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Genomic profiling of hematologic malignancies has augmented our under-
standing of variants that contribute to disease pathogenesis and supported
development of prognostic models that inform disease management in the
clinic. Tumor only sequencing assays are limited in their ability to identify
definitive somatic variants, which can lead to ambiguity in clinical reporting and
patient management. Here, we describe the MSK-IMPACT Heme cohort, a
comprehensive data set of somatic alterations from paired tumor and normal
DNA using a hybridization capture-based next generation sequencing platform.
We highlight patterns of mutations, copy number alterations, and mutation
signatures in a broad set of myeloid and lymphoid neoplasms. We also
demonstrate the power of appropriate matching to make definitive somatic
calls, including in patients who have undergone allogeneic stem cell transplant.
Weexpect that this resourcewill further spur research into thepathobiology and
clinical utility of clinical sequencing for patients with hematologic neoplasms.

Hematologic malignancies are characterized by the presence of com-
plex and dynamic genomic changes that are now increasingly utilized
to classify and define independent disease subsets. With the rapid
adoption of next-generation sequencing technology, a multitude of

recurrent somatic alterations in genes regulating cell growth, DNA
repair, and differentiation have been identified; these contribute not
only to the onset and progression of disease, but also to the devel-
opment of relapse and resistance to therapy. Genetic profiling has
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hence emerged as a key element in the workup of patients with
hematologic malignancies, guiding patient management at various
levels. While mutations in certain genes, such as BRAF, CALR, JAK2 and
MPL, have diagnostic utility inmyeloid neoplasms, for example, others
such as CEBPA, DNMT3A, FLT3, IDH1, IDH2, KIT, NPM1, and TP53 have
prognostic and/or therapeutic implications, particularly when deter-
mining whether a patient should undergo an allogeneic stem cell
transplant1,2. Clinically, as the evidence and the repertoire of molecu-
larly targeted therapies for hematologic malignancies continue to
expand3–5, so do the challenges and opportunities for molecular pro-
filing to inform tumor classification, prognosis, disease monitoring,
and treatment decisions.

Given the growing number of clinically relevant genetic altera-
tions, it hasbecomenecessary todevelophigh throughput approaches
for the genomic characterization of neoplasms in clinical practice.
Unlike the workflows that have successfully provided prospective
tumor molecular profiling of solid cancers at large scale6–8, there are
unique challenges to the evaluation of somatic alterations in hemato-
logic malignancies. One distinct challenge is the lack of easily imple-
mentable sources of patient matched normal controls as comparators
to confidently identify variants as distinctly somatic. The presence of
leukemic contamination in buccal swabs and saliva, poor yield of DNA
from hair follicles or nails and the extensive work required to sort
normal cells or grow fibroblast cultures are all well-known challenges
in clinical practice. Alternatively, unmatched interpretation brings its
own challenges related to the discrimination of somatic and germline
variants, especially given the large proportion of altered genes that do
not have mutational hotspots or are not yet well-described. This pre-
cludes the reliance on publicly available databases for accurate cura-
tion of variants. Secondly, co-existing alterations that influence variant
allele frequencies (VAF) [i.e., copy number alterations, copy neutral
loss of heterozygosity (CN-LOH)] commonly occur, such that this
metric cannot confidently guide the determination of somatic vs
germline origin. These challenges are especially compounded in
patients with a history of allogeneic hematopoietic stem cell (HSC)
transplant, where determinationof somatic vs germline and the source
(host or donor) is often not possible.

Here, we showour experienceaddressing these unique challenges
through the development and clinical experience of MSK-IMPACT
Heme (Integrated Mutation Profiling of Actionable Cancer Targets for
Hematologic malignancies), a comprehensive molecular profiling
platform, utilizing hybridization capture and high coverage next-
generation sequencing of paired tumor and normal tissues.

Results
Prospective clinical sequencing and utilization of different
germline comparators
We developed MSK-IMPACT Heme to target 400 genes which are
known to be involved in the pathobiology of hematologic neoplasms,
are used for diagnosis and prognostication in hematological cancers,
and are targets of experimental or approved therapeutic agents
(Supplementary Table 1). We have previously described the applica-
tion of paired tumor normal sequencing for patients with solid tumor
malignancies to identify definitive somatic mutations of tumor
origin6,9–11. To confidently identify somatic mutations in hematologic
tumor cells, we used either saliva or nail clippings12 as a source of
germline DNA, since genomic material from whole blood may contain
high levels of contaminating tumor cells andwould not be suitable as a
comparator (Fig. 1a, see Methods for details). During the analytical
validation, mutation detection demonstrated 100% sensitivity and
100% specificity for 278 knownmutations in 113 samples across a range
of allele frequencies (range: 0.02–0.97) (Supplementary Fig. 1). Fol-
lowing approval from New York State Department of Health (NYS-
DOH), between December 2016 and August 2019, we sequenced 2383
tumor samples, from 1937 patients, representing 85 different

hematological malignancies (Fig. 1b). Of these 2383 tumor samples,
1602 (67%) were sequenced with matched nail DNA, 664 (28%) with
matched saliva, and 27 (1%)with both. For the 67 (3%) samples, from48
patients, that were sequenced following allogeneic stem cell trans-
plantation, both host and donor DNA derived from non-neoplastic
were sequenced as a comparator (Fig. 1d).

We observed somatic tumor mutations in both saliva and nail at
different levels based on diseasemodality (Fig. 1e). While nail DNAwas
most often purely germline, contaminating tumor DNA was observed
with a VAF > 2% in 117 of 1295 (9%) patients andwas enriched in chronic
myeloid neoplasms, such as a myeloproliferative neoplasms (MPN,
PMF, ET, and PV, 43 out of 170 patients, 25.3%), MDS (25 out of 132
patients, 19%), CMML (5 of 21 patients, 24%), and AML (16 out of 170
patients, 9%) (Fig. 1f). Of the 16AMLcases, themajority hadevidenceof
an antecedent chronic myeloid neoplasms (n = 5) or history to suggest
an evolving myeloid neoplasia, including prior chemotherapy/radia-
tion exposure (n = 3), and/or persistent cytopenia (n = 2). Despite the
presence of contamination, the variants detected in nail samples were
found with high tumor:nail VAF ratios in virtually all cases (median 8;
range 1.5–38), supporting the utility of nail control samples towards
deciphering the germline versus somatic nature of variants detected in
neoplastic patient samples. Somatic variants were rarely identified
with VAFs >=10% in nail samples and were primarily confined to
disease-defining alterations associated with loss of heterozygosity
(LOH) in the tumor sample, such as JAK2 and TET2 in myeloprolifera-
tive neoplasms. These alterations were still easily identified as somatic
variants owing to the retention of high tumor:nail VAF ratios (Fig. 1e).
We detected 59 variants with a VAF > 2% in saliva controls from 31
patients, with the vast majority diagnosed with lymphoid neoplasms
(90%) of T cell origin. Themost frequently identifiedmutationswere in
DNMT3A, TET2, and TP53, which are commonly associated with clonal
hematopoiesis and suggest the presence of a concurrent clonal mye-
loid process. While only a negligible number of patients with myeloid
malignancies (n = 6/1,026) were sequenced with a saliva normal com-
parator, these saliva controls contained high levels of contaminating
tumor DNA, up to 38% VAF (Fig. 1e–g). This finding is consistent with
other studies13, which suggest a limited role for saliva as a germline
control in myeloid neoplasms. (Fig. 1e, g).

