a particular region of the f–Δf state space?
Suppose the flywas using just the firing rate at the same radial distance
near the odor border, the fly could have a very different firing rate
depending on whether the fly is entering in or exploring the boundary.
However, taking both f and Δf—which together describe the different
regimes (I–V)—allows the flies to parse whether it is entering the sti-
mulus region, within it, exiting the arena, or was in the arena recently.

In sum, the flies in this arena enter the stimulated zone multiple
times. The (f, Δf) is a time history of its sensory experience that starts
with its most recent entry to a few seconds after its exit when the ORN
firing rate returns to baseline. Therefore, wemodeled the behavior as a
transformation from recent (f, Δf) to the behavioral parameters. In the
next section, we will model how the mean and variance of kinematic
distributions change with (f, Δf). This approach has the advantage that
it will accurately model these kinematic changes.

Sensorimotor transformation is probabilistic, dynamic, and
depends on the population of ORNs activated
We assume that (f, Δf) in a short time window affects the fly’s behavior
which we model using an agent-based locomotor model47: The agent
can be in one of four states (Fig. 3a). Each state is defined by 2–3
parameters that remain constant during the state (Fig. 3b). Note that
only themajor transitions aremarked inFig. 3b; other transitions occur
infrequently; no transitions are disallowed. Therefore, the locomotor
model is a probabilistic model with ten parameters in all (enumerated
in Fig. 3b)—two of these are at the boundary, so they are not directly
affected by ORN activation, leaving eight parameters that are affected
by ORN activation (Fig. 3b). The effect of ORN activity is modeled as a
change in the distribution of these parameters (Fig. 3c). Specifically, f
and Δf in a short time window before the fly transitions to a new state
determines the parameter distribution in the subsequent state
(Fig. 3c). A mapping from (f, Δf) to the probability distribution of each
of the eight locomotor parameters describes the sensorimotor trans-
formation. We estimate this mapping for each location in the (f, Δf)
space (the regions I to V in Fig. 2 are used only to describe the data and
the rules of integration between ORN classes).

To estimate how f and Δf affect the distribution of the eight
parameters, we binned all instances of the start of a state when the f
andΔf in thepreceding 200mswere similar; the resultingdistributions
were well fit by lognormal distributions (Figure S12). A lognormal
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distribution is defined by its mean and variance; using the K-nearest
neighbor (KNN) framework, we estimated the mean and variance of
this distribution (Figure S13 and “Methods”). In describing the effect of
ORN firing on locomotion in Fig. 4, we will focus on the mean of the
distribution; the entire distribution is employed in generating syn-
thetic flies (see below). Despite the large number of flies we investi-
gated, we are still data limited in some instances. This limitationmeans
that although we can capture the essence of the sensorimotor trans-
formation between ORN activation and behavior, but likely miss some
finer details.

An example of the mapping between (f, Δf) and locomotor para-
meters is shown in Fig. 4a. The speed of the fly during curved walks
decreases when the fly is walking along the border of the light-zone
(Region V). The same effect on speed is observed during sharp turns
(Fig. 4a, regions of significant change are shown in Figure S14). In
contrast to the change in speed, the largest change in sharp turn
curvature occurs when the ORN firing rate is decreasing (Region III, as
the fly is exiting). The change in curved walk curvature is largest in
Region V when the firing rate is steady and decreases when there are
changes in the firing rate. Finally, the effect on the duration of sharp
turns is negligible, while the curved walk durations decrease as the
firing rate decreases. These different effects of (f, Δf) on locomotor
parameters reflect a change in a fly’s motor program as it spendsmore
time inside the stimulated region.

The effect of different combinations of ORN classes on a given
motorparameter is alsodifferent (Fig. 4b). As an example, consider the
effect of different combinations of ORN classes on sharp-turn curva-
ture. Activationof singleORNclassesOr42b,Or92a, Ir64a,or Ir75ahas a
small effect on the curvature of the sharp turn. Activation of both
Or42b andOr92aORNclasses together results in a large increase in the
curvature of the sharp turn suggesting a strong additive effect. This
additive effect is not observed in the activation of Ir64a and Ir75a
together (Fig. 4b).When three ORNclasses—Ir64a, Ir75a, andOr42b are

activated together, there is a large effect on the curvature of the sharp
turn, suggesting that the rules of addition are non-linear and depend
on the co-activated ORN classes. The different rules of addition are
further highlighted by the effect of different ORN classes on the speed
of curved walk (Figure S15). In contrast to sharp-turn curvature, acti-
vating a single ORN class—Or42b—has a large effect on the speed
during curved walks. Activating two ORN classes has an even larger
effect on speed. The effect on speed is less obvious when more ORN
classes are activated (Figure S15). These data are consistent with our
previous work and show that the addition of more ORN classes does
not simply scale the observed changes in parameters13. We will revisit
the rule of integration more quantitatively later in the study
(see below).

As mentioned, the ORN responses following entry into the sti-
mulus zone to a few seconds after its exit is represented as a trajectory
in (f, Δf) space. A new trajectory starting at the baseline begins every
time thefly enters the stimulus zone. Thus far,wehave investigated the
effect of ORN firing that averages the change in behavior across mul-
tiple entries. Although the ORN firing rate returns to baseline every
time the fly exits the stimulus zone, there may be changes in the sen-
sorimotor transformation across different entries into the stimulus
zone. To assess these dynamics, we used the K-nearest neighbors
(KNN)approach to assess how the sensorimotor transformation
changes with time by evaluating the relationship between (f, Δf) and
locomotor parameters at different times after the first odor encounter
(Figure S13 for methods). We found that the changes in locomotor
parameters with timewere distinct for differentmotor parameters; the
effect of ORN activation on a given parameter can increase with time,
decrease, or stay the same (Figure S16). An examplewhere the effect of
ORN activation builds up over time is the speed of curved walks. The
prominent decrease in walking speed in the arena center when both
Or42b and Or92a ORNs are activated becomes more pronounced with
time but stabilizes (Figure S16A). In the same flies—when Or42b and
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Or92a ORNs are activated—there is a rapid decrease in the effect of
ORN activity on sharp turn curvature, which stabilizes over the dura-
tion of the stimulus (Figure S16B). An examplewhere the effect of ORN
activation decreases with time is the effect of Ir8a activation on the
curvature of sharp turn; the effect of activation is largest right after the
fly experiences ORN stimulation for the first time and decreases
thereafter (Figure S16C). Overall, the sensorimotor transformation for
different parameters evolves differently over time.

In previous studies using both odors and optogenetics, we had
shown thatodorsorORNactivation influencedbehavior not onlywhen
the stimulus is present but also outside the stimulus-zone13,47. Some of
this effect is likely due to the strong effect of the ORN off-response
(Region IV). Is the effect of ORN activation persistent after the ORN
firing rate has returned to baseline? Indeed, when we analyzed

kinematics only during the period when the firing rate was at baseline
levels, we found that for some genotypes, there was no change in
kinematics during the baseline period (Figure S17). For other geno-
types, there are changes in kinematics even when the ORN firing rate
has returned to baseline (Figure S17). These changes also adapt
over time.

Flies can turn preferentially at the border to either stay inside or
turn inwards
Apart from kinematics, insects can use different forms of directional
information to direct their turns toward an odor source56–59. We have
already shown that flies use directional information in the ring arena47.
This use of directional information is also evident in the tracks of flies
(Fig. 5a), which show flies weaving in and out of the light zone. Flies of
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some genotype—Ir64a, Ir75a, and Or42b are activated together, or
where Orco ORNs are activated, or Orco and Ir8a ORNs are activated
appear to show a greater propensity for this weaving behavior. We
quantify how flies use directional information by quantifying turn
optimality (see “Methods”). As the fly exits the light-zone, unless it is
moving exactly in a direction normal to the light-zone, it can either
turn in a direction where a small turn will bring it inwards (optimal
direction) or in a direction in which a large turn is necessary (Fig. 5b).

Similarly, as theflies enter inside, theflies can turn in anoptimalor
non-optimal direction (Fig. 5b). Indeed, flies prefer turns in an optimal
direction (Fig. 5c). They turn towards the border as they exit the arena
with a higher-than-chance probability. In contrast, the flies turn back
out of the light zone when they are inside. The combination of high

optimality when leaving and low optimality when entering results in
the observed weaving behavior near the light border.

This directional preferencealsodependson thegenotype.When a
single ORN class is activated, the flies do not exhibit this directional
preference except when Ir64a-ORNs are activated (Fig. 5d). Consistent
with complex rules of integration observed for kinematic parameters,
when both Ir64a-ORNs and Or42b-ORNs are activated, the directional
preference becomes smaller. All other combinations inwhich twoORN
classes are activated show an increased propensity for directed turns.
Finally, consistent with the border-hugging tracks, when Ir64a, Ir75b,
and Or92aORNs are activated together, turn optimality is particularly
large (Fig. 5c). Flies not fed retinal have a smaller turn optimality
(Figure S18). However, Orco, Ir8a displayed similar border-hugging
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behaviors when not fed retinal, which is reflected in their turn optim-
ality; this behavior likely reflects weak ORN activation.

The most likely mechanism for directional preference is com-
paring response between the two antennas58,59. We re-analyzed a
dataset from Orco-ORNs-activated flies whose right antenna was
removed to test this idea. Theseflies continued to display the ability to
perform tight border weaving patterns (Figure S19A). Indeed, these
flies could still perform the same type of optimal turns when leaving
and non-optimal turns when entering, which suggests that directional
preference cannot be explained purely through bilateral comparison
of sensory experience (Figure S19B). Flies are likely using temporal
comparisons as a directional cue. Given that temporal comparisons are
likely driving the increased sharp turn at the odor border, it is also
possible that temporal comparisons also drive optimal turning.

