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Hierarchical AI enables global interpretation
of culture plates in the era of digital
microbiology

Alberto Signoroni 1,2,6 , Alessandro Ferrari3,4,6, Stefano Lombardi 1,3,
Mattia Savardi 1,2, Stefania Fontana 3 & Karissa Culbreath5

Full Laboratory Automation is revolutionizing work habits in an increasing
number of clinical microbiology facilities worldwide, generating huge streams
of digital images for interpretation. Contextually, deep learning architectures
are leading to paradigm shifts in the way computers can assist with difficult
visual interpretation tasks in several domains. At the crossroads of these
epochal trends, we present a system able to tackle a core task in clinical
microbiology, namely the global interpretation of diagnostic bacterial culture
plates, including presumptive pathogen identification. This is achieved by
decomposing the problem into a hierarchy of complex subtasks and addres-
sing themwith a multi-network architecture we callDeepColony. Working on a
large stream of clinical data and a complete set of 32 pathogens, the proposed
system is capable of effectively assist plate interpretation with a surprising
degree of accuracy in the widespread and demanding framework of Urinary
Tract Infections. Moreover, thanks to the rich species-related generated
information, DeepColony can be used for developing trustworthy clinical
decision support services in laboratory automation ecosystems from local to
global scale.

Microbiology is faced with tremendous questions, with bacterial, viral,
and parasitic infections representing major threats to human health1:
new species discovered annually2, re-emerging pathogens3,4, zoonotic
infections5 and antimicrobial resistance6. Correct and timely identifi-
cation of pathogens is essential to effectively fight infections and the
interpretation of bacterial cultures from human collected samples is a
pivotal step in the clinical process. Over the last 30 years, molecular
biology-based techniques (from PCR to Next Generation
Sequencing7,8), vibrational spectroscopy9, and mass spectrometry
diagnostic tools such as MALDI-ToF10,11 have also emerged as critical
tools in the clinical microbiology laboratory for identification of
pathogens. However, routine bacterial culture continues to be the
mainstay for diagnosis of bacterial infectious diseases12. The continued

use of culture in the clinical microbiology laboratory (CML)13 is due to
its role in the recovery of viable organisms, the availability of a given
organism for antimicrobial susceptibility testing (AST), the detection
of unusual or unexpected pathogens, and the lower costs associated
with culture-based methods compared with culture-independent
methods.

Notwithstanding the benefits, culture interpretation is often a
challenging undertaking even for the skilled microbiologist. Other
specialties in clinical laboratory medicine that require subtle inter-
pretation and complex visual diagnostic tasks have already shifted
into a digital imaging ecosystem (e.g., urinalysis, haematology and
cytology). However, bacterial culture and culture plate interpretation
have remained mostly unchanged from its origins in the 19th century.
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Thus, the entire culture process is still accompanied by the sus-
ceptibility to human factors and is still restricted by staff shift-
availability, while the skilled workforce available to perform and read
the cultures has decreased in the past few years14. In this resource-
critical context, the recent advent and deployment of Full Laboratory
Automation (FLA) systems15–17 led to levels of automation and stan-
dardization of the physical culture steps (specimen processing, plate
streaking and incubation) along with a step of shooting the culture
plates, which makes the plate images available for the application of
digital analysis tools (Fig. 1a). FLAs have already demonstrated clin-
ical improvements through early growth detection, better culture
quality, shorter turn-around times, and significant cost savings, with
highly positive impacts on complementary downstream tasks
(MALDI-ToF identification, AST, genome sequencing)18–21. Despite
this, considerable challenges still remain open within the digitized
laboratory workflow22,23 regarding the interpretation of culture ima-
ges. Image analysis solutions in bacterial culture have been devel-
oped in specific contexts18,24–27 and especially for the use of selective
and differential media including chromogenic agar and other dif-
ferential media. However, algorithms developed using these

methods already benefit from the biochemical properties of media
and do not require broad identification of the many types of
organisms seen in culture. Moreover, to implement such a tool,
laboratories would be required to adopt a new media for their cul-
ture process, potentially incurring additional costs. Few studies have
demonstrated the development of an image analysis algorithm using
a non-selective, non-differential media commonly used in the
laboratory, such as sheep blood agar. Additionally, consistent and
replicable culture interpretation remains a clinical challenge requir-
ing significant expertise28. Therefore, there is a need for an additional
clinical decision support tool that informs the technologist of the
expected action based on observation of morphologies of grown
organisms to ensure accurate and consistent culture interpretation
on a large scale. Such an automated whole-plate interpretation has
still not been tackled in its full complexity, and nothing even close to
it has been prefigured until now16,17,23,29.

