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High-resolution neural recordings improve
the accuracy of speech decoding

Suseendrakumar Duraivel1, Shervin Rahimpour2,3, Chia-Han Chiang1,
Michael Trumpis1, Charles Wang1, Katrina Barth 1, Stephen C. Harward 2,4,
Shivanand P. Lad2, Allan H. Friedman2, Derek G. Southwell1,2,4,5,
Saurabh R. Sinha6, Jonathan Viventi 1,2,4,5 & Gregory B. Cogan 1,2,4,7,8,9

Patients suffering from debilitating neurodegenerative diseases often lose the
ability to communicate, detrimentally affecting their quality of life. One solu-
tion to restore communication is to decode signals directly from the brain to
enable neural speech prostheses. However, decoding has been limited by
coarse neural recordings which inadequately capture the rich spatio-temporal
structure of human brain signals. To resolve this limitation, we performed
high-resolution, micro-electrocorticographic (µECoG) neural recordings dur-
ing intra-operative speech production. We obtained neural signals with 57×
higher spatial resolution and 48% higher signal-to-noise ratio compared to
macro-ECoG and SEEG. This increased signal quality improved decoding by
35% compared to standard intracranial signals. Accurate decoding was
dependent on the high-spatial resolution of the neural interface. Non-linear
decoding models designed to utilize enhanced spatio-temporal neural infor-
mation produced better results than linear techniques. We show that high-
density µECoG can enable high-quality speech decoding for future neural
speech prostheses.

Motor disorders such as amyotrophic lateral sclerosis (ALS) and clinical
locked-in syndromes greatly reduce or eliminate patients’ ability to
verbally communicate and dramatically affect their quality of life. There
are ~6000newALSdiagnoses in theUnitedStates each year, resulting in
near-complete loss of motor function but preserving cognitive
functions1,2. Computer aided technologies have been reported to
improve quality of life but are often limited by slow processing and
inefficiencies3–5. Neural speechprosthesesoffer thepotential for a faster
andmore reliablemeans to decode conversational speechdirectly from
the brain. The development of high-resolution neural recordings would
enable accurate decoding of spoken features which is paramount to a
successful neural speech prosthesis.

Previous attempts to accurately decode speech have typically
utilized invasive macro electrocorticography (macro ECoG, 10mm
inter-electrode spacing and 2.3mm exposed diameter), and high-
density ECoG (4mm inter-electrode spacing and 1mm exposed dia-
meter), or stereo-electroencephalography (SEEG, 3.5 – 5mm inter-
electrode spacing), that target ventral sensorimotor cortex or speech
motor cortex (SMC) during speech production6–10. These studies
demonstrated that SMC encodes articulatory properties of speech
motor sequences which can form the building blocks of successful
speech decoding. These articulatory features are subsequently trans-
formed into acoustic speech11–13 or can be combined to form funda-
mental linguistic units such as phonemes14–19, which can be aggregated
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into words19,20, and sentences21,22. Accurate resolution of these features
is therefore a crucial component for speech decoding.

The rich spatio-temporal structure of human brain signals occurs
at small spatial scales. Recordings of brain signals have previously been
limited by ECoG recordings, which are typicallymeasured from64 – 128
contacts spaced 4 – 10mm apart, or SEEG recordings that use depth
probes (8 – 16 contacts) tomeasure cortical signals at 3.5 – 5mm spatial
resolution. This limitation is particularly relevant for signals that are
both spatially specific and highly informative. One such signal is the
high gamma band (HG: 70 – 150Hz), which has been shown to index
local neural activity from the surface of the brain23. HG has a high cor-
relation with multi-unit firing and also shows high spatial specificity24,25.
Further, HG has been previously shown to more accurately estimate
neural-firingpatterns that are stableover longerperiods as compared to
single units26. Micro-scale neural recording of HG could therefore
enable accurate resolution of speech-articulatory features.

Information across even small distances in the human brain is
distinct during speech production. Previous methods that quantified
HG signal-sharing in SMC during speech articulation have shown low
inter-electrode correlation (r = 0.1-0.3 at 4mm spacing), indicating
that articulatory neural properties are distinct at millimeter scale
resolutions27–29. Consequently, speech decoding studies that utilized
HG activity have identified a boost in performance with higher-density
cortical sampling20,21. Neural speech decoding using 4-mm-spaced
arrays showed up to a 5× increase in phoneme prediction compared to
10-mm-spaced arrays15,18. These results show that decoding perfor-
mance improved with increased electrode density, further motivating
higher resolution neural recordings to accurately resolve HG for reli-
able speech decoding.

Previous work using high-density micro-electrocorticographic
(µECoG) arrays in other domains have shown the ability to resolve
micro-scale neural features. In rodents and non-human primates, sub-
millimeter spacing revealed fine-scale sensory topologies consistent
with intracortical electrodes30–33. In humans, this high-resolution elec-
trode technology has also enabled the identification of micro-scale
epileptic signatures of seizure-onset-zones in epileptic patients34–38 and
have shown improvements inmotor neural prostheses by resolving the
motor cortex at millimeter-level resolution39–42. These results show that
high-resolutionneural recordings could resolvemicro-scale articulatory
features from SMC.

