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Emulator-based Bayesian inference on
non-proportional scintillation models by
compton-edge probing

David Breitenmoser 1,2 , Francesco Cerutti3, Gernot Butterweck1,
Malgorzata Magdalena Kasprzak 1 & Sabine Mayer 1

Scintillator detector response modeling has become an essential tool in var-
ious research fields such as particle and nuclear physics, astronomy or geo-
physics. Yet, due to the system complexity and the requirement for accurate
electron response measurements, model inference and calibration remains a
challenge. Here, we propose Compton edge probing to perform non-
proportional scintillation model (NPSM) inference for inorganic scintillators.
We use laboratory-based gamma-ray radiation measurements with a NaI(Tl)
scintillator to perform Bayesian inference on a NPSM. Further, we apply
machine learning to emulate the detector response obtained by Monte Carlo
simulations. We show that the proposedmethodology successfully constrains
the NPSM and hereby quantifies the intrinsic resolution. Moreover, using the
trained emulators, we can predict the spectral Compton edge dynamics as a
function of the parameterized scintillation mechanisms. The presented fra-
mework offers a simple way to infer NPSMs for any inorganic scintillator
without the need for additional electron response measurements.

Inorganic scintillation detectors are a prevalent tool to measure
ionizing radiation in various research fields such as nuclear and parti-
cle physics, astronomy, or planetary science1–7. Other applications
include radiation protection, medical diagnostics, and homeland
security8,9. In almost all applications, the measured signal needs to be
deconvolved to infer the properties of interest, e.g. the flux from a
gamma-ray burst or the elemental composition on a comet. This
deconvolution requires accurate detector response models and con-
sequently detailed knowledge about the scintillation mechanisms
themselves.

Detector response models can either be derived empirically by
radiation measurements or numerically using Monte Carlo
simulations10. Regarding the numerical derivation, the most common
approach to simulate the detector response is to use a proportional
energy deposition model. In this model, the scintillation light yield is
assumed to be proportional to the deposited energy6,11. Consequently,

the detector response characterization is reduced to a comparably
simple energy deposition problem, which can be solved by any stan-
dard multi-purpose Monte Carlo code.

However, thanks to thedevelopmentof theComptoncoincidence
measurement technique12, recent studies could conclusively confirm
the conjecture reported in earlier investigations13–15 that not only
organic but also inorganic scintillators exhibit a pronounced non-
proportional relation between the deposited energy and the scintilla-
tion light yield16–18. The origin of this scintillation non-proportionality
seems to be linked to the intrinsic scintillation response to electrons
and the different mechanisms associated with the creation and trans-
port of excitation carriers in the scintillation crystal19,20. Nonetheless,
our understanding of these phenomena is still far from complete and,
thanks to the advent of advanced experimental techniques and the
development of new scintillator materials, interest in scintillation
physics has steadily grown over the past years16–24.
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Regarding the detector response modeling, the scintillation non-
proportionality has twomajor implications. First, it leads to an intrinsic
spectral broadening and thereby sets a lower limit on the spectral
resolution achievable with the corresponding scintillator1,25–28. Second,
various studies stated the conjecture that specific spectral features
such as the Compton edges are shifted and distorted as a result of the
non-proportional scintillation response1,14,15,29,30. Furthermore, addi-
tional studies revealed a complex dependence of the scintillation non-
proportionality on various scintillator properties including the acti-
vator concentration, the temperature, and the crystal size, among
others1,21,22,25,28,31–34.

Based on these findings, we conclude that non-proportional
scintillation models (NPSM) should be included in the detector
response simulations to prevent systematic errors in the predicted
spectral response. Non-proportional effects are known to increase
with increasing crystal size25,28,31. NPSMs are therefore particularly
relevant for scintillators with large crystal volumes, e.g. in dark matter
research, total absorption spectroscopy or remote sensing1–7,30. In
addition, especially due to the sensitivity of the activator concentra-
tion and impurities34, NPSMs need to be calibrated for each individual
detector system. In case the scintillator properties change after
detector deployment, e.g. due to radiation damage or temperature
changes in space, this calibration should be repeated regularly.

Currently, K-dip spectroscopy, the already mentioned Compton
coincidence technique as well as electron beammeasurements are the
only available methods to calibrate NPSM12,35–38. Moreover, only a very
limited number of laboratories are able to perform these measure-
ments. Therefore, thesemethods are not readily available for extensive
calibration campaigns of custom detectors, e.g. large satellite probes
or scintillators for dark matter research. Additionally, they cannot be
applied during detector deployment, which, as discussed above,might
be important for certain applications such as deep space missions.

In this study, we propose Compton edge probing together with
Bayesian inversion to infer and calibrate NPSMs. This approach is
motivated by the already mentioned conjecture, that the Compton
edge shifts as a result of the scintillation non-proportionality1,14,15,29,30.
We obtain the spectral Compton edge data by gamma-ray spectro-
metry using a NaI(Tl) scintillator and calibrated radionuclide sources
for photon irradiations under laboratory conditions. We apply Baye-
sian inversion with state-of-the-art Markov-Chain Monte Carlo
algorithms39 to perform the NPSM inference with the gamma-ray
spectral data. In contrast to traditional frequentist methods or simple
data-driven optimization algorithms, a Bayesian approach offers a
natural, consistent, and transparent way of combining prior informa-
tion with empirical data to infer scientific model properties using a
solid decision theory framework40–42. We simulate the detector
response using a multi-purpose Monte Carlo radiation transport code
in combination with parallel computing. To meet the required eva-
luation speed for the Bayesian inversion solver, we use machine
learning trained polynomial chaos expansion (PCE) surrogate models
to emulate the simulateddetector response43. This approachoffersnot
only a simple way to calibrate NPSMs with minimal effort—especially
during the detector deployment—but it also allows additional insights
into the non-proportional scintillation physics without the need for
additional electron response measurements.

Results
Compton edge probing
To obtain the spectral Compton edge data, we performed gamma-
ray spectrometry under controlled laboratory conditions30. The
adopted spectrometer consisted of four 10.2 cm× 10.2 cm× 40.6 cm
prismatic NaI(Tl) scintillation crystals with individual read-out. We
used seven different calibrated radionuclide sources
(57Co, 60Co, 88Y, 109Cd, 133Ba, 137Cs, and 152Eu) for the radiation mea-
surements. However, only 60Co, 88Y, and 137Cs could be used for

Compton edge probing. For the remaining sources, the Compton
edges were obscured by additional full energy peaks (FEPs) and
associated Compton continua. We used those remaining sources for
energy and resolution calibrations. A schematic depiction of the
measurement setup is shown in Fig. 1a.

