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eQTL mapping in fetal-like pancreatic
progenitor cells reveals early developmental
insights into diabetes risk

Jennifer P. Nguyen1,2, Timothy D. Arthur2,3, Kyohei Fujita4, Bianca M. Salgado5,
Margaret K. R. Donovan1,2, iPSCOREConsortium*, HirokoMatsui5, Ji HyunKim 6,
AgnieszkaD’Antonio-Chronowska4,MatteoD’Antonio2,4,5&KellyA. Frazer 4,5

The impact of genetic regulatory variation active in early pancreatic devel-
opment on adult pancreatic disease and traits is not well understood. Here, we
generate a panel of 107 fetal-like iPSC-derived pancreatic progenitor cells
(iPSC-PPCs) from whole genome-sequenced individuals and identify 4065
genes and 4016 isoforms whose expression and/or alternative splicing are
affected by regulatory variation. We integrate eQTLs identified in adult islets
and whole pancreas samples, which reveal 1805 eQTL associations that are
unique to the fetal-like iPSC-PPCs and 1043 eQTLs that exhibit regulatory
plasticity across the fetal-like and adult pancreas tissues. Colocalization with
GWAS risk loci for pancreatic diseases and traits show that some putative
causal regulatory variants are active only in the fetal-like iPSC-PPCs and likely
influence disease by modulating expression of disease-associated genes in
early development, while others with regulatory plasticity likely exert their
effects in both the fetal and adult pancreas by modulating expression of dif-
ferent disease genes in the two developmental stages.

Genome-wide association studies (GWAS) have identified hundreds of
genetic variants associated with adult pancreatic disease risk and
phenotypes1–4. However, the majority of these associations map pre-
dominantly to non-coding regions of the genome, thereby hindering
functional insights into disease processes5–7. Previous large-scale
expression quantitative trait loci (eQTL) studies have made sig-
nificant advancements toward understanding how genetic variation
affects gene expression in various tissues and cell types, as well as their
contribution to human traits and diseases8–11. However, these analyses
were conducted in adult tissues and therefore the effects of regulatory
variation on gene expression under fetal conditions remain unclear.
Moreover, the integration of adult and fetal eQTL datasets would
enable the investigation of regulatory plasticity of genetic variants,

which refers to changes in variant function under different spatio-
temporal contexts9,12,13. Understanding how genetic variation affects
gene expression during early pancreas development, and how their
function changes in adulthood, can expand our understanding of the
biological mechanisms underlying adult pancreatic disease and GWAS
complex trait loci.

Many lines of evidence from clinical and genomic studies indicate
an important role of pancreas development in the health and onset of
childhood and adult pancreatic diseases14–17. For example,mutations in
genes critical to pancreatic development, such as PDX1, HNF4A, and
HNF1A, are associated with childhood-onset diabetes18–20. Further-
more, type 2 diabetes (T2D)-risk variants map to transcription factors
(TFs) that are crucial to pancreas development, including NEUROG3
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and HNF1A, and are enriched in accessible pancreatic progenitor-
specific enhancers4,14. To address the limited availability of fetal pan-
creatic tissues, protocols have been developed to efficiently guide the
differentiation of human induced pluripotent stem cells (iPSCs) into
pancreatic progenitor cells (iPSC-PPCs)21–28. This approach serves as a
model system to study human pancreas development. iPSC-PPCs
demonstrate expression of key transcription factors associated with
early pancreas development, including PDX1, NKX6-1, and SOX9, all
pivotal for pancreas lineage specification and differentiation22,29–33.
Additionally, iPSC-PPCs express developmental signaling pathway,
including Notch, WNT, and Hedgehog, that are critical in pancreas
development34–38. While iPSC-PPCs have provided extensive insights
into pancreas developmental biology, they have not yet been utilized
to examine the impact of genetic variation on gene expression in the
fetal-like pancreas.

In this work, we conduct a large-scale eQTL analysis on 107 iPSC-
PPC samples to map genetic loci associated with gene expression and
isoform usage during early pancreas development. We integrate
eQTLs fromadult pancreatic tissues and identify eQTL loci that display
temporal specificity in early pancreas development, as well as eQTL
loci that are shared with adult but display regulatory plasticity.
Annotation of GWAS risk loci using our spatiotemporally informed
eQTL resource reveal candidate causal regulatory variants with
developmental-unique effects associated with complex pancreatic
traits and disease.

Results
Overview of study
The goal of our study is to understand how regulatory variation active
during early pancreasdevelopment influences adultpancreatic disease
risk and phenotypes (Fig. 1a).We differentiated 106 iPSC lines from the
iPSCORE resource39 derived from 106 whole-genome sequenced indi-
viduals to generate 107 iPSC-PPC samples (one iPSC line was differ-
entiated twice) (Supplementary Fig. 1, Supplementary Data 1,
Supplementary Data 2). We characterized the fetal-like pancreatic
transcriptomeaswell as the cellular compositionusing single-cell RNA-
seq (scRNA-seq) of eight iPSC-PPC samples. Then, we conducted an
eQTL analysis on bulk RNA-seq of all 107 samples to identify regulatory
variants associated with fetal-like pancreatic gene expression and
isoform usage. To better understand the spatiotemporal context of
genetic variants, we integrated eQTLs previously discovered in adult
pancreatic islets11 and whole pancreas10 samples using colocalization
and network analysis. Finally, using our eQTL resource of pancreas
tissues (i.e., fetal-like iPSC-derived PPCs, adult islets, adult whole
pancreas), we performed GWAS colocalization and fine-mapping to
link developmental regulatory mechanisms and identify putative cau-
sal variants underlying pancreatic traits and disease associations.

Large-scale differentiation of fetal-like pancreatic
progenitor cells
We derived 107 iPSC-PPC samples using iPSC lines reprogrammed
from 106 individuals. Differentiation efficiencywas assessed using flow
cytometry analysis on PDX1 and NKX6-1, which are two markers rou-
tinely assayed for early pancreatic progenitor formation. PDX1 marks
the specification of cells towards the pancreas lineage (referred tohere
as “early PPC”; PDX1+/NKX6-1−), while subsequent NKX6-1 expression
marks the differentiation and maturation of pancreatic progenitor
cells (referred to here as “late PPC”; PDX1+/NKX6-1+)40. We observed an
18.1%median percentage of early PPCs (PDX1+/NKX6-1−) across the 107
samples while the median percentage of late PPCs (PDX1+/NKX6-1+)
was 74% (range: 9.4–93.1%) (Fig. 1b, Supplementary Fig. 2, Supple-
mentary Data 2). We further found that themedian percentage of cells
that expressedPDX1+wasmore than90%, confirming that themajority
of cells have specified towards the pancreas lineage and that the dif-
ferentiation procedure was highly efficient (Fig. 1b, Supplementary

Fig. 2, SupplementaryData 2). Consistent with flow cytometry analysis,
scRNA-seq of ten derived iPSC-PPCs confirmed the presence of both
early and late PPCs and that the majority of the cells were late PPCs
(Supplementary Figs 3–8; Supplementary Data 2–5; See Methods and
Supplemental Note 1). Altogether, these results show that themajority
of the cells in iPSC-PPCs were differentiated into late PPCs while a
smaller fraction represented a primitive PPC state.

To examine the similarities between iPSC-PPC and adult pan-
creatic transcriptomes, we generated bulk RNA-seq for all 107 iPSC-
PPC samples and inferred the pseudotime on each sample, along with
213 iPSCs39,41, 87 pancreatic islets42, and 176 whole pancreatic tissues43.
Pseudotime analysis and comparative expression analysis of early
developmental genes showed that the iPSC-PPC samples corre-
sponded to an early timepoint of pancreas development (Supple-
mentary Fig. 9, Supplementary Data 6).

These analyses, combined with the results of previous
studies22,25,27,38, show that the 107 derived iPSC-PPCs represent a fetal-
like state of pancreatic tissues.

Identification andcharacterizationof gene and isoformeQTLs in
fetal-like iPSC-PPCs
To characterize the effects of genetic variation on the fetal-like iPSC-
PPC transcriptome, weperformed an eQTL analysis tomap the genetic
associations with fetal-like gene expression (egQTL) and relative iso-
form usage (eiQTL). Considering only autosomal chromosomes, we
analyzed a total of 16,464genes and29,871 isoforms (corresponding to
9624 autosomal genes) thatwere expressed in the fetal-like iPSC-PPCs.
We identified 4065 (24.7%) eGenes and 4016 (13.0%) eIsoformswith an
egQTL or eiQTL, respectively (FDR <0.01, Fig. 1c, d, Supplementary
Data 7). To identify additional independent eQTL signals (i.e., condi-
tional eQTLs)44, we performed a stepwise regression analysis for each
eGene and eIsoform. This analysis yielded 368 egQTLs that mapped to
338 eGenes and 216 eiQTLs that mapped to 198 eIsoforms, totaling to
4433 independent egQTL associations and 4232 independent eiQTL
associations (Fig. 1c, d, Supplementary Data 7). We next predicted
candidate causal variants underlying each eQTL (egQTL and eiQTL)
association using coloc genetic fine-mapping45 and tested their
enrichments in transcribed regions and regulatory elements. We
observed an enrichment of egQTLs in intergenic and promoter regions
while eiQTLs were enriched in splice sites and RNA-binding protein
binding sites (Fig. 1e). We additionally estimated the transcription
factor (TF) binding score for each variant using the Genetic Variants
Allelic TF Binding Database46 and found that, at increasing posterior
probability (PP, probability that the variant is causal for the associa-
tion) thresholds, the candidate causal variants underlying egQTLswere
more likely to affect TF binding compared to those underlying eiQTLs
(Fig. 1f, Supplementary Data 8). These results corroborate similar
findings from previous studies10,12,47, showing that the genetic variants
underlying egQTLs and eiQTLs primarily affect gene regulation and
coding regions or alternative splicing, respectively.

To further characterize the function of genetic variants associated
with the fetal-like iPSC-PPC transcriptome, we examined the distribu-
tions of egQTLs and eiQTLs per gene. Of the 5619 genes whose phe-
notypewas affected by genetic variation, 1008were impacted through
both gene expression and isoform usage (i.e., had both egQTL and
eiQTLs, 17.9%) while 3057 were impacted through only gene expres-
sion (i.e., hadonly egQTLs, 54.4%) and 1554 throughonly isoformusage
(i.e., had only eiQTLs, 27.7%, Fig. 1g, Supplementary Data 7). For the
1008 genes with both egQTL and eiQTLs, we performed colocalization
with coloc.abf 45 to examine whether the same or different genetic
variants underpinned their associations. Coloc.abf 45 employs a Baye-
sian approach to estimate the PP that each of the five colocalization
models best explains the association between two genetic signals: H0)
no associations detected in either signal; H1) association detected in
only signal 1; H2) association detected in only signal 2; H3) associations

Article https://doi.org/10.1038/s41467-023-42560-4

Nature Communications |         (2023) 14:6928 2



detected in both signals but driven by different causal variants, and
H4) associations detected in both signals and driven by the same
causal variant.We identified 410 (40.7%) genes that had at least oneH4
(PP.H4, posterior probability for H4 ≥ 80%) or H3 (PP.H3, posterior
probability forH3 ≥ 80%)associationbetween their egQTLandeiQTLs,
of which themajority (333, 81.2%) had only overlapping signals (all H4),
38 (9.3%) had only non-overlapping signals (all H3), and 39 (9.5%) had
both overlapping and non-overlapping eiQTLs (both H3 and H4; an
egQTL can colocalize with an eiQTL corresponding to one isoform but
not with another eiQTL corresponding to a second isoform) (Fig. 1g,

Supplementary Data 9). The remaining 598 genes hadPP.H3 < 80% and
PP.H4 < 80% due to insufficient power (Fig. 1g). These findings show
that 19.5% (1008/5169) of genes had both egQTLs and eiQTLs and that
their effects were commonlydriven by the samecausal variants (81.2%)
while only a small fraction was driven by different causal variants
(9.3%). Enrichment analysis of overlapping egQTL and eiQTLs showed
that these variants were enriched for stop codons as well as mechan-
isms affecting both gene expression and alternative splicing (Supple-
mentary Fig. 11). Overall, our results show that the majority of genes
had either only egQTLs or eiQTLs, indicating that the functional

Fig. 1 | Discovery and characterization of eQTLs in iPSC-PPC. a Study overview
created using PowerPoint. b Density plots showing the distribution of PDX1+ cells
(%; regardless ofNKX6-1 status; light green) andPDX1+/NKX6-1+ cells (%; dark green)
in the 107 iPSC-PPC samples. cBar plot showing the number of eGeneswith primary
and conditional egQTLs. d Bar plot showing the number of eIsoforms with primary
and conditional eiQTLs. e Enrichment (odds ratio, X-axis) of eQTLs in genomic
regions (Y-axis) using two-sided Fisher’s Exact Tests comparing the proportion of
variantswith causal posterior probability (PP) ≥ 5% in the genomic regions between
egQTLs (blue; n = 8763) and eiQTLs (yellow; n = 8919). f Line plot showing Pearson
correlations of TF binding score and eQTL effect size at different thresholds of
causal PP for egQTLs (blue) and eiQTLs (yellow) (Supplementary Data 8). Closed

points indicate significant correlations (nominal p <0.05) while open points indi-
cate non-significant correlations (nominal (p >0.05). g Bar plot showing the num-
ber of genes with only egQTLs (blue; n = 3057), only eiQTLs (green; n = 1554), or
both. Orange represents genes whose egQTLs colocalized with all their corre-
sponding eiQTLs (PP.H4 ≥ 80%; n = 333). Red represents genes whose egQTLs did
not colocalize with any of their corresponding eiQTLs (PP.H3 ≥ 80%; n = 38), and
pink represents genes with both shared and distinct egQTLs and eiQTLs (i.e., an
eGene with two eIsoforms may colocalize with one eIsoform but not the other)
(n = 39). Gray represents genes whose eQTL signals were not sufficiently powered
to test for colocalization (PP.H4< 80% and PP.H3< 80%; n = 598).
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mechanisms underlying these associations are likely independent,
where genetic variants affecting alternative splicing do not affect the
overall expression of the gene, and vice versa.

eQTL landscapes of fetal-like iPSC-PPC and adult
pancreatic islets
Studies aimed at identifying and characterizing eGenes have been
conducted in both adult human islets and whole pancreatic
tissues;8,10,11,42,48 however, islet tissues have been more thoroughly
studied because of their role in diabetes. Therefore, we focused on
understanding the similarities and differences between eGenes in the
fetal-like iPSC-PPCs and adult human islets.