Definitive identification of somatic variants
To highlight the importance of sequencing a matched germline com-
parator, we analyzed variant calls made in all targeted exonic regions
of the MSK-IMPACT Heme panel resulting from ‘unmatched’ variant
calling of these tumor samples against a pooled control sample com-
posed of ten diploid blood samples (Supplementary Fig. 2, Supple-
mentary Table 2). This analysis resulted in 48,248 variants that were
properly filtered by the matched tumor-normal analysis pipeline, but
otherwise passed criteria for clinical reporting, namely minimum VAF
(0.05), variant sequence reads (10) and their absence from a panel of
25 curated normal samples, known to be lacking any hematologic
malignancy. Of these, 27,611 (57%) were present in the gnomAD data-
base with any population frequency >0.01, the primary recommen-
dation for population database filtering from the joint consensus of
AMP, ASCO, and CAP14, and therefore annotated as putative germline
variants that could be dropped in a tumor only analysis. Of the
remaining 20,637 putative germline variants, 9,157 (44%) were present
in COSMICv94 database, and identified in 2,271 tumor samples, or 95%
of our sequenced cohort with an average of 4 additional variants per
sample. These represent germline variants that would have been
incorrectly reported as somatic in an unmatched analysis, with
potential adverse clinical implications. For instance, while specific
mutations are not required in the FDA approval for hypomethylating
agents (HMAs) in myeloid neoplasms, their presence has been asso-
ciated with response to HMA treatment, and inaccurate reporting
couldalter choice of therapy15. In this analysiswe identified a total of 54
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germline variants from myeloid neoplasms in genes associated with
response to HMA treatment that could have been misattributed to
being of somatic origin without a matched normal sample: TET2
(n = 47), DNMT3A (n = 4), and TP53 (n = 3) (Supplementary Table 3). In
addition, in cases with equivocal morphology the presence of a variant
is interpreted as evidence of a clonal process and may be used in
support a malignant diagnosis such that inclusion of these germline
variants could lead to erroneous diagnosis, overtreatment or, under
the updated WHO and ICC classifications, could alter the diagnostic
category (Supplementary Table 2). Lastly, the persistence of somatic
alterations is often used to monitor response to therapy, therefore

misattribution of these alterations as somatic could lead to inaccurate
monitoring results in follow-up samples.

Further, to identify prognostically and diagnostically important
small- and large-scale somatic copy number alterations (SCNAs), we
developed an algorithm (FACETS2n), which leverages coverage data
from patient unmatched normal samples and combines with patient
matched allele frequencies to estimate integer level copy number
values as well as allelic imbalances such as copy-neutral loss of het-
erozygosity (CN-LOH) (see Methods). A comparison of results from
high-density single nucleotide polymorphism (SNP) array and MSK-
IMPACT Heme FACETS2n analysis from 64 clinical samples showed
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Date of Birth 01/01/0000 Accession # M20-

Gender Female Specimen Submitted BONE MARROW

Tumor Type AML, NOS Surgical Path. # -

Ref. Physician Dr. Heme MD Account # 000000000

Memorial Hospital For Cancer & Allied Diseases
Molecular Diagnostics Service, Department of Pathology

1275 York Avenue New York, NY, 10065
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Molecular Pathology MSK-IMPACT TM Report

Jane Doe

Fig. 1 | MSK-IMPACT Heme workflow, sample distribution, and somatic muta-
tion distribution in normal tissues. aOverview of theMSK-IMPACTHeme clinical
workflow.Distribution of (b) tumor types profiled byMSK-IMPACTHeme including
(c) patient sex by tumor type, and (d) patient-matchednormal sample typeused for
analysis. (e) Variant allele frequency (VAF) of somatic mutations in tumor and
matched normal tissues. fHeatmap showing the percentage of patients with tumor
somatic mutations observed in matched nail or saliva tissues. The first number in
each cell indicates the number of patients where a tumor mutation is observed in

the normal comparator, and the second number indicates the total number of
patients profiled with the corresponding normal. g Heatmap showing the dis-
tribution of genes, where a somatic mutation is found in the tumor and the rate of
observing the same variant in the matched normal, indicated with the color-scale.
Gray cells indicate that for a given tumor type, either a somatic alteration was not
detected in the tumor in that gene or the matched normal sample type (nail or
saliva, shown above theheatmap)wasnot sequenced. Sourcedata are providedasa
Source Data file.

Article https://doi.org/10.1038/s41467-023-42585-9

Nature Communications |         (2023) 14:6895 3



highly concordant results with 92.9% sensitivity and 100% specificity.
Discordant calls between SNP array and FACETS2n were attributed to
sub-clonal calls made by SNP array and/or tumor fractions below the
sensitivity of FACETS2n (less than 20%) as determined by serial dilu-
tion of a well characterized tumor sample. (Supplementary
Tables 4–6).

Having established saliva and nail tissues as suitable controls for
identifying true somatic SNVs and indels, we sought to further leverage
paired tumor-normal matched sequencing data to assess the allele
specific copy number alterations of this cohort. The identification of
somatic copy number alterations (SCNAs), including gains and losses
in chromosomal arms, has both diagnostic and prognostic implica-
tions for hematologic malignancies16–18. Historically, karyotype, fluor-
escent in-situ hybridization (FISH), and single nucleotide
polymorphism (SNP) arrays have been used to detect clinically rele-
vant SCNAs. The application of the FACETS2n algorithm to these
sequencing data allowed the identification of focal amplifications and
deletions aswell as broad chromosomal arm level gains and losses. We
detected focal copy number alterations in 854 patients (44.1%)
whereas 1146 patients (59.2%) had a chromosome arm level copy
number alteration detected. The identification of SNVs, indels and
SCNAs in a single assay afforded efficiencies in tissuemanagement and
the ability to provide clinically actionable results from a single assay in
a clinical setting.