We also evaluated whether the flies perform optimal turns
through idiothetic path integration by evaluating optimal turns after
the ORN activity has returned to baseline level56. We found that,
indeed, when Orco ORNs are activated, there is a higher than-chance
turn optimality irrespective of radial distance away from the center of
the arena (Figure S19D).

Amodel for diverse rules of integration betweenORN activation
and change in locomotor parameters
The data presented in Figs. 4 and 5 points to three features under-
lying sensorimotor integration in the olfactory system: (1) ORN
activation affects multiple motor parameters, (2) the effect depends
on both f and Δf and on the identity of the active ORNs, and (3) is
distinct for different motor parameters. The neural substrate for this
transformation exists in the fly’s olfactory system. We postulate that
the different kinds of PNs—excitatory and inhibitory uniglomerular
PNs and excitatory and inhibitory multi-glomeruluar PNs—represent
parallel channels of communication. Because the microcircuitry
underlying each PN type is distinct, they likely have different
dynamics in response to the same ORN input40. Higher-order neu-
rons, such as lateral horn neurons, can integrate across different
combinations of PNs to affect changes in differentmotor parameters.
These ideas are illustrated in Figure S20. We develop a conceptual
framework for this parallel sensorimotor integration by investigating
the rules of integration in the five regions of the f–Δf space (Fig-
ure S20). Each entry into the stimulus zone will lead to the sequential
activation of these output channels. Each channel can have a differ-
ent effect on a given motor parameter that can be modeled as a
change in the distribution (Figure S20). Signals from different ORN
classes are integrated according to different rules in each of these
five output regions. The integration rules were modeled using a
regression model (Figure S21 and “Methods”).

We applied this approach to all combinations of ORN classes and
illustrated this analysis with how activities from Or42b-ORNs and
Or92a-ORNs affect sharp turn curvature (Fig. 6a). Activation of Or42b-
ORNs has a large effect (>40% increase in Region I) as the fly enters the
arena. This effect is transient, as reflected by the small effect in Region
II when the fly is fully inside. The effect on curvature returns when the
fly is exploring the odor border (Region V), and when the ORN
response is inhibited (IV). Activation of Or92a-ORN alone also has a
similar effect. When the two ORNs are activated together, there is a
large synergistic effect on the curvatureof sharp turns except in region
I. The effect of this synergism is that the sharp turn curvature is high in
all regions when both ORNs are activated. The synergy between the
twoORNsmeans that the effect due to the twoORN classes together is
20–40% higher than expected from a linear sum (Fig. 6a, rightmost
panel). Interestingly, although there is still a large effect of the com-
bined ORN activation on sharp turns when the fly is entering the arena
(Region I), the interaction effect is not synergistic as the observed
effect of the twoORNclasses is about 15%smaller than expected froma
linear summation.

How activities from twoORN classes are summed depends on the
motor parameter: Consider the effect of Or42b and Or92a ORNs on
curved walk speed. In some regions (I, III, IV), the effect of the two
ORNs adds sub-linearly such that the increase in speed is not as large as
expected from a linear summation. The large decrease in speed
observed in region II, when individual ORN classes are activated, is
completely abolishedwhenbothORN is activated; this is anexampleof
antagonistic reduction (Fig. 6b).

Interaction terms showother summation rules: oneORN can have
a dominant effect, particularly when the two ORN classes individually
have different effects; the combined effect of two ORNs can affect
individual parameters when neither has an effect individually (not in
this case, see Fig. 6c for anexample). Thisdiversity of rules is evident in
the effect of Or42b-ORNs when combined with different ORN classes
(Fig. 6c). For a givenparameter, the effectdepends on the regionof the
f–Δf space. For example, take either the curved walk or sharp turn
speed: In region II, activating Or42b in combination with any of the
otherORNs increases the speed. This increase is observed even though
Or42b activation alone reduces the speed in region II. In contrast, in
regions I and III,Or42b activation results in a less pronounced increase
in speed. Finally, during the inhibition epoch (region IV), the effect of
Or42b appearsmuted, and the overall behavior is close to the behavior
due to Ir64a-ORNs.

The samediversity applies to the effect on curvatureduringwalks.
The result is different both for different regions of f–Δf space and
sharp turn and curvedwalk curvature: In regions I and III, i.e., when the
flies are leaving or entering,Or42b activation has an antagonistic effect
on the curved walk curvature such that the summed result is smaller
than what would be expected from a linear sum (Fig. 6c, bottom right
panel, hashed blue). In some cases, the net effect of activatingOr42b is
so strong that the change in curvature due to Or92a or Ir64a activated
alone is almost abolished (green in Fig. 6c, bottom right). In contrast,
the sharp turn curvature increases in many regions when Or42b is
activated along with the other combinations.

This diversity of integration rules and its dependence on both (f,
Δf) makes sense in light of the fact that the motor program should
changewith the fly’s sensory experience. This diversity can not only be
supported by olfactory processing circuits but is the only possibility
given the widespread convergence and divergence of olfactory signals
in higher olfactory circuits. To illustrate this idea, we follow only the
most salient feedforward connections from the Or42b-ORNs—connec-
tions fromOr42b-ORNs to the uniglomerular PN that directly connects
to Or42b-ORNs (DM1uPN) to lateral horn neurons—using the recent
connectomics data40 and find that it signals to at least five different
LHONs, which all integrate input from different ORN classes (Fig-
ure S22). These LHONs can, either individually or in different combi-
nations affect different motor parameters. This connectomic analysis
is very limited. Overall, the simple connectomic analysis illustrates how
just the connections to one brain region—lateral horn- can subserve
the diverse integration rules we discovered here. Given that there are
multiglomerular PNs that also integrate inputs from theseORN classes
and signal to the lateral horn, as well as other brain regions, such as the
mushroom body that receive inputs from antennal lobe and are con-
nected to each other with dense recurrent connections, circuit archi-
tecture that might underpin these rules of connection, are very much
present in the fly brain. It is important to note that this connectomic
analysis is not meant to assert an exclusive role for lateral horn in the
sensorimotor transformation outlined in this study.

A generative model for the effect of odors on locomotion
The analysis above (Figs. 4–6) shows that the effect of ORN activation
on locomotion depends on the identity of the ORNs activated. Can the
changes in kinematics explain the changes in the distribution of the
flies? To this end, we created synthetic flies based on our agent-based
model47; the details are in the “Methods” section and in Figure S23.
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Briefly, just like the experimental flies, each synthetic fly walked for
6min—3min before the light turned on and 3min following the light
on. Synthetic flies started in the curved walk state at the center of the
arena andmoved around the arena through a series of transitions into
the four states. Curved walks end in a stop, sharp turn, or at the
boundary. Tracks corresponding to each transition were generated by
sampling from speed, curvature, and duration distributions for each
state for the f and Δf during the 200ms preceding each state transi-
tion. Using the position of the synthetic flies as a function of time, we
estimate the intensity of light experienced by the fly as a function of
time; this light intensity was converted into ORN spike rate using the

two-stage linear encoder derived in Fig. 2. The resulting f and Δf were
used to determine the kinematic distributions that the synthetic flies
sampled from at any given time. The duration that each transition
lasted was also selected from the empirical distribution.

To assess how well the behavior of the synthetic flies replicated
that of the empiricalflies, we first compared the flies whoseOrco-ORNs
are activated, a genotype that we have analyzed previously47, and
because these flies show a large change in their distribution. The radial
distribution of the empirical and synthetic flies before and after the
central red light is turned on is shown in Fig. 7a. As expected, the radial
distribution of the synthetic and empirical flies before the light is

Or92a

Ir64a

Ir64a
Ir75a

III II  V IV I
speed

Or92a

Ir64a

Ir64a
Ir75a

total curvature

Curved
Walk

Stop 
and Turn

Boundary

Sharp
Turn

Curved
Walk

Stop 
and Turn

Boundary

Sharp
Turn

c

Or92a

Ir64a

Ir64a
Ir75a

speed

Or92a

Ir64a

Ir64a
Ir75a

average curvature
Or42b
dominant

synergistic
increase

no interaction/
linear summation

0.67 1.76 0.64 1.15 1.03 0.75 1.30 1.07 1.17

1.26 1.56 1.11 1.36 1.19 0.76 0.89 1.37 1.41 0.89

0.79 1.41 0.71 0.8 0.98 0.74 0.95 1.13 1.18 0.93

Or42b > Chrim

1.12 1.51

1.05

1.21

1.27

Or92a > Chrim

1.48 1.55

1.04

1.25

1.11

Or42b Or92a > Chrim

1.77 1.75

1.42

1.66

1.65

1.07 0.76

1.3

1.09

1.17low

negative

high

inhibition
positive0

∆ firing rate

fir
in

g 
ra

te

0
∆ firing rate

0
∆ firing rate

0
∆ firing rate

interactions

antagonistic

synergistic

no effect

a

Or42b > Chrim

1.42 1.35

0.66

0.88

0.8

Or92a > Chrim

1.65 1.65

0.67

1.18

0.65

Or42b Or92a > Chrim

1.33 1.6

1

1.03

0.8

0.99
0

∆ firing rate

fir
in

g 
ra

te

0
∆ firing rate

0
∆ firing rate

0
∆ firing rate

interactions

antagonistic
reduction

no effect

b

 III II  V IV I

 IIIII  V IV I  III II  V IV I

2.26

1.52

0.57 0.72

other ORN
dominant

other
interaction

antagonistic
increase

antagonistic
reduction

antagonistic
increase

synergistic
reduction

1.30 0.81 2.01 0.98 1.05

2.87 0.54 2.70 1.01 1.32

0.84 1.14 1.56 1.12 0.71

0.72 2.26 0.57 0.99 0.57

1.03 2.24 1.17 1.061.17

0.85 1.58 0.65 1.070.85

regions

 I
II

III

V

Rules of integration for the effect of Or42b and Or92a ORNs on sharp turn curvature