We obtained eQTL summary statistics and intersected the 4211
autosomal eGenes identified in 420 adult islet samples11 with the 4065
eGenes in fetal-like iPSC-PPC. We found that only 1501 (36.9% of 4065)
eGenes overlapped between the fetal-like iPSC-PPC and adult islet
tissues (Fig. 2a). To determine whether the small overlap was due to
gene expression differences, we calculated how many of the eGenes
were expressed in both the fetal-like iPSC-PPC and adult islets. Of the
4065 fetal-like iPSC-PPC eGenes, 88.7% (3605) were also expressed in
the adult islets; likewise, of the 4211 adult islet eGenes, 78.4% (3301)
were also expressed in the fetal-like iPSC-PPCs (Fig. 2b). These results
suggest that most fetal-like iPSC-PPC eGenes were expressed but not
associated with genetic variation in the adult islet samples, and
vice versa.

For eGenes that were present in both the fetal-like iPSC-PPC and
adult islet samples, we next asked whether their expressions were
controlled by the same genetic variants. We performed colocalization
between egQTLs for the 1501 shared eGenes in the fetal-like iPSC-PPC
and adult islets and found that 795 (52.3%) displayed strong evidence
for either H3 or H4 association (PP.H3 or PP.H4 ≥ 80%) (Supplemen-
tary Data 9). Of the 795 with an association, 701 (88.2%) had over-
lapping egQTL signals (PP.H4 ≥ 80%) while 94 (11.8%) had non-
overlapping egQTL signals (PP.H3 ≥ 80%) (Fig. 2c, Supplementary
Data 9). These results indicate that most shared eGenes were asso-
ciated with the same genetic variants controlling their gene expres-
sions in both fetal-like iPSC-PPC and adult islet tissues, while a subset

had non-overlapping genetic variants. For example, we identified
SNX29 as an eGene in both fetal-like iPSC-PPC and adult islets but
observed that its expression was associated with distinct eQTL signals
approximately 520 kb apart (Fig. 2d). SNX29 is involved in various
signaling pathways49, including TGF-β, ErbB, and WNT signaling path-
ways, and is predicted to be a causal gene for body-mass index (BMI)
and T2D50–52

Taken together, our results show that aminor proportion of fetal-
like iPSC-PPC eGenes (1501, 37% of 4065) was shared with adult islets,
whereas themajority (2564 = 4065–1501, 63%)were fetaldevelopment-
specific; and, whilemost shared eGenes were associatedwith the same
regulatory variants, ~12% were mediated by different eQTLs. These
findings indicate that regulatory variants tend to act in a
developmental-specificmanner, potentially by affecting the binding of
key regulatory TFs specific to fetal or adult pancreatic stages.

Developmental stage-unique and shared egQTLs
Above, we described eGenes that were unique to either fetal-like iPSC-
PPCs or adult islets, or shared between both. Here, we sought to
identify eQTLs (i.e., regulatory variants) that specifically affect gene
expression during the pancreas development stage, in the adult stage,
or both stages. Because fetal-like iPSC-PPCs give rise to both endocrine
and exocrine cell fates, we included eQTLs from both adult islets11 and
whole pancreas10 tissues in our analyses. Due to the many different
types of eQTLs used in this study, we refer to all eQTLs as a collective
unit as “eQTLs”, eQTLs that were associated with gene expression as
“egQTLs” (as defined above), and eQTLs associated with changes in
alternative splicing (eiQTLs, exon eQTLs, and sQTLs) as “eASQTLs”. For
simple interpretations, we only describe the results for the analyses
conducted on the egQTLs below, however, we identified unique and
shared iPSC-PPC eASQTL associations by conducting the same analyses
(see Supplementary Note 2).

To identify egQTLs that shared the same regulatory variants, we
performed pairwise colocalization using coloc.abf 45 between egQTLs
in fetal-like iPSC-PPC, adult islets11, and adult whole pancreas
samples10. We considered only egQTLs that had at least one variant
with causal PP ≥ 1% (from genetic fine-mapping45), were outside the

iPSC-PPC eGenes

Adult islet eGenes

rs1703493

rs1703493

rs11643010

rs11643010
1.2x10-5

1.2x10-5

Fig. 2 | Comparison of the genetic architecture underlying gene expression
between fetal-likeandadult islets. aVenndiagramshowing theoverlap of eGenes
between fetal-like iPSC-PPC and adult islets. b Stacked bar plot showing the total
number of eGenes detected in adult islets (blue; n = 4211 total) that were expressed
in iPSC-PPC (light blue; n = 3301). Likewise, we show the total number of fetal-like
iPSC-PPC eGenes (green; n = 4065 total) that were expressed in adult islets (light
green; n = 3605). These results show that the majority of eGenes were expressed in
both tissues, however, a large fraction was influenced by genetic variation in only
one of the two tissues. Therefore, the small overlap of eGenes may be due to
differences in the genetic regulatory landscape. c Pie chart showing the proportion
of shared eGeneswith distinct genetic loci (PP.H3 ≥ 80%, purple) or shared genetic

loci (PP.H4 ≥ 80%, orange). These results show that 12% of the shared eGenes were
associated with distinct regulatory variants between fetal-like and adult pancreatic
stages.d Example of a shared eGene (SNX29) whose expressionwas associatedwith
distinct egQTL signals (PP.H3= 90.4%) in fetal-like iPSC-PPC (green, top panel) and
adult islets (blue, bottom panel). The X-axis represents variant positions while the
Y-axis shows the −log10(eQTL p-value) for the associations between the genotype
of the tested variants andgene expression. For plottingpurposes,we assign a single
p-value for gene-level significance after Bonferroni-correction (0.05/number of
independent variants tested in fetal-like iPSC-PPC; horizontal line). Red vertical
lines show the positions of the lead variants in fetal-like iPSC-PPC and adult islets
(chr16:12656135:C >G and chr16:12136526:A >G, respectively).
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MHC region, and associated with genes annotated in GENCODE
version 3453 (Supplementary Data 10). From colocalization, we
identified 7893 pairs of egQTLs that displayed high evidence of
colocalization with PP.H4 ≥ 80%, and 8570 egQTLs that did not
colocalize with egQTLs (Supplementary Data 9). Hereafter, we refer
to eQTLs that did not colocalize with eQTLs as “singletons” and those
that colocalized with another eQTL (PP.H4 ≥ 80%; same or different
tissue) as “combinatorial” (i.e., the 7893 pairs of egQTLs).

We next sought to identify singleton and combinatorial egQTL
signals that were unique to iPSC-PPC or shared between iPSC-PPC and
the adult pancreatic tissues. The singleton iPSC-PPC egQTLs were
associated with a single eGene and not active in the adult pancreatic

samples, and hence tissue-unique. To ensure that therewas no overlap
of singleton egQTLs with other egQTLs in either the fetal-like and adult
pancreas tissues, we implemented an LD filter (r2 ≥ 0.2 with any egQTL
within 500 Kb or within 500 Kb if LD could not be calculated; see
Methods). We identified 3517 tissue-unique singleton egQTLs (887
iPSC-PPC + 703 adult islet + 1927 adultwholepancreas) thatwere not in
LD with any nearby egQTLs (Fig. 3a, Supplementary Data 10).

To identify tissue-unique combinatorial egQTL signals, we created
a network using the 7893 pairs of colocalized egQTL associations. We
identified 1852 egQTL modules that passed specific criteria for module
identification and LD filters (see Methods), of which 939 (50.7%) com-
prised two egQTLs while the remaining 913 (49.3%) had an average of
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Fig. 3 | eQTL sharing between iPSC-PPC, adult islets, and adultwhole pancreas.
a Bar plot showing the number of tissue-unique egQTLs identified in fetal-like iPSC-
PPC, adult islets and adultwhole pancreas.bBar plot showing the number of egQTL
modules for each annotation. c Top panels: Enrichment (odds ratio) of iPSC-PPC
singleton and combinatorial egQTLs in hESC-derived PPC chromatin states14. Bot-
tom panels: Enrichment (odds ratio) of iPSC-PPC singleton and combinatorial
egQTLs in adult islet chromatin states54. Enrichment was calculated using a two-
sided Fisher’s Exact Test comparing the proportion of candidate causal variants
overlapping the chromatin states versus a background of randomly selected
20,000 variants at various PP thresholds. P-values were Benjamini-Hochberg-
corrected and considered significant if the corrected p-values < 0.05 (indicated by
asterisk, Supplementary Data 12).d CDC37L1-DT locus showing an iPSC-PPC-unique
singleton egQTL overlapping an adult islet active promoter region. Lower panel
shows the positions of active promoters in the adult islets. e, fThe chr3:148903264-
148983264 locus (gray rectangle) is an example of an “iPSC-PPC-unique” module
(module ID: GE_3_1) associated with CP and HPS3 expression. g, h The

chr15:57746360-57916360 locus (gray rectangle) is as an example of an “adult islet-
unique” module (module ID: GE_15_13) associated with GCOM1, MYZAP, and
POLR2M expression. GCOM1 was not expressed in adult whole pancreas and
therefore, wasnot tested for egQTL association. i, jThechr5:146546063-146746063
locus (gray rectangle) is an “adult whole pancreas-unique” egQTL module (module
ID: GE_5_32) associated with STK32A and STK32A-AS1 expression. STK32A-AS1 was
not expressed in iPSC-PPC and therefore, was not tested for egQTL association.
Panels e, g, i display the egQTL modules as networks in which the egQTL associa-
tions (nodes) are connected by edges due to colocalization (PP.H4 ≥ 80%). For
panels d, f, h, and j, the X-axis represents variant positions while the Y-axis shows
the −log10(eQTL p-value) for the associations between the genotype of the tested
variants and gene expression. For plotting purposes, we assigned a single p-value
for gene-level significance after Bonferroni-correction (0.05/the number of inde-
pendent variants tested in fetal-like iPSC-PPC; horizontal line). Red vertical lines
indicate the positions of the lead candidate causal variants underlying the colo-
calization based on maximum PP.
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four egQTLs per module (range: 3-20 egQTLs) (Supplementary Data 10,
Supplementary Data 11). In total, we identified 199 (10.7% of 1852)
modules thatwere tissue-unique, of which 10were iPSC-PPC-unique, 30
adult islet-unique, and 159 adult whole pancreas-unique (Fig. 3b), and
altogether comprised 21, 62, and 354 egQTLs in combinatorial associa-
tions, respectively (Fig. 3a). In contrast, the remaining 1653 (89.3% of
1852) modules were associated with multiple pancreatic tissues, of
which 670 were shared between only adult islet and whole pancreas
tissues (referred to as “adult-shared”), 53 were shared between only
iPSC-PPC and adult islets (“fetal-islet”), 278 between only iPSC-PPC and
adult whole pancreas (“fetal-whole-pancreas”), and 652 between all
three pancreatic tissues (“fetal-adult”) (Fig. 3b). Together, the 983
(53 + 278+ 652) modules shared between iPSC-PPC and an adult pan-
creatic tissue were composed of 1122 iPSC-PPC, 870 adult islets, and
1394 adult whole pancreas egQTLs (Supplementary Data 10, Supple-
mentary Data 11).

For eASQTLs, we observed similar trends in which the majority of
fetal-like iPSC-PPC-unique eASQTLs were singletons and that combi-
natorial eASQTLswere likely sharedwith the adult pancreas tissues (see
Supplemental Note 2; Supplementary Fig. 11). Altogether, including
eASQTLs, we identified 1805 iPSC-PPC eQTLs that were unique to fetal-
like iPSC-PPC, of which 1518 (887 egQTLs + 631 eASQTLs) functioned as
singletons and 287 (21 egQTLs + 266 eASQTLs) in modules; while 1977
(1175 egQTLs + 802 eASQTLs)were sharedwith adult pancreatic tissues,
and 4326 (2066 egQTLs + 2260 eASQTLs) failed one or more the
stringent filters and were marked as ambiguous (Supplementary
Data 10, Supplementary Data 11).

Functional enrichment and characterization of fetal-like iPSC-
PPC-unique egQTLs
To functionally characterize the fetal-like iPSC-PPC tissue-unique sin-
gleton and combinatorial egQTLs, we calculated their enrichments in
chromatin state annotations from human ESC-derived PPCs14. At high
PP thresholds, we observed the strongest enrichment of singleton
egQTLs in active promoter (TssA) regions, consistent with their role in
regulating the expression of a single gene (Fig. 3c, Supplementary
Data 12). For combinatorial egQTLs, we observed a strong enrichment
in PPC-specific stretch enhancer (PSSE) regions at high PP thresholds
(p = 0.001, OR = 1345, PP threshold = 60%) (Fig. 3c, Supplementary
Data 12), consistent with their involvement in the transcriptional reg-
ulation of multiple genes. We also evaluated the enrichment of fetal-
like iPSC-PPC-specific singleton and combinatorial egQTLs in adult islet
chromatin states54 (Fig. 3c).Nomeaningful enrichmentswereobserved
for fetal-like iPSC-PPC-unique combinatorial egQTLs, but iPSC-PPC-
unique singleton egQTLs were enriched in adult promoter regions
(p = 4.1 ×10−4, OR = 28.4, PP threshold = 80%). For example, we
observed that the iPSC-PPC-unique singleton egQTL in theCDC37L1-DT
locus overlapped an active promoter region in the adult islet, while in
both adult islet and adult whole pancreas, the variants in the same
region are not active (Fig. 3d). Overall, these results show that the
egQTLs annotated as iPSC-PPC tissue-unique were enriched in reg-
ulatory elements consistent with their proposed functions.