Use of host and donor normal controls to identify somatic
alterations in the transplant setting
Confident identification of somatic variants in samples from relapsed
patients in the post-transplant setting is a distinct challenge. By
sequencing donor-derived DNA, we were able to confidently identify
and remove donor germline polymorphisms in 47 out of 48 patients
profiled following transplant. For one patient, a TP53 variant identified
post-transplant was also detected in the donor blood sample, but it
was not possible to distinguish the germline vs somatic nature based
on VAF alone in the tumor sample. In a second patient we identified a
putative donor-derived somatic variant, DNMT3A p.R882C, likely of
clonal hematopoiesis origin. To further demonstrate the utility of a
unified analysis using both host and donor normal tissues, we present
the case of a 37-year-old female who underwent allogeneic stem cell
transplantation from an HLA-matched unrelated donor for the treat-
ment of acute myeloid leukemia. A bone marrow biopsy was per-
formedonday 98post-transplant for assessment of suspected relapse,
which was confirmed with 56% myeloblasts. Engraftment assessment
by short tandem repeat analysis (STR) showed a chimeric status with
56% host component (Supplementary Fig. 3A). We performed MSK-
IMPACT Heme on this relapse bone marrow using a pooled control
sample as a comparator and called variants. To distinguish somatic
mutations from germline polymorphisms, all variant calls were geno-
typed in the host nail and donor blood samples. Somatic mutations
were defined as thosewith a variant allele fraction (VAF) of at least0.02
in the bone marrow and not detected in host and donor samples. This
approach allowed us to accurately distinguish all host and donor
polymorphisms from somaticmutations in this chimeric patientwhere
the range in VAF of host and donor-derived polymorphisms over-
lapped that of the true somaticmutations (range = 0.13–0.22) (Fig. 2a).

In addition to removing background polymorphisms, the use of
FACETS2n enables more sophisticated local copy number analysis in
the post-transplant setting. While computational methods have been
developed to inferCN-LOH fromSNParray data, bothwith andwithout
an appropriate matched normal, these methods are impeded by false
positives when using unmatched normals19,20 and have not been opti-
mized to analyze, or are not applicable to, samples from patients fol-
lowing allogeneic stem cell transplant chimeric patients due to the
potential presence of heterozygous SNPs from more than one indivi-
dual and unchanged integer copy number. To deal with these

challenges, we adapted the FACETS21 algorithm to use the intersection
of heterozygous SNPs between baseline host and donor(s) samples to
calculate variant allele log odds ratios with the post-transplant sample
and determine regions of allelic imbalance genome wide (Supple-
mentary Fig. 4). To illustrate the power of this approach, we present
the case of a patient with a history of AMLwith a FLT3 internal tandem
duplication (ITD) mutation who underwent allogeneic stem cell
transplant. FLT3 ITDmutations, such as the 60bp FLT3-ITD detected in
this bone marrow (See Methods), are recurrent somatic alterations in
AML and typically detected using PCR and capillary electrophoresis
assays. (Supplementary Fig. 3B). Using DNA derived from patient nails
and donor blood as baseline sample comparators to the post-
transplant bone marrow biopsy, we were able to detect CN-LOH of
chromosome 13q (Fig. 2b), indicating loss of the wildtype (WT) FLT3
allele. This case illustrates the power of the joint utilization ofmatched
patient and donor normal tissues to differentiate between somatic
alterations and both host and donor-derived common polymorph-
isms, as well as to identify allele-specific copy number changes in
patients after transplant.

Profiling of sorted aberrant cell populations to increase diag-
nostic accuracy
The presence of multiple atypical or neoplastic populations in a sam-
ple is notuncommon inpatientswith hematologicmalignancies. These
may form part of a clonally heterogenous, single neoplastic process or
may represent multiple synchronous neoplastic clones. Clinically, this
difference is often difficult to tease out and patients may remain
under- or mis-diagnosed and mismanaged. The use of flow sorting or
other enrichment practices is a highly valuable approach and may be
successfully performed to enrich very small populations for down-
stream analysis with our hybridization capture assay. To demonstrate
the utility of analyzing flow sorted samples with MSK-IMPACT Heme,
we highlight the case of a 72-year-old male undergoing diagnostic
workup for angioimmunoblastic T cell lymphoma (AITL). Morphologic
and immunophenotypic assessment of a bone marrow sample
demonstrated low-level involvement by AITL (<5% by CD3/PD-1
immunohistochemistry) and the concurrent presence of a clonal
plasma cell population, which accounted for 15% of cells on the aspi-
rate smear and 1.9% of WBC by flow cytometry. Although clonal plas-
macytosis has been reported in AITL22,23, it remained unclear whether
this represented a secondary neoplasm or a reactive expansion.
Abnormal T cells and plasma cells were therefore sorted by flow
cytometry (Supplementary Fig. 5) and submitted for mutational ana-
lysis at the direction of the hematopathologist reviewing the case to
compare the mutation profiles among these compartments. Inde-
pendent molecular profiling confirmed the two populations had dis-
tinct mutational profiles with the T cell population harboring IDH2,
RHOA, DNMT3A, and TET2 mutations24,25, typical of AITL, while the
plasma cells harbored BRCA2, BTG, EPHA5, KMT2D, and SETD5 muta-
tions (Fig. 3a). In addition, the two samples harbored unique copy
number alteration profiles supporting the diagnosis of 2 separate
neoplasms (Fig. 3b, c). Of note, only the DNMT3A and TET2mutations
were identified in the unsorted marrow, suggesting that other muta-
tions in the subpopulationsweremasked as anoverall dilution effect in
the bulk sample. While DNMT3A and TET2 mutations have been
reported to reside in both AITL and clonally related CH26, which may
account for the detection of these alterations in both the enriched
T-cell and unsorted samples27,28, the ability to sort and enrich samples
is a powerful tool to interrogate mixed hematopoietic samples to
assess clonal relatedness and understand the underlying biology of
each population.