In the present work, we demonstrate the use of high-density
µECoG for speech decoding in humans. We recorded intra-operatively
from speech-abled patients using liquid crystal polymer thin-film (LCP-
TF) µECoG arrays (1.33 – 1.72mm inter-electrode distance, 200 µm
exposed diameter electrodes) placed over SMC during a speech pro-
duction task. These recording devices enable the high-resolution
spatio-temporal sampling of local neuronal activity which produced
superior speech decoding. We decoded speech by predicting the
actual spoken phonemes from HG neural activations. We compared
our results fromhigh-density µECoG to neural decoding from standard
intracranial electroencephalographic (IEEG) recordings, to empirically
validate our improved decoding results. We also show that high-
density µECoG decoding relies on the ability to resolve micro-scale
spatial and temporal features of the neural signal. Lastly, we leverage
this access tomicro-scaleneural signals to enable a nonlinear decoding
model to decode entire speech sequences. We show the use of high-
density µECoG for neural decoding of speech. This high-spatial sam-
pling technology could lead to improved neural speech prostheses.

Results
High resolution neural activity of speech
We examined micro-scale speech neural activity from four subjects (1
female, mean age = 53) recorded using LCP-TF µECoG electrodes
in the intraoperative setting. We used two versions of the LCP-TF
µECoG electrode arrays to record speech neural activations from

SMC: a 128-channel subdural array (Fig. 1a, b (top) 8 × 16 array; inter-
electrode distance: 1.33mm) and a 256-channel subdural array (Fig. 1a,
b (bottom) 12 × 22 array; inter-electrode distance: 1.72mm). The
µECoGelectrode arrays had up to 57× electrode densitywith respect to
macro-ECoG arrays and up to 9× higher density compared to high-
density ECoGarrays (Fig. 1c). Subjects S1, S2, andS3underwent surgery
for the treatment of movement disorders and were implanted with a
128-channel array thatwas tunneled through theburr-holeduringdeep
brain stimulator (DBS) implantation (see Methods). Each of the sub-
jects completed three task blocks (52 unique tokens per block; three
repetitions overall) of a speech repetition task, during which the sub-
jects were asked to listen to and repeat back auditorily presented non-
words. Each non-word stimulus was either a CVC or VCV token, with a
fixed set of 9 phonemes (4 vowels and 5 consonants) at each position
within the token (see Methods). Subject S4 underwent surgery for
tumor resection and was implanted with a 256-channel array. This
subject completed one block of the same speech repetition task as
other subjects (Fig. 1d, Supplementary Fig. 2, Supplementary Table 1 &
2). Subjects took on average 1.1 seconds (range = 0.7 to 1.5 s) to repeat
auditorily presented non-words and had an average spoken utterance
duration of 450ms (range = 300 to 700ms) (Fig. 1e, Supplementary
Table 3). Subjects correctly repeated the non-words onmore than 95%
of the trials (Fig. 1f, S1: 96%, S2: 98%, S3: 98%, S4: 100%), indicating that
subjects understood and could complete the task in the intraoperative
setting. The overall experiment time lasted up to 15minutes and total
utterance duration lasted 0.47 to 1.5minutes (Supplementary Table 3).

We observed uniform in vivo impedance across the array (S1:
81.3 ± 3.8 kOhm, S2: 12.9 ± 1.3 kOhm, S3: 27.5 ± 4.8 kOhm, S4: 19.7 ± 4.2
kOhm, mean± standard deviation; Supplementary Fig. 1 & 3), and
discarded electrodes with higher impedance (>1 MOhm) from neural
analysis. To confirm the absence of acoustic contamination in the
neural data, we objectively examined the recordings for microphone
contamination and did not observe a significant presence of micro-
phone signals in our neural band of interest, across all subjects (except
S1 at higher frequencies greater than 200Hz; Supplementary Fig. 3).
On examining speech neural activations, we observed significant
modulation of spectro-temporal neural activations (multi-taper spec-
trogram estimate averaged across all spoken trials, see Methods)
during speech articulation, including prominent HG band power
increases. These distinct spatial patterns were seen in each patient and
are shown in example arrays for 128 channel (S1) and 256 channel (S4)
arrays in Fig. 2a. HG power increases were aligned to the speech
utterance in individual electrodes and were active up to 1000ms
before utterance onset, Fig. 2b, Supplementary Fig. 4) and were
identified as statistically significant as compared to a pre-stimulus
baseline using a non-parametric permutation test with an FDR-
corrected alpha threshold of p <0.05 (see Methods). Significant elec-
trodes arehighlighted in Fig. 2with black borders: S1 111/128 significant
channels, S2 111/128, S3 63/128, and S4 149/256. These electrodes
exhibited spatially varying characteristics of HG activations with
77.4% of these electrodes (S1 107/111, S2 107/111, S3 34/63, and S4 88/
149) were active before the utterance start, indicating that µECoG
electrodes measured earlier motoric activations leading to speech
(Supplementary Fig. 5).