Rules of integration for the effect of Or42b and Or92a ORNs on curved walk speed

1.09

IV

Fig. 6 | Rules of integration between ORN classes are diverse and depend on
region of the state-space and the locomotor parameter. a Rules of integration
for the effect of Or42b, Or92a on sharp turn total curvature. The three panel on the
left are the effect on sharp turn. 1 = no effect; 1.46 is a 46% increase. The rightmost
panel shows the interaction. Color implies that the interaction was synergistic such
that the observed effect is at least 10% larger than for linear summation (orange),
and at least 10% smaller (blue). b Same as (a), but for curved walk speed. The same

twoORN class can have either synergistic or antagonistic interaction depending on
the locomotor parameter. Synergistic and antagonistic interactions can be further
delineatedbywhether the individualORNactivation results in an increase (solid) or
decrease (hashed) in locomotor parameter. c Interactions between Or42b and
three other ORN combination Or92a, Ir64a, and Ir64a;Ir75a show that rules of
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turned on is similar. The distributions of the empirical and synthetic
flies during the stimulation period are clearly different (Fig. 7a). This
mismatch is not due to large differences in kinematics, as many of the
kinematic changes in the empirical flies are replicated in the synthetic
flies (Figure S24). A closer examination of the radial density in Fig. 7a
shows that the crucial difference is that the synthetic flies spend more
time in the region between the outer border and the light zone than
the empirical flies and lack the large peak in radial density at the border
of the stimulated region. These differences imply that we do not fully
capture the flies’ behavior at the light-zone’s border. This result is

consistent with our previous work, where an assumption that the fly
changed state each time it crossed the light-zone was necessary to fit
the data47. Indeed, we found that a negative peak in Δf caused a large
increase in the propensity of the flies to exit curved walks and enter
sharp turns (Figure S25). Although (f, Δf) capture this tendency—the
curved walk duration is lower when Δf is negative (Fig. 4a)—this ten-
dency is underestimated because of estimation errors in the KNN
model originating in the lack of data for high negative Δf. Consistent
with this idea, there is a large peak in the propensity to turn in the
empirical flies that are not captured in the synthetic flies (Fig. 7b). We
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Fig. 7 | An agent-based model of flies based on locomotor kinematics and turn
optimality can capture much, but not all of the flies behavior. The reasons for
discrepancy are elucidated in Figs. S23–S27. a Spatial distribution of the empirical
and synthetic flies are similar before the stimulus is turned on. During stimulation,
the synthetic flies spend less time than the empirical flies inside the stimulated area
but more time between the stimulated zone (dashed line) and the outer boundary.
bThe difference in radial distribution results from a larger propensity to turn at the
border of the stimulated zone than the synthetic flies. c An exponentially decaying

probability of transitioning into a turnwasused tomodel the empirical turndensity
(right). By improving the turn density fit, themodel was capable of better capturing
the spatial position (middle) of flies in the arena. d When there is no or small
increase in turn density at the border, the synthetic flies have a distribution close to
the empiricalflies. Examples are Ir64a alone, and Ir64a and Ir75a activated together.
As the turn density increases, the pattern observed in the Orco activated flies is
observed. Radial occupancy in (a), (c), (d) show mean +/− SEM.
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attempted to recreate this increased turn propensity by adding a
“border choice” parameter. Although we were not wholly successful in
matching the turn density observed in empirical flies, we show that
incorporating the increased turn density in the model for synthetic
flies results in a large peak in the radial density near the light-zone and
decreases the density in the unstimulated, non-border regions
(Fig. 7c). Another method to increase the turn density at the border
was to employ linear filter predictions at the boundary, and the KNN
predictions everywhere else. Indeed, using this method both the turn
density and radial density of the synthetic flies match that of the
empirical flies (Figure S26).

The trend observed in Orco-ORNs-activated flies is observed in
other genotypes. In flies in which there is a small peak in turn density
shows a close match between radial density in the empirical and syn-
thetic flies (Fig. 7d). Combinations of ORNs that increase turn density
show the same trend as seen in theOrcoflies—peak radial density at the
border of light-zone that is not captured in the synthetic flies and
increaseddensity in the syntheticflies just outside the light-zone. As an
example, for Ir64a; Ir75a, the discrepancy in turn density is small, and
so is the difference between empirical and synthetic flies. Conversely,
for other genotypes such as Ir64a;Ir75a;Or42b, the discrepancy in the
turn density is as large as is the difference in radial density between the
synthetic and empirical flies. A formal analysis confirms the trend
(Figure S27). It shows that the differencebetween the radial density for
empirical and synthetic flies is correlated to the increased turn density
at the border of the stimulated region.

Discussion
The four-state locomotor model implies that the behavior of a fly
walking around in a small arena can bemodeled as a series of discrete
decisions; each decision is a choice of speed, curvature, and duration
from an underlying distribution. ORN activation has two effects on
behavior: First, ORN activation changes the distribution of locomotor
variables. Second, because ORNs are activated only in the stimulated
region, this creates an asymmetry; flies take advantage of this asym-
metry by biasing their turns to direct them toward the stimulus zone.

A probabilistic model makes sense. Stimulating the fly’s olfactory
system alone does not provide strong directional cues; locomotion
makes sensory assessment even more uncertain, as sensory delays
mean that the current firing rate only reports past events at a different
location. While the exact nature of the locomotor model and how
sensory information, including olfactory information, affect themodel
parameters will depend on the species, the size of the arena, and the
nature of the stimulated area, we expect that a simple probabilistic
model will always capture the essence of the underlying sensorimotor
transformation.

Before we discuss other implications of the data we collected and
our model, we should reiterate one limitation: Because flies only enter
and exit the stimulated region a few times in any experiment, we are
data-limited in describing the fly’s behavioral changes at high Δf as the
firing rate only changes during entry and exit. This limitation means
that we likely miss some locomotor changes.

We show here that flies rely on f and Δf in a short time interval to
change their motor parameters. Together f and Δf serves as adequate
surrogate for integrating information across time: they can signal
whether the fly is going up or down a concentration gradient or is in an
area with steady stimulus concentration without any need to integrate
information across time and serve as short-term memory from the
time thefly enters the stimulated zone anduntil it leaves.Using f andΔf
to modify behavioral parameters is an effective and straightforward
strategy to adapt the motor program to the sensory context con-
tinuously. Take, for example, the change in speed. As the fly enters the
stimulus-zone and its ORNs are increasingly more active, the fly starts
moving faster. The speed decreases as it enters a constant stimulus
region, and the firing rate changes are low. Together these different

effects of f and Δf on speed reflect a change in locomotor strategy:
increased speed as the fly moves up the concentration gradient
changes to a search behaviorwith a careful low-speed search of an area
when the firing rate is constant. The observed change in speed—
increases when there are large changes in ORN firing rate and a
decreasewhen thefiring rate is elevatedbut constant is consistentwith
our previous work13. Speed reduction is a hallmark of search behavior
observed after an animal finds a resource or an odor that indicates the
resource.

The immediate f and Δf can only signal short-term context—from
the current entry into the stimulated region to exit. On a longer
timescale, the sensorimotormapping between f and Δf and locomotor
parameters is altered and allows modulation of locomotion over suc-
cessive encounters.

There are eight kinematic parameters that dependon f andΔf; out
of these eight parameters, all but the duration of sharp turns are
affected by ORN activation. Out of the remaining seven, the speed of
the curved walks and sharp turns are affected similarly across all
genotypes and is likely a single parameter, leaving six parameters that
all show different dependence on f and Δf and on the combination of
ORN class activated. The distinct relationship between f and Δf and
locomotor parameters is another facet of sensorimotor mapping that
ensures a motor program that automatically adapts to sensory con-
text. Adecrease in curvedwalk speeddiscussed above is often—but not
always—associated with an increase in curvature; this decreased speed
and increased curvature is a simple, conserved strategy that allows an
animal to stay close to the stimulated region; a phenomenon that is
also observed in field studies60. Activation of even single ORN classes—
Or42b, Or42a, Or92a, Ir64a, and Or42a and, to a lesser extent Ir75a—all
result in this pattern of speed change. These results are consistentwith
the idea that activation ofmostORN classeswould result in a change in
curved walk speed and curvature that initiates a local search.

Sharp turn curvature changes most as the firing rate decreases,
implying that the increased sharp turn curvature is employedwhen the
fly exits the stimulated region and wants to return. Again, a mapping
between recent f and Δf and sharp turn curvature accomplishes a part
of the overall motor program without the necessity of longtime tem-
poral integration; an increase in sharp turn curvature is a conserved
strategy documented in other insects14,61 which also increases the
sharpness of their turns to return to a resource patch. A previous study
showed that this increase in turn amplitude is important for a fly
spending more time in the stimulated region47. Although single ORN
classes can cause some change in sharp turn curvature, activation of
two ORN classes causes larger changes.

The dependence of curved walk duration on f and Δf and ORN
combination is also distinct. As the fly exits the stimulated region,
there is a large decrease in the curved walk duration. This change in
curved walk duration means that as soon as the firing rate starts to
decline, the flies stop walking and make a turn. It would make sense if
this decrease in curved walk duration was strongly coupled to the
increase in sharp turn curvature; this coupling is not observed. Chan-
ges in curved walk duration require the activation of many more ORN
classes than the increase in sharp turncurvature, implying that they are
likely to be modulated by parallel sensory circuits.

