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Emergence of cortical network motifs for
short-term memory during learning

Xin Wei Chia 1, Jian Kwang Tan 1,2, Lee Fang Ang 1,2, Tsukasa Kamigaki 1 &
Hiroshi Makino 1

Learning of adaptive behaviors requires the refinement of coordinated activity
across multiple brain regions. However, how neural communications develop
during learning remains poorly understood. Here, using two-photon calcium
imaging, we simultaneously recorded the activity of layer 2/3 excitatory neu-
rons in eight regions of the mouse dorsal cortex during learning of a delayed-
response task. Across learning, while global functional connectivity became
sparser, there emerged a subnetwork comprising of neurons in the anterior
lateral motor cortex (ALM) and posterior parietal cortex (PPC). Neurons in this
subnetwork shared a similar choice code during action preparation and
formed recurrent functional connectivity across learning. Suppression of PPC
activity disrupted choice selectivity in ALM and impaired task performance.
Recurrent neural networks reconstructed fromALMactivity revealed that PPC-
ALM interactions rendered choice-related attractor dynamics more stable.
Thus, learning constructs cortical network motifs by recruiting specific inter-
areal communication channels to promote efficient and robust sensorimotor
transformation.

Brain-wide neural communications are refined during learning of
adaptive behaviors1–9. Recent advances in simultaneous multi-regional
single-cell recordings are expected to identify diverse operation
principles beyond those discovered in single brain regions in
isolation10–16. Probing brain-wide neural activity reveals a dynamic flow
of information across regions, which may be subject to learning-
dependent modulations17–21. Despite the technological progress, it
remains underexplored how learning constructs cellular network
motifs distributed in multiple brain regions.

Short-term memory is the ability to hold information online and
considered critical for working memory, decision-making and motor
planning. During short-term memory, neurons generate sustained
activity in response to brief sensory inputs, bridging past and future
events22–28. The persistent activity is maintained by recurrent positive
feedback in local and brain-wide networks29–34. Recurrent functional
connectivity generating the sustained neural activity may be reorga-
nized during learning to facilitate more efficient and robust sensor-
imotor transformation.

The anterior lateral motor cortex (ALM) and posterior parietal
cortex (PPC) in rodents have been extensively studied in isolation
under two-alternative forced-choice tasks. Neurons in ALM show
choice-selective activity during short-term memory for directional
licking35–40, while neurons in PPC are critical for perceptual dis-
crimination, evidence accumulation and decision-making41–49. In
delayed response tasks, choice-encoding attractor dynamics in ALM
may be rendered more robust to internal and external perturbations
by strengthening the recurrent connectivity38,39. Whether and how
learning shapes multi-regional communications to achieve such
robustness, however, are poorly understood.

We used calcium imaging with a two-photon random access
mesoscope11 to simultaneously record the activity of the same popu-
lation of neurons from multiple cortical regions over the course of
learning. Learning constructed functional network motifs for short-
term memory where subnetworks consisting of neurons with similar
task relevancewereembedded in a sparsely connectedglobal network.
The cortical networkmotifswere further elaboratedduring learningby
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selective strengthening of a region-specific communication channel
between PPC and ALM. Our results provide evidence that learning
augments efficiency and robustness for short-term memory via coor-
dinated representation in distributed neural networks.

Results
Sensorimotor representation in the mouse dorsal cortex across
learning
Head-restrained mice expressing the calcium indicator GCaMP6s50

(CaMKII-tTA×TRE-GCaMP6s) were trained for 2-3 weeks in a delayed-
response task. In this task, mice learned to localize a tactile stimulus
presented either to their left or right whiskers (swept by brass rods at
~20Hz, 1 s in duration) in randomly interleaved trials and respond by
directional licking following a 2-s delay (Fig. 1a). At the end of the delay
period, a go cue (green LED, 0.2 s in duration) signaled the beginning
of a response window and both the left and right water spouts moved
together and were made available to mice. The separation of the
sensory instruction and the behavioral response in time during the

delay period required mice to engage short-termmemory to generate
appropriate actions. While correct responses were rewarded with
sucrose water, incorrect responses were punished with a 0.5-s white
noise and 8-s timeout. Task performance of individual mice improved
gradually, reaching the mean correct rate of 85.0 ± 9.6% at the expert
stage (naive stage: 22.9 ± 9.5%; intermediate stage: 61.9 ± 12.9%,
mean± SD, P <0.001, n = 7 mice, one-way ANOVA, Fig. 1b).

To study how neural representation of task variables evolved
across learning, we performed longitudinal two-photon calcium ima-
ging of layer 2/3 excitatory neurons (~150-200 µm in depth) simulta-
neously from eight cortical regions of the left hemisphere (anterior
lateral motor cortex, ALM; anterior and posterior regions of the pri-
mary motor cortex related to tongue and forelimb movement,
respectively, M1a and M1p; secondary motor cortex, M2; primary
somatosensory cortex for the forelimb and vibrissae, S1fl and vS1;
retrosplenial cortex, RSC; posterior parietal cortex, PPC) with a two-
photon random access mesoscope (2p-RAM)11 (Fig. 1c). Responses
and their learning-related changes were heterogenous across neurons
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Fig. 1 | Emergence of task representation in the mouse dorsal cortex across
learning. a Left. Schematic of the experiment. 2p-RAM: two-photon randomaccess
mesoscope. Right. Trial structure of the delayed-response task. b Learning curve
for the delayed-response task (***P <0.001, n = 7mice, one-way ANOVA). Thick and
thin lines indicate learning curves for mean and individual mice. Shaded area
indicates mean± SEM. c Example of two-photon calcium imaging in the mouse
dorsal cortex. Single neurons from eight cortical regions were simultaneously
imaged across learning (ALM: anterior lateral motor cortex; M1a andM1p: anterior
and posterior regions of primary motor cortex; S1fl and vS1: primary somatosen-
sory cortex for forelimb and vibrissae; M2: secondary motor cortex; RSC: retro-
splenial cortex; PPC: posterior parietal cortex). Similar imageswere acquired across
all mice. d Trial-by-trial (top) and mean (bottom) task-related activity of example

neurons in two trial types across the three stages of learning. Shaded areas indicate
mean ± SEM. e Region-specific stimulus and choice decoding accuracy in single
neurons over time prior to the go cue at the naive and expert stage. Shaded areas
indicate mean± SEM. f Quantification of region-specific stimulus and choice
decoding accuracy in single neurons (***P <0.001, **P <0.01, stimulus: ALM: 40, 82,
82; M1a: 108, 115, 115; M1p: 122, 210, 210; S1fl: 111, 176, 176; vS1: 175, 196, 196; M2: 35,
82, 82; RSC: 184, 305, 305; PPC: 136, 184, 162 neurons from 7mice; choice: ALM: 60,
82, 82; M1a: 108, 115, 115; M1p: 134, 210, 210; S1fl: 111, 176, 176; vS1: 175, 196, 196; M2:
48, 82, 82; RSC: 216, 305, 294; PPC: 166, 184, 162 neurons from 7 mice for naive,
intermediate and expert, respectively, one-tailed bootstrap with false discovery
rate, FDR). Error bars indicate mean ± SEM.
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(Fig, 1d and Fig. S1), and we detected no epileptiform activity in the
transgenic mice51. Area under the ROC (receiver operating character-
istic) curve (AUC) analysis on single-cell activity showed the emer-
gence of distinct information of stimulus and choice in each cortical
region; consistent with previous studies52,53, decoding accuracy for
stimulus location increased in regions such as M1p, S1fl, M2, RSC and
PPC, while decoding accuracy for choice increased globally across the
entire dorsal cortex (one-tailed bootstrap for correlation with
Benjamini-Hochberg false discovery rate, FDR, Fig. 1e and f).