Forward modeling
We simulated the detector response for the performed radiation
measurements using the multi-purpose Monte Carlo code FLUKA44.
Theperformed simulations feature fully coupledphoton, electron, and
positron radiation transport for our source-detector configuration
with a lower kinetic energy threshold of 1 keV. As shown in Fig. 1a, the
applied mass model includes all relevant detector and source com-
ponents in high detail. On the other hand, the laboratory room toge-
ther with additional instruments and equipment are modeled in less
detail. For this simplification, care was taken to preserve the overall
opacity as well as the mass density.

We used amechanisticmodel recently published by Payne and his
co-workers to include the non-proportional scintillation physics in our
simulations17,18,22. In general, the sequence of scintillation processes in
inorganic scintillators can be qualitatively divided into five steps20,45,46.
After interaction of the ionizing radiation with the scintillator, the
emitted high-energetic electrons are relaxed by the production of
numerous secondary electrons, phonons, and plasmons. The low
energetic secondary electrons are then thermalized by a phonon
coupling mechanism producing excitation carriers, i.e. electron–hole
pairs (e−/h) and excitons. These excitation carriers are then transferred
to the luminescent centers within the scintillation crystal, where they
recombine and induce radiative relaxation of the excited luminescent
centers producing scintillation photons. The first two processes, i.e.
the interaction of the ionizing radiation with the scintillator as well as
the e−–e− relaxation, are explicitly simulated by the Monte Carlo code.
The creation andmigration of the excitation carriers on the other hand
is accounted for by Payne’s mechanistic model.

In this mechanistic model it is assumed that only excitons are
capable of radiatively recombine at the luminescent centers. Conse-
quently, e−/h pairs need to convert to excitons by the classic Onsager
mechanism47 in order to contribute to the scintillation emission. In
addition, creation and migration of the excitation carriers compete
with several quenching phenomena. The quenching mechanisms
considered in Payne’s model are the trapping of e−/h pairs at point
defects20,22 as well as exciton–exciton annihilation described by the
Birks mechanism48.

Using this NPSM, the non-proportional light yield L as a function
of the differential energy loss dE per differential path length ds for
electrons is given by22

L dE=ds
� � / 1� ηe=h exp � dE=ds

dE=dsjOns exp � dE=dsjTrap
dE=ds

� �h i

1 + dE=ds
dE=dsjBirks

ð1Þ

where ηe/h, dE/ds∣Ons, dE/ds∣Trap and dE/ds∣Birks are the model para-
meters characterizing the fraction of excitation carriers, which are
created as e−/h pairs at the thermalization phase, as well as the stop-
ping power related to the Onsager, trapping and Birks mechanisms,
respectively. As a result, all theparameters of theNPSMreflect physical
processes after thermalization of the secondary particles, i.e. genera-
tion and transport of excitation carriers. Consequently, these pro-
cesses and thereby also the corresponding parameters can be
regarded as statistically independent with respect to the energy of the
secondary particles. Fromaphysics perspective, it is important to note
that the Onsager and trapping mechanisms are coupled in a nonlinear
way, whereas the Birks mechanism can be regarded as independent of
the other mechanisms. As discussed in detail by Vasil’ev and Gektin20,
we may therefore interpret the trapping of e−/h pairs as a screening
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mechanism on the Onsager term in Eq. (1). A scheme highlighting the
individual scintillation processes included in the present study is pre-
sented in the Fig. 1c–e.

Bayesian inversion
We applied Bayesian inversion using Markov Chain Monte Carlo39 to
infer theNPSMparameters as well as to predict spectral and resolution
scintillator properties from the measured Compton edge spectra and
our forwardmodel. To account for the sensitivity of the NPSMs on the
activator concentration and other scintillation crystal-specific prop-
erties, we developed two separate inversion pipelines. In the first
approach, Bayesian inversion is carried out separately for each of the
four crystals, using their individual pulse-height spectra. In the second
pipeline, we consider all four scintillation crystals as one integrated
scintillator andperform theBayesian inversion on the combinedpulse-
height spectra (sum channel). Subsequently, we will refer to these two
approaches as the single and sum mode inversion pipelines. For both
pipelines, we performed the Bayesian inversion on the 60Co (activity
A = 3.08(5) × 105 Bq) spectral dataset30 leaving the remaining mea-
surements for validation. 60Co possesses two main photon emission
lines at 1173.228(3) keV and 1332.492(4) keV with corresponding
Compton edges according to the Compton scattering theory (Meth-
ods) at 963.419(3) keV and 1118.101(4) keV, respectively. However, in

this study, wewill focus on the lower Compton edge at 963.419(3) keV,
because the upper edge is heavily obscured by the FEP at 1173.228(3)
keV. Furthermore, as suggested by previous investigators18,22, we fixed
the Onsager-related stopping power parameter dE/ds∣Ons to
36.4MeV cm−1 in both pipelines.

Because the high-fidelity radiation transport simulations descri-
bed in the previous section are computationally intense, we emulated
the detector response as a function of the NPSM parameters using a
machine learning trained vector-valued PCE surrogate model43. The
surrogate model has excellent evaluation speed Oð10�4 sÞ on a local
workstation compared to Oð103 sÞ required for a single Monte Carlo
simulation with sufficient precision on a computer cluster. Corre-
spondingly, the surrogate model provides a significant acceleration of
our Bayesian inversion computations, reducing their processing time
by a factor of 107. Considering theminimumnumber of forwardmodel
evaluations needed for a single Markov chain (Methods), the evalua-
tion time can be reduced from Oð102 dÞ to Oð1 sÞ.