We have studied the effects of odor-guided locomotion in a small
arena using both optogenetics and odors and find that odors affect
multiple aspects of the fly’s behavior—including every imaginable
aspect of movement kinematics, turn direction—and that these effects
occur through independent sensorimotor interactions13. In this arena,
the wind cues are small or absent, and ORN activation is persistent as
sometimes the fly enters the stimulated region for tens of seconds to
minutes. In stark contrast, in recent work26,62,63 in which the fly’s
olfactory system was stimulated with transient odor/optogenetic sti-
mulation in the presence of constant wind, the authors reported no
change in movement kinematics. In their behavior, the effect of odors
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was to change walk-stop transitions and bias turn directions. Another
recent study lies somewhere in the middle and finds that the presence
and sensing of wind are necessary for upwind progression, but odors
alone producemany changes inmovement parameters11. These results
suggest that adult flies have a rich, flexible behavioral repertoirewhich
depends not only on the receptors that are activated but also on the
temporal features of odor such as stimulus duration and encounter
rate, and the presence or absence of wind. The range of behavior in
nature is likely to be even more varied given that both the speed and
direction of wind changes frequently64 and the odor environment is
considerably richer65.

Another interesting difference appears to be integration time. In
our study, the linear filters, even when the fly is leaving the arena and
has been experiencing odor for some time, are transient and lasts less
than 200ms. This transience appears to be in contrast to the much
longer integration times that describe behavior in studies in which the
direction of the wind is constant. One possible explanation for this
difference is that in our arena there is no clear directional source. In the
absence of a source of direction, it is unclear how information sources
necessary for guiding locomotion– such as location and time of an
odor encounter would be integrated together. This integration likely
becomes easier in the presence of wind particularly when the direction
and speed of wind does not change66.

In sum, these recent studies in the context of fly walking empha-
size decades ofwork that has unraveled the great diversity of strategies
that insects use to change their locomotion to approach the source of
odors, and to stay close to them3,5. This wide diversity of strategies
implies that all aspects of themodel we present here are unlikely to be
generalizable across all conditions observed by flies in nature. We
anticipate the following ideas to be generalizable: (1) it is likely that the
sensorimotor transformation is likely to beprobabilistic irrespective of
stimulus condition, (2) the analysis performed here, i.e., trying to
understand how distributions of motor parameters relate to f and Δf
and how these relationships evolve over multiple encounters with an
odor is likely to be an adequate description of the behavior. It is pos-
sible that amoreelegantmodel couldproducea concisedescriptionof
the changes in a fly’s locomotion under all conditions. However, we
speculate that it is more likely that behavioral flexibility will be
reflected as a combination of different regions of f and Δf being
employed under different stimulus conditions and different mapping
between f and Δf and motor parameters under different stimulus
conditions. Thus, the model proposed here can be employed to eval-
uate the mechanisms underlying behavioral flexibility.

How do olfactory circuits execute this seemingly complicated
behavioral strategy? The circuit architecture underlying the signal
propagation from the ORNs to the antennal lobe and further to the
lateral horn is well-suited to perform this computation. We have illu-
strated these ideas by performing a limited connectomics analysis
(Figure S22). The behavioral strategy outlined above requires two
computations. First, the circuits should be able to compute f–Δf.
Computing f–Δf means that different higher-order neurons respond
most strongly to different phases (such as the rising phase, plateau
etc.). This differential response is possible because each ORN class
connects to multiple second-order neurons called projection neurons
(PNs). There are ~350 PNs in all; ~200 PNs are cholinergic and excita-
tory; ~100 PNs are GABAergic and inhibitory; neurotransmitters for the
rest are uncertain39. The PNs are divided almost equally between uni-
glomerular PNs that send their dendrites to a single glomerulus and
multiglomerular PNs that project to multiple glomeruli. The presence
of nearly equal numbers of excitatory and inhibitory PNs implies that it
would be easy to perform sign inversion in higher-order circuits. Dif-
ferences in kinetics are also likely. The most well-studied PN class—
excitatory uniglomerular PNs—act as differentiators due to the
synaptic depression at the ORN-PN synapse67. It is possible that other
classes of PNs in the antennal lobe have different kinetics, as the inputs

into different PNs within each glomerulus are heterogeneous. Func-
tional heterogeneity in PN responses within a glomerulus has been
observed in other insects68,69.

Second, our data suggest that activities from two ORN classes are
integrated according to different rules based on both instantaneous
f–Δf and the locomotor parameters. This integration can happen both
at the level of mPNs and lateral horn. Each glomerulus makes con-
nections with ~30-40 mPNs; the number and diversity of mPNs imply
that there is enough neural circuitry to compute different rules of
integration. Similarly, there is great diversity in cell types in the lateral
horn. Based on this connectivity pattern, the lateral horn consists of
~500 cell types in Drosophila40. There are also >37 types of output
neurons from the lateral horn.

As already mentioned, much of the work in odor-modulation of
locomotion in flies is aimed at understanding whether a given ORN
class is attractive or repulsive48,70 or the valenceof a givenORNclass. In
some previous studies, particular ORN classes have been found to be
particularly potent attractant or repellent. In one study, activation of
Or42bORN produced strong attraction70; however, most other studies
have found Or42b—by itself—to be only mildly attractive13,36. Similarly,
activation of Ir64a was initially found to mediate repulsion due to
acids44; however, other studies have found the activation of Ir64a to be
attractive71. This study supports the finding that both Or42b activation
and Ir64a activation leads tomild attraction.More generally, activating
a single ORN class always causes a change in some locomotor para-
meter and usually results inmore timebeing spent in the vicinity of the
stimulated area (Figure S1). Attraction—as defined as time spent within
the stimulated area—remains small. This result—that activation of a
single ORN class would result in either no attraction or mild attraction
—is consistent with most work on attraction48.

All the ORN classes activated in this study are activated by apple
cider vinegar, a strong attractant. Although no single ORN class pro-
duces strong attraction, activating three ORN classes—Ir64a Ir75a
Or42b together produces a strong attraction. This change in attraction
is not explained simply, i.e., no parameter is uniquely affected by these
three ORN classes that are not affected by a smaller number of ORN
classes. Rather, all the changes in locomotor parameters that facilitate
attraction are observed when these three ORN classes are activated.
These changes include slowing down inside the stimulated region, a
decrease in run duration and increased sharp turn curvature as the fly
exits the arena, and greater oriented turns into the stimulated area.We
have not activated enough combinations of three ORN classes to
assess whether this combination is particularly optimal. But, we do
know that all combinations of three active ORN classes do notmediate
the same attraction. When Or42b,Or42a, and Or92a are activated, the
attraction is not only smaller than Ir64a Ir75aOr42b attraction; it is also
less than when Or42b and Or92a are activated. Does this mean that
Or42a is a repulsive ORN class? In fact, activation of Or42a by itself is
mildly attractive. This combination of activated ORN classes (i.e., all
three ORN classes) causes smaller attraction likely because of smaller
changes in curved walk speed and duration and smaller changes in
sharp turn total curvature leading to less time spent near the stimu-
lated region. Thus, to further understand the mechanisms underlying
attraction, it would be useful to compare how different combinations
of three or more ORN classes affect different locomotor parameters.

An analysis of Or42b, Or42a, and Or92a has another important
insight. If we think of the propensity of a fly to take the optimal turn as
ameasure of its intention to return to the odor, thenOr42b, Or42a, and
Or92a active flies should be very attractive as they show strong turn
bias (Fig. 5) suggesting that an intent to be attracted to the stimulated
region does not necessarily mean that the sensorimotor transforma-
tion necessary to achieve that intent is a given.

Taken together, this study does not support the viewpoint that
each ORN has a strong ecological function. The study further
strengthens arguments put forth by us13 and others48 that the

Article https://doi.org/10.1038/s41467-023-42613-8

Nature Communications |         (2023) 14:6818 13



behavioral effect of activating a single ORN class is small, and the rules
of integration are diverse and complex. The finding that activation of
all Orco-ORNs72—which consists of 70% of all ORNs—results in a large
attraction36 is an example that suggests that the role of the olfactory
system is not simply to signal specific ecologically relevant patterns of
attraction. In this study, we show that activation ofOrco and Ir8aORNs
together results in an even stronger attraction, further weakening the
argument that individual ORNs have strong ecological importance.

The rules of integration between ORN classes are likely to be just
as diverse as those that govern multisensory cues’ integration. These
rules are likely to dependon the set ofORNclasses active, the state and
goals of the fly, and the temporal structure of the stimulus. These rules
of integration are just beginning to be understood, as exemplified by a
recent study that uncovered circuit mechanisms that make CO2 a
repellent under some conditions and attractive in other conditions73.
Overall, these considerations imply that the rules of integration
between ORN classes and locomotor parameters that we uncover
(Fig. 6) in the context of this behavior will likely change depending on
the conditions above.

Apart from behavioral changes that depend on instantaneous
neural response, we observe three changes that require a fly to accu-
mulate evidence over time or remember past sensory experiences:
First, there are some changes in behavior even after theORN firing rate
reaches baseline. Among these changes are kinematic changes, and the
flies spend less time at the arena border. These effects represent short-
term memory that lasts ~10 s and are likely mediated by dopamine-
mediated circuit modifications in the fly’s. Second, the kinematic
changes adapt over time (Figure S15); these changes depend on the
ORN class and the locomotor parameter. One prominent adaptation is
that as time since the first stimulus encounter increases, flies spend
more time at lower speeds and higher curvature inside the stimulated
area, consistent with a more intense search. We speculate that these
behavioral changes could be mediated by dopamine-mediated circuit
modification in the mushroom body74,75 and signaling to lateral horn
and downstream motor circuits by mushroom body output
neurons40,76.