Somatic genomic landscape
We identified 12,893 somatic mutations, 4231 gene level and 7566
broad chromosome arm level somatic copy number alterations from
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2290 samples. Implementation of the MSK-IMPACT Heme workflow
enabled the characterization of complex tumor specimens, including
flow-sorted samples and tumor samples from chimeric post-transplant
patients. Somatic genomic alterations including nonsynonymous
SNVs, indels, focal and chromosome arm level copy number altera-
tions were identified in 1885 of 1937 patients (97.3%). A total of 1804
patients (93.1%) had at least one SNV or Indel identified (median = 4,
range 0–191). The most commonly identified SNVs were in KMT2D
(n = 291, 15%), TP53 (n = 288, 15%), TET2 (n = 254, 13%) and CREBBP
(n = 216, 11%). (Fig. 4a) We observed broad, tumor purity corrected
chromosome level alterations more commonly in lymphoid malig-
nancies (69%, n = 932/1357) compared to myeloid neoplasms (37%,
n = 377/1026; p <0.001, Fisher’s exact test). The most prevalent arm-
level SCNAs in lymphoid neoplasms were +7p (n = 157, 12%), +18q

(n = 153, 11%), +12q (n = 148, 11%), del 17p (n = 215, 16%), del 6q (n = 196,
14%), and del 13q (n = 169, 13%). For myeloid neoplasms, trisomy 8
(n = 63, 6%), +21q (n = 27, 3%) and +1q (n = 18, 2%) were the most pre-
valent broad gains, while del 7q (n = 59, 6%), del 17p (n = 42, 4%), del 5q
(n = 40, 4%), and del9p (n = 40, 4%) were the most common broad
chromosomal losses (Fig. 4c). These findings have been well described
inmyeloid neoplasia and, in particular, del5q and del7q are considered
sufficient to render a diagnosis of MDS, even in the absence of mor-
phologic dysplasia17. We further compared biological pathways based
on the genes in these deleted regions. Lymphoid neoplasms were
significantly enriched for deletions in genes of the following pathways:
p53 (18% vs 5%, q (FDR-corrected p-value) =1.15 × 10–15, two-proportion
Z-test), immune modulation (11% vs 0%, q = 9.25 × 10–18), NOTCH sig-
naling (10% vs 2%, q = 1.47 × 10−10), chromatin modifiers (9% vs 5%,
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q = 4.18 × 10−2), DNA damage response (7% vs 0%, q = 9.51 × 10–12), and
NF-kB signaling (6% vs 1%, q = 2.26 × 10−7). The most prevalent focal
copy number alterations in myeloid neoplasms were deletions of TP53
(n = 42, 5%), JAK2 (n = 44, 5%), FLT3 (n = 17, 2%), TET2 (n = 16, 2%), and
EZH2 (n = 16, 2%).

In addition to gene level copy number alterations, FACETS2n
enables accurate assessment of allele-specific copy number state,
including copy neutral loss of heterozygosity (CN-LOH). CN-LOH was
identified in 433 samples (19%) and, similar to global copy number
changes, was more frequently noted in lymphoid neoplasms (n = 294/
1357, 22%) compared to myeloid (n = 139/1026, 14%, p < 0.001, Fisher’s
exact test) including FL (n = 103, 48%),DLBCL (n = 92, 43%), andHGBCL
(n = 6, 35%). In myeloid malignancies, CN-LOH was observed in acute
leukemias including AML (n = 36) and BLL (n = 6), or chronic myeloid
neoplasms including PMF (n = 14, 50%), CMML (n = 9, 35%), and PV
(n = 13, 34%). The most frequent chromosome arm level CN-LOH
events were identified in 6p (n = 81), 9p (n = 65), 16p (n = 50), 9q
(n = 48), 16q (n = 46), 17q (n = 46), 15q (n = 44), 19p (n = 44), 13q
(n = 43), and 17p (n = 41). Interestingly, CN-LOHhas been shown to be a
mechanism of HLA Class 1 loss in cancer and may underlie the 6p
aberrations noted here29.

Through the integration of SNV/Indel variants and SCNAs, sev-
eral genes were identified to harbor one mutated allele in conjunc-
tionwith LOHof thewild type allele. This phenomenonhas beenwell-
documented to occur with TP53 across tumor types, ATM in lym-
phoid neoplasms, JAK2 in myeloproliferative neoplasms, and TET2 in
myeloid neoplasms30–37. We found similar results with these genes
(TP53 n = 153, ATM n = 53, JAK2 n = 33, and TET2 n = 30) as well as
several other genes. In particular, within FL and DLBCL, the following

genes were frequently affected by two hits via mutation and LOH:
TNFRSF14 (n = 76), CREBBP (n = 71), TNFAIP3 (n = 30), and B2M
(n = 29). We also identified genes which harbored multiple somatic
variants in a single neoplastic sample, which may reflect bi-allelic
inactivation,multiple subclones, or aberrant somatic hypermutation.
In myeloid malignancies, multiple alterations were noted in TET2
(n = 142, including 24/43 or 56% of AITL samples) and DNMT3A
(n = 35), while in mantle cell lymphoma, ATM (n = 14, 10%) frequently
harbored multiple mutations. FL and DLBCL showed multiple muta-
tions in the same patient of KMTD (n = 101), CREBBP (n = 39), and
HIST1H1E (n = 20), in addition to aberrant somatic hypermutation of
BCL2 (n = 58), PIM1 (n = 41), and SOCS1 (n = 22). TP53 harbored mul-
tiple mutations across lymphoid and myeloid malignancies
(n = 82) (Fig. 4b).

Mutational signatures
The application of DNA sequencing in conjunction with advances in
mathematical models have aided the discovery and understanding of
the mutational processes that underlie the acquired somatic variants
of cancer genomes38–40. In clinical tumor profiling, the deciphering of
mutational signatures can aid diagnosis, disease prognosis, and
treatment decisions41–44. However, identification of mutational sig-
natures has occurred mostly in solid tumor cohorts, mainly due to the
lower levels of somatic mutation in blood cancers relative to solid
tumors38,45. In theMSK-IMPACTHeme cohort, we calculated the tumor
mutation burden (TMB, see Methods) for all samples (range 0–192.9,
median 3.7 mut/Mb) (Fig. 5a). Relative to myeloid malignancies, lym-
phoid tumors were characterized by a higher TMB (mean 8.7 vs 3.0
mut/Mb, p < 0.001). For the 261 tumors (11%) with elevated tumor
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mutation burden (>12.9 Mut/Mb, see Methods), all synonymous and
nonsynonymous single nucleotide variants were decomposed into
COSMIC v3.1 SBS signatures with the inclusion of recently described
MMRd signatures40,46 (See Methods).

We identified tumors with mutational processes attributable to
activation-induced cytidine deaminase (AID) activity, DNA polymerase
eta, mismatch repair (MMR) deficiency, exposure to ultraviolet light
(UV), chemotherapy treatment, apolipoprotein B editing complex
(APOBEC), and clock-like mutational processes (Fig. 5b). Mature B-cell
neoplasms with elevated tumor mutation burden (n = 231) displayed
dominant mutational signatures associated with genome instability as
mediated by AID and the error-prone DNA polymerase eta in con-
junction with clock-like mutational processes47–49. We observed ultra-
violet light exposure as a dominant signature in cutaneous T-cell
lymphomas (n = 11) in addition toDLBCL tumors from twopatients, for
which clinical histories indicated that these two tumors likely origi-
nated near the skin.