To examine whether each cortical region maintained distinct
information during the delayed-response task, we projected popu-
lation activity in each cortical area onto axes that maximized sti-
mulus and choice selectivity during the stimulus (1 s) and pre-action
(0.5 s before the go cue) epoch, respectively39. Across learning,
decoding accuracy for the stimulus location showed similar changes
to the decoding accuracy derived from single neurons (one-tailed
bootstrap for correlation with FDR, Fig. 2a), and the result remained
essentially the same regardless of orthogonalization between the
stimulus and choice axis. In contrast, choice selectivity increased
globally across regions (one-tailed bootstrap for correlation with
FDR, Fig. 2b), with ALM in expert mice displaying a pronounced
increase in choice selectivity from the beginning of the delay period.
We confirmed that the changes in the population choice activity were
not due to changes in anticipatory licking because mice rarely
showed licking behavior during the delay period when the water
spouts were not accessible (less than 3% of all trials at the naive and
expert stages).

Emergence of coordinated activity for short-term memory
across learning
ALM, a region of the frontal cortex important for lick-related choice
representation during short-term memory, displays coordinated
activity across hemispheres54. We hypothesized that similar coordi-
nation exists beyond single cortical regions and it is refined over the
course of learning.We analyzed trial-by-trial correlations of population
activity projected onto the stimulus and choice axes between pairs of
cortical regions (Fig. 3a). The correlated stimulus and choice codes

across cortical regions were quantified by examining trajectory values
along these axes during the stimulus and pre-action epoch, respec-
tively. Along the stimulus axis, correlations between cortical regions
remained relatively lowwithin the same trial type across learning (one-
tailed bootstrap, Fig. 3b and c). In contrast, correlations along the
choice axis increased between regions such as ALM and PPC (one-
tailed bootstrap, Fig. 3b and c). On the other hand, correlations
between cortical regions along the stimulus and choice axis across
both trial types generally became larger (one-tailed bootstrap, Fig. 3b
and c). While trial-by-trial body movements became more similar
across learning, the observed increase in activity correlations was not
simply explained by the increase in movement stereotypy (Fig. S2a-d).
We also ensured that the increased coordination was not sensitive to
trial-type imbalance (Fig. S3a and b). These results demonstrate that
there emerged distinct subnetworks for the stimulus and choice
representation across learning.

Cortical sparsening of functional connectivity across learning
We next studied how learning modifies cortical network motifs by
restricting our analysis to the same population of neurons (n = 1475
from 7mice) that were commonly identified across the three stages of
learning (naive, intermediate and expert). To probe cortical network
motifs, we built an encoding model (generalized linear model, GLM)
for each neuron using the task variables (stimulus, delay, action,
reward and forelimb movement) and directional functional coupling
(preceding neural activity of other neurons) as predictors55–57 (Fig. 4a
and Fig. S4a). Encoding properties of task variables and directional
functional couplings were statistically determined by removing each
predictor and assessing the resultingmodel performancewith pseudo-
explained variance (E.V.)58–60. The full encoding model was further
decomposed into the task-variable model and cell-coupling model by
marginalizing the other predictors. The pseudo-E.V. of the cell-
coupling model remained stable across learning (naive: 0.13 ± 0.01;
intermediate: 0.13 ± 0.01; expert: 0.12 ± 0.01, mean ± SEM, P =0.36,
n = 13 sessions from 7 mice, repeated measures one-way ANOVA),
indicating that the relative influence of other neurons’ activities com-
pared to that of task variables was persistently high (pseudo-E.V. of the
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full model: naive: 0.14 ± 0.01; intermediate: 0.15 ± 0.01; expert:
0.14 ± 0.02,mean ± SEM, P =0.16,n = 13 sessions from7mice, repeated
measures one-way ANOVA, Fig. S4b). Using GLM, each neuron was
further classified as stimulus-, delay- and action-representing cell,
based on its encoding properties (Fig. 4b, c, Fig. S4c and d).

To probe functional connectivity of the dorsal cortex, we
extracted statistically significant functional coupling between neu-
rons. The significant functional coupling generally reduced over
learning, as illustrated by the changes in connectivity matrices (Fig. 4d
and Fig. S5a). To quantify this, we computed the convergence index,
which describes the fraction of neurons in a source region that were
functionally connected to each neuron in a target region (Fig. 4e).
Across learning, the convergence index gradually reduced (P <0.001,
n = 1475 neurons from 7 mice, one-way ANOVA, Fig. 4e). Region-by-
region analysis revealed learning-dependent sparsening of functional
coupling within and across cortical regions (Fig. 4f and g). Notably, the
intra-regional convergence index was persistently higher than the
inter-regional convergence index throughout learning, which is con-
sistent with the mesoscale synaptic connectivity of the mouse cortex61

(P < 0.001 for the main effects of intra- versus inter-region, learning,
and cortical regions, three-way ANOVA, Fig. 4f). Sparsening of cortical
functional connectivity was further confirmed with pairwise correla-
tions of spontaneous activity of single neurons during ITIs and trial-by-
trial pre-action activity (Fig. S5b-f). We confirmed that the effect was
not due to trial-type imbalance (Fig. S5g). Thus, the GLM analysis
yielded consistent results with more conventional methods to probe
functional connectivity (Fig. S5h).

Selection of behaviorally relevant functional coupling across
learning
Given the learning-related augmentation of choice selectivity and
global sparsening of functional connectivity in the dorsal cortex, we
hypothesized that choice-related functional coupling was selectively
retained while choice-irrelevant functional coupling was eliminated.
To test this hypothesis, we identified the same population of choice-
encoding neurons at the intermediate and expert stages and deter-
mined functional coupling that was either retained or eliminated over
the two learning stages (Fig. 5a). Consistent with the previous obser-
vation, most of the functional coupling was eliminated (retained:
32.2 ± 2.5%; eliminated: 67.7 ± 2.5%, mean± SEM, P <0.001, n = 13 ses-
sions, one-tailed bootstrap, Fig. 5b).

We reconstructed neural activity at the intermediate stage using
retainedor eliminated cell-coupling terms inGLM,whichwere referred
to as activityretained or activityeliminated. Decoding accuracy for choice
was determined at the single neuron level by performing AUC analysis
during the pre-action epoch. Decoding accuracy was higher for
activityretained than decoding accuracy obtained from activityeliminated

in regions such asALMandPPC (Fig. 5c,P < 0.05, one-tailedbootstrap).
Session-by-session population activity projected onto the choice axis
also confirmed that activityretained had significantly higher choice
selectivity than activityeliminated (Fig. 5d, P < 0.001, n = 13 sessions, one-
tailed bootstrap). These resultswere insensitive to differentα values of
elastic-net regularization (Fig. S6a and b). Thus, our results suggest
that cell coupling in regions such as ALM, which was previously iden-
tified to encode choice, was selectively retained while task-irrelevant
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couplingwas lostduring learning. Becausewe restrictedour analysis to
cells that were commonly identified across the three learning stages,
the limited number of cell-coupling terms prevented us from deter-
mining activityretained and activityeliminated between specific pairs of
regions.

Emergence of selective communication channels across
learning
In a delayed-response task, it is considered that persistent activity
during short-term memory is generated by recurrent connectivity
between neurons with similar tuning properties36,38,40. We hypothe-
sized that while the global functional connectivity was reduced during
learning, connectivity within a subnetwork supporting the persistent
activity was strengthened. To determine the connection probability of
similarly tuned neurons, we introduced an enrichment index, a frac-
tion of functional couplings between similarly tuned neurons among
all functional couplings (Fig. 6a). Across learning, the enrichment

index for choice increased significantly, indicating that choice-
encoding neurons became more coupled with other choice-encoding
neurons (P < 0.01, n = 13 sessions from 7 mice, one-tailed bootstrap,
Fig. 6b). The increased enrichment index for choice could not simply
be explained by an increase in movement stereotypy during the pre-
action epoch (Fig. S7a) or trial-type imbalance (Fig. S7b). Stimulus-
encoding neurons showed a similar trend, but the increase did not
reach statistical significance (n.s., P = 0.08, n = 13 sessions from 7
mice, Fig. 6b).