We approach these challenging objectives by leveraging the
recent digital revolution of clinical microbiology culture and the
strengths of deep learning (DL) for the solution of complex tasks30–33.
In particular, compared to themost common solutions basedon single

Fig. 1 | Overview of theDeepColony system. a The FLAworkflow and the role of the
proposed solutions. b DeepColony hierarchical architecture of the operational and
decision-making processes. c Example of “enumeration map” (level 0 output) where
the cardinality of colony aggregates is indicated with colours and numbers. An “X”
appears on colonies discarded because they are located in colour distortion areas.
d Example (on the same plate) of selected “good colonies” (level 1 output) with their
presumptive ID (level 2 output). An “X” appears on colonies discarded because they

are not single or too close to the plate border or to confluence areas. Detected species
Si are indicated for each colony with colours and corresponding legend. e Outputs of
level 3 and 4 are shown on the same plate. Gi refers to species ID updated after
similarity-driven contextual grouping, while subsequent clinical relevance interpreta-
tion indicates a significant mixed flora plate, where best colonies eligible for picking
are indicated with arrows. f CNN architecture for single colony presumptive ID (red
box at level 2). g “Siamese CNN” scheme (red box at level 3) for contextual ID.
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convolutional neural networks (CNN)34, multi-network architectures
are attractive in our case because of their ability to fit into contexts
where decision-making processes are stratified into a complex
structure35. The systemmust be designed to generate useful and easily
interpretable information and to support expert decisions according
to safety-by-design and human-in-the-loop policies, aiming at achiev-
ing cost-effectiveness and skill-empowerment respectively. This
requires an advanced ability to combine species-level identification
and quantitation across a possibly wide range of clinically relevant
pathogens, a skilful combination of multiple visual, cognitive, and
procedural tasks, and a computational architecture capable of repro-
ducing this complex environment involving both single-colony and
whole-plate analyses.

Results
DeepColony architecture
We developed DeepColony, a hierarchical multi-network capable of
handling all identification, quantitation and interpretation stages, from
the single colony to the whole plate level, whose nested architecture is
depicted in Fig. 1b (milestones are indicated with green circles) and
detailed in “Methods” (DeepColony architecture). Firstly, in the chal-
lenging context of urinary tract infections UTI36, the bacterial species
of isolated colonies are identified with a degree of accuracy
approaching intrinsic visual discrimination limits for the majority of
clinically relevant pathogens. Species identification stems from a dual
process: a first “pathogen aware - similarity agnostic” approach
focusing on single colony recognition (Fig. 1b, levels 0, 1 and 2, Fig. 1c,
d), followed by a “similarity aware - pathogen agnostic” refinement
step involving the global plate context (Fig. 1b, level 3, Fig. 1e). As a
secondmilestone, the possibility to integrate the rich body of species-
specific structured information generated from levels 0-3 into a rule-
based decision system is demonstrated, with the aim of providing
clinically accurate culture interpretations (Fig. 1b, level 4, Fig. 1e).
Coherently to its action, DeepColony also produces workable infor-
mation to guide best-colony picking (see Fig. 1e) which is essential for
both the confirmation (e.g., MALDI-ToF identification) and the therapy
targeting (e.g., antimicrobial susceptibility tests, AST) phases.

Colony-level dataset and phylogenetic grouping
A large labelled clinical dataset has been created for the training of
DeepColony at the colony level. Starting from 1351 unique plate images,
a dataset of 26213 isolated colony images was produced. These repre-
sent 32UTI bacterial and fungal species, constituting 98%of the species
that have been observed in three months of the clinical routine of a
large CML, and are represented in their clinical variability. To avoid
mislabelling, colonies were only drawn from pure flora cultures after
MALDI-ToF identification to be used as ground truth-identification (GT-
ID). Figure 2 depicts four examples for individual species, with the
inclusion of polymorphisms and morphologic diversity, along with
histograms indicating the number of available colonies in the testing
subset of the dataset. All details about the acquisition and composition
of this dataset are given in “Methods” (Datasets). Phylogenetic relations
between UTI microorganisms have been further considered aiming to
arrange the 32 species into main groups. This is highlighted in the
central part of Fig. 2, where a subdivision determined by the terminal
branches of the diagram leads to 16 groups of clinical relevance.

Single colony identification (level 0 to 2)
Quantitation of bacterial growth is the first step in the plate culture
significance assessment. At level 0, in Fig. 1b, a DL-based colony
counting method25 is used to produce an “enumeration map” (depic-
ted in Fig. 1c). At level 1, this map is used to select “good colonies”, i.e.,
colonies isolated from the confluent groupings and well developed
among all single colonies on the plate (Fig. 1d). Importantly, level 1
takes into account species polymorphism and colony maturity when

selecting themore reliable colonies. Following the selection of isolated
colonies, level 2 completes the task of attributing a presumptive
species-level identification to each selected bacterial colony. To this
end, a CNNarchitectureoperating on colony image segments has been
designed to generate a “presumptive identification vector” (pIDv)
consisting of a confidence-based ranking of most probable bacterial
species (out of the 32 possible ones) for each image segment gener-
atedby level 1. TheCNNscheme (with anexampleof the resultingpIDv)
is shown in Fig. 1f, while technical details and the training using our
colony-level dataset are described in “Methods” (Single colony identi-
fication). At the completion of levels 0-2 (Fig. 1d) single good colonies
are identified for a “pathogen-aware, similarity agnostic” description
based on themost probable (Top-1 ID) species in pIDv for each colony.