Finally, flies turn in the optimal direction as they exit the arena.
This turning in the optimal direction is elicited by a large drop in the
rate of ORN firing, but it likely implies that the fly has some spatial
sense of the stimulated area and its own locomotion with respect to
this area. This behavior is reminiscent of similar behavior reported in
the presence of a drop of sugar56; the only difference is that the
behavior in our arena is triggered by changes inORN firing rate instead
of purely through navigational cues. This report might be the first
example of such optimal turning in Drosophila. Qualitatively similar
behavior has been reported in other insects29,30.

Much of the work on the neural basis of behavior has been per-
formed on discrete behavior where the animal is making a binary
choice or a choice between a small number of options. Discrete
behaviors are self-contained—the choice is irrevocable and does not
affect future choices; often, the animal has a relatively long time to
decide. In this framework, the nervous system is an information pro-
cessing organ77,78: it constructs increasingly sophisticated and abstract
internal representations of the world. Many of the decisions that we
make in our lives and perhaps dominate so much of our conscious
mental life are also discrete. Because it makes sense, and because it is
still the dominantmodel, a student of neuroscience would be strongly
inclined to this model after picking up any neuroscience textbook79,80.

However,many of our behaviors are not discrete. Walking to a car
andmaking a peanut butter sandwich are all continuous behavior that
requires continuous sensorimotor integration. At each instant, there is
a bewildering array of choices instead of a single choice. Moreover,
each choice does not result in a final outcome—reward or punishment.
Current models underlying these behaviors propose a modular orga-
nization containing parallel sensorimotor loops. Inmany cases, eachof

these loops represents a solution to an aspect of an ecological
problem81,82. In these models, there is no strict temporal hierarchy
between action selection and its execution. Instead, the two occur in
parallel; the environment dictates the palate of actions at anymoment.
Action selection occurs gradually as action execution slowly reduces
the palate to a single action83. In these models, an internal repre-
sentation of the world is not necessary.

Our data support a modular organization with parallel sensory-
motor loops and provide a granular model for continuous behavior.
The results are best interpreted in a control theory framework84 in the
context of multi-step behavior where the fly is endowed with a set of
controls—the parameters of the locomotor model. These parameters
are controlled by the state of the system—defined by f and Δf—through
a control policy. The mapping between f and Δf is the control policy.
The goal of the control is to ensure that the fly stays close to the
stimulated region and searches the stimulated region thoroughly. This
mapping is constantly updated on a longer timescale as the relation-
ship between f and Δf and different locomotor parameters is plastic;
this plasticity allows both the goal and control policy to adapt as
necessary.

Methods
Contact for reagent and resource sharing
Further information and requests for resources and reagents shouldbe
directed to and will be fulfilled by the lead contact, Dr. Vikas Bhanda-
wat (vb468@drexel.edu).

Experimental model and subject details
Flies were raised in sparse culture conditions consisting of 50mL
bottles of standard cornmeal media with 100–150 progeny/bottle85.
Active dry yeast was sprinkled on each bottle after removing the par-
ents (1–3 days) to enrich the larvae’s diet. Bottles were placed in
incubators set at 25 °C on a 12 h dark/12 h light cycle. 10–15 newly
eclosed female flies were put on 10mL vials of standard cornmeal
media for control experiments; andon food containing all-trans-retinal
(0.02% by weight retinal) for optogenetic experiments. All vials were
wrapped with aluminum foil to prevent retinal degradation and to
keep conditions similar in the control vials. After 3–5 days on the
control food or 4–5 days on the retinal food, flies were starved by
placing them in empty scintillation vials with half of a damp Kimwipe
(20 μl of water/half wipe) for 15–21 h prior to experiments. Flies were
anesthetized on ice prior to placing them into the behavioral arenas.
All the genotypes used in this study are enumerated in Table 1.

Behavioral experiments. Behavioral experiments have been pre-
viously described in detail47. In brief, experiments were conducted in a
4 cm radius circular arena with a 1.25 cm radius central light-zone. Flies
were given a 5-min light acclimation period followed which the flies
were in complete darkness for another 10min. The arena was lit with
infrared light to enable tracking. The light circle was illuminated with
red light (617 nm) for the last 3min of each 6-min experiment. The fly’s
locomotion was recorded at 30 frames per second using an infrared
video camera (Basler acA20400-90umNIR). Recorded videos were
compressed to ufmf format before tracking86. The tracking code
models flies as an oval (using the MATLAB function regionprops) to
extract the body orientation and centroid positions. Head positionwas
tracked with the criterion that the current head position should be the
endpoint along the major axis that makes the smaller turn from the
previous head position.

Analysis of the distribution of the fly in the arena. Although the
optogenetic light was turned on 3-min into behavioral recording, flies
started experiencing the optogenetic stimulus only after they entered
the central region for the first time or “first entry”. First entry was
defined as the first time the fly’s head enters the light zone (1.25 cm

Article https://doi.org/10.1038/s41467-023-42613-8

Nature Communications |         (2023) 14:6818 14



radius circle) after the light turns on. The effect of stimulation on the
fly’s distribution in the arena were quantified from the first entry.
Behaviors were characterized using four different methods:
1. Kernel Density Estimate of spatialtemporal distributions as

described above (Fig. 1c and Figure S3). Each fly’s radial head
position was aligned by first entry. Spatiotemporal distributions
of head position were then estimated using MATLAB’s ksdensity
function with a Gaussian kernel.

2. Radial occupancy: The overall probability mass distribution of the
average fly being a radial distance away. Since flies first enter the
light zone at different time points, the weighted (by the relative
amount of time after each fly’s first entry)mean and standard error
of the mean are calculated. A bin size of 2mm (0.05 radial units)
was utilized in generating the distribution (Figure S1 and Fig. 7).

3. Radial density of turns: This is the probabilitymass function of the
density of head positions during the middle of sharp turns (see
below). A bin size of 2mm (0.05 radial units) was utilized in
generating the distribution (Fig. 7).

4. Probability of being inside: This is theproportion offlies inside the
central 1.25 cm radial location as a function of time. A 200ms
mean filter was used to smooth the trace (Figure S4).

Electrophysiology data collection. Single sensillum recording was
performed as described previously87. Orco-Gal4 > UAS-Chrimson flies
were held in a pipette tip using dental waxwith the antenna accessible.

The antenna was positioned using glass hooks and visualized using a
microscope. A single sensillum was impaled with a glass pipette filled
with saline. Responses were passed through a 100x amplifier and fil-
tered with a 5 kHz low pass Bessel filter.

Flies were illuminated using a red (617 nm) light emitting diode
(LED) (Thorlabs M617L3) connected with a LED driver (Thorlabs
LEDD1B) with the intensity modulated using the driver’s modulation
mode which follows the voltage command delivered using MATLAB.
As with the behavioral experiments, the LED light was collimated
(ThorlabsACL2520U) and focusedusing a plano-convex lens (Thorlabs
LA1433). To deliver the same range of stimulus intensity in the elec-
trophysiology experiments as the behavioral arena, we first measured
the light intensity in the behavioral arena using a photometer (Thor-
labs S121C)with a 1mmdiameter precisionpinhole (ThorlabsP1000D).
We thenplaced the LED at a distance from thefly such that the range of
intensity values measured from the arena maps to the driver control
voltage values between 0 and 5 volts. To calibrate the light, we applied
a series of voltage steps from 0 to 5 volts in intervals of 0.5 volts and
measured the intensity using the pinhole.We then fit a shifted rectified
linear function to map the voltage to intensity. Using these measured
conversions, six 60-s behavioral positional trajectories were converted
from movement paths within the behavioral arena to light intensities
that the flies were stimulated with during the recording sessions
(Figure S5D). The patterns were up-sampled from 30Hz to 10 kHz for
single sensillum recordings.

Table 1 | List of fly genotypes and other resources

Reagent or Resource Source Identifier

Chemicals, peptides, and recombinant proteins

All trans-Retinal Sigma-Aldrich R2500

Deposited data

Rawandprocesseddata (behavior and electrophysiology), agent
models

This paper https://doi.org/10.6084/m9.figshare.22776428

Experimental models: Organisms/strains

D. melanogaster: w[1118] P{y[+t7.7] w[+mC]=20XUAS-IVS-
CsChrimson.mVenus}attP18

Bloomington Drosophila Stock
Center

BDSC: 55134; FlyBase: FBst0055134

D. melanogaster: w[1118]; P{y[+t7.7] w[+mC]=20XUAS-IVS-
CsChrimson.mVenus}attP40

Bloomington Drosophila Stock
Center

BDSC: 55135; FlyBase: FBst0055135

D. melanogaster: w[1118]; P{y[+t7.7] w[+mC]=20XUAS-IVS-
CsChrimson.mVenus}attP2

Bloomington Drosophila Stock
Center

BDSC: 55136; FlyBase: FBst0055136

D. melanogaster: w[*]; P{w[+mC]=Orco-GAL4.W}11.17; TM2/
TM6B, Tb[1]

Bloomington Drosophila Stock
Center

BDSC: 26818; FlyBase: FBst0026818

D. melanogaster: w[*]; P{w[+mC]=Ir8a-GAL4.A}204.8; TM2/
TM6B, Tb[1]

Bloomington Drosophila Stock
Center

BDSC: 41731; FlyBase: FBst0041731

D. melanogaster: w[*]; P{w[+mC]=Or42a-GAL4.F}48.3B Bloomington Drosophila Stock
Center

BDSC: 9970; FlyBase: FBst0009970

D. melanogaster: w[*]; P{w[+mC]=Or42b-GAL4.F}64.3 Bloomington Drosophila Stock
Center

BDSC: 9971; FlyBase: FBst0009971

D. melanogaster: w[*]; P{w[+mC]=Or92a-GAL4.F}62.1 Bloomington Drosophila Stock
Center

BDSC: 23139; FlyBase: FBst0023139

D. melanogaster: w[*]; P{w[+mC]=Ir64a-GAL4.A}183.8; TM2/
TM6B, Tb[1]

Bloomington Drosophila Stock
Center

BDSC: 41732; FlyBase: FBst0041732

D. melanogaster: w[*]; P{w[+mC]=Ir75a-GAL4.S}BT12.1/
TM6B, Tb[1]

Bloomington Drosophila Stock
Center

BDSC: 41748; FlyBase: FBst0055136

Software and algorithms

MATLAB r2019b MathWorks RRID: SCR_001622

any2ufmf (part of The Caltech Multiple Walking Fly Tracker) Branson et al.86 http://ctrax.sourceforge.net/any2ufmf.html