Following the sum mode inversion pipeline, we present the
solution to our inversion problem as a multivariate posterior dis-
tribution estimate in Fig. 2. We find a unimodal solution with a
maximum a posteriori (MAP) probability estimate given by
ηe=h = 5:96

+0:10
�0:17 × 10�1, dE=dsjTrap = 1:46+0:03

�0:31 × 101 MeV cm�1 and
dE=dsjBirks = 3:22+0:46

�0:44 × 102 MeV cm�1, where we used the central
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Fig. 1 | Compton edge probing to perform Bayesian inference on non-
proportional scintillation models. a Monte Carlo mass model of the experi-
mental setup to perform Compton edge probing with an inorganic gamma-ray
scintillation spectrometer under laboratory conditions. The spectrometer consists
of four individual 10.2 cm× 10.2 cm× 40.6 cm prismatic NaI(Tl) scintillation crys-
tals with the associated photomultiplier tubes (PMT), the electronic components,
e.g. the multi-channel analyzers (MCA), embedded in a thermal-insulating and
vibration-damping polyethylene (PE) foam protected by a rugged aluminum
detector box. We inserted radiation sources consisting of a radionuclide carrying
ion exchange sphere (diameter 1 mm) embedded in a 25 mm×3 mm solid plastic
disc into a custom lowabsorption source holdermade out of a polylactide polymer
(PLA) and placed this holder on a tripod in a fixed distance of 1 m to the detector
front on the central detector x-axis. Themassmodelfigures were created using the

graphical interface FLAIR63. For better visibility and interpretability, we applied
false colors. b Overview of the Bayesian inference framework highlighting the
gamma-ray spectrometrybasedComptonedgeprobingmeasurements, theMonte
Carlo simulations using the multi-purpose code FLUKA44 combined with the
machine learning trained polynomial chaos expansion (PCE) emulator models
supported by principal component analysis (PCA) aswell as the Bayesian inference
by Markov Chain Monte Carlo (MCMC) itself using UQLab72. c Radiation transport
mechanisms inside the inorganic scintillation crystal, which is surrounded by a thin
reflector layer and a rugged aluminum crystal casing. d Schematic representation
of an inorganic scintillation crystal lattice including the activator atoms and point
defects. e Mechanistic depictions of the various scintillation and quenching
pathways for electron-hole pairs (e−/h) as well as excitons within the inorganic
scintillation crystal lattice. Adapted from ref. 30.
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credible intervals with a probability mass of 95% to estimate the
associated uncertainties. Combining the individual multivariate
posterior distribution estimates from the single mode inversion
pipeline, we obtain statistically consistent estimates, i.e.
ηe=h = 5:87

+0:24
�0:20 × 10

�1, dE=dsjTrap = 1:41+0:17�0:15 × 10
1 MeV cm�1

and dE=dsjBirks = 3:17+ 1:11
�0:82 × 10

2 MeV cm�1.
It is worth noting that, considering the uncertainty estimates, we

observe only minor differences between the different posterior point
estimators for both inversion pipelines (Fig. 2 and Supplementary
Figs. S11–S14). However, we find statistically significant differences
between the posterior point estimators for the individual scintillation
crystals (Supplementary Table S2). Furthermore, our results significantly
differ from best-estimate literature values, which we obtained using
linear temperature interpolation on a dataset provided by Payne and his
co-workers, i.e. ηe/h = 4.53 × 10

−1, dE/ds∣Trap = 1.2 × 101MeV cm−1 and dE/
ds∣Birks = 1.853× 102MeVcm−1 for an ambient temperature of 18.8 °C22.

Compton edge predictions
We can use the trained PCE surrogate models to predict the spectral
Compton edge as a function of the NPSM parameters and conse-
quently the parameterized scintillation and quenching phenomena. In
Fig. 3a–c, we present the spectral responseof the PCE surrogatemodel

for the sum channel as a function of the Birks-related stopping power
parameter dE/ds∣Birks, the free carrier fraction ηe/h and the trapping-
related stopping power parameter dE/ds∣Trap. We observe a shift of the
Compton edge toward smaller spectral energies for an increase in dE/
ds∣Birks and ηe/h as well as a decrease in dE/ds∣Trap.

We leveraged the analytical relation between the polynomial
chaos expansion and theHoeffding-Sobol decomposition49 to perform
aglobal sensitivity analysis of theNPSM.Using the summode inversion
pipeline, we present total Sobol indices ST for the model parameters
dE/ds∣Birks, ηe/h and dE/ds∣Trap in Fig. 3e. We find that the total Sobol
indices can be ordered as ST(ηe/h) > ST(dE/ds∣Birks) > ST(dE/ds∣Trap) over
the entire spectral Compton edge domain indicating a corresponding
contribution to the total model response variance. We get consistent
results for a Hoeffding-Sobol sensitivity analysis of the individual
scintillation crystals (Supplementary Fig. S17).

In addition, we can also predict the spectral Compton edge using
the prior and posterior predictive density estimates obtained by the
two inversion pipelines. A comparison of these densities for the sum
mode inversion pipeline indicates that our methodology successfully
constrains the adopted NPSM (Fig. 3d). However, we find also some
model discrepancies, especially around the Compton continuum at
the very low end of the investigated spectral range (< 920 keV). We get
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Fig. 2 | Posterior distribution estimate. As a result of the sum mode inversion
pipeline, the off-diagonal subfigures present samples from the multivariate pos-
terior marginals given the experimental dataset y for the model parameters
x :¼ ðdE=dsjBirks,ηe=h, dE=dsjTrapÞ>. We colored these samples by the correspond-
ing normalized multivariate log-likelihood function values logπ0 yjxð Þ. In addition,
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in the corresponding off-diagonal subfigures. The subfigures on the diagonal axis
highlight the normalized univariate marginal likelihood π0 xjyð Þ for the model
parameter x. Both, the univariate and multivariate likelihood values, were nor-
malized by their corresponding globalmaxima.Derived posterior point estimators,
i.e. themaximum a posteriori (MAP) probability estimate xMAP, the posterior mean
xMean and the posterior median xMedian, are indicated as well in each subfigure.
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consistent results using the single-mode inversion pipeline (Supple-
mentary Fig. S15). Furthermore, by comparing the posterior Compton
edge predictions for the sum channel, we find no statistically sig-
nificant difference between the two inversion pipelines (Supplemen-
tary Fig. S16). From amodeling perspective, it is interesting to add that
we observe no significant difference for Compton edge predictions
using the various point estimators discussed in the previous section
for both inversion pipelines.

Intrinsic resolution
As already mentioned in the introduction, the scintillation non-
proportionality not only distorts the spectral features in the pulse-
height spectra but deteriorates also the spectral resolution of a scin-
tillator detector. This contribution to the overall resolution due to the
scintillation non-proportionality will be referred to as intrinsic reso-
lution σintr in accordance with previous studies25–28,50–52. The intrinsic
resolution is of great importance for two key reasons.