Next, we present three examples of tissue-unique egQTLmodules
that further illustrate context-specificity of regulatory variants in the
three pancreatic tissues. We identified the egQTL module GE_3_1 (“GE”
means that this module is associated with gene expression) as a fetal-
unique egQTL locus (ch3:148903264-148983264) because the under-
lying genetic variants were associated with CP and HPS3 expression in
only fetal-like iPSC-PPC while in adult islets and whole pancreas, the
variantswere not detected as egQTLs (Fig. 3e, f). Similarly, GE_15_13was
an adult islets-unique egQTL locus (chr15:57746360-57916360) asso-
ciatedwithGCOM1, MYZAP, and POLR2M expression, while in the other
two pancreatic tissues, the variants were inactive and not associated
with gene expression (Fig. 3g, h). Finally, we discovered GE_5_32 as an
adult whole pancreas-unique egQTL locus (chr5:146546063-

146746063) associated with STK32A and STK32A-AS1 expression in
only the adult whole pancreas (Fig. 3i, j). Together, these results show
that gene regulation varies between fetal-like and adult pancreatic
stages, as well as between the two adult tissues, further demonstrating
the importance of profiling multiple contexts of the pancreas to
delineate molecular mechanisms underlying pancreatic disease.

Regulatory plasticity in combinatorial egQTLs shared between
fetal-like and adult pancreatic tissues
Regulatory elements are known to have context-specific gene
interactions55. To explore this further, we examined the 983 egQTL
modules shared between fetal-like iPSC-PPC and adult pancreatic
tissues and determined whether the modules were associated with
the same or different eGenes between the two stages. We char-
acterized the eGene overlap in five different ways (Fig. 4a, Supple-
mentary Data 11): A) 200 (20.3%) egQTL modules were associated
with same eGene(s) (range: 1-2) between fetal-like iPSC-PPC and only
one of the two adult pancreatic tissues; B) 305 (31.0%) were asso-
ciated with the expression of the same eGene(s) (range 1-2) in the
fetal-like and both adult tissues; C) 350 (35.6%) were associated with
2-12 eGenes, some of which were shared, but at least one eGene was
different between the fetal-like and at least one of the adult tissues
(referred to as “partial overlap”); D) 88 (9.0%) were associated with
different eGenes (range: 2-5) between fetal-like iPSC-PPCs and one of
the two adult pancreatic tissues; and E) the remaining 40 (4.1%) were
associated with different eGenes (range: 2-7) between the fetal-like
and both adult islet and whole pancreas tissues (i.e., there is no
overlap of eGenes between the two developmental stages). These
data show that 51.3% (505, categories A and B) of themodules shared
between the iPSC-PPCs and adult pancreatic tissues regulated
expression of the same genes, while 48.7% (478, categories C-E)
displayed spatiotemporal regulatory plasticity.

Here, we illustrate examples of egQTL modules in three intervals
that display regulatory plasticity between fetal-like and adult states. In
the chr1:201300813-201450813 locus, we identified a fetal-adult egQTL
module (GE_1_163) that comprised egQTL associations for different
eGenes in iPSC-PPC and the two adult pancreatic tissues, specifically
AC119427.1 in iPSC-PPC and TNNI1 in the two adult tissues (Fig. 4b).
Likewise, the chr19:4213666-4433666 locus corresponding to a fetal-
adult egQTLmodule (GE_19_90) was associated withMPND expression
in only iPSC-PPC but in adult islets and whole pancreas, the underlying
variants were associated with STAP2 expression (Fig. 4c). Finally, the
fetal-adult egQTL locus (GE_10_11) in chr10:1273918-1276118 affected
UROS expression in all three pancreatic tissues but in adult islets, the
underlying variants also affected BCCIP expression (Fig. 4d). Together,
these genomic loci illustrate examples of regulatory plasticity
observed in genetic variants in which their genotypes incur different
impacts on transcriptional activity depending on the life stage of the
pancreas.

Altogether, including eASQTLs, we discovered 655 (478
egQTL + 177 eASQTL modules, categories C-E) shared eQTL loci that
displayed regulatory plasticity in which the underlying regulatory
variants were associated with one or more different genes and
could thereby affect different biological processes (see Supple-
mental Note 2, Supplementary Fig. 11, Supplementary Data 11).
These 655 shared eQTL loci comprise 1043 iPSC-PPC, 934 adult
islet, and 1111 adult whole pancreas eQTL associations (Supple-
mentary Data 10).

Associations of spatiotemporal eQTLswith pancreatic traits and
disease phenotypes
To better understand the role of regulatory variants associated
with complex human traits and disease during early development
and adult pancreatic stages, we performed colocalization
between GWAS signals and eQTLs (egQTL and eASQTL) detected in
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fetal-like iPSC-PPC, adult islets, and adult whole pancreas tissues.
For this analysis, we considered GWAS data from ten different
studies for two diseases involving the pancreas, including type 1
diabetes (T1D)3 and type 2 diabetes (T2D)4, and seven biomarkers

related to three traits: 1) glycemic control (HbA1c levels and
fasting glucose [FG])2,56; 2) obesity (triglycerides, cholesterol, HDL
level, and LDL direct)56; and 3) body mass index (BMI)56 (Supple-
mentary Data 13).
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Fig. 4 | Regulatory plasticity of egQTL loci. a Number of egQTL modules shared
between iPSC-PPC and at least one adult pancreas tissue categorized by eGene
overlapwith adult. “Zero” indicates that themodule did not contain an egQTL in the
respective adult tissue. “Same” indicates that the module had egQTLs for only the
same eGenes in iPSC-PPC and the adult tissue. “Partial” indicates that the module
hadegQTLs for partially overlapping eGenes between iPSC-PPC and the adult tissue.
“Different” indicates that themodulehadegQTLs foronly different eGenes between
iPSC-PPC and the adult tissue. b–d Examples of egQTL loci demonstrating reg-
ulatory plasticity of genetic variation across fetal-like and adult pancreatic stages.
Panel b shows a locus strongly associated with AC119427.1 expression in fetal-like
iPSC-PPC and TNNI1 expression in adult islet and whole pancreas. Panel c shows a

locus associated with MPND expression in only fetal-like iPSC-PPC but STAP2
expression in both the adult pancreatic tissues. Panel d shows a locus associated
with partially overlapping eGenes between the two pancreatic stages (UROS in all
three pancreatic tissues and BCCIP in only adult islets). The X-axis represents var-
iant positions while the Y-axis shows the −log10(eQTL p-value) for the associations
between the genotype of the tested variants and gene expression. For plotting
purposes, we assigned a single p-value for gene-level significance after Bonferroni-
correction (0.05/the number of independent variants tested in fetal-like iPSC-PPC;
horizontal line). Red vertical lines indicate the positions of the lead candidate
causal variants underlying the colocalization based on maximum PP.
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Singleton eQTLs. Out of the 6101 singleton eQTLs (3517 egQTLs and
2584 eASQTLs; see Supplemental Note 2) in the fetal-like iPSC-PPC
and two adult pancreatic tissues, we found 118 (1.9%) that displayed
strong evidence for colocalization with at least one GWAS signal,
including 21 (of 1518 total singleton eQTLs; 1.4%) fetal-like iPSC-PPC,
57 (of 2225; 2.6%) adult islets, and 40 (of 2358; 1.7%) adult whole
pancreas singleton eQTLs (Fig. 5a, Supplementary Data 13). Given
that some traits were highly correlated with one another57,58, we
observed 38 singleton eQTLs that colocalized with GWAS variants
associated with more than one trait (range: 2-6 traits). In total, we
identified 183 GWAS loci across the ten traits that colocalized with
fetal-like or adult pancreatic singleton eQTLs (each combination of
colocalized eQTL-GWAS trait variants was counted as a separate
locus; Supplementary Fig. 12, Supplementary Fig. 13, Supplemen-
tary Data 13). We next identified putative causal variants underlying
both eQTL and trait associations using coloc.abf 45 and constructed
99% credible sets (i.e., set of variants with a cumulative causal PP ≥
99%; see Methods). Of the total 183 colocalized GWAS loci, we
resolved 21 to a single putative causal variant while 63 had between
two and ten variants and the remaining 99 had more than ten var-
iants with an average of ~46 variants per locus (Fig. 5b, Supple-
mentary Data 14).

eQTLmodules. We next analyzed the combinatorial eQTLs for GWAS
colocalization. We considered an eQTL module to overlap with
GWAS variants if more than 30% of the eQTLs in the module colo-
calized with PP.H4 ≥ 80% and the number of H4 associations was
twice greater than the number of H3 associations (see Methods). Of
the 2832 (1852 egQTL and 980 eASQTL) modules, 89 (57 egQTL + 32
eASQTL; 3.1%) colocalized with a total of 129 GWAS loci across the ten
traits (Supplementary Fig. 12, Supplementary Fig. 13, Supplementary
Data 13). Of these 89 GWAS-colocalized modules, 5 were iPSC-PPC-
unique, 36 were shared between both iPSC-PPC and adult, (4 fetal-
islet, 11 fetal-whole-pancreas, and 21 fetal-adult modules), and 48
were associated with only adult (22 islet-unique, 5 whole pancreas-
unique, 21 adult-shared) (Fig. 5a, Supplementary Fig. 13). We
observed that all 5 iPSC-PPC-unique eQTL modules corresponded to
eASQTL modules. This finding aligns with multiple studies showing
that alternative splicing is more dynamic and extensive in embryonic
and fetal stages59–61. The 89 modules comprised 49 iPSC-PPC eQTLs
(41 genes), 98 adult islets eQTLs (75 genes), and 71 adult whole
pancreas eQTLs (69 genes). To fine-map each of the 129 colocalized
GWAS loci, we used the eQTL in the module that resulted in the least
number of putative causal variants (seeMethods). 15 GWAS loci had a
credible set size of one variant, 54 with two to ten variants, and the

remaining 60 had more than ten variants and an average of ~32
variants per set (Fig. 5c, Supplementary Data 14).

Altogether, these results show complex pancreatic disease and
trait GWAS variants colocalized with regulatory variants that were
uniquely active in either the fetal-like or adult developmental stages
and with regulatory variants shared across the life stage of the pan-
creas. Furthermore, our data show the utility of using spatiotemporally
informed eQTLs for fine-mapping causal variants in GWAS loci.

Spatiotemporally informed eQTL resource provides mechan-
istic insights into GWAS signals
To assess the utility of our spatiotemporally informed eQTL resource
for interpreting GWAS signals, we initially examined the role of reg-
ulatory plasticity in pancreatic disease and traits. We examined the 36
eQTL modules that were shared between fetal-like iPSC-PPC and the
adult pancreatic tissues (i.e., fetal-adult, fetal-islet, and fetal-whole-
pancreas) and colocalized with GWAS signals. Thirty of these modules
were associated with the same genes (categories A and B), while one
was associatedwith partially overlapping eGenes (category C), and five
were associated with entirely different eGenes (category D and E) (see
Fig. 4a for category definitions) (Supplementary Data 13). These results
show that while the function of shared GWAS regulatory variants
tended to be conserved across the fetal-like and adult pancreatic
stages, a subset (17%, n = 6 of 36 total eQTL modules) were associated
with distinct genes between the two stages.

To further assess the utility of our spatiotemporally informed
eQTL resource, we next examined GWAS signals that could only be
interpreted by including fetal pancreatic eQTLs. We calculated the
fraction of GWAS loci that colocalized with only iPSC-PPC eQTLs, only
adult islet eQTLs, and only adult whole pancreas eQTLs. For fair
comparisons,we considered only egQTLs in this assessment. Of the 191
GWAS loci that colocalizedwith an egQTL (Supplementary Data 13), we
found that 13% (24 loci) colocalized with 16 iPSC-PPC-unique egQTLs,
25% (47) with 27 adult islet-unique egQTLs, and 28% (53) with 46 adult
whole pancreas-unique egQTLs. The remaining 35% (67) GWAS loci
colocalized with 121 egQTLs shared between multiple tissues. We next
determined how many of the 16 iPSC-PPC-unique egQTLs were active
in 48 non-pancreatic tissues in the GTEx study10. We calculated LD
(r2 > 0.2 within 500 Kb or within 500 Kb if LD information was not
available) between the lead variants of each of the 16 iPSC-PPC-unique
egQTL and each egQTL for the non-pancreatic tissues in GTEx. We
identified 8 (31% of 16, all singletons) that were independent and
exclusive to the fetal-like iPSC-PPC dataset (i.e., did not have LD;
Supplementary Data 15). One of these 8 iPSC-PPC egQTLs (TPD52
egQTL) is described below in further detail. These results show that

Singleton Module

Fig. 5 | Summary of pancreatic GWAS associations. a Bar plot showing the
number of eQTL loci that colocalized with GWAS variants (PP.H4 ≥ 80%) as a
singleton or module. b Pie chart showing the number of singleton-colocalized
GWAS loci (n = 183) color-coded by the number of candidate causal variants

identified in their 99% credible sets. c Pie chart showing the number of module-
colocalized GWAS loci (n = 129) color-coded by the number of candidate causal
variants identified in their 99% credible sets.