Nine tumors from seven patients exhibited a dominant MMR
signature, including all four relapse BLL tumor samples with elevated
tumormutationburden.Of the nine tumorswithMMR signatures, only
oneDLBCL sample did not have a clear alteration in theMMRpathway.
This case had a lower TMB (20 Mut/Mb) and estimated tumor purity
(28%) relative to other MMR tumors and only 43% of mutations
attributed to MMR signature. Other signatures attributed to the
mutational profile of the tumor were associated with AID, polymerase
eta, and clock-like mutational processes. We also observed somatic
MLH1 alterations in the twoBLL samples with highestmutation burden
concurrent with MSH6 frameshift variants and heterozygous loss of
MSH2/6. In the first sample, we detected CN-LOH of MLH1, and in the
other, a splice variant (c.790+1G>A) previously reported to result in
exon 9–10 skipping and reported as a pathogenic germline variant in
many individuals with a family history of Lynch-syndrome associated
tumors exhibiting microsatellite instability50,51. No somatic PMS2
alterations were detected in tumors with dominant MMR signature.
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Both AML samples with elevated mutation burden had dominant
mutational signatures for chemotherapy that corresponded with their
treatment histories. The two samples with elevated mutation burden
and a dominant APOBEC signature were plasma cell myelomas, which
has been previously shown to be a poor prognostic indicator52. Taken
together, we show the ability of mutation signature analysis from tar-
geted sequencing of hematologic cancers with elevated TMB to iden-
tify underlying mutational processes, with potential to impact patient
management using these data.

Clinical actionability
We also sought to assess the clinical utility of prospective molecular
profiling to guide patient management using OncoKB (http://oncokb.
org), an expert curated precision oncology knowledge base. OncoKB
annotates the oncogenic effect and clinical implications of somatic
molecular alterations and has recently expanded to include alterations
in hematologicmalignancies53,54. Key to OncoKB is its level of evidence
system that annotates molecular variants based on the level of evi-
dence that the alteration is either a predictive biomarker of drug
sensitivity or important in informing diagnosis or prognostication. By
classifying patient samples by the highest level of evidence assigned to
detected variants in that sample, we found that 10.6% of patients

profiled had at least one potential clinically actionable alteration,
defined as carrying≥1 alterations assigned anOncoKB level of evidence
1-3B55. and 71.5% had an oncogenic alteration (Fig. 6a). In tumor only
analysis using a threshold of >0.01 MAF in gnomAD, numerous false-
positive oncogenic calls would have been inappropriately included: an
additional 14 variants in 14 cases (0.6% of cohort) would have been
called as oncogenic and 551 variants in 485 cases (19% of cohort) would
have been called as likely oncogenic. These false positives were
removed using appropriately matched normals. Moreover, 43% of
patients hadat least one alterationwith a diagnostic (Dx) orprognostic
(Px) significance as defined by the OncoKB Dx and Px levels of
evidence54 or SCNAs detected by IMPACT-Heme meeting IPSS-R cri-
teria or prognostic indicators in CLL (del13q, trisomy 12, del11q, and
del17p). Of note, this analysis reflects an underestimate of actionability
at a disease level in this cohort, as the MSK-IMPACT Heme assay does
not include targets for the detection of actionable gene fusions or
rearrangements which may be addressed in future panel design
iterations. Instead, transcript fusion detection is accomplished by a
companion RNA-based NGS assay56.

In MDS, the International Prognostic Scoring System–Revised
(IPSS-R) is the current standard for patient risk stratification, which
relies on clinical parameters of cytopenias, bone marrow blast
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percentage, and cytogenetic features, but does not consider gene
mutations16. The recently described IPSS-Molecular (IPSS-M) model
includes these features in combination with genomic profiling to
improve risk stratification (https://mds-risk-model.com)57. Here, we
applied the IPSS-M model to the 101 patients with MDS for whom we
also had the required clinical and cytogenetic data to stratify each
patient into IPSS-M risk categories. After application of this algorithm,
32.3% (n = 33) of cases were classifiedwith a risk category of VeryHigh,
15.8% (n = 16) as High, 10.9% (n = 11) as Low, and 6.9% (n = 7) as Very
Low. (Fig. 6b). Evaluation of variants using a tumor-only approach and
a threshold of >0.01 MAF in gnomAD would have altered (incorrectly
inflated) the IPSS-M score of 8 patients (8% of MDS cohort) as follows:
‘High’ -> ‘Very High’ (n = 1); ‘Moderate High’ -> ‘High’ (n = 2); ‘Moderate
Low’ -> ‘Moderate High’ (n = 2); ‘Low’ -> ‘Moderate Low’ (n = 2); ‘Very
Low’ -> ‘Low’ (n = 1). Combining somatic copy number alterations
detected by MSK-IMPACT Heme with conventional karyotyping (G-
banding) and FISH allowed for a more sensitive detection of copy
number alterations, mainly due to the detection of CN-LOH via
IMPACT-Heme. Amongst those patients categorized as very high risk,
we identified 14 patients with multiple hits to TP53, two patients with

multiple TP53 variants and 12 patients with a single variant and loss of
heterozygosity. For patients with a single TP53 hit, 36% (n = 4) were
classified as very high risk. We also demonstrate the ability of IMPACT-
Heme todistinguishbetween subgroupsof SF3B1 alteredpatients,with
a single patient identified with mutated SF3B1 and isolated del5q ver-
sus 14 patients identified with SF3B1 alpha (lacking co-mutations in
BCOR, BCORL1, NRAS, RUNX1, SRSF2, or STAG2) and associated with
favorable outcomes57 (Fig. 6c).