Optogenetics arena fly tracker Tao, Ozarkar, Bhandawat47,
This paper

https://github.com/bhandawatlab/
CircularArenaTrackingCode

Delineation of movement states (DrosoRT) Tao, Ozarkar, Bhandawat47 https://github.com/bhandawatlab/DrosoRT

Single sensillum recording and spike sorting GUI This paper https://github.com/bhandawatlab/Single-Sensillum-Spike-
Sorting-GUI

All other software and algorithms This paper https://github.com/bhandawatlab/ORN-Optogenetics
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Spike sorting and spike rate analysis. Data collection and spike
sorting was conducted utilizing a custom MATLAB graphical user
interface (GUI). The local field potential (LFP) was found by applying a
300-ms median filter to the signal. Then the raw voltage trace was
baseline subtracted by subtracting out the LFP. Spikes were identified
based on valleys in voltages below −0.8mVwith aminimum time lapse
between spikes of 5ms. Spikes were sorted based on shape and size by
using principal component analysis followed by k-means clustering
and then manual inspection. In this study, we recorded from ab1 and
ab2 sensillum. Within the ab1 sensillum, there are 4 types of neurons:
ab1A-D72,88. Meanwhile, within the ab2 sensillum, there are 2 types of
neurons: ab2A-B. These neurons are differentiated by their waveform
and spike amplitude. We only considered spikes from ab1A, ab1B, and
ab2A neurons. Spike rate was estimated using kernel smoothing with a
150ms bandwidth89.

Filter analysis. For each stimulus pattern, the trial with the least LFP
baseline drift was baseline subtracted and set as a template. All other
LFP for the stimulus pattern were linearly registered to the template
LFP using a linear least squared rigid registration method90. The
average LFP was calculated from the registered LFP traces. The LFP,
firing rate, and input stimulus were down-sampled to 100Hz for filter
analysis.

The firing rate was modeled as a two-stage linear-linear filter
cascade. The linear filters were fit based on previousmethods91. Taking
the first transformation from input stimulus into local field potential as
an example, we calculated each linear filter as follows. First, given a T
time point stimulus train with ðd � 1Þ time point zero padding at the
beginning, we can generate a stimulus matrix S 2 RTxd with feature
length d. Each row that corresponds to a time point t contains the
stimulus train from time t � d to t. This is equivalent to aHankelmatrix
of the zero padded stimulus train. Next, we can define the response
vector r 2 RTx1 from the average local field potential from single
sensillum recordings using the stimulus train. From the stimulus
matrix and the response vector, we can pose the stimulus to response
as a simple linear regression with a linear filter k:

r = Sk + ε ð1Þ
We solved to k using Tikhonov regularization, minimizing

jjSk � rjj2 + jjλIkjj2 ð2Þ

The regularization parameter λ, which helps to prevent over-
fitting, was chosen based on the elbow point in the log-log plot of the
regularized solution norm and the residual norm (Fig. S5B)92. The lin-
ear filter from LFP to firing rate was calculated using the samemethod.

Quantification of kinematics. Speed and curvature were calculated as
describedpreviously. Briefly, given the two-consecutive center ofmass
positions (p1,p2), we can calculate speed as

s =
p2 � p1

4t
ð3Þ

Then defining curvature (k) as the change in the vector (N) normal
to the movement path, we get:

α0 tð Þ= � dyt
st

+
dyt+ 1
st + 1

� �
î +

dxt
st

+
dxt+ 1
st + 1

� �̂
j ð4Þ

N =
α0 tð Þ
α0 tð Þ
�� �� ð5Þ

k =dN: ð6Þ

Definition of locomotor states. Each fly’s movement path was classi-
fied into one of four locomotor states (stop, boundary, sharp turn,
curved walk) based on a previously described method47. Briefly, stops
were defined as when the speed was less than 0.5mm/s. Flies were in a
boundary state when the center of mass was within 1.5mm (half a fly
length) of the arena boundary. Sharp turns occurred around large
peaks in curvature while curved walks did not contain large peaks in
curvature. Speed and/or curvature and duration defined each loco-
motor state making it either 2 or 3 parameters for each state. Moving
forward, duration will be lumped into kinematics for brevity. Stops
were characterized by the total curvature (reorientation) and duration;
boundary states by the total angle of the arc of movement around the
boundary and duration; sharp turns by the total curvature, average
speed, and duration; finally, curved walks were characterized by the
average curvature, average speed, and duration.

Parameterization of movement states based on kinematics. We
separated the boundary state trajectories into before and after first
entry. First entry was defined as when the fly first enters the 1.25 cm
light zone after the 3min light on mark. The total angle of the arc of
movement around the boundary and duration was fit to a bivariate
lognormal distribution. All other kinematic distributions were gener-
ated based on ORN activity as follows: Taking sharp turns as an
example, we calculated the mean firing and mean change in firing for
the 200ms interval leading up to the initiation of each sharp turn
instance. Sharp turns were then separated into three categories based
on the calculated ORN activity history: These were before first entry,
after first entry with a non-baseline firing rate, and after first entry with
baseline firing rate. For sharp turn trajectories before first entry, we
independently fit each kinematic feature to a lognormal distribution.

For sharp turn trajectories with non-baseline firing rates after first
entry, we generated a kinematic mapping based on neural response
that is described in the next section.We fit time-dependent lognormal,
beta, and exponential distributions to speed, curvature, and duration,
respectively. To do this, we first implemented a sliding window of 0.5 s
with a 0.3 s overlap over the time since the start of each inhibition
period. We then fit the appropriate distribution (i.e., lognormal for
speed) over the kinematics of the sharp turn trajectories that started
within the time window. We then interpolated the distribution para-
meters over time using a spline function. We repeated this process for
curved walks and stops. The distribution fits for after first entry with
baseline firing rate and after first entry with inhibition firing rate were
used in the agent-based model described in a later section.

For sharp turn trajectories with baseline firing rate after first entry,
we fit the kinematic features of the first two trajectories after reaching
baseline and trajectories 3 and later with two separate independent
lognormal distributions. These trajectories were separated since the
kinematics of the first two trajectories after reaching baseline tend to
exhibit largedifferences fromtrajectories beforefirst entry (Figure S16).
However, later trajectories tend to display similar kinematics as trajec-
tories prior to first entry. We used the Wilcoxon rank sum and estima-
tion methods to test for significant changes in baseline firing rate
kinematics from before first entry93. In Figure S17B, scatter plots show
individual data points and corresponding error bars show mean and
bootstrapped 95% confidence interval (resampled 10,000 times, bias-
corrected, and accelerated). 95% confidence interval for differences
betweenmeanswere calculated using the same boostrappingmethods.

Estimation graphics. We have used estimation graphics in Figures S2
and S17. Instead of calculating the p-values, estimation graphics use
bootstrapping ((resampled 10,000 times, bias-corrected, and accel-
erated) to estimate confidence intervals for either the mean or mean
differences. We show individual data points, mean, and mean differ-
ences. shows the mean, mean differences, and confidence intervals
calculated using a MATLAB toolbox93.
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Turn triggered average (Figure S17). Sharp turns were indexed by the
peak in curvature for each sharp turn trajectory. For each sharp turn,
the 10-s firing rate history was defined as the turn-triggered history.
Since the distribution of firing rate is highly irregular and often
dominated by baseline firing rate, we only considered turns when the
fly is experiencing a non-baseline firing rate. The turn triggered history
for turns that occurred within 10 s of previous entry was truncated to
the last entry time. The turn triggered average is the average turn
triggered firing rate history across all sharp turns.

Definition of speed, curvature, and turn probability as a function of
time since entry and exit. When flies enter and leave the light ring,
they will experience a sudden increase or decrease in ORN firing rate,
respectively. To determine when flies enter and leave the light ring, we
first found all positive/negative peaks in firing rate greater/less than
15 spikes/s2, respectively. We aligned fly tracks to entry and exit by
considering +/−10 s since the peak in changes in firing rates.

The average speed and curvature were calculated across all
crossing tracks for leaving and exiting.We applied a 200msmeanfilter
for both transition probability and probability of being in a sharp turn
state. The transition index into turns was defined by the time when a
curved walk or stop state transitions into a sharp turn state. The
probability of turn transition at any time after entry/exit is defined as
the proportion of tracks that transition into a sharp turn. The prob-
ability of being in a sharp turn state is the proportion of tracks that are
classified as being in a sharp turn state. We applied a 1-s mean filter for
both transition probability and probability of being in a sharp turn
state. To calculate error bars, we performed 100 resamples of 50% of
the total crossing trajectories to obtain a distribution of transition and
turn probability. The error bars in Figure S10 and Figure S26 are the
standard deviation of the resamples.