To investigate whether the increased connectivity between neu-
rons with the same encoding property was related to stimulus and
choice selectivity, we performed AUC analysis on the reconstructed
activity using the cell-coupling model for each neuron. Potential cov-
ariates of learning-related changes in movement were removed by
marginalizing activity derived from the movement predictors in the
model. Importantly, across learning, choice-encoding neurons with
higher enrichment index became predictive of choice selectivity
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FDR). Error bars indicatemean ± SEM. cActivity of right-preferring neurons in right
trials at the expert stage. Neurons were sorted based on the activity timing in one
half of the trials and displayedusing the other half (stimulus: 371; delay: 285; action:
504 neurons from 7 mice). d Representative sessions from one mouse showing

global sparsening of functional coupling. Each yellow box denotes significant
functional coupling (140 neurons). e Left. Schematic of convergence index by
quantifying functional coupling between predictor neurons in a source region and
a predicted neuron in a target region. Right. Decrease in convergence index in the
dorsal cortex across learning (***P <0.001, n = 1475 neurons from 7 mice, one-way
ANOVA). Error bars indicate mean ± SEM. f Changes in intra- and inter-regional
convergence index across learning (***P <0.001 for main effects of intra- versus
inter-region, across learning and across regions, ALM: 82; M1a: 123; M1p: 211; S1fl:
177; vS1: 205; M2: 94; RSC: 287; PPC: 242 neurons from 7 mice, three-way ANOVA).
Color scheme is the same as (e). Error bars indicate mean ± SEM. g Top. Mean
convergence index across the dorsal cortex at the three learning stages. Bottom.
Convergence index with respect to the location of each cortical region.
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(Fig. 6c, naive: R2 = 0.0016, n.s., P = 0.14, n = 1017 neurons from 7mice;
expert: R2 =0.10, P <0.001, n = 1154 neurons from 7 mice, Pearson
correlation). Conversely, such learning dependency was weak for
stimulus-encoding neurons; the positive relationship was already
present at the naive stage inmany cortical regions except ALM,M2and
RSC, with the slope becoming only slightly steeper at the expert stage
(Fig. 6c and Fig. S7c, naive: R2 = 0.026, P < 0.001, n = 1050 neurons
from 7 mice; expert: R2 = 0.078, P < 0.001, n = 1221 neurons from 7
mice, Pearson correlation). Together, these results reveal that within a
sparsely connected global networkof the dorsal cortex, there emerged
choice-related subnetworks composed of strongly coupled neurons.

Wenext examined changes in intra- and inter-regional enrichment
indices for stimulus- and choice-encodingneurons.Whilemost regions
experienced a decrease in functional coupling over learning, enrich-
ment indices of choice-encoding neurons increased across learning
between regions such as ALM and PPC (Fig. 6d, P < 0.05, one-tailed
bootstrap). In particular, choice-encoding neurons increased mutual
connectivity between ALM and PPC and formed a recurrent subnet-
work (Fig. 6d). These findings were corroborated with the increased
population activity coordination along the choice axis between the
two regions (Fig. 3b and c). The observed changes were not simply due
to variations in the fractions of stimulus- and choice-encoding neu-
rons, as these changes were more than what would be expected by
chance based on randomly sampled functional coupling between
neurons (one-tailed bootstrap, Fig. S7d and e). Furthermore, reduced-
rank regression analysis for populations of neurons between source
and target cortical regions demonstrated a learning-dependent
increase in mutual PPC-ALM interactions (Fig. S8a-c). These results
suggest that recurrent positive feedback loops between specific
regions may be formed to sustain short-term memory.

How does learning modify influences of neural activity in a source
area on choice-related activity in a target area? We reasoned that the
functional coupling strengthened during learning was critical and their
selective “ablation” would reduce choice-related activity in the target
area. Since manipulations of such specific functional coupling are
experimentally challenging, we selectively removed significant cell-
coupling terms in GLM (Fig. 6e). After ablating functional coupling from
a source regionof interest, we reconstructed neural activity in the target

region using remaining functional coupling and projected the resulting
population activity onto the choice axis. Control neural activity was also
reconstructed by ablating the same number of functional coupling
terms from other source regions. Ablation of PPC-ALM functional cou-
pling, in particular, led to a significant reduction of choice-related
activity inALM(Fig. 6f, g andFig. S9a, P <0.05, one-tailedbootstrapwith
FDR). The difference across regions was not due to the different num-
bers or fractions of cell-coupling terms considered to reconstruct the
choice activity (Fig. S9b). Furthermore, the replacement of pre-action
activity with scrambled ITI activity yielded similar results (Fig. S9c and
d). These results demonstrate that the learning-related emergence of
selective communication channels is critical for forthcoming choice.

Task performance and ALM activity shaped by PPC
To further elucidate the PPC-ALM communication in the delayed-
response task, we next examined how PPC activity was related to the
task performance and ALM activity. To this end, we performed two
complementary experiments. First, we optogenetically silenced PPC
using transgenic mice expressing Channelrhodopsin-2 (ChR2) in
GABAergicneurons andevaluated its behavioral consequence (Fig. 7a).
This approach enabled temporally restricted suppression of PPC
activity during the delay period. Photoinhibition of PPC, but not vS1,
led to deterioration in the task performance in expert mice (PPC:
P =0.005, n = 15 sessions from 5 mice; vS1: P =0.36, n = 15 sessions
from 5 mice, one-tailed bootstrap, Fig. 7b), indicating that PPC was
crucial for the task. This observation, however, seemingly contradicted
with a previous study with a similar behavioral paradigm35. We hypo-
thesized that the discrepancy was due to the difference in training
duration and predicted that the contribution of PPC would become
gradually smaller after extensive training. Consistent with this view,
PPC suppression did not affect the task performance when mice were
over-trained for an additional 18-50 sessions (PPC: n.s., P =0.34,
n = 12 sessions from 4 mice; vS1: n.s., P =0.23, n = 12 sessions from 4
mice, one-tailed bootstrap, Fig. 7b). These results suggest that PPCwas
involved in a relatively early phase of learning.

Second, we used designer receptors exclusively activated by
designer drugs (DREADDs)62 by injecting AAV8-CaMKIIα-hM4D(Gi)-
mCherry into PPC and suppressed its activity while recording the
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activity of ALM neurons with two-photon calcium imaging (Fig. 7c).
While this method lacks the temporal precision of optogenetics, it
enabled us to simultaneously image neural activity. We first con-
firmed that systemic injection of clozapine N-oxide (CNO) into mice
expressing hM4D(Gi)-mCherry reduced the activity of PPC neurons
(Fig. S10a and b). As in the case of PPC photoinhibition, PPC inacti-
vation reduced the task performance (P = 0.009, 18 sessions from 6
mice, one-tailed bootstrap, Fig. 7d). In addition, this manipulation
reduced choice selectivity in ALM neurons, which was determined by
subtracting the pre-action activity of left choice trials from right
choice trials (P = 0.008, 16 sessions from 6 mice, one-tailed boot-
strap, Fig. 7e). This metric of choice selectivity was correlated with
the task performance (R2 = 0.22, P < 0.01, n = 32 sessions from 6mice,
saline and CNO combined, Pearson correlation). Thus, the PPC-ALM
communication was recruited during learning of the delayed-
response task and PPC shaped ALM activity for appropriate
decision-making.

PPC-ALM communication channel for stable attractor dynamics
Improvement of the task performance may result from learning-
related enhancement in the robustness of attractor dynamics along the

choice code. During a two-alternative forced choice task, for example,
population activity inALM reaches two-point attractors corresponding
to two choices, whose basins are separated by a saddle point38,39

(Fig. 8a). We hypothesized that the separation and depth of the basins
were subject to extrinsic inputs, specifically those derived from PPC.
To explore conditions that render choice-related cortical activitymore
robust, we built recurrent neural networks (RNNs) using a target-based
recursive least-square algorithm (FORCE)63,64 to mimic the activity of
individual ALM neurons (n = 807 neurons from 6 mice, Fig. 8b, c, Fig.
S11a and b). These neurons were recurrently connected to external
unitsmimicking the activity of anexternal region toALM (n = 128 units,
Fig. 8b). Based on the ablation study with GLM (Fig. 6e-g and Fig. S9a),
we selected PPC and vS1 as external regions of interest and hypothe-
sized that they would distinctively influence the ALM choice selectiv-
ity. By projecting the population activity of ALM units onto the choice
axis, we determined the frequencyof decision switching in response to
perturbation, presented for 500ms after the offset of the stimulus
(Fig. 8b and d). Consistent with our hypothesis, the addition of
reconstructed PPC-ALM activity significantly improved the stability of
the attractor states compared to the addition of vS1-ALM activity
(P < 0.001, n = 21 RNNs, one-tailed bootstrap, Fig. 8d, e and Fig. S11c).
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These results remained generally constant across different hyper-
parameter configurations (Fig. S11c and d).