Next, we sought to determine the benefit of µECoG electrode for
recording neural signals at higher fidelity as compared to standard
methods. We examined the evoked-signal-to-noise ratio (ESNR) of HG
power from µECoGneural recordings (−500ms to 500mswith respect
to speech utterance onset) and compared it to standard IEEG (see
Methods). We pooled within-subject IEEG electrodes (electrodes
implanted during clinical pre-operative epileptic monitoring on sepa-
rate patients: ECoG and SEEG) that were anatomically localized to SMC
(Supplementary Fig. 14), and which exhibited significant HG power
during speech articulation. Neural signals from µECoG recordings
demonstrated a 48% (1.7 dB) increase inmeasured signal-to-noise ratio
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Fig. 1 | Recording from high-density micro-electrocorticographic (µECoG)
electrodes on the human brain during a speech production task. a Flexible
liquid crystal polymer (LCP) electrode arrays with 128 (top) and 256 (bottom)
recording electrodes (200-µm diameter). b Visual comparison of high-density
micro-electrodes (black square markers) with macro-ECoG (red circles) and high-
density standard ECoG (blue circles). c µECoG electrodes exhibit higher spatial
density (34 – 57 electrodes/cm2) compared to the existing macro-ECoG (1 elec-
trode/cm2) and high-density ECoG arrays (6 electrodes/cm2). d Electrode arrays
were implanted over speech motor cortex (SMC) in four awake patients

(projected onto an average MNI brain). Electrode arrays had either 128 channels
with 1.33mm center to center spacing (pitch) for S1 (violet), S2 (green), and S3
(blue), or 256 channels with 1.72mmpitch for S4 (red). e A schematic of the intra-
operative speech production task. Color bars indicate the duration of the audi-
tory stimulus (blue), time-to-response (orange), and spoken duration (green).
f Subjects performed the speech production task with behavioral results above
95% accuracy for correctly repeated non-words. Source data are provided as a
Source Data file.
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(median HG ESNR= 2.9 dB, S1: 4.2 dB, S2: 3.5 dB, S3: 1.9 dB, and S4:
2.1 dB, p <0.05, Mann-Whitney U test, Supplementary Fig. 6) as com-
pared to recordings from standard IEEG (median ESNR = 1.2 dB,
Fig. 2c). These neural HG activations exhibited fine-scale spatial tuning
across the array, indicating that speech informative electrodes can be
spatially clustered (Supplementary Fig. 6).

To quantify the spatial resolution of µECoG neural signals, we
computed the Pearson correlation coefficient of the HG envelope27

(−500 ms to 500ms with respect to speech utterance onset) between
each micro-electrode pair. The correlation increased with proximity
from 10mm to 1.33mm and remained largely uncorrelated at the
equivalent spatial resolutions of macro ECoG for all 4 subjects (Fig. 2d:
r < 0.2 at 10mm spacing). HG neural signals at less than 2mm were
more correlated (r = 0.6), but not fully correlated, suggesting that
speech information contained in HG neural activations are spatially
discriminative at scales below 2mm.

To investigate micro-scale neural information, we examined
spatio-temporal activations specific to key units of speech production:
articulatory features of individual phonemes (low-vowel - /a/, /ae/,
high-vowel - /i/, /u/, labial-consonant - /b/, /p/, /v/, and dorsal tongue
consonant - /g/, /k/). We first examined spatio-temporal activity pat-
terns by averaging normalized HG activity across trials specific to first-
position phonemes of the non-word utterances. All four subjects
exhibited distinct spatio-temporal patterns for four different articu-
lators (/a/ - low, /i/ - high-vowel, /b/ - labial, /g/ - dorsal tongue) with
respect to the speech utterance onset (Fig. 3 & Supplementary Fig. 7),
as highlighted in Fig. 3a for example subject S1.

We next sought to investigate how motor articulatory features
were organized in neural space. Previous studies examining speech
production have identified functional organization patterns of pho-
nemes based on their composite articulators in SMC43,44. We sought
to identify similar population-driven articulator patterns for µECoG
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Fig. 2 | Highly resolved neural features as demonstratedbyhigh-density µECoG
during speech production. a Spectrograms for each electrode from each array for
two example subjects (averaged across all spoken trials): S1, 128 electrodes
(1.33mm spacing) & S4, 256 electrodes (1.72mm spacing). Data for all subjects are
available in the supplemental materials. Electrodes with significant high-gamma
modulation (HG: 70 – 150Hz, FDR-corrected non-parametric permutation tests)
during the speech utterance are indicated by black borders. Shaded grey circles
represent superimposed simulated macro-ECoG electrode resolution with 10mm
interelectrode distance, illustrating the increased density of µECoG as compared to
standard IEEG.bAspectrogramofanexample electrode fromthe 128-channel array
(red border) demonstrated increase power in HG band which was time-locked to
the speech utterance. c µECoG arrays captured HG activity at significantly higher
power than standard IEEG (ECoG and SEEG), *p <0.05, ***p <0.001, one-sided