Generalized linear model (Fig. S10). The turn transition probability
(λ) at any time point (t) since crossing was fit to a generalized linear
model with a logit link function in the form of:

logit λ tð Þð Þ=β0 + β2 � f tð Þ+β2 � df tð Þ ð7Þ

Where f ðtÞ is thefiring rate at time t anddf ðtÞ is the change infiring rate
at time t. The samewas repeated for the probability of being in a sharp
turn state.

Linearfilters for speed, curvature, and turnprobability as a function
of time since entry and exit (Figure S26). Derivation of linear filters
for speed, curvature, and turn probability prediction was calculated
using the same methodology that was used for the derivation of the
filters from light intensity toORN firing rate. Using the speed at leaving
as an example, a 2-s linear filter was fit to predict the average speed
based on the average firing rate response. Filters tended to predict the
average speed and curvature up to 2 s after exit and entry well.

Linear filters for speed of fly after first entry (Figure S8). Fly-specific
2-s linear filters were fit to predict the speed of each fly after the fly’s
first entry based on ORN firing rate using the same methodology as
other linear filter analyses.

Linear filters to predict average kinematics during state (Fig-
ure S11). To determine whether linear filters applied to continuous
timefiring rate prior to a state transition canpredict the average speed
and curvature of the next state trajectory, we aligned all sharp turn and
curved walk trajectories by the time of state transition. Using sharp
turn as an example, we calculated a 5-s linear filter to predict the
average speed and total curvature of all sharp turn trajectories based
on the firing rate prior to the state transition. The predicted speed and

curvature of the sharp turn trajectories were a poor fit to the empirical
speed and curvature.

Neural response to kinematic mapping (or kinematic mapping). We
used a K-nearest neighbors (KNN) approach to generate kinematic
mapping for each state based on neural responses. The goal is to
estimate the distribution of average kinematics given ORN activity
during the preceding 200ms. Using curved walk speed as an example,
we first calculated the average firing rate (f ) and the change in firing
rate (4f ) for the 200mswindow prior to the start of each curved walk
trajectory. This allowed us to embed each curved walk as a point in the
ðf ,4f Þ space (Figure S5A).

To obtain the distribution of potential future curved walk speeds
for a given (f ,4f ) coordinate, we first divided the ðf ,4f Þ space into
grids defined by the intersection of4f spanning from−150 spikes/s2 to
150 spikes/s2 in 15 spikes/s2 increments and f spanning from0 spikes/s
to 55 spikes/s in 1 spikes/s increments. The range of coordinates in the
ðf ,4f Þ space was chosen to span over 99% of the possible state points
within the dataset. At each coordinate in this grid, wewant to use the K
closest points—in terms of Euclidean distance—to compute a dis-
tribution of curved walk speeds.

Because 4f spans over a much larger range than f , a normal-
ization is necessary. In this study, we weighted the f and 4f of each
point by dividing by 10 and 30, respectively (a weighting of 1 and 3
would produce identical results). Theseweights—selected heuristically
—are roughly in linewith the fact that themaximummagnitude of4f is
~3 times more than the maximum f .

Since there are locations in the ðf ,4f Þ space where there are little
to nodata points,wedefined amaximumEuclideandistance bound (T)
that points have to fall within to be considered as part of the dis-
tribution. This means that we can represent the Euclidean distance
bound (T) as an ellipse:

f � y
a

� �2

+
4f � x

b

� �2

=T2 ð8Þ

Where a, b are the weights for f and4f , respectively, and y, x are
the coordinate locations within the ðf ,4f Þ space. To summarize, for
each y and x coordinate location in the ðf ,4f Þ space, we are fitting the
curved walk speed values of the K closest points—that fall within an
ellipse centered at the coordinate location—to a lognormal distribu-
tion (Figure S13A). Lognormal distributions were only fit for coordi-
nates with more than 15 trajectories (points) within bounds, as a low
sample size will lead to inaccurate estimates of the underlying dis-
tribution. After fitting lognormal distributions to each coordinate
location within the ðf ,4f Þ space, we performed linear interpolation of
the lognormal parameters to get the distributions of curved walk
speed in any arbitrary f and 4f location in the space.

The values of K and T were selected by first calculating the stan-
dard error of the mean (SEM) over a grid search of K and T and then
choosing a value near the elbow point (Figure S13C). Based on this
criterion, sharp turn and curved walk kinematics were mapped to the
neural response space using a K of 64 trajectories and a T of 1.5. Stop
kinematics were mapped to the neural response space using a K of 64
trajectories and a T of 1.

To determine whether the kinematic mappings of flies fed on
retinal were significantly different from that of control flies, we first
predicted fictitiousmoment-by-moment firing rate profiles for control
flies based on the linear filter from light intensity to firing rate. Kine-
matic mappings were then computed for control flies using the same
method as retinal flies. At each coordinate of the ðf ,4f Þ mapping
space, we used the Kolmogorov–Smirnov test to compare the retinal
distribution of movement kinematics with that of control flies not fed
on retinal (Figure S14).
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We used negative log-likelihood to determine if lognormal or
normal distributions provide a better fit wen generating the KNN
mapping. The negative log-likelihood was calculated for lognormal
and normal fits at each ðf ,4f Þ coordinate of the KNN space and then
summed to obtain the total negative log-likelihood fit over the entire
KNN space for lognormal and normal fits, respectively. Lognormal
distributions fit better than normal distributions for most genotypes
and across most kinematic mappings due to having a higher negative
log-likelihood (Figure S12).

Adaptation in neural response to kinematic mapping (Figure S16).
To calculate the kinematicmapping in the ðf ,4f Þ space as a function of
time since the first entry, we extended the KNNmethodby introducing
time since the first entry (t) as a third dimension. Here, we divided the
ðf ,4f , tÞ space into grids using the same binning for the f and 4f
directions as above—1 spike/s and 15 spikes/s2; in the time dimension,
we used 5-s increments. In this 3-dimensional space, the Euclidean
bound (T) becomes:

f � y
a

� �2

+
4f � x

b

� �2

+
t � z
c

� �2

=T2 ð9Þ

Where a, b, c are the weights for f , 4f , and t, respectively, and y, x, z
are the coordinate locations within the ðf ,4f , tÞ space. To summarize,
for each y, x, and z coordinate location in the ðf ,4f , tÞ space, we fit the
curvedwalk kinematic values of the K closest points—that fall within an
ellipsoid centered at the coordinate location—to a lognormal dis-
tribution (Figure S13B). In this study, we usedweights of 10, 30, and 20
based on the same reasoning described in the previous section. We
used the same K and T as the ðf ,4f Þ space kinematic mapping (see
previous section).

We performed a permutation test to determine whether the
ðf ,4f Þ space significantly changes over time since the first entry (Fig-
ure S16). Using sharp turn curvature as an example, to perform the
permutation test, we randomly shuffled the time since the first entry of
each sharp turn trajectory before recalculating the KNN space at each
time slice. We repeated this process 100 times to calculate a dis-
tribution of KNN spaces for each time slice. We then asked for each
ðf ,4f , tÞ coordinate, whether the empirical lognormal mean is above,
below, or within the 95% confidence interval of lognormal means cal-
culated from the shuffled KNN spaces.

Turn optimality (Fig. 5). Turn optimality is defined as the probability
that a fly will turn in the direction that requires a smaller turn to re-
orient itself towards the center of the light ring (Fig. 5b). To calculate
the turn optimality, we define the current movement direction as a
vector ðv*1Þ starting at the center of mass position 200 ms prior to the
state transition (p1) and ending in the center of mass position at the
state transition (p2).

v
*

=p2 � p1 ð10Þ

Next, we defined a vector that points radially inwards toward the
center of the arena from the sharp turn index (p2) as:

u
*

=�p2 ð11Þ

Finally, we defined a vector normal to the xy plane (n
*
). From this,

we calculated the directed angle of the current direction relative to the
inward vector.

θ= atan2
v
*

× u
*

� �
� n*

v
* � u*

, v
* � u*

0
@

1
A ð12Þ

When the directed angle is positive, the left turn is optimal; like-
wise, a negative directed angle indicates that rightward turning is
optimal. Since a positive curvature represents a leftward turn and a
negative curvature represents a rightward turn, a flymakes an optimal
turn if the sign of the total sharp turn (or stops) during the next state
instance is the same as the sign of the directed angle. The turn
optimality ratio for a given state was defined as the total number of
optimal state trajectories over the total number of state trajectories.
Turn optimality was mapped to the neural response space in the
method described above using a K of 64 points and a T of 1.5. Figure 5
shows the turn optimality for sharp turns. We also measured turn
optimality for stops and curved walks, and these were incorporated
into the model (Figure S23).

To calculate the KNN mapping of turn optimality for control flies
(Figure S19), we calculated the fictitious moment-by-moment firing
rate profiles by convolving the light intensity to the firing rate linear
filter with the light intensity experienced by control flies. We then
generated the fictitious turn optimality mapping for control flies the
same way it was generated for retinal flies.