Fig. 3 | Compton edge and intrinsic resolution predictions. a–c Compton edge
dynamics characterized by the trained polynomial chaos expansion emulator as a
function of the individual non-proportional scintillation model parameters, i.e. the
Birks related stopping power parameter dE/ds∣Birks, the free carrier fraction ηe/h as
well as the trapping related stopping power parameter dE/ds∣Trap, for the sum
channel and the corresponding prior range. We fixed the remaining parameters at
the corresponding maximum a posteriori (MAP) probability estimate values xMAP.
The experimental data y from the measurement with a 60Co source (activity
A = 3.08(5) × 105 Bq) is indicated as well30. d In this graph, we show the prior and
posterior predictive distributions using the 99% central credible interval obtained
by the summode inversion pipeline. In addition, the experimental data y together

with the derived posterior predictions using point estimators, i.e. the MAP prob-
ability estimate xMAP, the posterior mean xMean and the posterior median xMedian,
are indicated. e We show the total Sobol indices ST computed by the polynomial
chaos expansion emulator49 as a function of the spectral energy for the individual
model parameters on the sum channel. f This graphpresents the total (σtot) and the
intrinsic (σintr) spectral resolution for the adopteddetector systemcharacterizedby
the standard deviation σ as a function of the photon energy Eγ. The empirical
resolution data as well as the corresponding resolution model were presented
already elsewhere30. For the zoomed inset with Eγ < 110 keV, the K-absorption edge
for iodine K[I] is highlighted55. For all graphs presented in this figure, uncertainties
are provided as 1 standard deviation (SD) values (coverage factor k = 1).
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First, it sets a fundamental lower limit on the achievable spectral
resolution for a given scintillator material, making it a crucial factor in
the development of new scintillators. As an example, in 1991, the
scintillator Lu2SiO5 (LSO) was developed as an alternative to other
available options at that time, such as Bi4Ge3O12 (BGO). However, the
performance of LSO led to considerable confusion within the research
community as LSO exhibits a light yield more than four times greater
than that of BGO, yet their energy resolutions are comparable16. Con-
sequently, the energy resolution for LSO was not dominated by
counting statistics but some other factor. Thanks to the development
of the Compton coincidence measurement technique in 199412, sub-
sequent experimental studies have conclusively shown that the pro-
nounced scintillation non-proportionality of the LSO scintillator was
indeed the underlying factor responsible for the observed resolution
degradation28,53. This example showcases the need for a better
understanding and prediction of the intrinsic resolution in the devel-
opment of new scintillators54.

Second, from a more technical perspective, the intrinsic resolu-
tion is a key component in thepostprocessingpipeline forMonteCarlo
simulations including NPSMs (Methods). In the forward model dis-
cussed before, the transport of scintillation photons, signal amplifi-
cation by the photomultiplier tube and subsequent signal
postprocessing in the multichannel analyzer are not included. As a
result, to account for the additional resolution degradation by these
processes, weneed toperforma spectral broadeningoperation using a
dedicated energy resolution model based on the measured total
energy resolution as well as the intrinsic contribution1.

Since our forward model explicitly accounts for the non-
proportional scintillation physics by adopting an NPSM, we can use
this numerical tool not only to predict pulse-height spectra but also to
characterize the intrinsic resolution. We adopted a set of multiple
monoenergetic Monte Carlo simulations to quantify the intrinsic
resolution for different photon energies (Methods). Using this dataset,
we then trained a Gaussian process (GP) regression model to predict
the intrinsic resolution characterized by the standard deviation σ for a
given photon energy Eγ. The resulting GP model predictions together
with the intrinsic data are highlighted in Fig. 3f. In the same graph, we
include also the empirical model to describe the overall energy reso-
lution σtot as well as the corresponding empirical dataset30.

Comparing the intrinsic and overall spectral resolution, wefind an
almost constant ratio σ2

intr=σ
2
tot ≈0:35 for Eγ ≳ 1500 keV. Around

Eγ ≈ 440 keV, there is a pronounced peak with σ2
intr=σ

2
tot ≈0:42 and for

Eγ≲ 440 keV, we observe a significant decrease in σ2
intr=σ

2
tot with

decreasing photon energy Eγ. Moreover, we find a more complex
behavior in σintr for Eγ≲ 110 keV. For 28 keV≲ Eγ≲ 60 keV, the
K-absorption edge for iodine K[I] at Eγ = 33.1694(4) keV55 alters the
resolution significantly. On the other hand, at even smaller photon
energies, there is again a pronounced increase in σintr with decreasing
energy compared to the mere moderate increase for
60 keV≲ Eγ≲ 110 keV.

Bayesian calibrated NPSM simulations
In addition to the insights into the Compton edge dynamics as well as
the intrinsic resolution, the Bayesian inferred NPSM in combination
with our forward model offers also the possibility to predict the full
spectral detector response for new radiation sources accounting for
non-proportional scintillation effects over the entire spectral range of
our detector system. We used the 88Y (A = 6.83(14) × 105 Bq) and 137Cs
(A = 2.266(34) × 105 Bq) radiation measurements to validate our cali-
brated NPSM. For the Monte Carlo simulations, we applied the pos-
terior point estimators xMAP obtained by the sum mode inversion
pipeline in combination with the intrinsic and total resolution models
discussed in the previous sections.

In Fig. 4, we present the measured and simulated spectral detec-
tor response for 88Y and 137Cs togetherwith 60Co, whoseCompton edge

domain was used to perform the Bayesian inversion. For the simula-
tions, we adopted a standard proportional scintillation model as well
as the Bayesian inferred NPSM presented in this study. In line with the
Compton scattering theory (Supplementary Methods S1.4), we find an
enhanced shift of the Compton edge toward smaller spectral energies
as the photon energy increases. For all three measurements, we
observe a significant improvement in theComptonedgeprediction for
the NPSM simulations compared to the standard proportional
approach. However, there are still somediscrepancies at the lower end
of the Compton edge domain. Moreover, we find also some deviations
between the Compton edge and the FEP for 88Y and 137Cs. It is impor-
tant to note that these discrepancies are smaller or at least of similar
size for the NPSM simulations compared to the proportional approach
indicating that the former performs statistically significantly better
over the entire spectral domain. Additional validation results for
57Co, 109Cd, 133Ba, and 152Eu together with a detailed uncertainty analysis
for each source are attached in the Supplementary Information File for
this study (Supplementary Figs. S18–S25).

Discussion
Here, we demonstrated that Compton edge probing combined with
Monte Carlo simulations and Bayesian inversion can successfully infer
NPSMs for NaI(Tl) inorganic scintillators. A detailed Bayesian data
analysis revealed no significant differences between standard poster-
ior point estimators and the related spectral detector response pre-
dictions for both inversion pipelines. Consequently, the Bayesian
inversion results indicate that our methodology successfully con-
strained the NPSM parameters to a unique solution. However, we
found statistically significant differences between our results and best-
estimate literature values aswell as between the individual scintillation
crystals themselves. These results corroborate the experimental find-
ings of Hull and his co-workers34 and underscore the criticality of the
NPSM calibration for every individual detector system.