Mann-WhitneyU test, showing the increased ability ofmicro-electrodes tomeasure
neural signals with a higher signal-to-noise ratio as compared to standardmethods
(IEEG vs. S1: p = 1.4e-14, IEEG vs. S2: p = 1.7e-5, IEEG vs. S3: p = 1e-3, IEEG vs. S4:
p = 3.3e-5). The red lines and the blue boxes indicate the median and 25th/75th per-
centile and solid lines represent the full range of the distribution (total number of
electrodes in each grouping, standard IEEG: 60, S1: 111, S2: 111, S3: 63, S4: 149).
d Inter-electrodeHG correlation decreased with increased electrode spacing for all
subjects. The correlation values at each electrode spacing are represented bymean
and standard error (n = all possible electrode pairs at fixed electrode distance in
mm). The correlation values at spatial resolutions less than 2mm (r = 0.6), reveals
evidence for spatially discriminative neural signals at the micro-scale during a
speech utterance. Source data are provided as a Source Data file.
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HG (500ms window; 100 time points) in a cortical state-space and
determine if this organization is dependent on spatial resolution.
Tomodel cortical state-space, we used singular value decomposition
(SVD) to transform spatio-temporally covarying HG activity into low-
dimensional features (80% of variance explained), and used
t-distributed Stochastic Neighbor Embedding (tSNE)45 to visualize
the transformed principal-component scores in a two-dimensional
vector space. Figure 3b shows clear separation of speech trials in
tSNE state-space for both articulators aswell as individual phonemes.
We examined the contribution of the high spatial-resolution of
µECoG by repeating the state-space analysis of spatially subsampled
HG (Poisson disc sampling spatially constrained across the
array, Supplementary Fig. 8a).We observed decreased distinction for
both articulators and phonemes with reduced spatial sampling
(Fig. 3c). This effect is further quantified by a significant decrease in
silhouette scores for sub-sampled versions in both articulator and
phoneme space (Fig. 3d, Supplementary Fig. 8b). To statistically
assess this difference, we performed a one-way ANOVA to examine
the effects of spatial subsampling on state-space clustering which
revealed a significant main effect of subsampling in both articulator
(F3, 196 = 114, p = 9.6e-43) and phoneme space (F3, 196 = 47.8, p = 3e-23).
Post hoc t-tests with Bonferroni correction showed that mean
values were significantly different between all groups in the articu-
latory space (p <0.01). Differences were also significant in the pho-
neme space, except for between 100% and 50% subsampling
(p =0.17). These results clearly demonstrate that high-resolution
neural recordings enable more accurate representation of motor
features in SMC.

Decoding phonemes using high-density µECoG spatio-temporal
features
Successful neural speech prostheses will require the ability to decode
the full range of human speech and language. One solution to enable
this ability is to focus on compositional units that enable generative
language. We therefore sought to evaluate the ability of high-density
µECoG to decode the smallest compositional unit of speech: the
phoneme. We performed a 20-fold, nested, cross-validated decoding
model of manually aligned phonemes based on a low-dimensional
subspace (SVD decomposed) using a supervised linear discriminant
model (LDA; see Methods). We selected the eigenvalues based on
nested cross-validation that explained 80% of neural variance
(equivalent number of principal components: S1 − 34, S2 − 39, S3 − 25,
S4 − 22) for phoneme prediction. Benefiting from high spatial sam-
pling, we observed strong decoding performance in all subjects for
predicting phonemes in all positions within the non-word (e.g., /abae/:
P1 - /a/, P2 - /b/, P3 - /ae/; Fig. 4a, b, p <0.01, Binomial test against
chance model46). All subjects had higher accuracies for decoding
phonemes in the first position (average P1 across subjects: 49.9%,
chance = 11.11%) when compared to phonemes in the second (P2: 45%,
p =0.0097) and third positions (P3: 38.8%, p =0.0250; one-sided
paired t-test). This decoding performance was specific to HG infor-
mation alone as adding low frequency signals (LFS) did not result in
performance increases (Supplementary Fig. 9). S1 and S2 exhibited
higher decoding performances across all positions which we attribute
to higher HG-SNR and increased utterance duration for these subjects
(Fig. 4b). S1-P1 (Subject 1, phoneme position 1) had a maximum pre-
diction scoreof 57%with the best consonant (/g/) obtaining adecoding
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b State-space analysis using a signal value decomposition t-distributed stochastic
neighbor embedding method (SVD-tSNE) depicted clear hierarchical separation of
trialswith respect to articulators (dorsal - /g, k/, labial (/b, p, v/), high (/i, u/), and low
(/ae, a/) as well as individual phonemes. Phonemes produced using similar articu-
lators were grouped together in two-dimensional state-space suggesting similarity
inmotor activation patterns. c Electrode sub-sampling to simulate lower resolution
recordings reduced the separation of clusters for both phoneme (top) and
articulator (bottom) groupings in SVD-tSNE state-space (same color palette as in
(b)). This reduction of grouping demonstrates the utility of high-resolution spatial