Algorithm performance on the testing subset is presented in Fig.
3a bymeans of a 32 × 32 confusionmatrix representing Top-1 ID (rows)
versus GT-ID (columns), in absolute occurrence values, with an overall
identification accuracy at this stage of 83.4% compared to the ground
truth. Analysing the errors (off-diagonal entries), the main evidence is
that most misclassifications follow a block-diagonal pattern. Given the
non-casual ordering of species, this is evidence that errors mainly
occur within the same phylogenetic group. This is confirmed by
assessing the performanceon the diagnostic/phylogenetic subdivision
of 16 classes (Fig. 3b), where it can be observed that the overall accu-
racy increases to 88.4%. Given the objective of an assisted presumptive
diagnosis and to further exploit the classification confidence infor-
mation contained in the pIDv, it is of interest to include in our eva-
luation alsoTop-2 andTop-3 species accuracies, whereTop-n accuracy
is computed by considering samples as ‘correct’ if the true species is
listed in the nmost probable classes (out of the possible 32) suggested
by the network. The Top-2 accuracy is 92.3% while for Top-3 a value of
95.5% is reached. With morphologically similar organisms grouped,
most of the residual misclassifications in Fig. 3b remain near the
diagonal. This is a further evidence of the added value of the proposed
diagnostic/phylogenetic grouping/ordering. For example, small colo-
nies such as Lactobacillus species are sometimes confused with Aero-
coccus urinae, and vice-versa; Streptococcus agalactiae colonies are
sometimes confused with Enterococcus faecalis or faecium and vice-
versa. Similarly, few Streptococcus mitis colonies are misclassified as
Pseudomonas aeruginosa, while some Enterococcus faecium and Can-
dida species are labelled as Lactobacillus species. This morphological
misclassification is similar to what may be observed by a technologist.
Additionally, the naturally skewed composition of the colony-level
dataset (only partially compensated for least represented classes) has a
slight influence on the balance of the confusion between species. This
is observable for Escherichia coli (constituting 16% of the dataset),
which is more frequently erroneously identified than misclassified as
another species. In summary, as far as level 2, by combining different
interpretative criteria (diagnostic-phylogenetic interpretation and ID
vector confidence exploitation), we are able to provide a first classifi-
cation of organisms into very specific and clinically significant mor-
phologic groups but, interestingly, we have not yet reached all what
can be done to support microbiologists toward plate interpretation.

Context-based Identification (level 3)
In levels 0-2 each single colony is assessed independently. However, in
clinical application, the entire context of the platemust be assessed to
determine if observed colonies are similar (pure culture) or different
(mixed cultures). At level 3 a “similarity aware - pathogen agnostic”
refinement step is applied, involving the global context of the plate
and requiring the computation of a similarity metric. This requires an
abstraction from the single colony perspective; now, visually similar
colonies, which could possibly belong to different species, must be
simultaneously considered and compared to the overall growth, with
the aimof improving the consistency of the presumptive identification
and of honing the precision of the tool in doubtful situations. This
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Fig. 2 | Examples from the 32 pathogen species in the colony-level dataset. Four
images for each species are presented to exemplify commonly encountered mor-
phological and spectral inter-species similarity and intra-strain polymorphism.
Histograms indicate the number of available colony images in the dataset for each

pathogen. The central diagram indicates phylogenetic links and proposed group-
ings (also delimited by the vertical lines between the pathogennames). Source data
are provided as a Source Data file.
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delicate task is addressed through a “context-based regularization”
approach based on a non-linear similarity-driven embedding followed
by a clustering in the embedded space that enables an enforcement of
the identification consistency. For the dimensionality reduction
embedding a Siamese CNN37,38 has been trained whose architecture is
shown in Fig. 1g, exploiting an extensive training set comprising
200,000 image pairs (plus 10,000 image pairs for validation) created
specifically for this purpose. Once the isolated colonies are mapped in
an embedding space, Mean-shift clustering39 is used to define
similarity-based colony clusters. Additional details are discussed in
“Methods” (Context-based Identification). A final classification is given
for each identified cluster by averaging the pIDv’s from level 2 within
the cluster, and this allows an increase in classification consistency. As
shown in Fig. 1e, the ID labels are now assigned to group of colonies
instead of single colonies (and accordingly the pIDv’s). This

regularization method resulted effective in improving overall identi-
fication performance and interpretation accuracy due to the quality
and coherence of the embedding and clustering combination. On the
32 bacterial species, Top-1 accuracy increased to 90.6% (Top-2 96.6%,
Top-3 97.6%) which is an increment of 7.2 percentage points (4.3 and
2.1 pps for Top-2 and Top-3 respectively). Figure 3c reports absolute
values of increased (blue) or decreased (red) accuracy related to each
species, compared to the level 2 values in Fig. 3a. Consistent with the
significantly increased accuracy, blue squares are mainly localized on
thematrix diagonal, while out of diagonal red squares show significant
misclassification reductions. A 3D representation of variations in the
16×16 confusion matrix of the diagnostic/phylogenetic species aggre-
gations is shown in Fig. 3d, where green columns correspond to Fig. 3c
values, and the blue/pink bars indicate the increment/reduction por-
tions. Improved accuracy (i.e., diagonal increments and out of

a) Confusion matrix 32X32 (absolute values)
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c) Post smoothing increment /decrement (absolute values)
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Fig. 3 | Two-step presumptive identification at the colony-level. a 32 × 32 con-
fusion matrix for single colony species ID (in absolute value). Phylogenetic group
subdivisions are indicated with black lines. b 16 × 16 confusion matrix for single
colony phylogenic group ID (in relative value referred to the group-based GT).

c 32 × 32 matrix indicating relative increase/decrease (in absolute value and refer-
red to a) after similarity-based smoothing. d 3D 16 × 16 matrix with column height
indicating relative increment (blue)/decrement (pink) referred to baseline (green)
matrix b. Source data are provided as a Source Data file.
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diagonal reductions) is observed in the largemajority of cases, with an
overall accuracy of 93.8% (5.4 pps increase). As a mild side effect, the
sum of misclassification of both Streptococcus mitis and oralis, instead
of balancing between them, accounts for the slight increment in mis-
classification of viridans-group streptococci as Aerococcaceae and
Pseudomonadacee (+7.9% and a + 1.1% respectively) while the correct
classification decreases (pink top on green column represent-
ing −5.6%).