To determine if the robustness of attractor dynamics was influ-
enced by the recurrency between PPC and ALM, we randomly ablated
their connections (Fig. 8f). Frequency of decision switching was sig-
nificantly augmented as the fraction of ablated connections increased
(P =0.005, n = 21 RNNs, one-way ANOVA, Fig. 8g and Fig. S11c). Fur-
thermore, the robustnessof attractor states in PPC-ALMwasdependent
on learning (P <0.001, naive: n = 20; expert: n = 21 RNNs one-tailed
bootstrap, Fig. 8h). The increased robustness could partially be due to
the increase in choice-selective inputs inherited fromPPC (Fig. S11e and
f). Taken together, these results suggest that learning enhances the
robustness of cortical dynamics through the recruitment of the long-
range and recurrently connected PPC-ALM communication channel,
rendering the choice-related attractor dynamics more stable (Fig. 8i).

Discussion
While learning is considered to involve brain-wide activity modula-
tions of individual neurons and reorganization of functional neural
networks, there is little evidence supporting this view. Using a 2p-
RAM,we longitudinally imaged the activity of the same population of
neurons spanning across eight cortical regions during learning of a
delayed-response task. Such mesoscale imaging with cellular reso-
lution enabled us to discover the emergence of subnetworks across
learning, where functional coupling between choice-encoding neu-
rons was strengthened in a globally sparsening functional network.
Such reorganization of the functional circuit in the dorsal cortex was
under a selective pressure where behaviorally relevant functional
coupling was selectively retained across learning. As similar learning-
related refinement of functional connectivity within a single region
has been reported to occur during sleep65, we predict that sleep
contributes to the emergence of the observed cortical network
motifs.

ALM and PPC have been investigated in isolation with similar
two-alternative forced-choice tasks in rodents35,38,41,48. While we con-
firmed that similar coding properties existed in each area, a range of
analyses pointed to a unified scheme where ALM and PPC became
part of a functional subnetwork via reciprocal interactions to support
short-term memory. Across learning, neurons in ALM and PPC
became more coordinated on a trial-by-trial basis, and functional
connectivity between ALM and PPC neurons sharing similar choice
representation was more enriched. Simulations with RNNs further
confirmed the importance of the PPC-ALM subnetwork for main-
taining persistent activity for forthcoming choice and its robustness
to perturbation. In contrast, the vS1-ALM subnetwork, whose
enrichment index failed to increase, was relatively dispensable for
the robust choice code.

During learning, PPC served as an important hub in the functional
network. We confirmed the functional importance of PPC reported in
previous studies21,66 and demonstrated that ALM activity was modu-
lated by PPC. However, PPC gradually became dispensable for the
delayed-response task, indicating that the identified functional sub-
networks were recruited transiently during learning and other sub-
cortical networks would functionally dominate once learning was
complete. Similar disengagement of the cortex over extended training
has been documented in other domains of learning, including motor
learning67.

Importantly, our analysis of functional connectivity does not
provide direct evidence for causal interactions between neurons; it
may reflect common or correlated inputs to neurons. For example,
because direct connections from PPC to ALM seem to be rare68,69, PPC-
ALM connections are unlikely to be a result of direct cortico-cortical
interactions; the dependency of ALMactivity on PPC suggests that PPC
communicates with ALM through indirect pathways via other sub-
cortical structures33. Besides thePPC-ALMmutual connectivity,we also
identified PPC-RSC connectivity as another potentially important
communication channel for choice representation. While reciprocal
connections between PPC and RSC were previously described68, their
contributions to short-termmemory hadnot been extensively studied.
On the other hand, while PPC projects heavily to M270, their interac-
tions were not strong during the delayed-response task. Thus, our
approach highlighted the importance of evaluating functional sub-
networks that could not be solely explained by anatomical con-
nectivity. Future investigation may involve precise mapping and
manipulation of the selected connectivity to determine how such
subnetworks form during learning.

While the focus of the present study was choice representation
during short-term memory, we also observed some changes in sti-
mulus representation across learning. Generally, while learning-related
changes in stimulus representation were relatively small, decoding
accuracy for the stimulus locationwas enhanced in regions such asM2,
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consistent with previous studies52,53. Thus, while major changes
occurred in choice representation, stimulus information also emerged
in some cortical regions across learning.

A natural extension of the current study is to investigate brain-
wide reorganization of the functional network during learning. A new
technology such as Neuropixels 2.0 allows longitudinal and simulta-
neous recordings from the same population of neurons in cortical and
subcortical regions14, which will complement recent studies on
cortical-subcortical functional connectivity19. We predict that the
principles discovered in our study–global sparsening of functional
connectivity and the emergence of subnetworks with similar func-
tional relevance–are generalizable to brain-wide functional networks.
Our analytical approach may reveal previously unseen functional
connectivity beyond short-term memory.

Methods
Animals
All procedures were in accordance with the Institutional Animal Care
and Use Committee at Nanyang Technological University. Transgenic
micewere obtained from the Jackson Laboratory (CaMKII-tTA: 007004;
TRE-GCaMP6s: 024742; VGAT-ChR2-EYFP: 014548). Mice were housed
in a reversed light cycle (12 h:12 h) in standard cages at around 21 °C and
62% humidity and experiments were generally performed during the
dark period. Bothmale and female hemizygousmicewere used. Sample
size was determined based on previous studies17,39,53.

Surgery
Adult mice (between 8-week and 4-month-old) were anesthetized with
1-2% isoflurane and a piece of scalp was removed. After the underlying
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ANOVA). Error bars indicate mean± SEM. h Left. Same as (d) but with an example
RNN trained with the same ALM units but using reconstructed PPC-ALM external
activity from a naive session. Right. Fractions of decision-switching trials between
RNNs across learning (+PPC: ***P<0.001; +vS1: n.s., P =0.46, naive: n = 20; expert:
n= 21 RNNs, one-tailed bootstrap). Error bars indicate mean± SEM. i Schematic
illustrating how PPC influences the choice-related attractor dynamics in ALM.
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bonewas cleanedwith a razor blade, a craniotomy (~7mm in diameter)
was made in the left hemisphere (center of the craniotomy: 0.20mm
anterior and 2.00mm lateral to the bregma) with a dental drill and an
imaging window was placed in the craniotomy. The imaging window
was constructed from a small (~6mm in diameter) glass plug (#2
thickness, Fisher Scientific, 12-540-B) attached to a larger (~8mm in
diameter) glass base (#1 thickness, Fisher Scientific, 12-545-D) using an
ultraviolet-curing adhesive (Norland, NOA 61). 1.5% agarose (Sigma-
Aldrich, A9793-50G) was applied to fill the gap between the skull and
window. A custom-built titaniumhead-platewas then implantedon the
window with cyanoacrylate glue and cemented with black dental
acrylic (Lang Dental, 1520BLK or 1530BLK). Buprenorphine (0.05-
0.1mg/kg of body weight), Baytril (10mg/kg of body weight) and
dexamethasone (2mg/kg of body weight) were subcutaneously injec-
ted, and mice were monitored until they recovered from anesthesia.

For surgery of the optogenetics experiment, optic fiber sleeves
(Thorlabs, ADAL1) were placed bilaterally over the skull of VGAT-ChR2-
EYFP mice with cyanoacrylate glue at PPC (−1.75mm anterior-poster-
ior, AP, 2.05mm medial lateral, ML) and vS1 (−1.15mm AP and
3.45mmML). Black dental acrylic was applied after a custom-built
aluminum head bar was attached. Buprenorphine (0.05-0.1mg/kg of
body weight) and Baytril (10mg/kg of body weight) were sub-
cutaneously injected, and mice were monitored until they recovered
from anesthesia.