sampling. d To quantify this reduction, we performed a silhouette analysis that
measures the relative closeness of a trial to articulator/phoneme group with
respect to other groups. To show this significant decrease in cluster separation/
groupings empirically, we performed a one-way ANOVA (articulator: F3, 196 = 114,
p = 9.6e-43, phoneme: F3, 196 = 47.8, p = 3e-23) and post hoc t-tests (see main text).
Each box plot depicts the distribution of silhouette scores obtained from electrode
sub-samplings (50 samples using Poisson disc sampling). The red lines and the blue
boxes indicate the median and 25th/75th percentile and dashed lines represent the
full-range of the distribution. The dotted horizonal line indicate chance silhouette
metric obtained by shuffling the articulator/phoneme labels (1000 iterations).
These analyses demonstrate the improved ability of high-resolution neural sam-
pling to distinguish between articulator/phoneme motor features. Source data are
provided as a Source Data file.
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score of 84.2% and the best vowel (/i/) obtaining a decoding score of
75.3% (Fig. 4a). Similarly, S2-P1 had similarmaximumprediction scores
with the best consonant (/g/) with a decoding score of 72.7% and the
best vowel (/u/) with a decoding score of 83.3%. Decoding accuracies
were reducedwhenmanually alignedphonemeswerepooled across all
positions (S1: 40.72%, S2: 42.96%, S3: 20.92%, and S4: 41.67%). This
reduction in performance suggests that there is unique position-based
information present in the signal, and decoding can be impaired by
neural correlates from neighboring phonemes, therefore, indicating a
need for position-dependent decoding. The lower predictionquality of
S3 was attributed to poor contact between the electrodes and SMC (as
indicated by low HG-SNR). S4 had comparable SNR as S1 and S2,
however this subject completed only one out of three blocks during
the intraoperative experiment resulting in reduced data duration for
the decoding model and highly varying performance across phoneme
positions. To show that the reduced performance obtained from S4
was likely due to this decreased recording duration, we subsampled
trials across all subjects andphonemepositions and foundcomparable
decoding accuracywhen the recording duration for other subjects was

also reduced (Supplementary Fig. 10, median accuracy at 50 sub-
sampled trials – S1: 36%, S2: 27%, S3: 15%and, S4: 44%). Althoughhigher
spatial coverage of S4 enabled recordings from both inferior frontal
gyrus (Broca’s area) and SMC, significant decoding was largely specific
to electrodes over SMC (Supplementary Fig. 11). The decoding results
used a fixed time-window (−500 ms to 500ms) across phoneme
onsets. To determine the optimal time-window required to decode
phonemes, we calculated the decoding scores at varying time-
windows for all subjects and phoneme positions (Supplementary
Fig. 12). The decoding performance increased with longer windows
until saturation at around 500ms. This saturation point was specific
for each subject and phoneme position, and the optimal decoding
values were greater than or equal to values observed with fixed time-
windows. S3 and S4 exhibited a reduction in decoding beyond the
optimal point, indicating that performance could be impaired by
adjacent phonemes at low SNR and reduced data duration. Our
decoding results represent the best phoneme decoding scores for
surface neural recordings and validate the use of high-density µECoG
for the development of neural speech prostheses.
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Fig. 4 | High accuracy phonemedecoding from µECoG. a Confusionmatrix for an
example subject (S1) for phoneme position one (P1) using singular value decom-
position linear discriminant analysis (SVD-LDA) decoding demonstrated high
accuracy for each phoneme. b Decoding was also highly accurate for each position
within the non-word (P1, P2, P3), as well as for all phonemes combined across
position (mean P1 = 49.9%, P2 = 45%, P3 = 38.8%, All = 36.6%, and chance = 11.11%).
c This accurate decoding outperformed standard IEEG in a 4-way vowel decoder
(P1: µECoG (n = 4): 71%, vs. ECoG (n = 4): 36.7%, p =0.015, vs. SEEG (n = 7): 36.5%,
p =0.011; chance = 25%, one-sided permutation test with 10,000 iterations). This
nearly doubled performance increase further demonstrates the benefit of higher
resolution neural recordings for speech decoding. The red lines and the blue boxes
indicate the median and 25th/75th percentile and dashed lines represent the full-
range of the distribution. d Distribution of single-electrode decoding values were
correlated with HG-ESNR for all subjects. Linear model fits indicated moderate but