Article https://doi.org/10.1038/s41467-023-42560-4

Nature Communications |         (2023) 14:6928 8



integrating fetal-like iPSC-PPC eQTLs can help resolve certain GWAS
loci that cannot be resolved using only adult datasets.

Below, we demonstrate the application of our spatiotemporally
informed eQTL resource by providing a detailed description of eight
GWAS loci.Weproposepotential causalmechanisms andoffer insights
into their spatiotemporal contexts.

SingletonegQTLs. Here, we elucidate probable causalmechanisms for
two GWAS loci associated with FG levels and T1D-risk that colocalized
with iPSC-PPC-unique singleton egQTLs.

chr8:80998464-81093464 and TPD52 (iPSC-PPC-unique single-
ton). We found that in the chr8:80998464-81093464 locus, a GWAS
signal associated with FG levels colocalized with a fetal-like iPSC-PPC-
unique singleton egQTL for TPD52, also known as tumor protein D52
(effect size = −0.99, PP.H4 = 91.7%) (Fig. 6a, Supplementary Fig. 14A,
Supplementary Data 13). The reported causal variant underlying this
GWAS signal is rs125416432; however, colocalization with our eQTLs
identified rs12549167 (chr8:81078464:C > T, PP = 33.9%, r2 = 0.317 with
rs12541643, Supplementary Data 14) as the most likely candidate cau-
sal variant underlying both TPD52 expression in fetal-like iPSC-PPC and

FG association. TPD52 is a direct interactor with the AMP-activated
protein kinase (AMPK) and negatively affects AMPK signaling. AMPK
controls a wide range of metabolic processes and is responsible for
maintaining cellular energy homeostasis particularly in tissues asso-
ciatedwith obesity, insulin resistance, T2D, and cancer such asmuscle,
liver, hypothalamus, and the pancreas62–65. Dysregulation of AMPK has
also been associated with developmental defects in which AMPK
activation can lead to fetal malformation66. Our findings suggest that
decreased expression of TPD52 during development may influence
changes in glucose metabolism and therefore fasting glucose levels
during adult stage.

chr9:4232083-4352083 and CDC37L1-DT (iPSC-PPC-unique sin-
gleton). We found that the well-known GLIS3 GWAS locus associated
with FG and T1D-risk67,68 colocalized with a fetal-like iPSC-PPC-unique
singleton egQTL for the lncRNA CDC37L1 divergent transcript
(CDC37L1-DT; effect size = 1.46; PP.H4 for FG and T1D = 92.4% and
91.2%, respectively, Fig. 6b, Supplementary Fig. 14B, Supplementary
Data 13). Consistent with previous studies67,68,69, we identified
rs10758593 (chr9:4292083:G >A, PP = 79.2%) as the lead candidate
causal variant underlying both eQTL and GWAS associations. Because
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Fig. 6 | Pancreatic GWAS associations with fetal-specific and adult-shared gene
Expression. a The TPD52 locus is associated with fasting glucose levels and colo-
calized with a fetal-like iPSC-PPC-unique singleton egQTL with the predicted causal
variant identified as rs12549167 (chr8:81078464:C > T, PP = 33.9%). b The CDC37L1-
DT locus is associatedwith fasting glucose and type 1 diabetes and colocalizedwith
an iPSC-PPC-unique singleton egQTL with the predicted causal variant identified as
rs10758593 (chr9:4292083:G > A, PP = 79.2%). c Cholesterol and LDL direct GWAS
loci colocalize with a fetal-adult egQTL module where the variants are strongly
associated with ADSL expression in iPSC-PPC and ST13 expression in the adult
whole pancreas (also weakly associated with ST13 expression in the adult islets).
The predicted causal variant was identified as rs138349 (chr22:41249522:A >G,
PP = 21.9%). For plotting purposes, we assigned a single p-value for gene-level sig-
nificance based on Bonferroni-correction (0.05 divided by the number of

independent variants tested in fetal-like iPSC-PPC; horizontal line). We note that
this p-value does not reflect the thresholds used to define a significant eQTL in the
original adult studies10,11. Therefore, while the ST13 eQTL in adult islets in panel c is
below thehorizontal line, it hadan FDR< 1% in theoriginal study11. In eachpanel, the
X-axis represents variant positionswhile the Y-axis either shows the −log10(eQTLp-
value) for the associations between the genotype of the tested variants and gene
expression or the −log10(GWAS p-value) for the associations between the tested
variants and the GWAS trait. For GWAS significance, we used −log10(5 × 10−8). Red
vertical lines indicate the positions of the lead candidate causal variants underlying
the colocalization based on maximum PP. For loci that colocalized with multiple
GWAS traits, we used the credible set that yielded the smallest number of variants
to plot the “PP” fine-mapping panel.
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GLIS3 plays a critical role in pancreatic beta cell development and
function70,71, it has often been reported as the susceptibility gene for
this signal, however it remains unclear what effects rs10758593 has on
GLIS3 expression. Our analysis suggests that another potential gene
target of rs10758593, specifically during pancreas development, is
CDC37L1-DT. While themolecular function of CDC37L1-DT is unknown,
the gene has been associated with 9p duplication in neurodevelop-
mental disorders72. Furthermore, a recent study observed a significant
association between the rs10758593 risk allele and birth weight, indi-
cating a development role played by this locus73. Although additional
studies are needed to understand the function of CDC37L1-DT during
pancreas development and in T1D pathology, our analysis indicates
that CDC37L1-DTmay be another candidate susceptibility gene for the
variants in the GLIS3 locus. Assessment of GLIS3 egQTLs in the three
pancreatic tissues showed that there was no overlap between the
egQTLs and GWAS variants (Supplementary Fig. 15A).

Combinatorial egQTLs. Below, we describe two GWAS intervals
associated with cholesterol, LDL direct levels, and T1D. We show that
the GWAS variants colocalized with combinatorial egQTLs, indicating
thatmultiple genes, and possiblymultiple developmental stages of the
pancreas, may be involved in trait predisposition.

chr22:41049522-41449522 and ADSL and ST13 (fetal-adult com-
binatorial). We found that the GWAS signals associated with choles-
terol and LDL direct levels in the chr22:41049522-41449522 locus
colocalized with a “fetal-adult” egQTL module (module ID: GE_22_63,
category E) (Fig. 6c, Supplementary Fig. 14C, D, Supplementary
Data 13). The module was associated with different eGenes between
fetal-like iPSC-PPC and both adult pancreatic tissues, in which the
GWAS variants were associated with ADSL expression in iPSC-PPC
(effect size = 0.78) but ST13 expression in adult whole pancreas (effect
size = 0.27) and adult islets (effect size = −0.15, weakly associated).
Infants bornwith ADSL (adenylosuccinate lyase) deficiency suffer from
impaired glucose and lipid metabolism, while ST13, also known as
Hsc70-interacting protein, is involved in lipid metabolism74,75. Over-
expression of ST13 was found to result in disordered lipid metabolism
in chronic pancreatitis74. Although ST13 was reported to be the can-
didate causal gene for this locus76, we determined that the underlying
variants may also affect ADSL expression but specifically during early
pancreas development. Congruent with the previous study76, our
colocalization identified rs138349 (chr22:41249522:A >G, PP = 21.9%
for cholesterol and 20.9% for LDL) as the lead candidate causal variant
for the egQTLs and both cholesterol and LDL GWAS associations
(Supplementary Data 14). Altogether, annotation of the
chr22:41049522-41449522 GWAS locus using our pancreatic eQTL
resource suggests that altered expression of ADSL during pancreas
development and ST13 in adult pancreatic tissues may contribute to
changes in cholesterol andLDLdirect levels in adult. Additional studies
are required to understand the degree to which ADSL and ST13 are
causal for cholesterol and LDL direct levels.

chr10:90001035-90066035 and PTEN and LIPJ (adult whole
pancreas-unique combinatorial). We found a T1D-risk signal in the
chr10:90001035-90066035 locus that colocalized with an “adult
whole pancreas-unique” egQTL module (module ID: GE_10_35) asso-
ciated with PTEN and LIPJ expression in adult whole pancreas (effect
size = 0.48 and 0.49, respectively) (Supplementary Fig. 14E, Supple-
mentary Fig. 15B, SupplementaryData 13). Colocalization identified the
distal regulatory variant rs7068821 (chr10:90051035:G > T; PP = 85.5%)
as the most likely candidate causal variant (Supplementary Data 14),
which is in LD with the reported index SNP rs10509540 (r2 = 0.876) in
the GWAS catalogue. While RNLSwas reported to be the susceptibility
gene for this locus77, our analysis suggests that both PTEN and LIPJmay
be candidate causal genes for this locus. Previous studies have shown

that knockout of pancreas-specific PTEN (PPKO) in mice resulted in
enlarged pancreas and elevated proliferation of acinar cells. PPKO
mice also exhibited hypoglycemia, hypoinsulinemia, and altered
amino metabolism78. LIPJ encodes the lipase family member J and is
involved in lipid metabolism79. Our findings provide additional biolo-
gical insight into the chr10:900001035-90066035 T1D locus and
support previous studies suggesting a potential causal role of the adult
whole pancreas in T1D pathogenesis3,73.

Singleton and combinatorial eASQTLs. Here, we illustrate three
examples of putative causal variants involved in alternative splicing
uniquely in the fetal-like iPSC-PPC. Long-noncoding RNAs (lncRNAs)
have previously been shown to play important roles in both pancreas
development and diseases80. One of our examples includes a lncRNA
while two involve protein-coding genes.

chr14:101286447-101326447 and MEG3 (iPSC-PPC-unique single-
ton). The chr14:101286447-101326447 is a well-known GWAS locus
associated with T1D and has been reported to affect the lncRNA
maternally expressedgene 3 (MEG3).While the roleofMEG3 in T1D and
T2D pathogenesis has been extensively studied81–83, the genetic
mechanismbywhich this locus affectsMEG3 expression and therefore,
T1D-risk is not well understood. Using our pancreatic eQTL resource,
we found that the GWAS signal colocalized with a fetal-like iPSC-PPC-
unique singleton eASQTL for a MEG3 isoform (ENST00000522618,
PP.H4 = 98%, effect size = 1.3, Fig. 7a, Supplementary Fig. 16A, Sup-
plementary Data 13). Colocalization with the MEG3 eASQTL identified
rs56994090 (chr14:101306447:T >C, PP = 100%) as the most likely
candidate causal variant, which is concordant with the findings of a
previous GWAS study84 (Supplementary Data 14). Of note, rs56994090
is in strong LD with an indel (rs34552516), which was previously iden-
tified as a candidate causal variant.85 Given that rs56994090 is located
in the novel intron enhancer ofMEG381, we hypothesize that alternative
splicing of MEG3 may alter the enhancer’s regulatory function, as
previously observed in other lncRNAs86, and thereby, affect T1D-risk.
Altogether, our findings describe a potential causal mechanism for the
T1D-risk locus involving differential alternative splicing of MEG3 spe-
cifically during pancreas development.

chr16:684685635-68855635 and CDH3 (iPSC-PPC-unique sin-
gleton). We determined a known GWAS signal in the
chr16:684685635-68855635 locus associated with HbA1c levels87

colocalized with a fetal-like iPSC-PPC-unique singleton eASQTL for
the P-cadherin 3 (CDH3) isoform ENST00000429102 (effect size =
−1.6, PP.H4 = 83.1%) (Fig. 7b, Supplementary Fig. 16B, Supplementary
Data 13). Colocalization using the eASQTL identified intronic variant
rs72785165 (chr16:68755635:T > A, PP = 6.8%) as the most likely can-
didate causal variant (Supplementary Data 14), which is in high LD
with the reportedGWAS SNP (rs4783565, r2 = 0.88)87.While it remains
unclear how alternative splicing ofCDH3 affects HbA1c levels, studies
have shown that chimeric proteins made of cadherin ectodomains,
including the P-cadherin CDH3, are important for proper insulin
secretion by pancreatic beta cells88. Based on our findings, we
hypothesize that differential isoform usage of CDH3 during pancreas
development may influence glucose control and therefore, HbA1c
levels, in adults.

chr13:30956642-31116642 and HMGB1 (iPSC-PPC-unique combi-
natorial). The GWAS signals associated with T2D and BMI in the
chr13:30956642-31116642 locus52,56,89–91 colocalized with the iPSC-PPC-
unique eASQTL module (module ID: AS_13_2) associated with three
HMGB1 isoforms: ENST00000326004, ENST00000399494,
ENST00000339872, and (effect size = 2.16, −2.26, and −0.85, respec-
tively; HMGB1.1, HGMB1.2, and HMGB1.3, respectively) (Fig. 7c, Sup-
plementary Fig. 16C–E, Supplementary Data 13). Our colocalization
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identified rs3742305 (chr13:31036642:C >G, PP = 49.3%) as a lead
candidate causal variant underlying this locus, in which the risk allele
(G) was associated with increased usage of ENST00000326004 and
decreased usages of ENST0000339872 and ENST00000399494
(Supplementary Fig. 16C–E, Supplementary Data 7, Supplementary
Data 14). While a previous study90 also reported HMGB1 as the sus-
ceptibility gene, the precise mechanism by which rs3742305 affected
HMGB1 expression was unclear. HMGB1, also known as high-mobility
group box 1, is an important mediator for regulating gene expression
during both developmental and adult stages of life. Deletion ofHMGB1

disrupts cell growth and causes lethal hypoglycemia in mouse
pups92,93. In T2D, HMGB1 promotes obesity-induced adipose inflam-
mation, insulin resistance, and islet dysfunction91. Our results suggest
that differential usage of HMGB1 isoforms during pancreas develop-
ment may affect adult risk of developing obesity and/or T2D.