In level 3, we thus demonstrate that applying a “similarity-aware,
pathogen agnostic” refinement improves the specificity of the organ-
ism identification, particularly in the context of mixed cultures.

Decision support to Culture Interpretation (level 4)
Individual colony interpretation and contextual interpretation pro-
vides information for the laboratory to use. However, the laboratory
must ultimately synthesize that information to generate a laboratory
result based on culture type and laboratory-specific rules. In Deep-
Colony this is achieved at level 4, where information from level 0
(segmentation and enumeration) and level 3 (pIDv) are combined to
compute min-max colony counting range for each identified species
on the plate. This opens up the possibility of assisting the decision-
making process that is codified in the CML guidelines for the inter-
pretation and subsequent management of culture plates.

A pictorial example of decision about plate significance is given in
Fig. 1e, where the plate is interpreted as “mixed flora culture with two
significant species”. One colony for each species is also indicated for
possible colony picking, which is crucial for the following ID con-
firmation (by MALDI-ToF) and/or therapeutic assessment (by AST)
phases. More in detail, the whole DeepColony decisional process is
illustrated in Fig. 4 on three representative plates, exemplifying all the
different possible outcomes (in presence of bacterial growth): sig-
nificant pure flora plate, significant mixed flora plate, non-significant
mixed flora plate. Level 0 and level 1 steps are represented for Plate1

only (Fig. 4a–d), while level 2-4 (Fig. 4e–o) are exemplified on all the
three plates. For level 2 plate images, single good colonies are marked
with coloured circles, indicating the Top-1 ID species of pIDv vector
associated to eachcolony. For level 3, coloured circles now indicate the
Top-1 ID species of pIDv vector assigned to grouped colonies after
context-based regularization. For Plate2 only, the presumptive iden-
tification scores related to Top-1 ID, Top-2 ID and Top-3 ID of the pIDv
vector are shown for each identified species at level 2 and after group-
based contextual regularization at level 3. Plate-level interpretation is
generated at level 4 combining the produced species identification and
the other quantitative info with the CML rules that, for our case, are
depicted in Fig. 5a and detailed in “Methods” (Culture Plate Inter-
pretation). For example, the presumptive presence of only two dif-
ferent species on Plate2 (according Top-1 ID of each group), together
with CML rules, determine a “significant mixed flora” interpretation
with the indication of the identified infective species. This comes with
the generation of associated values e.g., in terms of presumptive
identification scores Top-1 ID, Top-2 ID and Top-3 ID (coherently with
the first three confidence values of the pIDv vector) for each good
colony and for the grouped species, as detailed in Table 1. Similarly,
Plate1 is interpreted as “significant pure flora”, while Plate3 is inter-
preted “non-significant mixed flora”. An additional panel of 9 plates,
representative of other culture scenarios is provided in Supplementary
Fig. 1. The variegated visual and quantitative information generated
constitutes a transparent and informative explainability pattern
allowing the technicians to well interpret the various phases of the
machine-driven decisional processes.

Plate-level decision (DeepColony vs humans) on a large clinical
dataset
Given the ability to perform these complex interpretations, DeepCol-
ony has been applied to a large clinical dataset of 5,051 urine cultures
acquired in a large US laboratory. The plate-level clinical dataset, more

Fig. 4 | DeepColony in action on three sample clinical plates (P1, P2 and P3).
a Original P1; b P1 segmentation mask (level 0); c P1 enumeration map (level 0);
dGood colonies on P1 (level 1); e, g, k level 2 Top-1 ID on P1, P2 and P3 respectively,
where different colours are used to mark single good colonies according to the
identified species as listed in the plate legends (Streptococcus agalactiae and
Pseudomonas aeruginosa for Plate1 in e, Klebsiella oxytoca, Citrobacter freundii,
Pseudomonas aeruginosa or Klebsiella pneumoniae for P2 in g, eleven different
species for P3 in k).; f,h, l level 3 contextual Top-1 ID onP1, P2 and P3 (Streptococcus