significant correlations for S1 (purple - Pearson r = 0.23, p =0.0087), S2 (green -
r = 0.23, p =0.0077), and S3 (blue - r = 0.19, p =0.0303), and a stronger correlation
for S4 (red - r = 0.44, p = 6.5e-14, F-statistic test against constantmodel). eDecoding
errors decreased with phoneme distance for all positions indicating higher con-
fusion between phonemes with shared articulatory features (see methods and
supplement for how error/phoneme distance was computed). Solid lines indicate
linear model fit obtained for each position (P1: F1,79 = 90.4, p = 9.9e-15, P2:
F1,79 = 19.7, p = 2.8e-5, P3: F1,79 = 28.6, p = 8.4e-7; F-statistic test against constant
model) and shaded regions indicate the 95% confidence interval of the linearmodel
fit obtained using bootstrap regression (n = 1000 bootstraps). f Phoneme errors at
all three positions in the non-words and all phonemes combined across position
show decoding errors (bits) well below chance (chance = 2.4 bits for a uniform
confusion matrix). Source data are provided as a Source Data file.
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To directly assess the benefit of recording neural signals for
speech at themicro-scale, we compared high-density µECoG decoding
to standard IEEG recordings (SEEG/ECoG). We performed the same
phoneme decoding analysis using neural signals recorded from eleven
patients with epilepsy (7 females, mean age = 28.5, 4 ECoG, 7 SEEG)
who were implanted with standard IEEG electrodes during pre-
operative epilepsy monitoring. For comparison between electrodes,
we performed a 4-way decoder (using SVD-LDA; see Methods) to
decodebetween vowels andquantified the decodingperformance. For
each patient, we anatomically restricted electrodes to SMC and
selected the electrodes that exhibited significant HG ESNR during the
speech utterance (Supplementary Fig. 16). Our results showed that on
average, µECoG outperformed standard clinical recordings by 36%
(Fig. 4c: ECoG: 36.7%, SEEG: 36.5%, µECoG: 71%, chance 25%, p <0.05,
one-sided permutation tests with 10,000 iterations). This boost in
performance results show the ability of high-density µECoG to enable
more accurate speech decoding as compared to standard clinical
recording techniques.

Since high-density µECoG demonstrated both a greater ability to
resolve higher ESNR and stronger decoding performance as compared
to standard clinical recordings, we next sought to directly determine
the relationship between decoding performance and ESNR. To quan-
tify this relationship, we calculated the univariate phoneme decoding
performance for every individual µECoG electrode along with their
corresponding HG-ESNR (dB) value (Fig. 4d). Linearmodel fits indicate
moderate but significant correlations for S1 (Pearson r = 0.23,
p =0.0087), S2 (r = 0.23, p =0.0077), and S3 (r = 0.19, p =0.0303), and
a strong correlation for S4 (r = 0.44, p = 6.5e-14). Further, we observed
increases in accuracy as a function of HG-ESNR at a mean rate of 0.4%
per dB for S1, S2, and S3, and 1.1 % per dB for S4. These results show a
moderate but significant relationship between the ability to capture
higher SNR micro-scale activations using high-density µECoG and the
corresponding ability to decode speech.

Finally, we sought to characterize the types of decoding errors
that were present in high-density µECoG recordings. We reasoned that
if our ability to decode phonemes was largely based on our ability to
resolve their constituent articulatory features in the motor cortex,
decoding errors should not be uniform across phonemes, but rather
reflect similar articulatory properties (low, high, labials, and dorsals)
from other phonemes. For example, in Fig. 4a, we see increased con-
fusion between phonemes with similar phonological features (bilabial
plosives /p/ vs. /b/)6,15,17. To systemically characterize these types of
errors, we calculated each phonemes’ phonological feature set47 by
assigning a 17-bit categorical vector to each phoneme (see Methods).
We used Hamming distance to calculate phonological distance for
each phoneme pair (Supplementary Fig. 13) so that phonemes with
similar phonological features had lower distances (e.g., /p/ & /b/ dif-
fered by 1 bit, whereas, /p/ & /g/ differed by 5 bits). We found that our
decoding models’ confusion/error rate decreased with phonological
distance across all phoneme positions (Fig. 4e, P1: F1,79 = 90.4, p = 9.9e-
15, P2: F1,79 = 19.7, p = 2.8e-5, P3: F1,79 = 28.6, p = 8.4e-7; F-statistic test
against constantmodel). We observed similar inverse relationships for
all subjects and the errors were lower than chance, (Fig. 4f chance
error: 2.42 bits; uniform confusion matrix). S1 and S2 had the lowest
phonological distance error across all phoneme positions (less than
1 bit; except S1-P3), indicating that phoneme misclassifications were
predominantly biased by similar phonological feature articulation.
This analysis showed that decoding using high-density µECoG exhib-
ited errors that were systemic, largely due to speech articulatory
structure and not random misclassifications.

Improved decoding with increased resolution, coverage, and
contact size
We next sought to directly study the effect of spatial resolution and
spatial coverage of neural signals and their effect on decoding. For our

subsequent analyses, we focused on S1 and S2 as they both had the
requisite SNR and amount of data for our decoding analyses (see
Supplementary Figs. 6 & 10 for a direct comparison). First, we exam-
ined the effect of spatial resolution on decoding by sampling elec-
trodes (n ≥ 50 samples) across the array, using Poisson disc sampling
(Supplementary Fig. 8a). For each sampling, the resultant spacing in
millimeters was calculated using the formula:

pitch =

ffiffiffiffiffiffiffiffiffiffiffiffi
X � Y
n

r
ð1Þ

whereX andY are length andwidth of the array inmm, andn is the total
number of electrodes in the sample. Accuracy values from the resul-
tant spacing (rounded to the nearest integer) were then compared to
the 95% threshold of maximum decoding accuracy values obtained
from the full array. We found a sharp increase in decoding perfor-
mance with an increase in spatial resolution. The subset of electrodes
with spacing less than 1.5mm reached the 95% threshold of the full
array (Fig. 5a left, & Supplementary Fig. 14a). The subsampling dis-
tributions from the 10 to 4mm range (electrode distance range for
standard IEEG) had median accuracy values of only 20-35% as com-
pared to 55− 60% for the fullmicro-array, an improvement from 17% to
29%. Next, to demonstrate the importance of spatial coverage, we
subsampled electrodes from rectangular subgrids at various fixed
spatial resolutions. Each of these subgrids were two dimensional win-
dowswith dimensions from2 × 4up to 8 × 16 electrodes. The decoding
performance improved with increased coverage (Fig. 5a middle &
Supplementary Fig. 14a). Finally, to assess the impact of micro-scale
contact-size on speech decoding, we estimated various sized record-
ing contact areas of recording by using rectangular subgrids with
dimensions from 1 × 1 (effective 200 µmcontact size) to 8 × 8 (effective
10mm contact size) of spatially averaged raw neural recordings. HG
signals extracted from these spatially averaged neural recordings were
then used to decode phonemes. Decoding accuracy decreased with
increased estimated contact size. The highest performance was at the
smallest contact size (Fig. 5a – right & Supplementary Fig. 14a). We
validated the robustness of this spatial analysis by showcasing similar
decoding trends across all phoneme positions for both S1 and S2
(Supplementary Fig. 14b).

Sinceprevious decodingwork has characterized awidely different
number of phonemes, we next sought to characterize this spatial
degradation of different N-way decoding models. For each electrode
subsampling, we averaged the decoding accuracies of all possible
N-way classifiers and obtained the simulated spacing required to
achieve 90% and 95% threshold of full array decoding performance.
We found that the spacing required to obtain the full array decoding
performance was inversely proportional to the number of unique
phonemes, indicating that the benefit of using high resolution neural
recordings increases with the number of uniquely decoded phonemes
(Supplementary Fig. 14c), further suggesting that asmodels scale up in
size, the importance of high spatial sampling will be even larger.
Together, these results directly validate the benefits of high-density
µECoG for highly accurate neural decoding through their high-spatial
resolution, large spatial coverage, and micro-scale electrodes.

We next used our recordings of micro-scale signals to identify
articulatory motor maps in SMC. These maps show the specific neural
organization of effectors for motor speech output. Previous studies
have identified average maps across multiple subjects in SMC for
articulator encoding44, however, subject-specific maps have not been
well characterized due to the relatively sparse coverage using standard
electrode arrays. Individual subject maps would better enable the
development of subject-specific neural prostheses. To quantify these
micro-scale neural articulatory maps, we trained an SVD-LDA model
for each electrode to decode four articulatory features (low vowels,
high vowels, labial consonants, and dorsal-tongue consonants).
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The receiver-operator-characteristic area-under-the-curve (ROC-AUC)
metric was used to evaluate each electrode’s encoding preference for
each articulator, and the values from all the electrodes were spatially
arranged to derive micro-scale neural articulatory maps. We observed
overlap of informative electrodes across each of the articulators.
Despite this overlap, high-density µECoG arrays exhibited distinct
clustering of articulatory features in all subjects, indicated by red
contours (90 percentile of AUC) and corresponding centroids (Fig. 5b
& Supplementary Fig. 15). For S1 with an 8 × 16 grid, AUC values were
dispersed throughout the array for vowels, whereas there was distinct
clustering for consonants (Fig. 5b, labial-consonants with 72.5 mm2

surface area and dorsal-consonants with 17.7 mm2 coverage, Supple-
mentary Table 4). For subject S4 which had a 12 × 22 grid, we observed
strong spatial clustering including both vowels and consonants
(labials: 56.2 mm2, dorsals: 79.9 mm2, Supplementary Fig. 15 and Sup-
plementary Table 4). These subject-specific, high-resolution articu-
lator maps show the ability of high-density µECoG to resolve fine-scale

motor representations for speech production in individual subjects,
which could enable better individualized neural speech prostheses.

Sequential neural modeling reveals positional encoding of
phonemes
Thus far our analyses have highlighted the ability of micro-scale
recordings to resolve spatially specific neural signals. However, these
signals reflect complex neural dynamics which also evolve in time. We
sought to leverage our ability to resolve detailed spatial recordings of
neural signals by examining how these signals evolve and change in
time during speech utterances. We assessed these temporal dynamics
through our ability to resolve phoneme sequences in time. We con-
structed an SVD-LDA model to train and test on HG neural time-
segments with respect to the utterance. Sequences of the specific
ordered phonemes within the utterance should only be resolvable if
the sequence information is present in spatio-temporal HG neural
activation patterns.
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Fig. 5 | Accurate decoding is dependent on the high-spatial resolution, high-
channel count capability, andmicro-scale recording of µECoG. a Accuracy of P1
decoding increased as a function of spatial resolution and coverage as demon-
strated by sub-sampling electrodes and decreased with contact size as demon-
strated by spatial averaging. Each box plot shows the distribution of accuracy
metrics from the subsampled electrodes (Electrode subsampling: n ≥ 50 electrode
subsamples obtained using Poisson Disk sampling, electrode subgrids: n = all
possible subsample grids defined by the coverage, spatial averaging: n = 10
instances of spatial averaged data). The horizontal center lines and the boxes
indicate the median and 25th/75th percentile and vertical solid lines represent the
full-range of the distribution. Blue lines connect the median accuracy values from
the boxplots. Electrode pitch less than 2mm along with micro-scale sampling was