Various studies reported a distortion of the Compton edge in
gamma-ray spectrometry with inorganic scintillators1,14,15,29,30. In this
study, we presented conclusive evidence that this shift is, at least
partly, the result of the scintillation non-proportionality. Moreover,
using our numerical models, we can predict the Compton edge shift as
a function of the NPSM parameters. We observed a Compton edge
shift toward smaller spectral energies for an increase in dE/ds∣Birks and
ηe/h as well as a decrease in dE/ds∣Trap. These results imply that an
enhanced scintillation non-proportionality promotes a Compton edge
shift toward smaller spectral energies. In line with these observations,
the non-proportionality is enhanced by a large e−/h fraction, an
increased Birks mechanism as well as a reduction in the e−/h trapping
rate20,24,46.

Further, we quantified the sensitivity of the NPSM on the indivi-
dual NPSM parameters using a PCE-based Sobol decomposition
approach. The sensitivity results indicate that ηe/h has the highest
sensitivity on the Compton edge, followed by dE/ds ∣Birks and dE/
ds ∣Trap. However, previous studies showed a pronounced dependence
of dE/ds ∣Trap on the ambient temperature22,33. In addition, we expect
also a substantial change of the crystal structure by radiation damage,
i.e. the creation of point defects in harsh radiation environments10,56.
Therefore, the obtained sensitivity results should be interpreted with
care. dE/ds ∣Trap might be of significant importance to model the
dynamics in the detector response with changing temperature or
increase in radiation damage to the crystals, e.g. in deep space
missions.

Using the Bayesian calibrated NPSM, we are also able to
numerically characterize the contribution of the scintillation non-
proportionality to the overall energy resolution. This intrinsic
resolution sets a fundamental lower limit on the achievable spectral
resolution for a given scintillator material, making it a key factor in
the development of new scintillators. At higher photon energies
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(Eγ ≳ 400 keV), we observed a significant contribution to the total
spectral resolution (≥35%) with a maximum of ≈ 42% around 440
keV. At lower energies (10 keV ≲ Eγ≲ 400 keV), the intrinsic con-
tribution is reduced and shows substantial distortions around the
K-absorption edge for iodine at about 33 keV. We conclude that the
non-proportional scintillation is a significant contributor to the total
energy resolution of NaI(Tl). These observations are in good
agreement with previous results28,52,57–60 and thereby substantiate
not only the predictive power of our numerical model but showcase
also its potential as a valuable tool in the development of new
scintillators.

Most of the theoretical studies focused on the prediction of
NPSMs themselves. In contrast, available numerical models to predict
the full detector response are scarce, computational intense and
complex due to the adopted multi-step approaches with offline con-
volution computations52,53,58. In this study, we present an alternative
way to implement NPSMs and simulate the full spectral detector
response to gamma-ray fields by directly evaluating the NPSM online
during theMonte Carlo simulations. This approach saves considerable
computation time and has the additional advantage of not having to
store and analyze largefileswith secondary particle data.Wehaveused
this implementation to predict the full spectral detector response for
additional radiation fields accounting for non-proportional scintilla-
tion effects. Validation measurements revealed a significant improve-
ment in the simulated detector response compared to proportional
scintillation models. However, there are still some model dis-
crepancies, especially at the lower and higher end of the Compton
edge domain. These discrepancies might be attributed to systematic
uncertainties in the Monte Carlo mass model or deficiencies in the

adopted NPSM. Sensitivity analysis performed in a previous study in
conjunction with the prior prediction density results might indicate
the latter30.

While we focused our work on NaI(Tl) in electron and gamma-ray
fields, the presented methodology can easily be extended to a much
broader range of applications. First, it is general consensus that the
light yield as a function of the stopping power is, at least to a first
approximation, independent of the ionizing particle type16,31. Second,
the adopted NPSM was validated with an extensive database of mea-
sured scintillation light yields for inorganic scintillators, i.e. BGO,
CaF2(Eu), CeBr3, Cs(Tl), Cs(Na), LaBr3(Ce), LSO(Ce), NaI(Tl),
SrI2, SrI2(Eu), YAP(Ce) and YAG(Ce), among others17,18,22. From this, it
follows that, given a gamma-ray field with resolvable Compton edges
can be provided, our methodology may in principle be applied to any
combination of inorganic scintillator and ionizing radiation field,
including protons, α-particles and heavy ions. However, it is important
to note that our methodology relies on the observation of Compton
edge shifts with a sufficient signal-to-noise ratio (SNR).We have shown
that these shifts are influenced by the strength of scintillation non-
proportionality of a given scintillator. As a result, scintillator materials
that exhibit only a mild non-proportional scintillation response, e.g.
LaBr3(Ce) or YAP(Ce), may present challenges for the calibration of an
NPSM due to the reduced SNR in the Compton edge shift. Further
investigations are required to assess the applicability of our metho-
dology to such scintillators. That said, the presentedmethodology can
be readily adapted using Bayes’s theorem to address low SNR cases
more effectively by combining multiple Compton edge domains or by
probing additional spectral features distorted by the non-proportional
scintillation response.

Fig. 4 | Simulated spectral detector response using a Bayesian calibrated non-
proportionalmodel.Themeasured and simulated spectral detector responses are
shown for three different calibrated radionuclide sources: a60Co (A = 3.08(5) × 105

Bq). b88Y (A = 6.83(14) × 105 Bq). c137Cs (A = 2.266(34) × 105 Bq). The zoomed-in
subfigures highlight the Compton edge region and include also the Compton edge
ECE predicted by the Compton scattering theory10, i.e. [477.334(3), 699.133(3),
963.419(3), 1611.77(1)] keV associatedwith the photon emission lines at [661.657(3),
898.042(3), 1173.228(3), 1836.063(3)] keV, respectively. The measured net count

rate cexp aswell as the simulated net count rate adopting aproportional scintillation
model csim were presented already elsewhere30. We obtained the simulated net
count rate ccorrsim the same way as csim but accounted for the non-proportional
scintillation effects by the Bayesian calibrated NPSM obtained by the sum mode
inversion pipeline. For the calibration, we used the 60Co dataset. For all graphs
presented in this figure, uncertainties are provided as 1 standard deviation (SD)
shaded areas (coverage factor k = 1). These uncertainties are only visible for cexp.
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In summary, we conclude that NPSMs are essential for accurate
detector response simulations, especially for scintillators with large
crystal volumes25,28,31, e.g. in dark matter research, total absorption
spectroscopy or remote sensing1–7,30. The methodology presented in
this study offers a reliable and cost-effective alternative to existing
experimental methods to investigate non-proportional scintillation
physics phenomena and perform accurate full detector response
predictions with Bayesian calibrated NPSM. Moreover, it does not
require any additional measurement equipment and can therefore be
applied for any inorganic scintillator spectrometer, also during
detector deployment. This is especially attractive for applications,
where the scintillator properties change in operation, e.g. due to
radiationdamageor temperature changes, but also for detector design
and the development of advanced scintillator materials. Last but not
least, we can use the derived numerical models not only for NPSM
inference but also to investigate and predict various scintillator
properties, e.g. intrinsic resolution or Compton edge dynamics, and
thereby contribute to a better understanding of the complex scintil-
lation physics in inorganic scintillators.