Altogether, our findings demonstrate the value of our pancreatic
eQTL resource to annotate GWAS risk variants with fetal-like and adult
temporal and spatial regulatory information. We show that some
causal regulatory variants underlying disease-associated signals may
influence adult traits by modulating the expression of genes in early
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Fig. 7 | Pancreatic GWAS associations with fetal-specific alternative splicing.
a T1D-risk locus colocalized with a fetal-like iPSC-PPC-unique singleton eASQTL for
MEG3 with the predicted causal variant rs56994090 (chr14:101306447:T > C, PP =
100%). b GWAS locus associated with HbA1c colocalized with an iPSC-PPC-unique
singleton eASQTL for CDH3 with the predicted causal variant rs72785165
(chr16:68755635:T > A, PP = 6.8%). c GWAS locus associated with T2D-risk and BMI
colocalized with an iPSC-PPC-unique eASQTL module (AS_13_2) for differential
usage of three HMGB1 isoforms with a predicted causal variant rs3742305
(chr13:31036642:C >G, PP = 49.3%). In each panel, the X-axis represents variant
positions while the Y-axis either shows the −log10(eQTL p-value) for the

associations between the genotype of the tested variants and gene expression or
the −log10(GWAS p-value) for the associations between the tested variants and the
GWAS trait. For GWAS significance, we used −log10(5 × 10−8). For eQTL significance,
we used a single p-value for gene-level significance after Bonferroni-correction
(0.05/the number of independent variants tested in fetal-like iPSC-PPC; horizontal
line). Red vertical lines indicate the positions of the lead candidate causal variants
underlying the colocalization based onmaximum PP. For loci that colocalized with
multiple GWAS traits, we used the credible set that yielded the smallest number of
variants to plot the “PP” fine-mapping panel.
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development, while in other cases, they may display regulatory plas-
ticity and exert their effects by modulating the expression of multiple
different genes in fetal-like and adult pancreatic stages. Further, we
identified an association betweenwhole pancreas and T1D, supporting
a potential role of this tissue in diabetes pathogenesis3.

Discussion
In this study, we leveraged one of the most well-characterized iPSC
cohorts comprising >100 genotyped individuals to derive pancreatic
progenitor cells and generate a comprehensive eQTL resource for
examining genetic associations with gene expression and isoform
usage in fetal-like pancreatic cells. We discovered 8665 eQTLs in the
fetal-like iPSC-PPCs and showed that 60% of eGenes were associated
with regulatory variation uniquely active during pancreas develop-
ment. For the eGenes thatwere sharedwith adult, ~12%wereassociated
with different genomic loci, indicating that different regulatory ele-
ments may modulate the same gene in fetal-like and adult pancreatic
stages. We further identified regulatory variants that displayed early
pancreas development-unique function, of which 1805 were uniquely
active in only iPSC-PPC and 1043 were active in both developmental
and adult contexts but exhibited regulatoryplasticity in the genes they
regulate. These results concur with previous studies showing that the
genetic regulatory landscape changes between fetal tissues and their
adult counterparts94–96, and therefore, highlights the importance of
assessing variant function in both fetal and adult tissue contexts.
Furthermore, it is widely known that tight regulation of genes during
development is essential97, and our study reflects this in our findings
that the majority of developmental-unique eQTLs were restricted to a
single eGene.

Finally, we highlighted examples of GWAS associations for which
we utilized our spatiotemporally informed eQTL resource to char-
acterize causal risk mechanisms underlying adult pancreatic disease.
We showed that some causal regulatory variants underlying GWAS
signals identified in the fetal-like iPSC-PPCsmodulate the expressionof
genes in early development, while others may exert their effects by
modulating the expression ofmultiple different genes across fetal-like
and adult pancreatic stages. Of note, many of the fetal-unique reg-
ulatory variants underlying the GWAS signals were eASQTLs, which is
consistent with alternative splicing playing a key role in developing
tissues59–61,98. Hence, we believe that contribution of alternative spli-
cing differences during fetal pancreas development to complex traits
warrants further investigation.

We offer limitations in our study and potential future directions
for the field at large. We believe that studies using larger sample sizes
are needed to identify additional associations between genetic varia-
tion and gene expression in fetal samples. Our eQTL mapping in fetal-
like iPSC-PPCwas conducted onmuch fewer samples compared to the
two adult studies that each used ~300–400 samples, rendering our
dataset underpowered and not able to capture additional eQTL asso-
ciations that could be shared with the adult pancreatic tissues.
Therefore, several eQTLs we annotated as adult islet-unique or whole
pancreas-unique may in reality be shared with fetal pancreas. Further,
power differences between the studies may also cause the observed
results where there were many singleton eQTLs observed in a single
tissue. On the other hand, the eQTLswe annotated as iPSC-PPC-unique
may less likely to be shared, as the signals in the adult datasets are
better powered and therefore sufficient for comparing against iPSC-
PPC signals. Additionally, with the rapid generation of eQTL datasets
from different tissue contexts8,9,10,13, the development and application
of artificial intelligence and machine learning as ways to identify
shared eQTL associations between multiple tissues will be extremely
useful. While pairwise colocalization and network analysis can identify
shared eQTL regulatory loci across a handful of tissues, machine
learning approaches could scale these analyses across spatiotemporal
contexts of all tissues, thereby providing valuable insights into

regulatory elements that are exclusive to a specific context and also
those that exhibit regulatory plasticity across multiple contexts.

In summary, our study provides a valuable resource for dis-
covering causal regulatory mechanisms underlying pancreatic traits
and disease across developmental and adult timepoints of the pan-
creas. We reveal that disease variants may either display temporal-
specificity in which they affect gene expression specifically in one
timepoint, or regulatory plasticity, in which they affect gene expres-
sion in multiple timepoints but affect different genes. Our findings lay
the groundwork for future employment of development contexts for
the characterization of disease-associated variants.

Methods
Subject information
We used iPSC lines from 106 individuals recruited as part of the
iPSCORE project (Supplementary Data 1). There were 53 individuals
belonging to 19 families composed of two or more subjects (range: 2-
6). Each subject was assigned an iPSCORE_ID (i.e., iPSCORE 4_1), where
“4” indicates the family number and “1” indicates the individual num-
ber, and a 128-bit universal unique identifier (UUID). The 106 indivi-
duals included68 females and38maleswith ages ranging from15 to88
years old at the time of enrollment. Recruitment of these individuals
was approved by the Institutional Review Boards of the University of
California, San Diego, and The Salk Institute (project no. 110776ZF).

WGS data
Whole-genome sequencing data for the 106 iPSCORE individuals were
downloaded from dbGaP (phs001325.v3) as a VCF file41. We retained
variants with MAF > 5% across all 273 individuals in the iPSCORE
resource, that were in Hardy-Weinberg equilibrium (p > 10−6), and that
were within 500 Kb of the expressed gene’s body coordinates. Speci-
fically, we expanded the coordinates of each of the 16,464 expressed
autosomal genes (500Kbupstreamanddownstream)andextracted all
variants within these regions using bcftools view with parameters --f
PASS -q 0.05:minor99. Next, we normalized indels and split multi-allelic
variants using bcftools norm -m- and removed variants that were gen-
otyped in fewer than 99% of samples using bcftools filter -i ‘F_PASS(GT!
=“mis”) >0.9999. Finally, we converted the resulting VCF files to text
using bcftools query99 and converted the genotypes from character
strings (0/0, 0/1, and 1/1) to numeric (0, 0.5, and 1, respectively). This
resulted in 6,593,484 total variants used for eQTL mapping.

iPSC generation
Generation of the 106 iPSC lines has previously been described in
detail39. Briefly, cultures of primary dermal fibroblast cells were gen-
erated from a punch biopsy tissue100, infected with the Cytotune
Sendai virus (Life Technologies) per manufacturer’s protocol to initi-
ate reprogramming. Emerging iPSC colonies were manually picked
after Day 21 and maintained on Matrigel (BD Corning) with mTeSR1
medium (StemCell Technologies).Multiple independently established
iPSC clones (i.e. referred to as lines)werederived fromeach individual.
Many of the iPSC lines were evaluated by flow cytometry for expres-
sion of two pluripotent markers: Tra-1-81 (Alexa Fluor 488 anti-human,
Biolegend) and SSEA-4 (PE anti-human, Biolegend)39. Pluripotency was
also examined using PluriTest-RNAseq39. This iPSCORE resource was
established as part of the Next Generation Consortium of the National
Heart, Lung and Blood Institute and is available to researchers through
the biorepository at WiCell Research Institute (www.wicell.org; NHLBI
Next Gen Collection). For-profit organizations can contact the corre-
sponding author directly to discuss line availability.

Pancreatic progenitor differentiation
Weperformed pancreatic progenitor cell (PPC) differentiation on each
of the 106 iPSC lines. One iPSC line was differentiated twice giving a
total of 107 differentiations. Eachdifferentiationwas assigned a 128-bit
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universally unique identifier (UUID), and a unique differentiation ID
(UDID; “PPCXXX”), where “XXX” represents a numeric integer (Sup-
plementary Data 2).

Differentiation protocol. The iPSC lines were differentiated into PPCs
using the STEMdiffTM Pancreatic Progenitor Kit (StemCell Technolo-
gies) protocol with minor modifications. Briefly, iPSC lines were
thawed into mTeSR1 medium containing 10 µM Y-27632 ROCK Inhi-
bitor (Selleckchem) and plated onto one well of a 6-well plate coated
with Matrigel. iPSCs were grown until they reached 80% confluency101

and then passaged using 2mg/ml solution of Dispase II (ThermoFisher
Scientific) onto three wells of a 6-well plate (ratio 1:3). To expand the
iPSC cells for differentiation, iPSCs were passaged a second time onto
six wells of a 6-well plate (ratio 1:2). When the iPSCs reached 80%
confluency, cells were dissociated into single cells using Accutase
(Innovative Cell Technologies Inc.) and resuspended at a concentra-
tion of 1.85 × 106 cells/ml in mTeSRmedium containing 10 µM Y-27632
ROCK inhibitor. Cells were then plated onto six wells of a 6-well plate
and grown for approximately 16 to 20 hours to achieve a uniform
monolayer of 90–95% confluence (3.7 × 106 cells/well; about 3.9 × 105

cells/cm2). Differentiation of the iPSC monolayers was initiated by the
addition of the STEMdiffTM Stage Endoderm Basal medium supple-
mented with Supplement MR and Supplement CJ (2ml/well) (Day 1,
D1). The following media changes were performed every 24 hours
following initiation of differentiation (2ml/well). On D2 and D3, the
medium was changed to fresh STEMdiffTM Stage Endoderm Basal
medium supplemented with Supplement CJ. On D4, the medium was
changed to STEMdiffTM Pancreatic Stage 2-4 Basal medium supple-
mented with Supplement 2 A and Supplement 2B. On D5 and D6, the
medium was changed to STEMdiffTM Pancreatic Stage 2-4 Basal med-
ium supplemented with Supplement 2B. From D7 to D9, the medium
was changed to STEMdiffTM Pancreatic Stage 2-4 Basal medium sup-
plemented with Supplement 3. From D10 to D14, the medium was
changed to STEMdiffTM Pancreatic Stage 2-4 Basal medium supple-
mented with Supplement 4. On D15, cells were dissociated with
Accutase and then collected, counted, and processed for data gen-
eration. iPSC-PPC cells were cryopreserved in CryoStor® CS10 (Stem-
Cell Technologies).

iPSC-PPC differentiation efficiency. To evaluate the efficiency of
iPSC-PPC differentiation, we performed flow cytometry on two pan-
creatic precursor markers, PDX1 and NKX6-1. Specifically, at least
2 × 106 cells were fixed and permeabilized using the Fixation/Permea-
bilized Solution Kit with BD GolgiStop TM (BD Biosciences) following
the manufacturer’s recommendations. Cells were resuspended in 1x
BD Perm/Wash TM Buffer at a concentration of 1 × 107 cells/ml. For
eachflowcytometry staining, 2.5 × 105 cellswere stained for 75minutes
at room temperature with PE Mouse anti-PDX1 Clone-658A5 (BD
Biosciences; Catalog no. 562161; 1:10) andAlexa Fluor®647Mouse anti-
NKX6.1 Clone R11-560 (BD Bioscience; Catalog no. 563338; 1:10), or
with the appropriate class control antibodies: PE Mouse anti-IgG1 κ
R-PE Clone MOPC-21 (BD Biosciences; Catalog no. 559320) and Alexa
Fluor® 647 Mouse anti IgG1 κ Isotype Clone MOPC-21 (BD Biosciences;
Catalog no. 557732). PE Mouse anti-PDX1 Clone-658A5 and Alexa
Fluor® 647 Mouse anti-NKX6.1 Clone R11-560 were validated by the
manufacturer to bind to mouse and human PDX-1 and NKX6-1,
respectively. Stained cells were washed three times, resuspended in
PBS containing 1% BSA and 1% formaldehyde, and immediately ana-
lyzed using FACS Canto II flow cytometer (BD Biosciences). The frac-
tion of PDX1- and NKX6-1-positive was calculated using FlowJo
software version 10.4 (Supplementary Data 2).

scRNA-seq
To characterize the cellular composition of the fetal-like iPSC-PPC
samples, we performed single-cell RNA-seq (scRNA-seq) on one iPSC

line (from differentiation PPC034) and ten iPSC-PPC samples with
varying percentages of double-positive PDX1 + /NKX6-1+ cells based
on flow cytometry (range: 9.4–91.7%) (Supplementary Fig. 2, Supple-
mentary Fig. 3, Supplementary Data 2). Because bulk RNA-seq was
generated on cryopreserved cells, we sought to also examine whether
cell cryopreservation affects gene expression estimates using scRNA-
seq. Therefore, we included both freshly prepared (i.e., not frozen and
processed immediately after differentiation) and cryopreserved cells
for four iPSC-PPC samples (PPC029, PPC027, PPC023, PPC034; Sup-
plementary Data 2) for scRNA-seq processing.