agalactiae for Plate1 in f, Klebsiella oxytoca and Pseudomonas aeruginosa for P2 in
h, eight species for P3 in l); i 3D representation of the first 3 entries (Top-1 ID, Top-2
ID and Top-3 ID) of the level 2 pIDv for each good colony of P2 (different colours
indicate different species) and anticipated indication of following grouping I and II;
j the same 3D representation for grouped species operated in level 3;m, n, o Plate-
level interpretation generated at level 4 by the combination of species-related
information (ID and quantitation) and CML rules (for this case represented in the
block diagram of Fig. 5a). Source data for i and j are provided as a Source Data file.
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details in “Methods” (Datasets), was acquired along with the technol-
ogists’ interpretation in terms of no growth, contaminated (mixed) or
positive culture, according to the laboratory reading guidelines (the
same depicted in Fig. 5a and adopted for DeepColony-guided inter-
pretation at level 4). In Fig. 5b, DeepColony interpretation is compared
with that of the technologists on the entire set of cultures to determine
both class-based and overall human-machine agreement. Despite the
intrinsic task difficulty, a high overall agreement of 95.4% (unweighted
Kappa of 0.920) between machine-based and manual presumptive
identifications is reached40, with a class-based peak of 99.2% for the
negative “no-growth” cultures, and a high agreement of 95.6% also
reached for positive cultures. Out-of-diagonal values in the confusion
matrix of Fig. 5b remain noticeably low and can be considered mar-
ginal, with the exception of the 194 plates, the 7.4% of the 2623 cul-
tures, interpreted as positive by DeepColony, that were instead
manually interpreted as contaminated. This lead to a lower agreement
of 77.1% for the mixed growth or “contaminated” cultures due to a
deliberately precautionary behaviour, which is related to “safety by
design” criteria: the upper bound of the estimated number of colonies
identified within a species is considered, while additional qualitative
considerations are limited to allow for technologist interpretation
(who may deem a plate as non-significant despite some above-
threshold CFU counting) aiming at reducing the risk of improperly
discarding potentially positive cultures.

Taken together, this study shows that DeepColony can effectively
classify and enumerate organisms to be combined with laboratory-
based rule systems to augment the microbiologists’ clinical decisions
on the interpretation of clinically significant cultures.

Discussion
Human-driven interpretation of culture plates requires the pre-
sumptive identification and quantitation of clinically relevant patho-
gens at both the colony- and plate-level. This reciprocal and dual
perspective drove the design of the DeepColony architecture (Fig. 1)
aimed at assisting such a challenging visual task and consequent

analytical steps. In levels 0-2 each individual colony is assessed for
identification while at level 3 a contextual refinement of each colony in
relation to other colonies is performed. Experienced microbiologists
consider the relative variation of colony dimension, position and
maturation to identify (or exclude) polymorphism and thus reliably
classify colonies. Trained on enough plates, our system contextually
learns both these similarities and differences within a species, in order
to correctly interpret not only inter-species similarity but also intra-
species or better, since referred to the single plate, intra-strain poly-
morphism. This multi-level AI-driven action enables species-specific
identification and quantitation, and this is unprecedented in a
machine-assisted context. The rich body of generated structured
information is then used to feed a decision support system compliant
to the diagnostic procedures adopted within the CML (level 4) to
provide an overall interpretation of the culture.

The results of this study demonstrate a high level of agreement
between DeepColony and the interpretation given by the technolo-
gist, in particular for the negative cultures (>99% agreement). Among
the positive cultures, DeepColony tended to interpret as positive a
portion of cultures that were interpreted as contaminated by the
laboratory. This is however due to safety-by-design (false negative
culling) settings, since the system is here designed as a screening tool
to correctly call true negatives allowing some false positive results.
This still provides an advantage in which repetitive work reviewing
negative results is lightened, and professionals are better able to
focus on the most relevant and/or critical cases. It also enables a
series of improvements to the diagnostic process (e.g., traceability,
higher degree of standardization, prioritized scheduling), which
could result in increased personnel skill and rewards. Ultimately, by
giving fully informative decision support and reliably speeding up
presumptive diagnosis, a machine-assisted plate interpretation cre-
ates the conditions for significant positive repercussions, in terms of
precision and timeliness, on the whole infection management
workflow, with the prospect of improved and highly responsive
patient infection care on a large scale.

Table 1 | Values of pIDv for each good colony and for grouped species referred to PLATE2 of Fig. 4

Colony n. Top-1 ID pIDv value Top-2 ID pIDv value Top-3 ID pIDv value

1 K.oxytoca 0.9991 K.pneumoniae 0.0008 E.cloacae 0.0001

2 K.oxytoca 0.7754 E. aerogenes 0.2067 K.pneumoniae 0.0126

3 K.oxytoca 0.9111 E.cloacae 0.0446 K.pneumoniae 0.0439

4 K.oxytoca 0.6104 K.pneumoniae 0.38098 E.cloacae 0.0042

5 K.oxytoca 0.9974 K.pneumoniae 0.0024 E.cloacae 0.0001

6 K.pneumoniae 0.8237 K.oxytoca 0.1356 E.coli 0.0274

7 P.aeruginosa 0.7192 E.coli 0.2355 C.freundii 0.0427

8 C.freundii 0.5966 E.coli 0.355 P.aeruginosa 0.0435

Group of colonies n. Top-1 ID pIDv value Top-2 ID pIDv value Top-3 ID pIDv value

I K.oxytoca 0.7382 K.pneumoniae 0.2107 E. aerogenes 0.0357

II P.aeruginosa 0.3813 C.freundii 0.3196 E.coli 0.2953

Confidence values (presumptive identification scores) are given on a 0 to 1 scale.