Methods
Gamma-ray spectrometry
We performed gamma-ray spectrometric measurements in the cali-
bration laboratory at the Paul Scherrer Institute (PSI) (inner room
dimensions: 5.3m×4.5m× 3m). The adopted spectrometer consisted
of four individual 10.2 cm× 10.2 cm× 40.6 cm prismatic NaI(Tl) scin-
tillation crystals with the associated photomultiplier tubes and the
electronic components embedded in a thermal-insulating and
vibration-damping polyethylene foam protected by a rugged alumi-
num detector box (outer dimensions: 86 cm×60 cm× 30 cm). The
spectrometer features 1024 channels for an energy range between
about 30 and 3000 keV together with automatic linearization of the
individual scintillation crystal spectra30. We used seven different cali-
brated radionuclide sources (57Co, 60Co, 88Y, 109Cd, 133Ba, 137Cs, and
152Eu) from the Eckert & Ziegler Nuclitec GmbH. We inserted these
sources consisting of a radionuclide carrying ion exchange sphere
(diameter 1 mm) embedded in a 25mm×3mm solid plastic disc into a
custom low absorption source holder made out of a polylactide
polymer (PLA) andplaced this holder on a tripod in afixeddistance of 1
m to the detector front on the central detector x-axis. To measure the
source-detector distances and to position the sources accurately,
distance as well as positioning laser systems were used. A schematic
depiction of the measurement setup is shown in Fig. 1a.

Between radiation measurements, background measurements
were performed regularly for background correction and gain stability
checks. For all measurements, the air temperature as well as the air
humidity in the calibration laboratory was controlled by an air con-
ditioning unit and logged by an external sensor. The air temperature
was set at 18.8(4) °C and the relative air humidity at 42(3)%. The
ambient air pressure, which was also logged by the external sensor,
fluctuated around 982(5) hPa.

During measurements, additional instruments and laboratory
equipment were located in the calibration laboratory, e.g. shelves, a
workbench, a source scanner or a boiler as shown in Fig. 1a. The effect
of these features on the detector response was carefully assessed in
ref. 30.

After postprocessing the spectral raw data according to the
data reduction pipelines described in ref. 30, we extracted the
Compton edge spectral data from the net count rate spectra. The
spectral domain of the Compton edge DE was defined as
DE :¼ fE : ECE � 3 � σtotðECEÞ≤ E ≤ EFEP � 2 � σtotðEFEPÞg, where E is the
spectral energy, σtot the energy dependent total resolution char-
acterized by the standard deviation30 and EFEP the FEP associated
with the Compton edge ECE. Neglecting Doppler broadening and
atomic shell effects, we compute ECE according to the Compton

scattering theory10 as follows:

ECE :¼ EFEP 1� 1

1 + 2EFEP
mec2

0
@

1
A ð2Þ

where mec2 is defined as the energy equivalent electron mass. In this
study, we consulted the ENDF/B-VIII.0 nuclear data file library61 for
nuclear decay-related data as well as the Particle Data Group library62

for fundamental particle properties.
To investigate the sensitivity of the selected Compton edge

domain DE on the Bayesian inversion results, we performed a sensi-
tivity analysis on DE . Within the uncertainty bounds, the inversion
results have proven to be insensitive to small alterations in DE (Sup-
plementary Table S3).

It is important to note that, if not otherwise stated, uncertainties
areprovided as 1 standarddeviation (SD) values in this study (coverage
factor k = 1). For more information about the radiation measurements
and adopted data reduction pipelines, the reader is referred to the
dedicated study30 as well as the Supplementary Information File for
this work (Supplementary Methods S1.3).

Monte Carlo simulations
We performed all simulations with the multi-purpose Monte Carlo
code FLUKA version 4.2.144 together with the graphical interface FLAIR
version 3.1-15.163. We used the most accurate physics settings
(precisio) featuring a high-fidelity fully coupled photon, electron
and positron radiation transport for our source-detector configura-
tion. In addition, this module accounts for secondary electron pro-
duction and transport, Landau fluctuations as well as X-ray
fluorescence, all of which are essential for an accurate description of
non-proportional scintillation effects16,18,23,52. Motivated by the range of
the transported particles, lower kinetic energy transport thresholds
were set to 1 keV for the scintillation crystals as well as the closest
objects to the crystals, e.g. reflector, optical window and aluminum
casing for the crystals. For the remaining model parts, the transport
threshold was set to 10 keV to decrease the computational load while
maintaining the high-fidelity transport simulation in the scintillation
crystals. All simulations were performed on a local computer cluster (7
nodes with a total number of 520 cores at a nominal clock speed of 2.6
GHz) at the Paul Scherrer Institute utilizing parallel computing.

We scored the energy deposition events in the scintillation crys-
tals individually on an event-by-event basis using the custom user
routine usreou together with the detect card. The number of pri-
maries was set to 107 for all simulations, which guarantees amaximum
relative statistical standard deviation σstat,sim,k/csim,k < 1% and a max-
imum relative variance of the sample variance VOVk <0.01% for all
detector channels k. More details on the simulation settings as well as
on the postprocessing of the energy deposition data can be found in
ref. 30.

To implement the NPSM described by Eq. (1), we developed an
additional user routine comscw. Similar to refs. 1,64, we weight each
individual energy deposition event in the scintillator, point-like or
along the charged particle track, by the scintillation light yield given in
Eq. (1) (Supplementary Algorithm S1). The resulting simulated
response is then rescaled to match the energy calibration models
derived in ref. 30. Using our methodology, we get simulated pulse-
height spectra that incorporate non-proportional effects across the
entire spectral range of our detector system.