For surgery of the designer receptors exclusively activated by
designer drugs (DREADDs) experiment, adeno-associated virus (pAAV-
CaMKIIα-hM4D(Gi)-mCherry, addgene, 50477-AAV8) was injected
bilaterally in PPC: −1.75mm AP, 2.05mmML at the depth of 200μm
and 500μm (~50nl for each site) before the imaging window was
implanted. After each injection, the pipette was left in the brain for
4minutes before it was slowly withdrawn.

Behavior
Water-deprived mice were trained on a delayed response task (one
session per day). Each trial started with a left or right tactile stimulus
(~20Hz sweeping, 1 s in duration) followed by a delay (2 s in duration)
and a response (4 s in duration) epoch. The beginning of the response
epochwas signaled by a go cue (green LED, 525 nm, Thorlabs LED525E,
0.2 s in duration) and both left and right water spouts moved closer to
mice and were made available. Mice were trained to lick one of the
water spouts on the same side as thewhisker stimulation to receive 4μl
of sucrosewater (10-15%) as a rewardper trial. No responseor incorrect
response trials were punishedwith a white noise and a 6-8-s timeout. If
mice lick the same side regardless of the trial type for more than five
consecutive trials, the other trial type was selected for the subsequent
trial to prevent bias. Each session consisted of 180 trials. Mouse
behavior was video recorded at 60Hz at a resolution of 1040×900
pixels using a monochromatic camera (FLIR, BFS-U3-16S2M-CS-SET).

For each mouse, naive, intermediate, and expert sessions (two
sessions for each learning stage) were determined. The naive sessions
were defined as the first and second sessions by default. However, the
first session for one mouse was excluded because there were fewer
than five responses (correct or incorrect) for the left trial type. Thefirst
sessions for two mice were also excluded due to technical issues
encountered during the recording of their behavior while they were
properly trained. The expert sessions were defined as the first two
sessions where the correct rate consistently reached ~70-75%. Two
intermediate sessions were selected from midpoints of the naive and
expert sessions. In total, we analyzed 14 sessions from 7 mice at each
learning stage. Two mice were excluded because they were unable to
reach more than 70% correct rate within 30 sessions.

Optogenetics
Transgenic mice expressing Channelrhodopsin-2 (ChR2) in GABAer-
gic neurons (VGAT-ChR2-EYFP) were trained with the same protocol

as above but with additional reward trials (20% of total trials), where
mice were rewarded at the lick port corresponding to the side of
whisker stimulation regardless of their choice. The reward trials were
removed after mice reached the criterion of >70% correct rate for
two consecutive sessions. One mouse was excluded as it was unable
to reach the criterion within 30 sessions. Once the criterion was
reached, an additional trial type was introduced where a tactile sti-
muluswas presented to both sides of thewhiskers for 0.2 s during the
delay epoch (starting at 0.25 s after the stimulus offset, ~50% of total
trials) as a distractor. Approximately 50% of randomly chosen trials
were coupled with optogenetic inhibition, where a 1.9 s laser square
pulse followed by a 0.1 s taper (473 nm, power of ~2.5mW/mm2,
Shanghai Laser and Optics Century, BL473T8-100FC) was delivered
bilaterally through the sleeves attached to the skull during the delay
period. Each mouse performed three rounds of PPC and vS1 photo-
inhibition sessions (two sessions per round, six sessions in total),
where the order of these sessions in each round was randomized
(PPC: n = 15; vS1: n = 15 sessions from 5 mice). Only trials without a
distractor were further analyzed.

After six optogenetic sessions, mice continued to be trained with
the sameprotocol for additional 18–50sessions.Mice that reached75%
correct rate for two consecutive sessions were deemed to be over-
trained and tested for another six sessions of photoinhibition (PPC:
n = 12; vS1: n = 12 sessions from 4mice). One mouse was excluded as it
was unable to reach this criterion within 50 sessions.

Two-photon calcium imaging
Calcium imaging data were acquired using a two-photon random
access mesoscope (2p-RAM, Thorlabs)11 controlled with ScanImage
(Vidrio Technologies) with a laser (InSight X3, Spectra-Physics) whose
excitation wavelength was tuned to 940nmwith the power of ~40mW
at the objective lens. The imaging frame rate was ~9.35Hz and the
imaging resolutionwas 1×0.4pixel/μmwith eight fields of view (FOVs)
of 500× 500μm, which were imaged simultaneously at the depth of
~150–200μm. The stereotaxic coordinates for these eight FOVs rela-
tive to the bregma were: ALM: 2.25mmAP, 1.65mmML; M1a: 1.65mm
AP, 2.75mmML; M1p: 0.65mm AP, 1.75mmML; S1fl: 0.25mm AP,
2.65mmML; vS1: −1.15mm AP, 3.45mmML; M2: 0.50mm AP,
0.45mmML; RSC: −1.25mm AP, 0.55mmML; PPC: −1.75mm AP,
2.05mmML. The same FOVs were identified in every session and
imaged longitudinally.

DREADDs
Transgenic mice (CaMKII-tTA×TRE-GCaMP6s) were trained with the
same protocol as the optogenetics experiment. Once the correct rate
reached >70% for two consecutive sessions, the PPC suppression
experiment commenced. One mouse was excluded as it was unable to
reach the criterion within 30 sessions. Each mouse performed three
rounds of clozapine N-oxide (CNO) and saline sessions (two sessions
per round, six sessions in total), where the order of these sessions in
each round was randomized. We excluded four imaging sessions (two
CNO sessions and two saline sessions) for onemouse due to occlusion
of the optical window (CNO: n = 16; saline: n = 16 sessions from 6 ani-
mals). CNO (Sigma-Aldrich, C0832-5MG) was dissolved in dimethyl
sulfoxide (DMSO, Sigma-Aldrich, D2438) to a stock solution of 0.4 g/
ml, which was stored at 4 °C. Before each experiment, a working
solution ofCNOwaspreparedbydiluting the stock solutionwith saline
(0.9% NaCl solution) to a concentration of 0.2mg/ml. CNO (1mg/kg of
body weight) or saline was intraperitoneally administered to each
mouse ~40minutes before the experiment. Only trials without a dis-
tractor were further analyzed.

To study the inhibitory effect ofDREADDs, salinewasfirst injected
intraperitoneally to each mouse ~40minutes before the spontaneous
activity of PPC neurons was imaged (FOV: 500× 500μm; duration:
~8min; frequency: ~9.35 Hz). Approximately 40min after imaging with
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saline, CNO was injected and spontaneous activity of the same PPC
neurons was imaged.

Analysis
Datapre-processing. For bodymovementdata,x and y coordinatesof
the forelimbs of eachmouseweredeterminedwithDeepLabCut71 from
the video recorded in each session (60Hz). To train the neural net-
work, 24 randomly selected 5-minute videos from seven mice were
used. From each five-minute video, 20 frames containing a variety of
postures were extracted using K-means clustering. Mouse forelimbs
weremanually labelled using the 20 frames per video for a total of 480
frames, which were then split into 456 training and 24 test frames. The
trained network showed a train error of 2.24 pixel and a test error of
12.46 pixel. This trained network was used to estimate the x and y
coordinates of the forelimbs across all sessions andmice.We removed
data points with less than 95% likelihood and replaced them with an
estimate by interpolating the preceding and succeeding frames with
more than 95% likelihood. Outlier datapoints defined as larger than
three times the median absolute deviation within a 5-frame window
were replacedwith a previous data point. Time-series of the resulting x
and y coordinates was smoothed using a 3-frame sliding window.

For imaging data, each cortical region was pre-processed sepa-
rately for registration, cell detection and signal extraction using
Suite2p72. Only cells with deconvolved z-scored activity more than 10
for at least once every 10minutes were included in the analysis
(n = 14 sessions, naive: ALM: 1916;M1a: 1822;M1p: 2496; S1fl: 1800; vS1:
1751; M2: 1898; RSC: 2480; PPC: 2375; intermediate: ALM: 1367; M1a:
1388; M1p: 2502; S1fl: 1827; vS1: 1761; M2: 1880; RSC: 2539; PPC: 2263;
expert: ALM: 1212; M1a: 1537; M1p: 2629; S1fl: 1602; vS1: 1707; M2: 1592;
RSC: 2219; PPC: 2185 neurons). For the same cell analysis the same
neurons were registered across naive, intermediate, and expert ses-
sions (n = 13 sessions from 7 mice), with an open-source algorithm
ROIMatchPub (https://github.com/ransona/ROIMatchPub). The mat-
ched cell candidates were manually validated based on cell morphol-
ogy across sessions (ALM: 86;M1a: 129;M1p: 212; S1fl: 178; vS1: 212; M2:
98; RSC: 312; PPC: 248 neurons). One session with fewer than 25 cells
matched across all learning stages was excluded from the analysis.