Fig. 5 | DeepColony in the laboratory routine. a Shared CML rules for plate significance attribution (here NGUF stands for Normal genitourinary flora). b DeepColony vs
Laboratory performance c Laboratory Impact of machine-assisted plate interpretation.
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Moreover, it is increasingly clear that data-driven AI systems in
critical sectors must not only have demonstrable technical function-
alities but, to be of real support and to overcome the demands of the
emerging regulations41, they must be designed to guarantee trust-
worthiness thanks to adequate levels of transparency and
explainability42. Considering the above observations, our work fits well
in the context of liability and can be included in a broader framework
for the development of assistive tools for FLA empowerment. This
global picture is summarized in Fig. 5cwhere the impactmultiplication
factors are evidenced and linked to the main traits of the proposed
approach.DeepColony canbe therefore configured to safely reduce the
laboratory workload and to make decisions which are highly coherent
with assigned interpretation guidelines, guiding and supporting the
specialists in focusing onmore relevant case reports with an increased
level of information and assistance to better set the downstream steps.

An intrinsic limitation of DeepColony is the current inability to
reliably identify species inside confluent areas. This forced us to
introduce prudential ranges (i.e., confidence intervals) in the final
phase of species-level concentration estimation. However, if there are
multiple organism morphologies, the culture may be classified as
“contaminated” or flagged for additional review. Because of the safety-
by-design feature intrinsic to this system, this does not appear to be to
the detriment of the consistency of the results. The substantial
improvement we observed in pIDvs’ estimations led by the con-
textualized reasoning (which grounds on already reliable single-colony
identifications) is further evidence of the fact that residual difficulties
encountered by our system are coherent with the actual limits of
expert visual interpretation: colonies from distinct species that are
indistinguishable or, conversely, high polymorphic variability that
risks inducing undesired differentiation within the same species.
Additionally, the system can take full advantage of the high quality and
resolution of the FLA digitized images, well over what is visible to the
naked eye in traditional CML activities. Eventually, in this work we
evaluated urine cultures that represent a large variety of organisms.
However, there are other organisms that were not evaluated in this
analysis that may be prevalent in other culture types (e.g., Strepto-
coccus pneumoniae in sputum,Neisseriameningitidis inCSF, Neisseria
gonorrhea in genital). In these cases, the models would need to be
adapted to reflect the range of organisms seen in aparticular culture or
region.

In conclusion, DeepColony is a unique framework for improving
the efficiency andquality ofmassive routine activities andhigh-volume
decisional procedures in a microbiological laboratory, with great
potential to refine and reinforce the critical role of the microbiologist.

Methods
Datasets
The image datasets utilized in this study comprise both colony-level
and plate-level data. These images come from high-resolution digital
scans of culturedplates acquired fromclinical specimensprocessedby
WaspLab™ (by Copan WASP®, Italy) FLA facilities. Digital images were
produced using the WaspLab™ 16Mpixel tri-linear colour camera per-
forming pushbroom line-scanning under a calibrated white LED
lighting system. Combined with high-quality telecentric optics, this
guarantees low geometric distortion and high spatial resolution
(24.5 μm/pixel).

Colony-level dataset. This clinical dataset was generated from plates
cultured in collaborating labs in the US, where colony images were
collected in a fully anonymised form,without any kindof interactionor
interference with the laboratory and patient diagnostic/prognostic/
therapeutic processes. Standard protocols for specimen processing,
plate incubation and digital image generation were followed19–22. Spe-
cifically, all plates, except for a small number of cultures derived from
ATCC strains, were inoculated with 1μl loop on REMEL™ blood agar

from urine samples non-invasively collected. Plate incubation occur-
red in a CO2 atmosphere at 37 °C, and digital images of all plates were
captured between 17 and 23 hours of incubation. Ground truth iden-
tification came from Vitek™ MALDI-ToF laboratory analyses. The size
of colonies varies widely, ranging from approximately 0.4mm (~20
pixels) to about 7mm (~300 pixels) in diameter. Colony-level (i.e.,
single colony) images were provided using level 0 segmentation
(Fig.1a)25, which creates a mask that excluded confluent areas and
colonieswith underdevelopedmorphology (due toproximity to highly
confluent growth or the plate border) as they are not representative of
the bacterial colonymorphology. Additionally, pixels outside themain
colony segment were set to zero to remove clutter (portions of other
segments in the neighbouring area). To standardize colony-level data,
images containing single colonies were padded with a fixed 15 pixels
margin along the longer edge, and a suitablemargin on the other edge
for making them square.

A quantitative description of the colony-level dataset is provided
in Supplementary Table 1. From 1351 pure flora plate images (1321 from
clinical specimens and 30 from ATCC), 26,213 isolated colony images
(24,781 clinical and 1432 from ATCC) were extracted. A 60/20/20 sub-
division in training/validating/testing subsets was performed at the
plate level (random selection among each of the 32 represented spe-
cies) in order to avoid having colonies from the same plate appearing
in different portions of the colony-level dataset. The table also provides
information about the 16 proposed groups, which were derived from
phylogenetic relations and diagnostic relevance criteria. In particular,
phylogenetically related species, like Morganellaceae, Aereococaceae,
Enterococcaceae, were collapsed together, as were pathogens where a
joint identification could have a most diagnostical/clinical relevance
than separate identifications (e.g., Enterobacteriaceae KES, grouping
the pathogens Serratia marcescens and Enterobacter cloacae with
Enterobacter aerogenes, Klebsiella oxytoca and Klebsiella pneumoniae).
However, in some cases, despite the phylogenetic relationship with
neighbour species, the clinical relevance of a single species led us to
maintain it as a separated category, e.g., Staphylococcus saprophyticus
versus other coagulase-negative staphylococci (CNS), or Streptococcus
agalactiae versus beta-haemolytic streptococci, or Candida albicans
versus other non-Candida albicans species.