Surrogate modeling
We applied a custom machine learning trained vector-valued poly-
nomial chaos expansion (PCE) surrogatemodel to emulate the spectral
Compton edge detector response over DE for both, the individual
scintillation crystals as well as the sum channel. PCE models are ideal
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candidates to emulate expensive-to-evaluate vector-valued computa-
tional models43. As shown in refs. 65–67, any function Y=M Xð Þ with
the random input vector X 2 RM × 1 and random response vector Y 2
RN × 1 can be expanded as a so-called polynomial chaos expansion
provided that E½ Yj j2�<1:

Y=M Xð Þ=
X
α2NM

aαΨα Xð Þ ð3Þ

where aα :¼ a1,α , . . . ,aN,α

� �> 2 RN × 1 are the deterministic expan-
sion coefficients, α :¼ α1, . . . ,αM

� �> 2 NM × 1 the multi-indices
storing the degrees of the univariate polynomials ψα and Ψα Xð Þ
:¼ QM

i= 1 ψ
i
αi

X i

� �
the multivariate polynomial basis functions, which

are orthonormal with respect to the joint probability density
function fX of X, i.e. hΨα ,Ψβif X = δα,β.

To reduce the computational burden, we combined the PCE
model with principal component analysis (PCA) allowing us to char-
acterize the main spectral Compton edge features of the response by
means of a small number N0 of output variables compared to the ori-
ginal number N of spectral variables, i.e. N 0 ≪N43. Similar to ref. 68, we
computed the emulated computational model response M̂PCE Xð Þ in
matrix form as

Y≈M̂PCE Xð Þ=μY +diag σY

� �
Φ0AΨ Xð Þ ð4Þ

with μY and σY being the mean and standard deviation of the random
vector Y and Φ0 the matrix containing the retained eigenvectors ϕ
from the PCA, i.e.Φ0 :¼ �

ϕ1, . . . ,ϕN0
� 2 RN ×N0

. On the other hand, the
vector Ψ Xð Þ 2 Rcard A?ð Þ× 1 and matrix A 2 RN0 × card A?ð Þ store the multi-
variate orthonormal polynomials and corresponding PCE coefficients,
respectively. The union set A? :¼ SN0

j = 1 Aj includes the finite sets of
multi indices Aj for the N 0 output variables following a specific trun-
cation scheme.

We used a Latin hypercube experimental design X 2 RM ×K 69,70

with K= 200 instances sampled from a probabilistic model, which itself
is defined by the model parameter priors described in the next sub-
section. The model response Y 2 RN ×K for this design was then eval-
uated using the forwardmodel described in the previous subsection.We
adopted a hyperbolic truncation scheme Aj :¼ fα 2 NM :

ðPM
i= 1 α

q
i Þ

1=q
≤pg with p and q being hyperparameters defining the

maximum degree for the associated polynomial and the q-norm,
respectively. To compute the PCE coefficient matrix A, we applied
adaptive least angle regression71 and optimized the hyperparameters
p := {1, 2,…, 7} and q := {0.5, 0.6,…, 1} using machine learning with a
holdout partition of 80% and 20% for the training and test set, respec-
tively. For the PCA truncation, we adopted a relative PCA-induced error
εPCA of 0.1%, i.e. N0 :¼ minfS 2 1, . . . ,Nf g : PS

j = 1 λj=
PN

j = 1 λj ≥ 1� εPCAg
with λ being the eigenvalues from the PCA. The resulting generalization
error of the surrogate models, characterized by the relative mean
squared error over the test sets, are <1% and <2% for the sum channel
and the individual scintillation crystals, respectively. All PCE computa-
tions were performed with the UQLab code72 in combination with cus-
tom scripts to perform the PCA. More information about the PCE-PCA
models as well as the PCE-PCA-based Sobol indices including detailed
derivations are included in the Supplementary Information File for this
study (Supplementary Methods S1.1–S1.2).

Bayesian inference
Following the Bayesian framework40, we approximate the measured
spectral detector response y 2 RN × 1 with a probabilistic model com-
bining the forwardmodelMðxMÞ andmodel parameters xM 2 RMM × 1

with an additive discrepancy term ε, i.e. y :¼ MðxMÞ+ ε. For the dis-
crepancy term ε, which characterizes the measurement noise and
prediction error, we assume a Gaussian model πðεjσ2

ε Þ=N ðεj0, σ2
εINÞ

with unknown discrepancy variance σ2
ε . On the other hand, as

discussed in the previous subsection, we emulate the forward model
MðxMÞ with a PCE surrogate model M̂PCEðxMÞ. Consequently, we can
compute the likelihood function as follows:

π yjxð Þ=N yjM̂PCE xM
� �

,σ2
εIN

� �
ð5Þ

with x :¼ ½xM, σ2
ε �

>
and xM :¼ ½dE=dsjBirks,ηe=h,dE=dsjTrap�>. In com-

bination with the prior density π xð Þ, we can then compute the pos-
terior distribution using Bayes’ theorem42:

π x jyð Þ= π y jxð Þπ xð ÞR
DX

π y jxð Þπ xð Þdx ð6Þ

where we assume independent marginal priors, i.e. π xð Þ= QM
i= 1 π xi

� �
withM =MM + 1.Wedefined themarginal priors basedon the principle
of maximum entropy73 as well as empirical data from previous
studies17,18,22. It should be emphasized that we applied the sum mode
inversion pipeline first followed by the singlemode inversion pipeline.
In accordance with Bayes’ theorem42, we therefore incorporate the
results obtained by the sum mode inversion pipeline in the marginal
priors used for the single mode inversion pipeline. A full list of all
adopted marginal priors for both pipelines is attached in the Supple-
mentary Information File for this study (Supplementary Table S1).
Using the prior and posterior distributions, we can then also make
predictions on futuremodel responsemeasurements y* leveraging the
prior and posterior predictive densities:

π y*
� �

=
Z
Dx

π y*jx� �
π xð Þdx ð7aÞ

π y*jy� �
=
Z
Dx

π y*jx� �
π xjyð Þdx ð7bÞ

All Bayesian computations were performed with the UQLab
code72.We applied an affine invariant ensemble algorithm39 to perform
Markov Chain Monte Carlo (MCMC) and thereby estimate the pos-
terior distribution π xjyð Þ. We used 10 parallel chains with 2 × 104

MCMC iterations per chain together with a 50% burn-in. The con-
vergence and precision of the MCMC simulations were carefully
assessed using standard diagnostics tools42,74. We report a potential
scale reduction factor R̂ < 1:02 and an effective sample size ESS≫ 400
for all performed MCMC simulations. Additional trace and con-
vergence plots for the individual parameters x and point estimators
(Supplementary Figs. S1–S10), a full list of the Bayesian inversion
results (Supplementary Table S2) aswell as a sensitivity analysis on the
adopted Compton edge domain (Supplementary Table S3) can be
found in the attached Supplementary Information File for this study.