Encoding of task variables in neurons. To identify stimulus-encoding
of each neuron, we compared average activity during the stimulus
epoch (1 s duration) in the correct left versus correct right trials and
determined whether there was a statistical difference (Wilcoxon rank-
sum test, p <0.05). To identify choice-encoding, the same procedure
was used with average activity during the pre-action epoch (between
−1 s and 0 s relative to the go cue).

Population activity dynamics and dimensionality reduction. To
analyze population activity of n neurons simultaneously recorded in
each session, we reduced dimensionality of the n-dimensional activity
space by projecting the population activity to the stimulus or choice
axis in each cortical region. The stimulus axis maximally separated
neural trajectories between the left and right trial types during the
stimulus epoch, while the choice axis maximally separated neural
trajectories between the left and right choice during the pre-action
epoch39. Regions with fewer than 20 neurons in each session and
sessions with fewer than five trials for left and right choice each were
excluded from the analysis. To compute the choice mode using the
population neural activity, we first computed the vector of average
activity differences between the right and left choice trials as follows:

Δ�r =�rR � �rL, ð1Þ

where �rR is trial-averaged activity during the pre-action epoch where
mice licked the right water spout regardless of the stimulus. Likewise,
�rL is trial-averaged activity from trials where mice licked the left water

spout. The resulting Δ�r is a weight vector with the size of n × 1. Positive
weights were assigned to right-choice-preferring neurons, whereas
negative weights were assigned to left-choice-preferring neurons. Δ�r
was then normalized by its l2 norm to control for the number of
neurons that were recorded simultaneously. Projection of the
population neural activity along the choice axis, pk , has the size of
t × 1 for each trial and was calculated as:

pk =Xk Δ�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i Δ�rj j2

q
0
B@

1
CA, ð2Þ

where k and i are the trial and cell index, respectively, and Xk is a
matrix of neural activity over time t with the size of t ×n.

The stimulus mode was computed similarly but using average
activity during the stimulus epoch of left and right stimulus trials
regardless of the choice. The choice and stimulus axes were ortho-
gonalized to each other using the Gram-Schmidt process in
this order.

For the choice mode, the population activity, pk , was further
sorted into left and right choice trials regardless of the stimulus. For
the stimulus mode, pk was sorted into left and right stimulus trials
regardless of the choice. Left and right choice or stimulus projected
activity was obtained by averaging activity across their respective trial
conditions. To compare across sessions, baseline activity was sub-
tracted from trial-averaged projections. The baseline activity was
defined as the trial-averaged projection for the respective trial condi-
tions during the ITI epoch (between −1 s and 0 s relative to the sti-
mulus onset).

Choice selectivity of the population activity was determined by
computing the difference between right and left activity averaged
within the pre-action epoch. The statistical significance of its learning
dependency was tested with bootstrap. For each bootstrap, sessions
were randomly sampled with replacement for each learning stage and
the resulting mean activity during the pre-action epoch was averaged
across sessions to compute Pearson correlation coefficients.

Coordination of population neural activity across learning. Trial-by-
trial coordination of population activity projected to the stimulus or
choice axis was computed between pairs of regions. For a given trial,
the population activity trajectory was averaged within the stimulus
or pre-action epoch. Pearson correlation coefficient was computed
with the epoch-averaged activity across trials (either within the same
trial conditions or across both trial conditions) between pairs of
regions. Statistical significance for the increase in correlations from
naive to expert sessions was determined with bootstrap for each
region pair. To study a potential confound of the trial-type imbal-
ance, the same number of trials (40 trials) was randomly sampled
with the replacement for the left and right trial conditions and the
same analysis was performed. This procedure was repeated 100
times and the resulting correlation coefficients were averaged across
iterations.

Generalized linear model (GLM). Neural encoding of experimentally
designed task variables and cell coupling were modelled with the
generalized linear model (GLM) for each neuron independently
(n = 1475 neurons)44,55,59. A Poisson GLM was used to compute the
weights of predictors in modeling the activity of single neurons based
on the deconvolved calcium signal73. Variables included the left and
right stimulus, left and right delay, left and right lick, left and right
forelimb movement, reward and activity of other simultaneously
imaged neurons at previous one and two frames. As the task variables
were measured at a higher temporal sampling rate (20 kHz) than
imaging (9.35Hz), theyweredown-sampledby averaging each imaging
interval to match the sampling rate of imaging.
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The design matrix for GLM was obtained as follows. The stimulus
onset times, delay onset times, reward onset times and response onset
times were represented as boxcar functions where a value of one was
assigned to these times and zero elsewhere. Each task variable was
convolved with a set of behaviorally appropriate temporal basis
functions to produce task predictors. For stimulus onset times, we
used three evenly spaced raised cosine functions extended 1 s forward
in time. For delay times, we used five evenly spaced raised cosine
functions spanning 1.5 s starting from the end of stimulus offset times.
For the reward onset times, we used three evenly spaced raised cosine
functions extended 1 s forward in time. For the response onset times,
we used five evenly spaced raised cosine functions spanning 1.5 s
starting 0.75 s before the end of the delay epoch. For forelimb move-
ment, three evenly spaced raised cosine functions convolved with
Euclidean distance moved were used. To examine dependence of the
activity of a given predicted neuron on the activity of other simulta-
neously imaged neurons, additional cell-coupling predictor terms
were used. For each predicted neuron, the activity of other neurons
was convolved with two boxcar functions (t + 1 and t +2, where t is a
given frame) extending ~107ms and ~214msbackward in time fromthe
activity of the predicted neuron.

GLMfitting. GLM fittingwas performed as described previously59 after
all task and cell-coupling predictors were z-scored. Briefly, the data
were first divided into training and test set (70% and 30% of image
frames, respectively). The lassoglm function in MATLAB with fivefold
cross-validation of the training set was used with an elastic-net reg-
ularization, which utilizes both lasso and ridge regularization accord-
ing to the value of a selected parameter α, where α =0 corresponds to
ridge and α = 1 to lasso regression. We used α =0.95 to select a rela-
tively small number of predictors out of many potentially correlated
predictors, similar to pure lasso regularizationwhile avoidingpotential
issues with degeneracies that could arise due to strong correlations
between predictors74. The number of λ was set at 100. To assess GLM
performance, pseudo-explained variance (E.V.) of the model was
obtained on the test dataset according to:

Pseudo E:V:= 1� D ^ðyÞ
Dð�yÞ , ð3Þ

where

D ŷ
� �

= log L yð Þ � log LðŷÞ ð4Þ

is a deviance from the saturated model in terms of log-likelihoods,
whereas

D �yð Þ= log LðyÞ � log Lð�yÞ ð5Þ

is a deviance from the null model58. The null model was calculatedwith
mean activity across frames.

GLM-derived response profiles. GLM models neural activity of each
neuron by exponentiating the weighted sum of predictors and the
estimated neural activity can be decomposed into activity con-
tributed by each predictor59,75. The model-derived response profile
for a given variable can be defined as a tuning curve for that variable
by marginalizing out the effects of other variables. A task variable
was defined as statistically significant for the activity of a given
neuron when removal of the variable led to a statistically significant
decrease in pseudo-E.V by shuffling the task predictors 1000 times
using 2-s bins (P < 0.05 with FDR). Similarly, a predictor neuron was
defined as functionally coupled to a given predicted neuron when
removal of either t + 1 or t + 2 predictor led to a statistically significant
decrease in pseudo-E.V.