Plate-level clinical dataset. comprises 5,051 WaspLab™ clinical ima-
ges (from same number of plates) taken from the whole flow of about
one week of examinations from urine sample cultures performed at
TriCore Reference Laboratories in Albuquerque, NM (US). As for the
colony-level dataset, all the plates were inoculated from urine clinical
specimens using a 1μl loop on REMEL™ blood agar, and incubated
from 17 to 23 h in CO2 at 37 °C. After screening themwith a Sismex TM
urine analyser, which identifies negative urine samples that can be
excluded from the culturing process43, plates were labelled by the staff
on duty according to shared laboratory rules (depicted in Fig. 5a and
detailed below), nominally adopted by both lab technologists/micro-
biologists andDeepColony, to determine the clinical significance of the
culture.

DeepColony architecture
DeepColony is a comprehensive framework for colony identification
and analysis conceived to operate in high-throughput microbiology
laboratories. It is constituted of different CNNs that exchange
information and cooperate in a hierarchical structure. As depicted in
Fig. 1b, this structure is organized in 5 levels, from level 0 to level 4,
each one addressing a specific aspect of the analysis, allowing to
work at different interpretation scales, from the individual colonies
to the whole plate. A pictorial representation of the outcomes of the
different levels is presented in Fig. 1c–e, while a detailed algorithmic
description of the whole process is given in the Supplementary
Pseudocode.
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At level 0,DeepColony determines the locations and quantifies the
number of colonies present on the plate. The objective of this initial
step is to provide essential information about the spatial distribution
and abundance of colonies, being able to identify isolated colonies, to
recognize and count touching colonies in small aggregates (up to6), to
detect larger confluence areas and to possibly discard outliers (e.g.,
dirt material) or colonies growing too close to the plate borders. The
colony segmentation and enumeration maps are generated by an
approach that exploits a first CNN which have been described in a
previous publication25 and will not be detailed here. As can be seen
below, these are not only essential for the interpretation of individual
growths but also contribute greatly to the interpretation of the entire
plate. An example of the intermediate output of level 0 is shown in
Fig. 1c.

At level 1, the system identifies isolated colonies that are good
candidates for further analysis and identification. This is why,
according the same criteria microbiologists use to select colonies for
visual interpretation, the selection of “Good colonies” involves dis-
carding colonies located close to large confluent areas or to other
colonies, as they may struggle in obtaining proper nutrients for their
own growth, and therefore may not have a sufficiently developed
morphology indicative of the phenotypes of their species. Similarly,
colonies in proximity of the plate border were also excluded, where
not already excluded at level 0, this time because specular reflections
and geometrical obstacles may make them unsuitable for the tasks.
Colonies are discarded based on minimum distance criteria and
exploiting a distance transform operated on the segmentation mask
provided by level 0. In Fig. 1d good colonies are all those circled and
thus ready for the subsequent identification and interpretation steps.
The core part of DeepColony is represented by levels from 2 to 4. Their
role and main traits are summarized here, while their detailed
description is given in the following paragraphs.

At level 2, DeepColony makes an initial identification using a CNN
that assigns each colony to a particular species, based on visual
appearance and growth characteristics. In Fig. 1d three bacterial spe-
cies have been identified on the plate and indicated with differently
coloured circles and symbols Si.

On this basis, level 3 improves the identification robustness and
accuracy by incorporating a smoothing of the identification rankings
producedby level 2on thebasis of a contextual analysis of the bacterial
growth on the plate under analysis. An embedding of single colonies in
a similarity space is performed using the feature vector generated by a
branch of a Siamese CNN trained to recognise morphological variants
of the same strain growing on a plate as similar (i.e., close to eachother
in the embedding space). This makes a subsequent clustering in the
embedding space a meaningful way to regularize the species identifi-
cation rankings within each cluster with a significant beneficial effect
on the identification performance. A clear effect of this smoothing can
be seen in Fig. 1e where the number of identified strains is reduced
thanks to the level 3 identification refinement.

Eventually, at level 4, DeepColony assesses the clinical significance
of the entire plate and can assist in deciding which colonies should be
picked for downstream phases, such as MALDI-ToF identification,
secondary cultures, or antimicrobial susceptibility testing (AST). This
decision-making process takes into account not only the identification
results but also adheres to the specific laboratory guidelines to ensure
a proper supportive interpretation in the context of use. Figure 1e
indicates the final decision taken on the example plate and the sug-
gested colony to pick for each identified species.

Single colony identification
TheCNN for single colony identification schematized in Fig. 1f includes
four convolutional layers and one fully connected layer. The hyper-
parameters of the architecture, including the number of convolutional
layers, hidden units, and filter sizes, were carefully tuned using an

extensive grid search. Interestingly, the final optimal CNN configura-
tion is substantially equivalent to the best performing topology for
cardinality classification also reported for level 0 analyses25, thus
confirming the adequacy of the designed deep neural network archi-
tecture and capacity to the problem at hand. Other tests made to
justify and confirm other architectural choices (type of pooling and
overall complexity) are reported in Supplementary Table 2. Further
architectural details are available in Supplementary Note 1.