Sample collection. Fresh cells from the iPSC line and seven iPSC-PPC
samples were captured individually at D15. Cells from four of these
same iPSC-PPC samples that had been cryopreserved were pooled and
captured immediately after thawing (RNA_Pool_1). Cells from an
additional three iPSC-PPC samples were captured only after cryopre-
servation (RNA_Pool_2) (Supplementary Data 2).

Library preparation and sequencing. All single cells were captured
using the 10XChromium controller (10XGenomics) according to the
manufacturer’s specifications and manual (Manual CG000183, Rev A).
Cells from each scRNA-seq sample (one iPSC, seven fresh iPSC-PPCs,
RNA_Pool_1, and RNA_Pool_2) were loaded eachonto an individual lane
of a Chromium Single Cell Chip B. Libraries were generated using
Chromium Single Cell 3’ Library Gel Bead Kit v3 (10X Genomics) fol-
lowing manufacturer’s manual with small modifications. Specifically,
the purified cDNA was eluted in 24 μl of Buffer EB, half of which was
used for the subsequent step of the library construction. cDNA was
amplified for 10 cycles and libraries were amplified for 8 cycles. All
libraries were sequenced on a HiSeq 4000 using custom programs
(fresh: 28-8-175 Pair End and cryopreserved: 28-8-98 Pair End). Speci-
fically, eight libraries generated from fresh samples (one iPSC and
seven iPSC-PPC samples) were pooled together and loaded evenly
onto eight lanes and sequenced to an average depth of 163 million
reads. The two libraries from seven cryopreserved lines (RNA_Pool_1
and RNA_Pool_2) were each sequenced on an individual lane to an
average depth of 265 million reads. In total, we captured 99,819 cells.
We observed highly correlated cell type proportions between fresh
and cryopreserved iPSC-PPC samples (Supplementary Fig. 8).

scRNA-seq alignment.We obtained FASTQfiles for the ten scRNA-seq
samples (one iPSC, seven fresh iPSC-PPCs, RNA_Pool_1, and RNA_-
Pool_2) (Supplementary Data 2) and used CellRanger V6.0.1 (https://
support.10xgenomics.com/) with default parameters and GENCODE
version 34hg19102 gene annotations to generate single-cell gene counts
and BAM files for each of the ten samples.

Dataset integration and quality control. We processed the single-cell
gene counts by first aggregating the iPSC and seven fresh iPSC-PPC
samples using the aggr function on CellRanger V6.0.1 with normal-
ization = F. Then, we integrated the aggregated dataset (“aggr”) with
the two pools of cryopreserved samples (RNA_Pool_1 and RNA_Pool_2)
using the standard integration workflow described in Seurat (version
3.2; https://satijalab.org/seurat/archive/v3.2/integration.html). Speci-
fically, for each dataset (aggr, RNA_Pool_1, and RNA_Pool_2), we log-
normalized the gene counts usingNormalizeData (default parameters)
then used FindVariableFeatures with selection.method = “vst”, nfea-
tures = 2000, and dispersion.cutoff = c(0.5, Inf) to identify the top 2000
most variable genes in each dataset. We then used FindInte-
grationAnchors and IntegrateData with dims = 1:30 to integrate the
three datasets. We scaled the integrated data with ScaleData, per-
formed principal component analysis with RunPCA for npcs= 30, and
processed for UMAP visualization (RunUMAP with reduction = “pca”
and dims = 1:30). Clusters were identified using FindClusters with
default parameters.
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To remove low-quality cells, we examined the distribution of the
number of genes per cell and the percentage of reads mapping to the
mitochondrial chromosome (chrM) in each cluster. We removed the
cluster (11,677 cells) with fewer than 500 genes per cell andmore than
50% of the reads mapping to chrM. We re-processed the filtered data
(ScaleData, RunPCA, FindClusters, RunUMAP) and removed another
cluster of cells that had the lowestmedian number of expressed genes
(723 versus 2775) and highest median fraction of mitochondrial reads
(34.0% versus 8.39%). After this second filtering step, we retained
84,258 cells.

Demultiplexing sample identity. We used Demuxlet103 to assign
pooled cryopreserved cells in RNA_Pool_1 and RNA_Pool_2 (19,136 cells
in total) to the correct iPSC-PPC sample. Specifically, we provided
CellRanger BAM files and a VCF file containing genotypes for biallelic
SNVs located at UTR and exon regions on autosomes as annotated by
GENCODE version 34 hg19102. We excluded 33 cells that were incor-
rectly assigned to samples not associated with the pooled sample (i.e.,
cells fromRNA_POOL_1were predicted to be fromother samples not in
RNA_Pool_1). 84,225 cells remained for downstream analyses (Supple-
mentary Data 3).

Annotation of cell type clusters. We annotated the scRNA-seq clus-
ters by first clustering with three different resolutions (0.5, 0.08, and
0.1) (Supplementary Figs. 4–6).We selected resolution = 0.08 because
it best captured the expected iPSC-PPC cell types based on each
cluster’s expression for the following gene markers: POU5F1 (iPSC),
COL1A1, COL1A2 (mesendoderm) AFP, APOA (early definitive endo-
derm),GATA4,GATA6, PDX1 (early PPC), PDX1,NKX6-1 (late PPC), PAX6,
CHGA, INS,GCG, SST (endocrine), and FLT1 (early ductal).We validated
our annotations by comparing the iPSC-PPC clusters to those identi-
fied from scRNA-seq of ESC-PPC samples over 4 different stages of
differentiation27 (GSE114412): Stage 3 (Day 6; 7982 cells), Stage 4 (Day
13; 6960 cells), Stage 5 (Day 18; 4,193 cells), and Stage 6 (Day 25; 5186
cells). Specifically, we compared the expression patterns of the gene
markers between the clusters using z-normalized mean expression
computed on cells expressing at least 1% ofmaximal expression for the
gene, as described in the reference study27. Metadata containing single
cell annotations are reported in Supplementary Data 3.

Differentially expressed genes. To identify differentially expressed
genes for each iPSC-PPC cluster, we used the FindAllMarkers function
in Seurat104 with logfc.threshold =0.01 and min.pct =0.01. P-values
were automatically adjusted by Seurat using Bonferroni correction,
andgeneswith adjustedp-values ≤ 0.05were considereddifferentially
expressed (Supplementary Data 4).

Bulk RNA-seq
Library preparation and sequencing. RNAwas isolated from total-cell
lysates using the Quick-RNATM MiniPrep Kit (Zymo Research) with on-
column DNAse treatments. RNA was eluted in 48 µl RNAse-free water
and analyzed on a TapeStation (Agilent) to determine sample integrity.
All iPSC-PPC samples had RNA integrity number (RIN) values over 9.
Illumina TruSeq Stranded mRNA libraries were prepared according to
the manufacturer’s instructions and sequenced on NovaSeq6000 for
101 bp paired-end sequencing. All samples except five were sequenced
twice to obtain sufficient number of reads.

Data processing and quality control. FASTQ files were obtained for
all 107 iPSC-PPC samples and processed using a similar pipeline
described in our previous studies12,41,105. Specifically, RNA-seq reads
were aligned with STAR (2.7.3)106 to the hg19 reference using GEN-
CODE version 34 hg19102 splice junctions with default alignment
parameters and the following adjustments: -outFilterMultimapNmax
20, -outFilterMismatchNmax 999, -alignIntronMin 20, -alignIntronMax

1000000, -alignMatesGapMax 1000000. BAM files were sorted by
coordinates, and duplicate reads were marked using Samtools
(1.9.0)99. RNA-seq QC metrics were calculated using Samtools (1.9.0)
flagstat99, Samtools (1.9.0) idxstats99, and Picard (2.20.1) Col-
lectRnaSeqMetrics (https://broadinstitute.github.io/picard/). Across
all 107 iPSC-PPC samples, the total read depth ranged from 32.3M to
160.4M (mean = 70.7), the median percentage of intergenic bases
was 3.31%, the median percentage of mRNA bases was 92.1%, and the
median percentage of duplicate reads was 22.2% (Supplemen-
tary Data 2).

Sample identity. We confirmed sample identity by obtaining common
bi-allelic and exonic variants from the 1000 Genomes Phase 3 panel107

with minor allele frequencies between 45% and 55% and predicting
their genotypes in the 107 bulk RNA-seq samples using mpileup and
call functions in BCFtools (1.9.0)99,108. Then, we used the genome
command in plink109 to estimate the identity-by-state (IBS) between
eachpair of bulkRNA-seq andWGS samples. All RNA-seq sampleswere
correctly matched to the subject with PI_HAT >0.95 (Supplemen-
tary Data 2).

Quantification of gene expression and relative isoform usage. We
calculated TPM and estimated relative isoform usage for each gene in
each RNA-seq sample using RSEM (version 1.2.20)110 with the following
options –seed 3272015 –estimate-rspd –paired-end –forward-prob. To
identify expressed autosomal genes and isoforms to use for eQTL
analyses, we used the same approach previously described12. Briefly,
autosomal genes were considered expressed if TPM ≥ 1 in at least 10%
of samples. To identify expressed isoforms, we required that isoforms
had TPM ≥ 1 and usage ≥ 10% in at least 10% of samples and corre-
sponded to expressed genes with at least two expressed isoforms. In
total, 16,464 autosomal geneswere used for egQTLanalysis, and 29,871
autosomal isoforms corresponding to 9624 genes were used for eiQTL
analysis. We quantile-normalized TPM and isoform usage across all
107 samples using the normalize.quantiles (preprocessCore) and
qnorm functions in R (version 4.2.1) to obtain a mean expression = 0
and standard deviation = 1.

Inferring pseudotime using Monocle. We obtained FASTQ files for
213 iPSCs39,41 (phs000924), 176 adult whole pancreas8 (phs000424),
and 87 adult islets42 (GSE50398), and processed the data using the
samepipeline described above toobtain TPMcounts for each geneper
sample. We then used Monocle (http://cole-trapnell-lab.github.io/
monocle-release/docs/#constructing-single-cell-trajectories)111 to
infer the pseudotime on all of the RNA-seq samples, including the 107
iPSC-PPCs. Following the standard workflow under “Constructing
Single Cell Trajectories” in the Monocle tutorial, we provided TPM
counts for all overlapping autosomal expressed genes in the four tis-
sues as input. Then, we identified differentially expressed genes using
differentialGeneTest, ordered them (setOrderingFilter), and performed
dimension reduction analysis using reduceDimension with max_com-
ponents = 2 and method = “DDRTree”. Pseudotime was calculated by
rooting time (pseudotime = 0) in the 213 iPSC-PPCs using the GM_state
and orderCells functions provided in the tutorial (Supplemen-
tary Data 6).

PCA analysiswith iPSCs, adultwhole pancreas, and adult islets. We
obtained TPM counts (described above) for the 213 iPSCs39,41, 176
adult whole pancreas8, 87 adult islets42, and the 107 iPSC-PPCs and
performed PCA analysis on the 2000most variable genes across the
samples using prcomp in R (version 4.2.1) with scale = T and cen-
ter = T. We observed that the PC clusters corresponded to the iPSCs
and each of the three pancreatic tissue types: iPSC-PPC, adult islets,
and adult whole pancreas (Supplementary Fig. 9, Supplemen-
tary Data 6).
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Cellular deconvolution. For each of the eight cell types in scRNA-seq,
we selected the top 200most differentially expressed genes that were
unique to the cell type (i.e., not expressed in the other cell types).
Replicating late PPCs and late PPCs had many overlapping expressed
genes so fewer (n = 16 and 164, respectively) were selected. We
obtained the average expression of the signature genes for each cell
type using AverageExpression in Seurat and provided it as input into
CIBERSORTx112 (https://cibersortx.stanford.edu/) along with bulk TPM
matrix. Batch correction and quantile normalization were both dis-
abled. We ran CIBERSORTx112 deconvolution on absolute mode with at
least 100 permutations. The predicted fraction of late PPCs and
replicating late PPCs were compared to FACS measurements of
double-positive PDX-1+/NKX6-1+ cells (Supplementary Fig. 7B; Supple-
mentary Data 5).

eQTL analysis
To investigate the effects of genetic variation on gene expression in
iPSC-PPCs, we performed an expression quantitative trait loci (eQTL)
analysis on gene expression and isoform usage. The eQTLs associated
with gene expression were defined as egQTLs while those associated
with relative isoform usage were defined as eiQTLs.

Covariates for eQTL mapping. We included the following as covari-
ates for eQTL mapping of both gene expression and isoform usage: 1)
sex; 2) normalized number of RNA-seq reads; 3) percent of reads that
mapped to autosome or sex chromosomes (labeled as “uniquely_-
mapped_reads_canonical_chromosomes” in Supplementary Data 2); 4)
percent of reads mapped to mitochondrial chromosome; 5) 20 geno-
type principal components to account for global ancestry; 6) 20 PEER
factors to account for transcriptome variability; and 7) kinship matrix
to account for genetic relatedness between samples. Kinship matrix is
provided in Supplementary Data 1, and the covariates are available in
Supplementary Data 2.