The full model for each neuron was reconstructed according to:

ŷf ull model = exp Xtask variableβtask variable +Xcell couplingβcell coupling +β0

� �
,

ð6Þ

where ŷ is reconstructed neural activity for a given neuron, Xtask variable

and Xcell coupling are predictor matrices for task variables and cell cou-
pling, respectively.βtask variable and βcell coupling are vectors of corre-
sponding coefficients andβ0 is a bias. For comparisons ofGLMweights
across learning, the highest value of βtask variable for each task variable
wasused. For the cell-couplingmodel, activitywas reconstructedusing
only cell coupling predictors according to:

ŷcell�coupling model = exp Xcell couplingβcell coupling +β0

� �
: ð7Þ

Stimulusandchoicedecodingwith receiver operator characteristic
analysis. Stimulus or choice was decoded from single-cell activity,
population activity and reconstructed activity using the cell-coupling
model. For stimulus, trials were labeled based on the stimulus type
regardless of choice. For choice, trials were labeled based on lick
direction regardless of the stimulus type. Using either activity from a
single frame or average activity during the stimulus or pre-action
epoch, we plotted a receiver operator characteristic (ROC) curve and
obtained the area under the curve (AUC). The AUC was used to mea-
sure the stimulusor choicepreference. Decoding accuracywasdefined
as the absolute deviation of AUC from a chance level according to:

Decoding accuracy = 2* AUC� 0:5j j: ð8Þ
The relationship between decoding accuracy and enrichment

index was examined with Pearson correlation for all neurons across
sessions. To identify learning-dependent increases in decoding accu-
racy, we performed ROC analysis by shuffling trial labels and this
procedure was repeated 1000 times to create a null distribution of
AUC values. The difference between naive and expert null distribution
was obtained and compared with the actual difference to obtain
P-values.

Analysis of convergence and enrichment index with GLM. Con-
vergence index for each neuron was calculated as:

Convergence index =
ncell�coupling

ntotal
, ð9Þ

where nCell�coupling and nTotal are the number of statistically significant
cell-coupling and all possible cell-coupling, respectively. The conver-
gence indices were averaged across neurons and across sessions for
the naive, intermediate and expert stages separately.

Enrichment index for each neuron was calculated as:

Enrichment index =
ncell�coupling with similar tuning

ncell�coupling
, ð10Þ

where nCell�coupling with similar tuning refers to the number of statistically
significant cell-coupling between neurons sharing similar tuning
properties (e.g. right-preferring choice-encoding neurons). The
enrichment index for a given session and task variable was averaged
across neurons.

To calculate the enrichment index between pairs of regions, we
analyzed cell-coupling between neurons from a source (predictor) and
target (predicted) region. Neurons with consistently zero enrichment
index across all learning stages were excluded from the analysis. To
assess statistical significance of changes in enrichment index across
learning within right-preferring stimulus and choice-encoding neu-
rons, bootstrap was performed. For each bootstrap, neurons were
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randomly sampled with replacement for each learning stage and the
resulting enrichment indices were averaged. This procedure was
repeated 1000 times. An increase in enrichment index from the naive
to expert stage was deemed to be statistically significant when the
P-value was less than 0.05.

The observed region-specific increases in enrichment index
across learning may simply be explained by changes in the number of
stimulus or choice-encoding neurons. To confirm that this was not the
case, we randomly sampled cell-coupling predictors and computed
enrichment index. This procedure was repeated 1000 times. The dif-
ference between naive and expert null distributions was obtained for
each neuron and compared against the actual change across learning.

Spontaneous activity and task-related activity correlations. Corre-
lations of spontaneous activity of pairs of neurons were obtained with
Pearson correlation for ITI activity (between 2 s prior to the stimulus
onset and the stimulus onset). Pairwise correlations with P <0.0001
were deemed to be functionally connected and the resulting con-
nectivity was used to compute convergence and enrichment index
similarly to GLM. Correlations of task-related pre-action activity
(between 1 s prior to the go cue onset and the go cue onset) of pairs of
neurons were obtained similarly.

To study a potential confound of trial-type imbalance, the same
number of trials (40 trials) was randomly sampled with replacement
for the left and right trial types and the sameanalysis was performed to
compute the convergence index and enrichment index. This proce-
dure was repeated 100 times and the resulting values were averaged
across iterations.

Analysis of retained and eliminated functional coupling. For each
neuron in a given target region, we identified two types of cell-cou-
pling: (1) retained cell-coupling defined as the cell-coupling that was
present at both the intermediate and expert stages and (2) eliminated
cell-coupling defined as the cell-coupling that was present at the
intermediate stage but not the expert stage. Partial cell-coupling
models were reconstructed with either of the two cell-coupling types
and referred to as activityretained and activityeliminated. To ensure that
the same number of cell-coupling terms was used to reconstruct
activityretained and activityeliminated, the smaller number of retained and
eliminated cell-coupling termswas subsampled. Coupling fractions for
single neurons were calculated by obtaining the number of retained or
eliminated cell-couplings over the total number of statistically sig-
nificant cell-couplings. The coupling fractions were averaged across
neurons.

Analysis of movement stereotypy and neural activity across
learning. Toquantify changes in bodymovement across learning, trial-
averaged Euclidean distance in pixels travelled by the right forelimb
during the stimulus or pre-action epoch was computed.

Changes in movement stereotypy were calculated by subtracting
the baseline position of the right forelimb, defined as its x- and
y-coordinates at the beginning of each trial, from the coordinates of
each frame within the trial. The resulting trajectories during the sti-
mulus or pre-action epoch were used to compute trial-by-trial corre-
lations for the left and right trial types separately.

To determine the relationship betweenmovement stereotypy and
intra- and inter-regional coordination of population activity, Pearson
correlation was performed between changes in median trial-by-trial
correlation coefficients of right forelimb movement and coordination
along the stimulus or choice axis within the same or across both trial
types in each region pair. To determine the relationship between
movement stereotypy and enrichment index, Pearson correlation was
performed between changes in median trial-by-trial correlation coef-
ficients of right forelimb movement for right or both trial types and
changes in enrichment index in each region pair.

Reduced rank regression. To study intra- and inter-regional com-
munications, reduced rank regression was performed. This analysis
relies on multivariate linear regression to predict population neural
activity of a target region given population neural activity of a source
region76. As prediction performance of each model was positively
related to pairwise correlations between neurons and because the
pairwise correlations decreased across learning, the learning-related
changes in the prediction performance could be underestimated
without a correction. Thus, we matched pairwise correlations of ITI
activity of neurons between the naive and expert stages by removing
neurons with mean Pearson correlation coefficients, averaged across
all pairs for a given neuron, below 0.0274, such that all regions had
non-significant differences between the naive and expert stages.
Twenty neurons were randomly sampled from source and target
regions to compute the prediction performance. This procedure was
repeated 20 times and the resulting values were averaged across
iterations.

Analysis of selective ablation of cell-coupling. To evaluate the effect
of ablating a specific group of cell-coupling terms, we reconstructed
activity using specific cell-coupling terms between a given pair of
regions. We refitted GLM for each neuron at a given expert session
without the same cell registration across learning to consider the lar-
ger number of predictor neurons. We selected a maximum of 40
neurons from each region for a given expert session and refitted GLM
to extract statistically significant functional coupling (n = 14 sessions,
ALM: 360; M1a: 470; M1p: 520; S1fl: 440; vS1: 480; M2: 555; RSC: 560;
PPC: 560 neurons). For each neuron, we reconstructed partial cell-
coupling models either with (1) ablation restricted to a specific region
(activityablated) or (2) ablation in other regions (activitycontrol). For each
neuron, ablated coupling was randomly sampled and the partial
reconstructed models of a population of neurons were projected to
the choice axis. Baseline activity, defined as the activity at the stimulus
offset, was subtracted from trial-averaged activity. The resulting
activity was normalized by its standard deviation. This procedure was
repeated 100 times and the resulting values were averaged across
iterations.

To test if choice activity was correlated with the number or frac-
tion of cell-coupling terms used to reconstruct the cell-coupling
model, we obtained Pearson correlation coefficient for each session
between average choice activity along the choice axis during the pre-
action epoch and median number or fraction of cell-coupling terms
used to reconstruct activityablated or activitycontrol.