Discussion
We, herein, report the experience of a large institution-wide, pro-
spective clinical sequencing effort to guide the diagnosis, prognosis,
therapy selection and future monitoring of patients across the spec-
trum of hematologic malignancies. As we previously demonstrated in
solid tumors6, we now show that this type of enterprise-scale
sequencing of neoplastic and matched normal samples is feasible in
hematologic cancers, including highly complex cases of patients fol-
lowing hematopoietic stem cell transplantation and those with multi-
ple concurrent malignancies. For a comprehensive matched
assessment, turnaround times may be variable and, in this cohort,
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generally ranged from 2-3 weeks. Shorter turnaround times are pos-
sible depending on the timeframe to obtain the tumor-normal pairs,
further highlighting the importance of a multidisciplinary approach
for workflow optimization. While this is a clinically actionable time-
frame in a large proportion of cases, the implementation of alternate
assays for rapid assessment of key genetic alterations may be needed
as a bridging step in select cases. Through this comprehensive effort,
we demonstrate the utility of our approach, going beyond the narrow
assessment of selectedgenes in a tumor only sequencingmodel, which
may be incomplete and ineffective for patient management. As the
costs of sequencing and data analysis continue to fall, we believe that a
similar matched approach will be applied to whole genome sequen-
cing (WGS) for all cancer patients. In this future model, inclusion of
germline controls will be even more critical than in a targeted panel
where the normal variation of the targets is better understood. We
have generated an extensive collection of manually reviewed muta-
tions and SCNAs in 2,384 samples from 1,937 patients in 85 detailed
tumor types. This cross-malignancy dataset will support explorations
of driver alterations across all blood cancers to support discovery of
rare and unanticipated clinically actionable alterations. With continu-
ing growth in the realm of precision therapeutics, this data set will
prove a transformative resource for identifying novel biomarkers to
inform prognosis and predict response and resistance to therapy. This
includes the further definition of putative passengers which may, in
fact, have important functional and cooperative roles in driving can-
cer. In an unmatched model, a very high proportion of private SNP’s
are classified as passengers or VUS’s, necessarily so because they are
not yet part ofwell characterized variants in any of the current publicly
available databases. In contrast to solid tumors where the primary
focus of genomic profiling has been the selection of targeted therapy
for key single genetic drivers, the aims of genomic profiling in hema-
tologic cancers are heavily invested in refining a diagnosis and pro-
viding prognostic information, with therapy selection often supported
by the former. Broad genomic profiling provides a more accurate
diagnosis and risk stratification of individual patients at the time of
diagnosis and may also predict response and/or outcomes after
selected treatments. For instance, TP53 mutations are consistently
associated with shorter survival after allogeneic stem cell transplan-
tation and somatic mutations in epigenetic pathways (TET2, IDH1/2,
WT1, and DNMT3A) may confer increased sensitivity to hypomethy-
lating agents15,58,59. Somatic mutations may require reassessment to
update individual risk after treatment, at the time of significant clinical
changes or before disease-modifying treatments. Our approach to
testing, incorporating routine sequencing of appropriate control
samples, enables the unequivocal identification of somatic genetic
variants in a way that is scalable even in the context of an allogeneic
transplant. It also allows the determination of donor-derived variants
whichmay necessitate monitoring in both the recipient and donor for
subsequent development of disease. Additionally, a separate analysis
of the normal controls would also facilitate the assessment of key
germline events that are relevant to hematologic malignancies.
Although thiswas not includedheredue to a lack of patient consent for
dedicated germline analysis and reporting, this is the topic of a
manuscript in preparation with a more recent data set.

At the same time, as our understanding of the biology of hema-
tologic malignancies has continued to expand, compounds targeting
proteins or signaling pathways disrupted by recurrently mutated
genes have become available, notably inhibitors to EZH2 in follicular
lymphoma and FLT3, IDH1, and IDH2 in AML60,61. One emerging area of
study in hematologic cancer is the study of mutation signatures. In
solid tumors, mutation signatures such as MMR deficiency and TMB
correlate with response to immune checkpoint inhibitors62,63. In con-
trast to solid tumors, hematologic malignancies tend to have lower
levels of somatic mutation6,38, which may account for their relatively
disappointing response to immune checkpoint inhibition64–68. The

unambiguous identification of somatic alterations via the use of a
matched normal affords a more accurate assessment of TMB in these
neoplasms. Our identification of a small subset of patients with high
TMB and/or MMR signatures suggests that these patients could be
biological outliers and should be considered for trials of checkpoint
inhibition based on these signatures.

In addition to the biological insights and potential for therapeutic
targeting afforded by our approach, there is also an opportunity for
improved patient monitoring. There has been increasing interest in
designing assays for monitoring minimal/measurable residual disease
(MRD) following treatment across hematologic malignancies69,70. In
spite of this interest; however, it is unclear if suitable markers are
available for all patients and some guidelines only specify molecular
targets for select patients71. To address this shortcoming, somegroups
propose approaches which include the use of any somatic alteration as
a potential target for monitoring72,73. These approaches highlight the
power of a fully matched sample at initial tumor genotyping and the
pitfalls of inaccurate somatic/germline assignment. By removing
germline variants from reporting through genotyping of candidate
variants in matched normal tissue(s), we are able to better identify
appropriate markers for MRD assessment and prevent false positive
calls. We have demonstrated through our tumor only analysis that
these confounders occur in up to 95% of samples and could thus sig-
nificantly limit the power of an “any variant” MRD approach.

While this study represents a foray into the power of broad-scale
genomic analysis in hematologic malignancy, additional work remains
for the field of clinical genomic analysis to reach its full potential to
improve patient care. Other groups have begun to explore even broader
testing for a subset of hematologic malignancies74, and it is our hope
thatwork such as that presented here and by other groupswill serve as a
precedent for increased genomic profiling in blood cancer. The best
approach to rapidly achieve these goals is through sharing of these
datasets across institutions and establishing broad collaborations. To
this end, we have deposited our full data set into the cBioPortal for
Cancer Genomics (https://www.cbioportal.org/study?id=heme_msk_
impact_2022). With continued testing and data sharing, it is our belief
that broad genomic assessment will support understanding the patho-
biology of, identifying novel drug targets for, and improving non-
invasive monitoring for response in all patients with blood cancer.

Methods
Patient consent and accrual
This study complies with all relevant ethical regulations. Informed
consent for the molecular profiling of patient tumors was obtained
under protocol NCT01775072 “Tumor Genomic Profiling in Patients
Evaluated for Targeted Cancer Therapy.” The protocol was approved
by the Institutional Review Board at Memorial Sloan Kettering Cancer
Center and written consent was obtained from all patients. Following
consent, either archival or new tumor samples were obtained. The
selection of appropriate matched normal was determined after a
review of the patient clinical history and tumor diagnosis. OncoTree
(http://www.cbioportal.org/oncotree/), an institutional tumor classifi-
cation system was used to ensure consistent specimen annotation.
Matched saliva was prioritized for lymphoid neoplasms owing to the
ease of specimen collection and processing and the known paucity of
lymphoid components in the samples. Patient-matched nail tissue is
requested for allmyeloid neoplasmsdue to the high level of neoplastic
myeloid cells in the patient whole blood and saliva. Patients that had
previously undergone hematopoietic stem cell transplantation were
sequenced with pre-transplant host and/or donor normal specimens,
dependent on engraftment status and tissue availability.