Genotype principal component analysis (PCA). Global ancestry was
estimated using the genotypes of the 439,461 common variants with
minor allele frequency (MAF) between 45 and 55% in the 1000 Gen-
omes Phase 3 Panel108. We merged the VCF files for the 106 iPSCORE
subjects and the 2504 subjects in the 1000Genomes108 and performed
a PCA analysis using plink --pca107 (Supplementary Fig. 1A). The top 20
principal components were used as covariates in the eQTL model to
account for global ancestry and can be found in SupplementaryData 1.

PEER factors. We sought to determine the optimal number of PEER
factors to use in the eQTL analysis that will result in maximal eGene
discovery. To this end, we initially calculated PEER factors on the
10,000 expressed genes with the largest variance across all samples.
To limit biases due to the expression levels of each gene, we divided
the 16,464 expressed genes into ten deciles based on their average
TPM, and selected 50 genes from each decile, for a total of 500 genes.
We next performed eQTL analysis on eachof the 500genes using 10 to
60 PEER factors in increments of 10. While 30 PEER factors resulted in
the highest percentage of eGenes (14.0%), we opted for using 20 PEER
factors because the eQTL analysis had a comparable percentage of
eGenes (11.8%) to GTEx tissues with similar sample sizes10 (Supple-
mentary Fig. 17). Although we observed variable fraction of double-
positive PDX1 + /NKX6-1+ cells in the iPSC-PPC samples, we did not
include this variable as a covariate becausePEER factors 1 and4 already
accounted for this variability (Supplementary Fig. 18).

Kinship matrix. The kinship matrix was included as a random effects
term to account for the genetic relatedness between individuals in our
cohort. We constructed the kinship matrix using the same 439,461
variants employed above using the –make-rel square function in
plink107. The kinship matrix is available in Supplementary Data 1.

eQTL analysis. We performed eQTL analysis using the same method
described in our previous study12. For each expressed autosomal gene
and isoform, we tested variants that were within 500 Kb of the gene
body coordinates using the bcftools query function. To account for the
genetic relatedness between the samples, we performed eQTL map-
pingusing a linearmixedmodelwith the scan function in limix (version
3.0.4)113 that incorporates the kinship matrix as a random effects term.
Specifically, eQTL mapping was implemented through the following
model:

yi = βji � gj +
XN

n = 1

βn � Cn +u+ ϵij

Where yi is the normalized expression value for gene i, βji is the effect
size of genotype of SNP j on gene i, gj is the genotype of SNP j, βn is the
effect sizeof covariaten,Cn is a vector of values for covariaten, u is the
kinship matrix as a random effect, and ϵ is the error term for the
association between expression of gene i and genotype of SNP j. As
described above, we used the following as covariates: 1) sex, 2) nor-
malized number of RNA-seq reads, 3) percent of reads mapped to
autosomal or sex chromosome, 4) percent of reads mapped to
mitochondrial chromosome, 5) the top20genotypePCs (to account to
global ancestry), and 6) the top 20 PEER factors (to account for
confounders of expression variability), and are available in Supple-
mentary Data 1-2.

FDR correction. To perform FDR correction, we used a two-step
procedure described in Huang et al. 114, which first corrects at the gene
level and then at the genome-wide level. First, we performed FDR
correction on the p-values of all variants tested for each gene or iso-
form using eigenMT113, which considers the LD structure of the var-
iants. Then,weextracted the lead eQTL for eachgeneor isoformbased
on themost significant FDR-correctedp-value. Ifmore thanone variant
had the same FDR-corrected p-value, we selected the one with the
largest absolute effect size as the leadeQTL. For the secondcorrection,
we performed an FDR-correction on all lead variants using the
Benjamini-Hochberg method (q-value) and considered only eQTLs
with q-value ≤ 0.01 as significant (Supplementary Data 7).

Conditional eQTLs. To identify additional independent eQTLs (i.e.,
conditional eQTLs) for each eGene and eIsoform,weperformed a step-
wise regression analysis in which the genotype of the lead eQTL was
included as a covariate in themodel and the eQTLmapping procedure
(regression and multiple test correction) was re-performed. We repe-
ated this analysis to discover up to five additional associations for each
eGene and eIsoform. Conditional eQTLs with q-values ≤ 0.01 were
considered significant (Supplementary Data 7).

Functional characterization of iPSC-PPC eQTLs
Fine-mapping of eQTL associations. To define a credible set of can-
didate causal variants for each eQTL association, we performed
genetic fine-mapping using the finemap.abf function in coloc (version
5.1.0, R)45. This Bayesianmethod convertsp-values of all variants tested
for a specific gene to posterior probabilities (PP) of association for
being the causal variant. Variants with PP 1% are available on Figshare:
https://figshare.com/projects/Large-scale_eQTL_analysis_of_iPSC-PPC/
156987. eQTLs not present in the table do not have variants with PP 1%
(i.e., all variants were estimated to have PP < 1%).

Genomic enrichments of egQTLs and eiQTLs. For each independent
eQTL association,weobtained candidate causal variantswhose PP ≥ 5%
and determined their overlap with each of the following genomic
annotations using bedtools intersect: short splice acceptor sites (±
50 bp), long splice acceptor sites (± 100bp), splice donor sites (±
50 bp), UTR, intron, exon, intergenic, promoters, and RNA-binding
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protein binding sites (RBP-BS). RBP-BS were downloaded from a pub-
lished dataset that utilized enhanced CLIP to identify binding sites of 73
RBPs115. We considered only binding sites with irreproducible discovery
rate (IDR) threshold of 0.01, indicating that these sites were repro-
ducible across multiple biological samples. Enrichment of candidate
causal variants for genomic regionswas calculatedusing a Fisher’s Exact
Test comparing the proportion of SNPs that overlap each annotation
between egQTLs and eiQTLs. P-values were corrected using the
Benjamini-Hochberg method and were considered significant if their
FDR-corrected p-value ≤ 0.05 (Fig. 1e).

Quantification of allele-specific binding of transcription factors
using GVATdb. To annotate each candidate causal variant by their
effects on transcription factor (TF) binding, we used the Genetic Var-
iants Allelic TF Binding Database (GVATdb) to estimate the TF binding
impact score associatedwith each variant and eachof the 58 iPSC-PPC-
expressed TF available on the database and with a AUPRC>0.75 indi-
cating a high-confidence deltaSVM model. We estimated the score
using the instructions and reference files provided on the GVATdb
GitHub repository (https://github.com/ren-lab/deltaSVM). The soft-
ware required a list of SNPs as input along with hg19 reference files
provided in theGVATdb repository. The output provides the deltaSVM
score116 for each variant-TF pair, indicating whether the variant results
in a promotion (“Gain”), disruption (“Loss”), or no change (“None”) in
TF binding. deltaSVM scores for each variant-TF pair are available on
Figshare: https://figshare.com/projects/Large-scale_eQTL_analysis_of_
iPSC-PPC/156987.

Correlation between eQTL effect size and binding affinity of tran-
scription factors. To determine whether egQTLs were more likely to
affect TF binding compared to eiQTLs, we performed a Spearman
Correlation Analysis between deltaSVM score and eQTL effect size on
candidate causal variants with PP ≥ 10%, 20%, 40%, 60% and 80%. We
considered nominal p-value ≤ 0.05 as significant.

Colocalization between iPSC-PPC gene and isoform eQTLs. To
determine the overlap of genetic variants between egQTLs and eiQTLs
for the same gene, we performed Bayesian colocalization using the
coloc.abf function in coloc (version5.1.0, R)45, where eachpair of signals
was given a summary PP that each of the following five hypotheses was
true: H0) no association was detected in both signals, H1) an associa-
tionwas detected only in signal 1, H2) an associationwasdetected only
in signal 2, H3) an association was detected in both signals but the
underlying causal variants are different, and H4) an association was
detected for both signals and the underlying causal variants are the
same.We filtered the results by requiring that each colocalization used
the number of overlapping variants (called “nsnps” in the coloc.abf
output) ≥ 500. We considered two eQTL signals to be shared if the PP
for H4 (called “PP.H4.abf” in coloc.abf output; hereafter referred to as
PP.H4) ≥ 80%. Conversely, two signals were considered distinct if the
PP for H3 (called “PP.H3.abf” in coloc.abf output; hereafter referred to
as PP.H3) ≥ 80%. eQTL associations with PP.H4 < 80% and PP.H3 < 80%
were due to insufficient power in one or both eQTL signals. As input
into coloc.abf, we provided p-values, minor allele frequency, and
sample size. All associations with PP ≥ 80% for any model are available
in Supplementary Data 9.

Genomic enrichment of overlapping egQTL and eiQTL signals
compared tonon-overlapping. To test the enrichment of overlapping
egQTLs and eiQTLs in genomic regions compared to non-overlapping
signals, wedetermined the overlapof candidate causal variantswith PP
≥ 1% in each genomic annotation using bedtools intersect and com-
pared theproportionof variants overlapping each annotation against a
background set of 20,000 random variants using a Fisher’s Exact Test
as previously described10. For overlapping eQTLs, we used the

candidate causal variants predicted in the coloc.abf output. Enrich-
ments with nominal p-value < 0.05 were considered significant (Sup-
plementary Fig. 10).

Downloading eQTL summary statistics for adult pancreatic
tissues
We downloaded complete eQTL summary statistics for gene and exon
associations for 420 adult human islets from the InSPIRE Consortium
(https://zenodo.org/record/3408356)11, and gene and splicing asso-
ciations for 305 adult whole pancreas from the GTEx Data Portal for
GTEx Analysis version 810 (https://console.cloud.google.com/storage/
browser/gtex-resources). All GTEx SNPs were converted to hg19 using
the UCSC liftOver Bioconductor package in R (https://www.
bioconductor.org/help/workflows/liftOver/). Lead SNPs for condi-
tional associations in the adult islets andwhole pancreas datasets were
downloaded from their respective studies (complete statistics were
not readily available).

Due to the different types of eQTLs used in this study that are
associated with changes in alternative splicing (eiQTLs, exon eQTLs,
and sQTLs), hereafter we refer to this collective unit as “eASQTLs”.

Comparing eGenes between fetal-like iPSC-PPC and adult islets
To identify eGenes that were shared between iPSC-PPC and adult islet
tissues, we compared the 4065 eGenes in iPSC-PPC and the 4211
eGenes in adult islets that complete summary statistics were available
for. Specifically, we used the intersect function in R to identify eGenes
that overlapped between the two tissues and setdiff function in R to
identify eGenes that did not overlap. Similarly, using the intersect
function in R, we compared the 22,266 expressed genes in adult islet
tissues with the 4065 eGenes in iPSC-PPC to identify the proportion of
iPSC-PPC eGenes that were expressed in adult islets, and vice versa
with the 17,098 expressed genes in iPSC-PPC and 4211 eGenes in adult
islets. The 22,266 expressed genes in adult islet tissues were obtained
from the complete summary statistics uploaded by the previous study
in https://zenodo.org/record/3408356.

Comparing eQTLs present in fetal-like iPSC-PPC and adult pan-
creatic tissues
Colocalization between iPSC-PPC and adult eQTLs. To identify eQTLs
whose effects were driven by the same causal signals in iPSC-PPC and
adult pancreatic tissues (islets and whole pancreas), we performed
Bayesian colocalization using the coloc.abf function in coloc (version
5.1.0, R)45. Specifically, for each iPSC-PPC and adult eQTL, we tested its
overlap with nearby eQTLs within 3Mb from the gene body coordi-
nates. eQTLs with no overlapping variants would automatically not be
tested. Then, we filtered the results by requiring that each colocaliza-
tion used the number of overlapping variants (called “nsnps” in the
coloc.abf output) ≥ 500. As described above, we considered two eQTL
signals to be shared if PP.H4 ≥ 80% or distinct if PP.H3 ≥ 80%. eQTL
associations with PP.H4 < 80% and PP.H3 < 80% were due to insuffi-
cient power in one or both eQTL signals.

Because we, and others, have shown that egQTLs are functionally
different from eASQTLs (eiQTLs, exon eQTLs, and splicing eQTLs), we
performed colocalization for egQTLs and eASQTLs independently (i.e.,
colocalization of egQTL was performed only with another egQTL and
an eASQTL only with another eASQTL). All associations with PP ≥ 80%
for any model are reported in Supplementary Data 9.

Fine-mapping of adult eQTL associations. Similarly for iPSC-PPC
eQTLs, we identified candidate causal variants using the finemap.abf
function in coloc (version 5.1.0, R). This Bayesian method converts p-
values of all variants tested for a specific gene to a PP value for being
the causal variant.

For all downstream analyses beyond this point, we used only iPSC-
PPC, adult islets, and adult whole pancreas eQTLs that had at least one
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candidate causal variantwith PP ≥ 1%,wereoutside of theMHC region,
and were annotated in GENCODE version 34 hg19, to ensure that our
analyses were sufficiently powered and the multiple datasets were
comparable.

Identifying tissue-unique singleton eQTLs. To identify tissue-unique
singleton eQTLs, we obtained all eQTLs that did not colocalize with
another eQTL and examined their LD with all other eQTLs of the same
phenotype (egQTLs or eASQTLs) using their most likely candidate
causal variants based on the highest PP from fine-mapping (®nema-
p.abf). If the candidate causal variant was not genotyped in the 1000
Genomes Phase 3 panel, then we used the next top candidate causal
variant. We repeated this process until we found a variant that was in
the 1000 Genomes or no more variants remained with causal PP 1%.
Because complete summary statistics were not available for the adult
conditional eQTLs, we used their lead variants publicly available from
their respective studies to account for the presence of multiple causal
variants in the genomic region. LD was calculated using plink
--r2 square --keep-allele-order --make-bed107 and the 1000 Genomes
Phase 3 panel108. We considered two eQTLs to be in LD if their candi-
date causal variants were within 500 Kb and had r2 0.2. If LD could not
be measured, because one of the variants was not genotyped in the
1000 Genomes, then we used distance as a metric for LD, where if the
variantswerewithin 500Kbof eachother, we considered them tobe in
LD. Singleton eQTLs that were found to be in LD with another eQTL
(regardless of tissue) were re-annotated as “ambiguous” and excluded
from downstream analyses. Otherwise, we kept their annotations as
tissue-unique singletons. All annotations for singleton eQTLs are
reported in Supplementary Data 10.