Replacement of the pre-action activity with randomly scrambled
ITI activity was performed similarly to the selective ablation described
above. For each neuron, activity from a cell-coupling model was
reconstructed after replacing the pre-action activitywith scrambled ITI
activity in a specific region before the same procedure was followed
as above.

Analysis of PPC inactivation with DREADDs. Imaging data were
processed similarly to those obtained for the delayed-response task.
Neurons in PPC were registered using the red channel (mCherry)
across saline and CNO sessions with Suite2p. For each neuron,
deconvolved calcium signal was averaged across imaging frames and
compared across the two conditions.

Recurrent neural network (RNN)
To study attractor dynamics during short-term memory, recurrent
neural networks (RNNs) were built with Python using the first-order
reduced and controlled errors (FORCE) algorithm64. Units in each RNN
were trained to mimic the activity of ALM neurons recorded in the left
hemisphere (n = 807 neurons) and activity from an external region,
PPC or vS1, that was identified in GLM to be functionally coupled to
ALM (n = 128 neurons). Hyperparameters were optimized by choosing
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those that resulted in a good fit for both left and right trial activity. The
networks were modeled based on the first-order differential equation
as follows:

τ _x tð Þ= � x tð Þ+ J � r tð Þ+WstimulusI
k
stimulus +WcueIcue + εnoise tð Þ, ð11Þ

where x is the membrane current of the network, J is the recurrent
synaptic weight matrix, r is the activity, Wstimulus and Wcue are the
synaptic weight matrices for stimulus and go cue inputs, Istimulus and
Icue, for the kth trial. J was initialized as a square matrix of size n×n,
where each element was sampled from the normal distribution,
J ∼N 0, gffiffi

n
p

� �
: By setting the factor g > 1, randomly initialized networks

could generate chaotic spontaneous activity prior to training63. We
initialized g = 1.1, 1.2, 1.3 or 1.4. The initial distribution of J is forgotten
after rounds of weight modification. The weight vectors for the sti-
mulus and go cue were sampled from normal distribution
Wstimulus ∼N 0,1ð Þ and Wcue ∼N 0,0:1ð Þ. The stimulus input, Istimulus ,
and go cue input, Icue, were designed to be in a triangular shape, from
t = −3.0 s to −2.0 s and t = −2.1 s to −2.0 s relative to the action,
respectively. The peak amplitude of stimulus for right trials were ran-
domly sampled from a distribution of Istimulus ∼N 1:0,0:1ð Þ, while the
stimulus input for left trials was fixed at 0. The peak amplitude of ICue
wasfixed at 1.0. The noise variable εnoise ∼N 0,0:15ð Þwasdrawn at each
time step t.

The membrane current x was calculated at each timestep t by
integrating the differential equation using Euler method, with the
network neural time constant τ = 10ms and integration time constant
Δt = 1ms. Activity r wasobtainedby applying the sigmoidal function to
x according to:

r tð Þ= 1
1 + e�β x tð Þ�θð Þ , ð12Þ

where theparameterswere set tobe:β =0.8 andθ = 3.0. All parameters
were identical across all networks, including those trained for activity
in naive sessions.

Training and testing of RNNs. Each unit in the RNN was trained to
reproduce the neural activity of a single ALM neuron, which was
computed by averaging activity across correct right choice or left
choice trials during expert sessions. The training epoch spanned 3.5 s,
starting from −0.5 s from the stimulus onset and ending at the delay
offset. For the learning target of the network, ALM neural activity was
transformed to the membrane current, f , by clipping the neural
activity at a maximum value of 5 and minimum value of 0 with slight
offsets of −0.01 and 0.01, respectively. The resulting numbers were
normalized by a fixed value of 5. At any time step, if unit’s normalized
activity was lower than 1× SD across all timesteps and units, it was
excluded. This process resulted in a total of 807 neurons.

To compute the external unit activity, PPC-ALM and vS1-ALM,
neural activity was reconstructed with partial cell-coupling models
using cell-coupling terms from PPC or vS1 to ALM neurons. External
activity was similarly normalized to ALM neural activity. For each
model, 128 external activities were randomly sampled with replace-
ment. The parameters β =0.8 and θ = 3.0 were used to transform the
normalized activity data r into target function f with the inverse sig-
moidal function:

f tð Þ= θ+ 1
β
ln

r tð Þ
1� r tð Þ

� �
: ð13Þ

To increase the temporal resolution of the network, target func-
tion f was up-sampled from sampling rate 9.35 Hz to 93.5 Hz by linear
interpolation and was smoothed with a ~400ms boxcar moving win-
dow filter.

Prior to training, a running estimate of the inverse correlation
matrix of the network, P =αl, was initialized, where l is an identity
matrix and α = 0.01. The learning rate, αlearn =0.05, was used for every
update. The training phase lasted for 500 epochs for all RNNs. The
pseudocode to train the network is:

Algorithm. : First Order Reduced and Controlled Errors (FORCE)
Initialize J, x, Wstimulus, Wcue, P
for each training episode do

Alternate trial type k 2 ’right’,’lef t’
	 


Generate Ikstimulus, εnoise
for each timestep t do

z tð Þ  J � r tð Þ+WstimulusI
k
stimulus +WcueIcue + εnoise tð Þ

x tð Þ  x t � 1ð Þ+ Δt
τ �x t � 1ð Þ+ z tð Þ½ �

r tð Þ  ϕ x tð Þð Þ
Calculate error: e tð Þ  z tð Þ � f tð Þ
Calculate loss:

ΔJ tð Þ  e tð Þ
1 + rT tð Þ�P t�1ð Þ � r tð Þ

h iN
P t � 1ð Þ � r tð Þ½ �

Update J J � αlearnΔJ tð Þ
Update

P tð Þ  P t � 1ð Þ � P t�1ð Þ� r tð Þ � rT tð Þ �P t�1ð Þ
1 + rT tð Þ � P t�1ð Þ � r tð Þ

end for
end for

Training was designed to allow pairwise comparisons between
RNNs trainedwith PPC-ALMand vS1-ALMexternal units using the same
random seed for weight initialization. Mean squared error (MSE) of
each trained RNNwas computed by comparing its output to the target
activity after averaging it across time of trials and across neurons. To
ensure the success of the FORCE algorithm, trained RNNs with MSEs
more than meanMSE + SDMSE were analyzed (n = 21 RNNs), where
meanMSE and SDMSE were computed across all trained RNNs.

The trained RNNs were tasked to generate estimated ALM neural
activity in the presence of a distractor lasting 500ms (mean amplitude
=0.25, 0.30 or 0.35, SD =0.025) during the early delay epoch (between
−1.75 s and −1.25 s relative to the delay offset). Each of the trainedRNNs
was presented with 100 trials of left, right and left with distractor trial
types. For each trial, choicemodewascomputed similarly to theneural
activity of the mouse brain but normalized using the maximum of the
right trial choice activity. A left trial with a distractor was considered to
have switched the decision if RNN’s choice activity at the end of the
delay period ended closer to the right trial choice activity in the
absence of the distractor, which was defined as above the halfway
point between the right and left trial choice activity.

To test if the external activity of PPC-ALM or vS1-ALM was
important for the robustness of the choice code, a fraction (20, 40 and
60%) of connections between ALM and 128 external units was ran-
domly ablated, and the frequency of decision switching was com-
puted. This procedure was repeated 100 times for each RNN. To
ensure that the change in frequency of decision switching was due to
the robustnessof the choice code andnotdue to apoorfit to the target
activity, iterations were excluded when the ablations resulted in the
choice activity of distractor trials falling below the left choice activity.
The results remained similar (P < 0.05, one-way ANOVA) without
excluding these iterations. Learning dependency of the robustness of
the choice code was evaluated using reconstructed external activity
obtained from naive sessions (n = 20 RNNs).

Statistics
Statistical tests and error bars are described in relevant sections of the
figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The processed data are available at Zenodo (https://doi.org/10.5281/
zenodo.8031277). Source data are provided with this paper.

Code availability
The code to generate the main figures is available at GitHub
(https://github.com/HiroshiMakinoLaboratory/ChiaEtAl2023Nature
Communications). TheGitHub repository canbe citedwith https://doi.
org/10.5281/zenodo.8275051.
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