Assay design and validation
We designed custom DNA probes targeting 1.08Mb of the human
genome corresponding to all protein-coding exons and the adjacent
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20bp of intronic sequence of 400 key oncogenes and tumor sup-
pressor genes implicated in hematologic malignancies, including all
genes that are targetable by approved and experimental therapies
being investigated in clinical trials at our institution.

To determine the accuracy, precision, and sensitivity of the assay,
we analyzedDNA from 113 unique tumorDNA samples confirmed to be
positive for SNVs and Indels in 50 exons of 20 cancer genes previously
genotyped or sequenced in our clinical laboratory11. These samples
comprised 11 tumor types from blood, bone marrow, and FFPE tissues
(Supplementary Fig. 1A) and had been previously genotyped or
sequenced in our clinical laboratory andwere confirmed to be positive
for mutations by multiple methods. The objective of the accuracy
study was to assess the ability of the assay to detect mutations pre-
viously confirmed by the reference method in the tested sample. All
278 variants, from 52 exons of 20 genes, were successfully detected
with the IMPACT-Heme assay (Supplementary Fig. 3B). In addition,
therewas high reproducibility amongst replicates fromboth inter- and
intra-assay experiments. Samples positive for SNVs and indels were
tested in triplicate in the same sequencing run and on different days in
two additional sequencing pools (Supplementary Fig. 3C). To deter-
mine the analytical sensitivity of the assay, we performed serial dilu-
tions of tumor sampleswith knownvariants and determined theVAF at
eachdilution as output from the variant calling pipeline. The detection
limit for low-frequencyvariantswas approximately 2% (Supplementary
Fig. 3D). The ability to detect somatic copy number alterations was
demonstrated with samples previously characterized by clinically
validated SNP array platforms. MSK-IMPACT Heme was validated and
approved for clinical use by the New York State Department of Health
Clinical Laboratory Evaluation Program. Following approval, MSK-
IMPACT Heme testing was implemented in the clinic to identify
genomic alterations that could potentially inform diagnosis and
treatment decisions.

MSK-IMPACT Heme sequencing and analysis workflow
MSK-IMPACT Heme is a custom hybridization capture-based assay for
the detection of single nucleotide variants (SNVs), small insertions and
deletions (Indels), and somatic copy number alterations. Genomic
DNA extraction was performed on the Chemagic STAR instrument
(Hamilton) from peripheral blood, bone marrow, saliva, or formalin-
fixed, paraffin-embedded (FFPE) tumors and patient-matched normal
samples using the Chemagen magnetic bead technology (Perki-
nElmer). FFPE tissuesweredeparaffinizedusingmineral oil followedby
digestion with the proteinase K enzyme. Extraction of genomic DNA
from nail samples was performed by utilizing both physical and che-
mical digestion techniques. 10–25mg of nail clippings were pulverized
using high-speed agitation and centrifugation with zirconium beads in
a BeadBlaster instrument (Benchmark Scientific, NJ) followed by che-
mical digestion with an adapted protocol using QIAamp® DNA inves-
tigator kit (Qiagen).

DNA samples were normalized to yield 50–250 ng input and
diluted with Tris-EDTA (diluted from 100X solution, Fisher Scientific
Catalog Number BP1338-1) to a total volume of 55μl on the Biomek FX
Laboratory Automation Workstation (Beckman Coulter), before
undergoing shearing on the Covaris instrument. Sequence libraries
were prepared through a series of enzymatic steps, including shearing,
end-repair, A-base addition, ligation of barcoded sequence adaptors,
and low-cycle PCR amplification (Kapa Biosystems). To enable multi-
plexed captures, tumors andmatched normal samples were combined
into pools of approximately 28 libraries, utilizing custom-designed
biotinylated probes (Nimblegen). The captured DNA fragments were
subsequently sequenced on an Illumina HiSeq2500 as paired-end 100-
base pair reads.

An automated data management system monitored the sequen-
cers, initiating the analysis pipeline upon completion of the

sequencing run. Sequence reads were aligned to the human genome
(hg19) using BWA MEM (version 0.7.5a). ABRA (version 0.92) was
employed to realign reads around indels to reduce alignment artifacts,
and the Genome Analysis Toolkit (version 3.3-0) was used to recali-
brate base quality scores. Duplicate reads were identified and marked
for removal, resulting in BAM files that were utilized for variant can-
didate discovery.

We implemented a custom analysis pipeline (see below) to inte-
grate the analysis of any number of normal sampleswith a given tumor
and provide a reliable assessment of somatic alterations, even in post-
transplant chimeric patients. Copy number alterations were assessed
using FACETS2n, an allele-specific copy number analysis pipeline for
next-generation sequencing data, adapted from the FACETS
algorithm21 to allow the incorporation of multiple normal samples for
normalization and determination of allelic imbalance in tumor sam-
ples, even those from chimeric patients. All genomic variants called by
the analysis pipeline were loaded into MPath, an in-house genomic
variant database anduser interface that facilitates themanual reviewof
variants and their assessment for therapeutic, diagnostic, and prog-
nostic implications with OncoKB53. Through the incorporation of var-
iant allele fraction (VAF) in tumor and normal tissues, patient clinical
history, and annotated population frequencies9, we were able to
eliminate variants with low sequencing quality and those of patient
and/or donor germline origin.

SNV/Indel calling
Variant calling was performed in paired sample mode using BAM files
generated for the tumor sample and thepooled normal control sample
processed with each sequencing run. Indel realignment of sequencing
reads was performed with ABRA2 (version 2.13)75 prior to variant call-
ing to resolve soft-flipped bases to insertions and deletions commonly
missed by standard analysis workflows, such as FLT3-ITDs. To the
union of calls made by MuTect (version 1.1.4)76, VarDict (version
1.4.6)77, and Somatic Indel Detector (version 2.3)78, the genotypes from
the patient-matched normal sample(s) were incorporated and sub-
jected to automated filtering to generate a complete list of somatic
mutation calls, including SNVs and short and long indels. By incor-
porating the genotype information for patient and donor DNA of non-
neoplastic origin, we were able to eliminate variant calls attributed to
the germline present in tumor specimens. In detail, all variant calls
require a VAF in the tumor ≥ 5 times that of an unmatched normal, a
minimumof 20 total reads, 5 alt reads, at least 1% VAF, and presence in
less than 20% of our standard normal samples. Furthermore, hotspot
sites required an alt allele depth of 8 reads and a VAF ≥ 2%. Non-
hotspot sites require more stringent secondary filtering of at least 10
alt reads, VAF ≥ 5%, and VAF in the matched normal and tumor ≤ 35%.
Each alteration identified by the pipeline was annotated with The
Ensembl Variant Effect Predictor (VEP)79 to be compliant with Human
Genome Variation Society (HGVS, http://varnomen.hgvs.org) stan-
dards and then manually reviewed to ensure that no false positives
were reported.