Identifying eQTL modules. eQTL modules were identified by first
creating a network using the graph_from_data_frame function in igraph
(version 1.3.4, R)117 where the input was a data frame containing all pairs
of colocalized eQTLs (nsnps≥ 500 andPP.H4≥80%) as binary edges.We
created networks for each chromosome and phenotype (gene expres-
sion and alternatively splicing) independently, totaling to 44 networks
(22 chromosomes x 2 phenotypes = 44 networks). Then, we performed
community detection analysis using the cluster_leiden function with
--objective_function = “modularity”, n_iterations= 500, resolution =0.3 to
identifymodules of eQTLs. Upon examining them indepth,weobserved
that 5% of the modules contained at least one H3 association (PP.H3≥
80%) between a pair of eQTLs, indicating that signals within a module
were predicted to have distinct genetic variants despite being assigned
to the same module. Therefore, to filter for modules that contained
eQTLs likely to share the same causal variants, we required that at least
30% of all eQTL pairs had a H4 association and that the number of H4
“edges” was twice the number of H3 “edges” (number of H4 edges/
number of H3 edges≥ 2). For example, amodule with four eQTLs would
have six possible pairwise combinations, and to be considered a vali-
datedmodule, we required at least two H4 edges and nomore than one
H3 edge. Modules that did not pass these thresholds were annotated as
“module_failed” and excluded from downstream analyses. Summary of
eQTL modules and their individual eQTL associations are reported in
Supplementary Data 11. Module IDs were assigned such that the first
term indicates the phenotype the module was associated with (“GE” for
gene expression or “AS” for alternative splicing), the second term indi-
cates the chromosome number, and the third term indicates a unique
integer. For example, “GE_1_32” indicates that this module is associated
with changes in gene expression, located in in chromosome 1, and
assigned the number 32.

Identifying tissue-unique and tissue-sharing eQTL modules. Com-
binatorial eQTLs were defined in this study as an eQTL having at least
oneH4 association (PP.H4 ≥ 80%)with another eQTL either in the same
or different tissue. These combinatorial eQTLswere then connected to

form a module, which we identified using the network analysis
described above. We then categorized each module based on the
activity of eQTLs in the three pancreatic tissues, having a total of seven
module categories (Fig. 3b):
1. iPSC-PPC-unique: contains eQTLs in only iPSC-PPC
2. Adult islet-unique: contains eQTLs in only adult islets
3. Adult whole pancreas-unique: contains eQTLs in only adult whole

pancreas
4. Adult-shared: contains eQTLs in adult islets and adult whole

pancreas
5. Fetal-islet: contains eQTLs in iPSC-PPC and adult islets
6. Fetal-whole-pancreas: contains eQTLs in iPSC-PPC and adult

whole pancreas
7. Fetal-adult: contains eQTLs in all three pancreatic tissues

We next examined the eQTLs modules for LD with eQTLs in other
tissues to confirm tissue specificity. Similar to the analysis described
above for identifying tissue-unique singletons, we calculated LD using
plink --r2 square --keep-allele-order --make-bed107 and the 1000 Gen-
omes Phase 3 panel108 between the eQTLs’most likely candidate causal
variants (based on the highest PP; PP ≥ 1%).We considered two eQTLs
tobe inLD if they hadan r2 ≥ 0.2 andwerewithin 500Kbof eachother.
If LD could not be calculated because candidate causal variants were
not genotyped in the 1000 Genomes Phase 3 panel, then we used
distance as a metric for LD and considered two eQTLs to be in LD if
their candidate causal variants were within 500 Kb. To account for the
presence of multiple causal variants in the genomic region, we inclu-
ded the lead variants from the adult islet and whole pancreas condi-
tional eQTLs in the LD comparisons to prevent misclassification of
tissue-unique eQTLs.

For each of themodule categories, we required that the following
were true to be considered for downstream analyses:
1. iPSC-PPC-unique: contains eQTLs in only iPSC-PPC, and all eQTLs

werenot in LDwith eQTLs in adult islets and adult whole pancreas
2. Adult islet-unique: contains eQTLs in only adult islets, and all

eQTLs were not in LD with eQTLs in adult whole pancreas and
iPSC-PPC

3. Adult whole pancreas-unique: contains eQTLs in only adult whole
pancreas, and all eQTLs were not in LD with eQTLs in adult islets
and iPSC-PPC

4. Adult-shared: contains eQTLs in only adult islets and adult whole
pancreas, and all eQTLs were not in LD with eQTLs in iPSC-PPC

5. Fetal-islet: contains eQTLs in iPSC-PPC and adult islets, and all
eQTLs were not in LD with eQTLs in adult whole pancreas

6. Fetal-whole-pancreas: contains eQTLs in iPSC-PPC and adult
whole pancreas, and all eQTLs were not in LD with eQTLs in
adult islets

7. Fetal-adult: contains eQTLs in all three pancreatic tissues.

For any module that did not meet the above requirements, we
annotated the eQTLs in the module “ambiguous” and excluded for
downstream analysis. Hereafter, we refer the eQTL associations in
tissue-unique modules (categories 1-3) as tissue-unique combinatorial
eQTLs and those in categories 5-7 as eQTLs shared between both fetal-
like and adult stages. All annotations for eQTL modules and their
individual eQTLs are reported in Supplementary Data 10 and Supple-
mentary Data 11.

Enrichment of fetal-like iPSC-PPC-unique singleton and combi-
natorial eQTLs in chromatin states
We obtained chromatin state maps for human embryonic stem cell-
derived pancreatic progenitor cells and adult islets from previously
published studies14,54. Because egQTLs were likely to affect non-coding
regulatory elements (Fig. 1e), we only considered them in this analysis
and excluded eASQTLs. Enrichments for iPSC-PPC-unique singleton
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and combinatorial egQTLs were calculated using a Fisher’s Exact Test
by comparing the proportion of fine-mapped variants (from finema-
p.abf) of the egQTLs at different thresholds of PP from 0-0.8 at 0.1
intervals to a background set of 20,000 randomly selected variants.
Enrichments were Benjamini-Hochberg-corrected. Corrected p-values
0.05 were considered significant. Enrichment results are available in
Supplementary Data 12, Fig. 3c.

Overlap of eGenes in shared modules between fetal-like iPSC-
PPC and adult pancreatic tissues
For the modules shared between both fetal-like and the two adult
pancreatic tissues (categories 5-7; described above), we compared the
eGenes associated with: 1) iPSC-PPC egQTLs versus adult islet egQTLs;
and 2) iPSC-PPC egQTLs versus adult whole pancreas egQTLs. For
eASQTLs, we compared the genes mapping to: 1) each isoform in iPSC-
PPC versus exon in adult islets; and 2) each isoform in iPSC-PPC versus
splice interval in adult whole pancreas. From these comparisons, we
assigned each module an “islet_egene_overlap” label and an “whole_-
pancreas_egene_overlap” label in SupplementaryData 11 (also shown in
Fig. 4a and Supplementary Fig. 11C), where “zero” indicates that the
module did not contain an eQTL in the adult tissue, “same” indicates
that the module contained eQTLs corresponding to only the same
eGenes in iPSC-PPC and adult, “partial” indicates that the module
contained eQTLs corresponding with partially overlapping eGenes
between iPSC-PPC and adult, and “different” indicates that themodule
contained eQTLs corresponding to only different genes. For example,
if a module was annotated with “zero” for islet_egene_overlap and
“same” for whole_pancreas_egene_overlap, thismeant that the module
did not contain an eQTL from adult islet and had only eQTLs asso-
ciated with the same eGenes between iPSC-PPC and adult whole pan-
creas. These annotations alsomeant that this module was in the “fetal-
whole-pancreas” category (i.e, only contained eQTLs from iPSC-PPC
and adult whole pancreas).

Complex trait GWAS associations
Colocalization of eQTLs with GWAS associations. We obtained
GWAS summary statistics fromtendifferent studies: 1) type 1 diabetes3,
2) type 2 diabetes4, 3) body mass index56, 4) triglycerides56, 5) HDL
cholesterol56, 6) LDL direct56, 7) cholesterol56, 8) glycated hemoglobin
A1C (HbA1c) levels from theMAGIC Consortium2, 9) HbA1c levels from
the Pan-UKBB Study56, and 10) fasting glucose2. All of the data, except
for type 1 diabetes, were provided in hg19 coordinates, therefore we
converted the coordinates from hg38 to hg19 using the liftOver
package in R118. We sorted and indexed each file using tabix99. For each
trait, we performed colocalization between GWAS variants and all fil-
tered significant eQTLs (see bolded section above) in the three pan-
creatic tissues with the coloc.abf function in coloc (version 5.1.0, R)45

using p-values, MAF, and sample size as inputs. Then, we filtered
results based on whether the lead candidate causal variant underlying
both GWAS and eQTL association (from coloc.abf output) is genome-
wide significant for GWAS association (p-value ≤ 5 × 10−8) and the
number of overlapping variants used to test for colocalization (nsnps)
≥ 500. eQTLs were considered to share a genetic signal with GWAS if
PP.H4 ≥ 80% or have distinct signals with GWAS if PP.H3 ≥ 80%. For
eQTL modules, we required that at least 30% of the eQTLs in the
module colocalized with GWAS (PP.H4 ≥ 80%) and that the number of
H4 associations is twice the number of H3 associations (number of H4
associations / number of H3 associations ≥ 2). Colocalization results
for the 312GWAS loci (183 singleton and 129module)with PP.H4 ≥ 80%
are available in Supplementary Data 13.

GWAS 99% credible sets. For each GWAS locus (based on GWAS
locus ID in Supplementary Data 13), we constructed 99% credible
sets with the predicted candidate causal variants underlying both
eQTL and GWAS associations (from coloc.abf output). If the GWAS

locus colocalized with a singleton eQTL, the credible sets were
constructed using the output of the eQTL’s colocalization with
GWAS. If the GWAS locus colocalized with an eQTL module, we
constructed credible sets for each of the pairwise eQTL-GWAS
colocalization and retained the eQTL that resulted in the least
number of candidate causal variants. If multiple eQTLs had the same
number of variants in their credible set, we considered the eQTL
with the highest PP.H4 for GWAS colocalization. 99% credible sets
were constructed by first sorting the variants by descending order
of causal PP and obtaining the least number of variants that resulted
in a cumulative PP ≥ 99%. 99% credible sets for each of the 312 GWAS
loci (183 singleton and 129 module) are reported in Supplementary
Data 14.

LDwithnon-pancreaticGTEx tissues.We downloaded the lead SNPs
for all significant egQTLs (including their conditionals) for the 48
non-pancreatic tissues in the GTEx dataset version 810 and con-
verted their genomic positions to hg19 using UCSC liftOver118. We
then calculated their LD with the lead SNPs of the 16 iPSC-PPC-
unique egQTLs that colocalized with GWAS (Supplementary
Data 15) using plink107 --tag-kb 500 --tag-r2 0.2 --show-tags all and
the 1000 Genomes108 as the reference panel. We considered two
eQTLs to be in LD if their lead SNPs were within 500 Kb and had
r2 > 0.2. If LD could not be calculated because the SNP was not
genotyped in the reference panel, we used distance as a metric in
which we considered two eQTLs to be in LD if their lead SNPs were
within 500 Kb.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The iPSC-PPC scRNA-seq and bulk RNA-seq data generated in this
study have been deposited in the GEOdatabase under accession codes
GSE152610 and GSE182758, respectively. The WGS data used in this
study for iPSCORE individuals were obtained as a VCF file from
phs001325.v3 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001325]. The reference gene annotation file
for aligning bulk RNA-seq data of iPSC-PPC were obtained from GEN-
CODE release version 34 in GRCh37 as a GTF file [https://www.
gencodegenes.org/human/release_34.html]. The bulk RNA-seq data
for iPSC, adult islet, and adult whole pancreas samples used in PCA and
pseudotime analyses were obtained from phs000924, GSE50398, and
phs000424, respectively. eQTL summary statistics for adult whole
pancreas and islet samples were obtained from the GTEx Data Repo-
sitory [https://console.cloud.google.com/storage/browser/gtex-
resources] and a previously published study11 [https://zenodo.org/
record/3408356], respectively. GWAS summary statistics were
obtained from the Pan UK BioBank resource [https://pan.ukbb.
broadinstitute.org/], the MAGIC (Meta-Analyses of Glucose and
Insulin-related traits) Consortium [https://magicinvestigators.org/
downloads/; https://doi.org/10.1038/s41588-021-00852-9] the DIA-
MANTE Consortium [https://diagram-consortium.org/downloads.
html; https://doi.org/10.1038/s41588-018-0241-6], and a previously
published study3 [http://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/GCST90014001-GCST90015000/GCST90014023/]. Full
summary statistics for iPSC-PPC eQTLs, supplemental data, and pro-
cessed scRNA-seq have been deposited in Figshare [https://figshare.
com/projects/Large-scale_eQTL_analysis_of_iPSC-PPC/156987].

Code availability
Scripts for processing RNA-seq and scRNA-seq data and performing
downstream analyses are publicly available at /https://github.com/
jenniferngp/iPSC_PPC_eQTL_Project (version 1.0.0 of the release).
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