Resolution modeling
In this last section, we will discuss the derivation of the energy reso-
lution models adopted in this study. We start with the model to
characterize the overall or total energy resolution σtot for our detector
system and describe in a second step the derivation of the intrinsic
resolutionmodel σintr. It is important to note that in contrast to σintr, we
provide here only a short summary of the key aspects involved in σtot.
The entire postprocessing pipeline to derive σtot was already thor-
oughly discussed in a previous study30. For more details, we kindly
refer the reader to the dedicated study.

For each scintillation crystal, we quantified σtot by characterizing
the spectral dispersion of measured FEPs associated with known
photon emission lines from specific radionuclides. The corresponding
pipeline can be divided into three steps. In the first step, we extracted
specific spectral domains containing a singlet ormultiplet of FEPs from
a set ofmeasured count rate spectra covering a spectral range between
122 and 1836 keV75. In a second step, we fitted a spectral peak model
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based on a sum of independent Gaussian peaks together with a
numerical baseline76 to the selected singlets or multiplets using
weighted non-linear least-squares (WNLLS) regression combined with
the interior-reflective Newtonmethod77. In the third step, we extracted
the Gaussian standard deviation parameters from the fitted FEPs as a
characteristic measure for the spectral resolution. By combining these
empirical resolution values with the known emission line energies, we
derived an exponential model to describe σtot as a function of the
photon energy Eγ adopting again WNLLS. The resulting relative gen-
eralization error, characterized by leave-one-out cross-validation, is
<0.2% for all scintillation crystals.

To derive a model for σintr, we performed in the first step addi-
tional Monte Carlo simulations for an isotropic and uniform mono-
energetic photon flux of energy 10 keV ≤ Eγ ≤ 3200 keV. To account for
the different spectral scales, we applied a non-uniform experimental
design for the photon energy Eγwith a 2 keV spacing below 110 keV and
100keV spacing above.Moreover, to account for the non-proportional
scintillation physics, we ran all simulationswith the Bayesiancalibrated
NPSM, i.e. thederivedMAPpoint estimators. Themassmodel for those
simulations features a 10.2 cm× 10.2 cm×40.6 cm prismatic NaI(Tl)
scintillation crystal embedded in a vacuumenvironment. In the second
step, we extracted themean light yield values from the simulated FEPs
(Supplementary Algorithm S1). Similar to the measured spectra, we
can then derive a simple polynomial energy calibration model using
WNLLS to convert the simulated light yield to energy30. In a third step,
we adopted the extracted σintr from the individual energy-calibrated
FEPs to train a Gaussian Process (GP) regression model with78:

σintr Eγ

� �
∼GP f Eγ

� �>
β,κ Eγ,E

0
γ

� �
+ σ2

GPδEγ ,E
0
γ

� �
ð8Þ

wherewe applied a polynomial trend function of the second order, i.e.
f
�
Eγ

�
:¼ �

1, Eγ, E
2
γ

�>
and β :¼ β0,β1,β2

� �>, a homoscedastic noise
model with the noise variance σ2

GP and Kronecker delta δEγ ,E
0
γ
as well as

a Matérn-3/2 covariance function κ
�
Eγ, E

0
γ

�
:¼ �

1 +
ffiffiffi
3

p
jEγ �

E 0
γj=θ

�
exp

�� ffiffiffi
3

p
jEγ � E 0

γj=θ
�
with the kernel scale θ. It is worth noting

that, due to the known asymmetry in the FEPs1,25,28, we adopted
numerical estimates both for the mean and standard deviation para-
meters associated with the individual FEPs. With the N-dimensional
intrinsic dataset

	
Eγ,σintr



, we can then predict the intrinsic resolution

σ*
intr for a new set of N* photon energies E*

γ using the GP posterior
predictive density as follows78:

π σ*
intr jE*

γ,Eγ,σintr

� �
=N σ*

intr jμGP ,ΣGP
� � ð9aÞ

μGP =F>
* β̂+K>

* K
�1 σintr � F>β̂
� �

ð9bÞ

ΣGP =K** �K>
* K

�1K* +U
> FK�1F>
� ��1

U ð9cÞ

β̂= FK�1F>
� ��1

FK�1σintr ð9dÞ

U =F* � FK�1K* ð9eÞ

with the matrices F= f ðEγÞ 2 R3 ×N ,F* = f ðE*
γÞ 2

R3 ×N*

,K= κðEγ,EγÞ+ σ2
GPIN 2 RN ×N ,K* = κðEγ,E

*
γÞ 2 RN ×N*

and
K** = κðE*

γ,E
*
γÞ 2 RN* ×N*

. To account for the different spectral
scales, we trained two GP models, one for 10 keV ≤ Eγ ≤ 90 keV
and the other one for 90 keV ≤ Eγ ≤ 3200 keV, using the MATLAB®
code. For both models, we applied 5-fold cross-validation in
combination with Bayesian optimization to determine the GP
hyperparameters σ2

GP and θ. It is important to add that in case of

the experimental design X adopted to train the surrogate model,
we ran the pipeline for σintr with the corresponding set of NPSM
parameters defined by X .

As discussed already in theResults section, the intrinsic resolution
is alsoa key component in thepostprocessingpipeline forMonteCarlo
simulations including NPSMs. Because the Monte Carlo simulations
performed for the forward model only inherently include the intrinsic
resolution, we need to perform a spectral broadening operation to
account for the additional energy resolution degradation due to the
transport of scintillation photons, signal amplification by the photo-
multiplier tube and subsequent signal postprocessing in the multi-
channel analyzer. Similar to ref. 1, we assume statistical independence
between the resolution degradation due to the scintillation non-
proportionality and the aforementioned neglected processes in the
Monte Carlo simulations. We can then perform the broadening
operation as described in ref. 30 with an adapted dispersionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
tot � σ2

intr

q
. For completeness, we included this adapted dispersion

model in Fig. 3f.

Data availability
The radiation measurement raw data presented herein have been
deposited on the ETH Research Collection repository under accession
code https://doi.org/10.3929/ethz-b-00052892075.

Code availability
The FLUKA code44 used for Monte Carlo radiation transport and
detector response simulations is available at https://fluka.cern/. We
adopted the graphical user interphase FLAIR63, available at https://
flair.web.cern.ch/flair/, to setup the FLUKA input files and create the
mass model figures. The custom FLUKA user routines adopted in the
Monte Carlo simulations have been deposited on the ETH Research
Collection repository under accession code https://doi.org/10.3929/
ethz-b-00059572779. Data processing, machine learning computation
and figure creation was performed by the MATLAB® code in combina-
tion with the open-source toolbox UQLab72 available at https://www.
uqlab.com/.
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