Copy number analysis
Genome-wide total and allele-specific copy number states were cal-
culated for all tumor samples using the open-source R package
FACETS2n (v0.3.0). Library-specific coverage biases that stem from
differences between tumor (FFPE, blood, and bone marrow) and nor-
mal (Nails, Saliva, Blood) tissuesmay result in log ratioswith high levels
of noise when calculated with matched normal samples. With
FACETS2n, a single unmatched normal is selected from a pool of high-
quality normal samples previously processed and sequenced with the
MSK IMPACT-Heme assay. These normal samples were selected to
have a representation of males and females from a variety of tissue
types and with different insert size distributions. A single tumor
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sample was compared to multiple control normal samples to derive
distinct log-ratio sets. The normal samplewith the lowest sum-squared
log-ratio served as the best reference diploid genome comparator for
the tumor sample11. The logOR of the variant-allele count in tumor
versus patient-matched normal, an unbiased estimate of allelic copy
ratio, was calculated for all heterozygous SNPs (alt allele freq between
0.25 and 0.75) in the patient-matched normal. For patients sequenced
following allogeneic stem cell transplantation, logOR was limited to
the subset of heterozygous SNPs common to the patient baseline
normal sample and all donor samples. For the calculation of integer
copy numbers, we utilized a two-pass implementation whereby a low-
sensitivity run (cval = 150) first determines copy number log-ratio
corresponding to diploidy. The copy number state of individual genes
was determined by a run with higher sensitivity for focal events (cval=
75). The following gene level SCNAs were retained for analysis:
amplifications (integer copy number ≥ 5 without whole genome dou-
bling or > 6withwhole genomedoubling), homozygous deletions, and
heterozygous losses that co-occurred with an SNV or Indel. Broad
chromosome arm level copy number gains (integer copy number ≥ 3
without whole genome doubling or > 5 with whole genome doubling)
and losses were retained for analysis if they comprised at least 50% of
the chromosome arm.

We evaluated the accuracy, sensitivity and reproducibility ofMSK-
IMPACT Heme in detecting somatic copy number alterations in a
validation study of 11 select and clinically relevant regions: chromo-
somes 3q, 5q, 7q, 8, 11q, 12, 13q, 17p,19, 20q, and the single gene locus
TP53. A total of 64 clinical samples were evaluated by both IMPACT-
Heme and snp-array, using the results of snp-array as the set of true
positive copy number alterations. In these clinical samples, somatic
copy number alterations were detected with 92.9% sensitivity and
100% specificity. Three sampleswith copy number alterations from the
validation set were studied over three different sequencing runs for
inter-assay reproducibility in addition to being studied in triplicate in
the same run for the intra-assay(precision). Concordant results were
obtained for all cases in both intra- and inter-assay reproducibility
studies. The sensitivity of FACETS2n was evaluated using one FFPE
sample from a DLBCL patient with known 12p amplification and 13q
loss. Five serial dilutions usingDNA frompatient-matchedFFPEnormal
tissue were prepared (Original, 50%, 25%, 12.5% and 6.25%).

TMB calculation
Tumor mutation burden was calculated as the number of nonsynon-
ymous and synonymous SNVs and Indels per megabase of genome
targeted by the MSK-IMPACT Heme panel (1.0837Mb). We used the
distribution of TMB across all tumors to identify highly mutated cases
with the formula: median cohort TMB+ 2*IQR. Those tumors with a
TMB> 12.9 Mut/Mb were classified as TMB High and analyzed for
mutational signatures.

Mutational signatures
Mutational signatures were assessed for the 261 tumor samples with
elevated mutation rates using all synonymous and nonsynonymous
SNVs and SigProfiler software38,40. In order to limit inter-signature
bleeding that stems from difficult to decipher flat signatures40,80 and
elucidate themutationalprocesses that contribute to individual cancer
genomes, we first performed de novo extraction of single base sub-
stitution (SBS) signatures on both individual tumor types and groups
of tumors originating from either lymphoid or myeloid lineages. Dis-
covered signatures were decomposed into COSMIC v3.1 SBS sig-
natures with the inclusion of recently described MMRd signatures46.
We then estimated the contribution of each signature to individual
cancer genomes using a nonlinear convex optimization programming
solver, SigProfilerAssignment. The set of known signatures applied to
each genome was determined from those identified from de novo
extraction in the same tumor type or cellular lineage40.

IPSS-M
Clinical parameters of percentage bone marrow blasts, hemoglobin
levels, and platelet counts were curated for 101 patients with an MDS
diagnosis. We then compiled the somatic genomic alterations (SNVs,
Indels, SCNAs) and pathologist-reviewed assessment of cytogenetic
results to derive IPSS-R cytogenetic risk categories, identify complex
karyotype, and encode the gene and chromosome level binary
variables as input to the IPSS-M algorithm to derive the IPSS-M risk
score57.

Detection of FLT3-ITDs
De novo detection of FLT3 internal tandem duplications (ITDs) using
NGS data was performed by adding an indel realignment step to
aligned BAM files using ABRA275 which incorporates high-quality soft-
clipped reads into the generation of contigs that represent variation
from the reference genome. ITDs that were resolved via indel rea-
lignment were then identified as part of the somatic variant calling
pipeline with either the SomaticIndelDetctor and/or VarDict
algorithms77,78.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data for the MSK-IMPACT analysis is protected
and cannot be broadly available due to privacy laws; patient consent to
deposit raw sequencing datawas not obtained. All results derived from
the analysis of clinical sequencing data (mutations, copy number
alterations, and structural variants) are publicly available. Analysis of
germline alterations was not performed due to lack of patient consent
for dedicated germline analysis and reporting. The minimal clinical
and somatic alteration data (including mutations and allele specific
copy number calls) necessary to replicate the findings in the article are
publicly available on cBioPortal: https://www.cbioportal.org/study?id=
heme_msk_impact_2022 and have been deposited to https://github.
com/mskcc/MSK_IMPACT_HEME. Source data are provided with
this paper.

Code availability
Analysis code for in-house developed pipeline modules is made
available on Github. Facets2n: https://github.com/mskcc/facets2n81.
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