Neural response to transition probability. Transition probability was
defined as the number of non-self-transitions from one state to
another state. This was mapped to the neural response space in the
method described above using a K of 128 points and a T of 1.5. After
mapping to the set of locations Y i in the ORN activity space, we
implemented a 5 × 5 (75Hz/s2 × 5Hz) convolutionalfilter to smoothout
noise due to low sample sizes, especially in regions with high f and4f .
Finally, all other locations in the ORN activity space were found using
linear interpolation. The transition probabilities are described below
and can be generated using the accompanying code. Sharp turns
always transitioned to curved walks. Curved walks largely transitioned
to sharp turns except when the firing rate is low, where there is an
increased transition to stops. Approximately 25 percent of stops
transitioned to sharp turns and the remainder transitioned to curved
walks. This transitionprobability did not show any noticeable trends in
the neural response space and is largely similar across genotypes.

ModelingORN rules of summation (Fig. 6). The goal is to understand
the combinatorial effectof activatingdifferentORNclasses on changes
in a sharp turn and curved walk kinematics during odor-guided loco-
motion. To this end, we first divided our ORN activity space into five
regions (Fig. 2c and Figure S20A). Region I consists of a large positive
increase in ORN firing rate defined by a threshold of 20Hz/s2. Region II
consists of a high firing rate defined by a threshold of 15Hz. Region III
consists of a large negative decrease in ORN firing rate as defined by a
threshold of −20Hz/s2. Region IV consists of an inhibition of firing rate
as defined by a threshold of the baseline 4.7 Hz firing rate. Finally,
region V consists of low ORN firing rate between baseline and 15Hz.
Within each region, the state kinematics followed an approximately
lognormal distribution (Figure S20A) and are parameterized by the
mean and variances of the log of the state kinematics (Figure S20A).
We evaluated the rules of summation between different ORNclasses in
each of the five regions using a linear regression model.

Using sharp turn curvature in region 1 as an example, the mean
and standard deviation of the log of the sharp turn curvature in region
1 when activating a single class of ORN is:

ln P curvaturejRegion 1ð Þð Þ∼N μA,σ
2
A

� � ð13Þ

μA =μo +μa ð14Þ

σ2
A = σ

2
o + σ

2
a ð15Þ
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Simultaneous activationof a set of two classes ofORNs (A andB) is
formulated as:

ln P curvaturejRegion 1ð Þð Þ∼N μAB,σ
2
AB

� � ð16Þ

μAB =μo +μa +μb +αa,bμaμb ð17Þ

σ2
AB = σ

2
o + σ

2
a + σ

2
b +2σab ð18Þ

Where μo and σ2
o are the genotype-specific baseline mean and

standard deviation calculated from before first entry. μa,μb and σ2
a,σ

2
b

are the influence of the ORN class A and B on the mean and standard
deviation of the state kinematics. Overlapping influences of ORN Class
A and B are modeled using the coefficient (αab). Finally, σab is the
covariancebetween classes A andB. Themodelwasfit usingMATLAB’s
maximum likelihood estimation function. We fit a total of 7 ORN
combinations: Orco + Ir8a, Ir64a + Ir75a, Or42b +Or92a, Or42b + Ir64a,
Or42a +Or42b;Or92a, Or42b + Ir64a;Ir75a, and Ir75a + Ir64a;Or42b for
sharp turn average speed, sharp turn total curvature, curved walk
average speed, and curvedwalk average curvature.We show results for
the four combinations involving Or42b (Fig. 6).

We can transform the lognormal means into the real-world state
kinematics space by taking the exponent:

eμAB = e μo +μa +μb +αa,bμaμbð Þ
= eμo eμa eμb eαa,bμaμb

ð19Þ

We note that the influence of each genotype (eμa ,eμb ) and the full
interaction term (eαa,bμaμb ) each act as amultiplier to influence the real-
world state kinematics. We can define these terms as the gain in
kinematics due to each genotype and their interactions, respectively.

gaina = e
μa ð20Þ

gainb = e
μb ð21Þ

gaina,b = e
αa,bμaμb ð22Þ

A gain of less than 1 indicates a reduction in kinematics (e.g.,
decrease in speed), while a gain of greater than 1 indicates an increase
in kinematics. Here, we set a threshold of 0.1 to indicate whether the
gain caused by a genotype or interactions between genotypes leads to
a notable change in kinematics. This means that:

f xð Þ=
increase, gain > 1:1

decrease,gain<0:9

no change, o=w

8><
>: ð23Þ

Definition of synergy and antagonism, dominance, and other
interactions. Independent activity of single classes or groups of ORNs
can cause increases (μa >0) or decreases (μa <0) in kinematics. When
two separate classes or groups of ORNs are co-activated using
Chrimson, αa,bμaμb captures the potential effect of convergent
downstream interactions that influence locomotor kinematics (Fig-
ure S21A). These interactions are defined to be synergistic if the
interaction acts to enhance the individual effects of a single ORN class,
and the interaction results in anotable change in kinematics (see above
section). The interactions are defined to be antagonistic if the inter-
actions act to cut back on the individual effects of single ORN class
effects, and the interaction results in a notable change in kinematics
(see above section).

Cases, where the individual ORN classes cause opposing effects,
will result in other effects that cannot be directly classified as syner-
gistic or antagonistic (Figure S21B). In these cases, one possibility is

that the resultant change in kinematics may be dominated by the
activation of a single ORN class. For instance, if activating ORN class A
causes an increase in kinematics, ORN class B causes a decrease in
kinematics, and activating both ORNs together causes an increase in
kinematics, then the change in kinematics will be dominated by ORN
class A. Alternatively, there are cases where both ORNs do not cause a
change in locomotor kinematics on their own, but activating both
causes a notable increase or decrease in kinematics. These cases are
labeled as other interactions. Finally, when the interaction term does
not cause a notable change to kinematics, then the two ORN groups
likely do not interact and will sum linearly through parallel pathways.

Connectomics analysis. To determine whether there are connections
between ORNs and LHONs we first queried the Hemibrain con-
nectomics database to extract all input and output connections for the
ORNs of interest and all identified classes of uniglomerular PNs (uPNs)
and multiglomerular PNs (mPNs)38. We then identified which of these
PN classes made strong (>9) connections to any of the LHONs char-
acterized in a recent study94. Because only the right hemisphere in
Hemibrain is complete, any left hemisphere connections were exclu-
ded due to the possibility that connection values would be unreliable.
Basedon the connections betweenORNs anduPNs/mPNs andbetween
uPNs/ mPNs and the LHONs we characterized which LHONs receive
inputs from ORNs either directly via their cognate uPNs or indirectly
via mPNs that receive input directly from the ORNs or from their
cognate uPNs (Figure S22).

Agent-based model. Virtual flies were initialized as described
previously47: All synthetic flies were initialized to start at the center of a
unit circular arena (normalized) centered at (0,0) with an initial
heading direction along the positive x-axis (0 degrees). All flies are
initialized to select a curved walk as the first state that it enters. Each
simulation was run using 150 flies modeled as point objects for 6min,
with the center light ring turning on at the 3-min mark to match the
experimental protocol. The simulations were run at 100Hz since the
stimulus to ORN firing rate filters was computed at 100Hz. After the
3-min light-off period, the firing rate of flies was calculated using the
previously derived linear filters and based on the light stimulus
experience as a function of radial distance from the center. The first
entry was defined as the first time the calculated ORN firing rate is
above 10Hz. Before the first entry, locomotor kinematics, turn
optimality, and state transitions were calculated based on previously
described distributions calculated from empirical flies before the first
entry. After the first entry, state transitions, locomotor kinematics, and
turn optimality were sampled based on kinematic mappings in the
neural response space. When ORN activity is at zero (inhibition), the
locomotor kinematics were sampled from inhibition distributions
based on the time since the start of the inhibition period. Virtual flies
performed sharp turns by moving straight for half of the duration of
the sharp turn at the sampled speed, then turning based on the sam-
pled curvature over the course of one-time step, and finally, moving
straight for the remainder of the time step. Stopswere implemented in
the same manner, except that the speed is set to zero. Virtual flies
performed curvedwalks bymoving at the average speed and curvature
for the durationof the curvedwalk.When the fly reacheswithin 1.5mm
(0.0375 normalized distance) of the arena boundary, the virtual fly
enters the boundary state. Here, the fly moves around the arena
boundary at a constant angular speed and duration sampled from the
empirical before and after first-entry distributions. Flies exit out of the
boundary state by reorientating towards the center of the arena and
selecting a curved walk or sharp turn state. From the set of 150 virtual
flies, only the flies with first entry times within the 85th percentile of
empirical first entry times were kept. For Fig. 7c, border choice was
implemented for curved walks by imposing an exponentially time
decaying probability of state transition after reaching a 4f threshold
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of +/−15 Hz/s2. For Figure S26C, border choice was implemented by
using the convolving the linear filters for speed, curvature, and turn
optimality to the firing rate history since the last entry (4f > 15Hz/s2)
or exit (4f < −15 Hz/s2). This filter was applied for up to 2 s after each
entry/exit and reset after the fly entered or exited again.

Correlation analysis for turn density and radial occupancy. Syn-
thetic fly radial occupancy was subtracted from empirical fly radial
occupancy to obtain the difference in radial occupancy. Since the sum
over radial distance for the difference in the probability mass function
equals zero, the total positive difference measures the level of dis-
crepancy between the empirical and synthetic flies (Figure S26A/C).
The following is repeated for radial density of turns. Genotypes, where
there is a larger positive position or turn difference, has a larger cor-
relation between the difference in radial occupancy and turn density
(Figure S26C).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data has been deposited in Figshareunder the following https://doi.
org/10.6084/m9.figshare.22776428. Connectomics data can be acces-
sed at https://neuprint.janelia.org/. Source data are provided with
this paper.

Code availability
The main code underlying the analysis in this paper is posted on
Github and can be accessed through https://doi.org/10.5281/zenodo.
8190933. All other code and software resources can be found in the
resource table.
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