Context-based Identification
Pathogenic species identification using visual data is challenging
because of the numerosity of pathogens, the frequently high inter-
species visual similarity, but also different forms of intra-strain mor-
phological variability, in both colony dimensions and aspect, that
frequently occur even on the same plate (see Supplementary Fig. 2).
Hence the need to find a non-trivial similarity assessment strategy
capable to both distinguishing visually similar different species and, at
the same time, accommodate for different morphotypes of the same
species. Even focusing on single colony images, the original data space
is high-dimensional and too complex to directly define suitable map-
pings and/or metrics for assessing such species-related similarity
assessment (this has been experimentally verified and reported in
Supplementary Fig. 3). To overcome this challenge, a Nonlinear
similarity-driven embedding was introduced, wherein a data-driven
mapping function is employed to convert high-dimensional data to a
lower-dimensional space. This is followed by a Clustering in the
embedding space, where similarity clusters are exploited within a reg-
ularization strategy capable to improve, by a significant margin, the
overall quality of colony identification, with obvious positive reper-
cussion on quality and reliability of the pre-clinical interpretation of
the culture plates. Both these steps are detailed below.

Nonlinear similarity-driven embedding. The adopted approach,
based on a Siamese neural network37,38, can learn a mapping function
from colony images to a reduced-dimensionality space capable of
generalizing on unseen data. This architecture, depicted in Fig. 1g,
employs two Siamese-CNN subnetworks (S-CNN), which share the
same weights while working on two different input images. Using a
large training dataset of 200,000 pairs and a validation set of 10,000
pairs generated from the colony identification (level 2) dataset, the
network was trained to identify genuine and impostor pairs. To
ensure good interpretation conditioning of the plate context, same-
strain/different-plate pairs were not considered for training pur-
poses. As the goal of this embedding does not involve maximizing a
specific accuracy metric, the model selection process was more
indirect, with performance evaluated based on the subsequent
clustering step. To follow the performance of the model during
training, the loss function was monitored on the validation set,
expecting it to decrease steadily. The dimension of the embedding
space is defined by the last network layer of Fig. 1g and was experi-
mentally set to 15. Further architectural and training details are
available in Supplementary Note 2. Once the network has been
trained to recognise strain similarities that are expressed on the same
plate, one of the twin branches of the Siamese CNN is used to gen-
erate a feature vector to embed colonies in a plate-specific similarity
space suitable for subsequent ID regularization.

Clustering (mean-shift) in the embedding space. To perform
similarity-driven clustering in the embedding space a Mean-shift
technique39 is adopted. This method was selected due to its ability to
identify clusters with arbitrary shape and its minimal requirements in
terms of feature space topology. Additionally, Mean-shift clustering
does not require strong a-priori knowledge, which is often necessary
for methods like k-means clustering. The computational efficiency of
Mean-shift clustering also made it a favourable choice. Gaussian
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kernels are adopted with bandwidth experimentally optimized on the
dataset. To simulate mixed flora plate occurrences, virtual plates were
generated containing up to three different strains on eachplate. A total
of 1000 virtual plates were created to enable the construction of a
realistic experimental setup to train and test our clustering-based
approach. This was necessary since complete knowledge of every
colony on mixed flora plates by MALDI-ToF identification is not avail-
able, and it would be unfeasible and/or not fully justifiable to obtain
such information at a large scale. To compare the partition proposed
by the clustering algorithm with the ground truth, an overall evalua-
tion indicator v-measure is adopted44 that combines entropy-based
scores indicating homogeneity and completeness of the clustering (a
deeper explanation regarding these clustering metrics is provided in
Supplementary Note 3 while the obtained best parameters configura-
tion is reported in Supplementary Table 3).

Culture plate interpretation
With information generated from level 0 to 3, both lab technicians and
DeepColony can operate according to the same shared rules adopted
by the CML to determine whether the growth on each plate is sig-
nificant. Plate interpretation for clinical significance (level 4) is typically
shapedbywidely shared guidelines fromwhich laboratories can derive
their own specific protocols. The set of rules in use in our reference
CML are depicted in Fig. 5a: (1) cultures with fewer than 10 colonies are
considered no significant growth; (2) plates with 1–2 detected colony
morphologies, or with ≥3 different colony morphologies where one
pathogen is prevalent (over 50 CFU) over the normal (under 50 CFU)
genito-urinary flora (NGUF), are considered positive, thus to be further
evaluated for possible downstream steps (Maldi-ToF ID/AST); (3)
otherwise, cultures are considered contaminated—that is, when they
manifest ≥ 3 different colony morphologies without a particular
pathogen that is prevalent over the others.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and in the Supplementary Information. Source
data for all data figures are provided with this paper. The core colony
image dataset is available on Figshare with the following identifier
(https://doi.org/10.6084/m9.figshare.24203961). The use-case plate
dataset is property of TricoreLaboratories (Albuquerque,NewMexico,
USA), it was usedunder license for the current study and is not publicly
available. Requests can be addressed to the corresponding author
(expected response time 2 weeks) and access will require explicit
permission from Tricore Labs. Source data are provided with
this paper.

Code availability
A detailed pseudocode has been provided in the Supplementary
Information. The implementation encompasses custom C blocks
integrated into Python 2, with models structured in the Caffe frame-
work. The code (architecture and trained models) are not publicly
available due to some proprietary restrictions. They can be made
available from the authors on request and with permission of
Copan WASP.
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