required to obtain decoding accuracywithin 95% of themaximumdecoding for the
entire array (red dotted line) and demonstrated 29% improvement from the 10mm
pitch simulation and a 17% improvement from the 4mm pitch simulation.
b Classification for articulators was spatially dependent, resulting in millimeter-
scale spatially specific articulator maps shown here in example subjects S1 and S4.
Darker colors show higher area under the curve for receiver operating character-
istic curves (ROC-AUC) for the univariate linear decoding values for each articu-
latory feature. Performance for vowels (top) was spatially diffuse, whereas
performance for consonant (bottom) formed spatially distinct clusters. The con-
tour points identify 90th percentile of AUC values across all articulators, and the
marker indicates corresponding centroids for each articulator. Source data are
provided as a Source Data file.
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We obtained stable temporal decoding for phonemes across all
positions. Further, the peak decoding values for each phoneme
occurred sequentially times reflecting their order in the utterance
(Fig. 6a: S1: 0.015, 0.125, and 0.425 s from the utterance onset for
Position 1, 2, and 3 respectively, and for S2: 0.04, 0.28, and 0.39 s). This
analysis demonstrates the ability to decode sequential phonemes in an
utterance from the rich spatio-temporal neural features from micro-
scale recordings. This ability to resolve these phoneme sequences also
demonstrates our ability to resolve entire speech utterances from the
decoding of phoneme units, a requirement for successful neural
speech prostheses.

Phoneme sequence generation using seq2seq recurrent neural
network (RNN)
Having demonstrated the presence of sequential phoneme informa-
tion in the micro-scale neural signal, we sought to decode the entire
utterance via the individual constituent phonemes without explicit
phoneme onset information. We reasoned that this scenario would
more accurately reflect the use-case of a neural speech prosthetic for
entire utterances, where manual phoneme boundaries are not avail-
able. We developed a phoneme generation technique to sequentially
decode positional phonemes within the utterance, without prior
knowledge of the statistical relationship between phonemes (phono-
tactics). We used a seq2seq RNNmodel to translate HG neural activity
to the entire phoneme sequence directly21. For each spoken utterance,

HG activations (1 second window; 200 time points) from all significant
µECoG electrodes were passed as input into an ‘encoder-decoder’
recurrent neural-network (Fig. 6b). The model was executed in three
stages: 1) The temporal convolution layers (green arrows) to extract
low dimensional neural features, 2) The bidirectional encoder RNN
(blue boxes) to encode neural features along the temporal-domain. 3)
The decoder RNN (orange boxes) to transform encoded neural fea-
tures to phoneme sequences.

We trained the entire network using Adam48 gradient descent
optimization (learning rate = 1e-3) for 800 epochs (number of visits of
training data), with ℓ2 regularization applied to all layers. The network
hyperparameters were estimated using nested cross-validation (see
Supplementary Table 5).

We quantified the decoding performance by calculating the per-
centage of correctly predicted phonemes for each position. The resul-
tant decoding accuracies and errors were considerably better for
seq2seq models for both S1 (mean accuracy: 46.4% vs. 34.4%, mean
phoneme error: 0.91 bits vs. 1.4 bits) and S2 (accuracy: 50.8% vs. 43%,
phoneme error: 0.91 bits vs. 1.4 bits) as compared to equivalent linear
decoding models (Fig. 6c and Supplementary Table 6). This result
demonstrates that non-linear sequential decoding can more accurately
reconstruct spoken sequences than linearmethods that require explicit
phoneme onset times. To further validate the importance of micro-
spatial sampling for these results, we performed an analysis that spa-
tially subsampled our electrodes which resulted in a reduction of the
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Fig. 6 | µECoG enables the sequential temporal decoding of utterances. a A
temporal decoding model was trained on data aligned to the speech utterance
onset for phonemes at each position. Results are shown for two example subjects
(S1, S2) revealing temporal patterns of successful decoding for each phoneme
position (P1: blue, P2: orange, P3: yellow). Dotted lines reflect peak decoding. This
ability demonstrates that the temporal sequence of phoneme positions can be
reconstructed via the information present in the neural signal aligned to the
utterance. bWe leveraged this ability by constructing a nonlinear decoding model
to resolve temporal speech sequences of entire utterances. We used a long short-
term memory (LSTM) Seq2Seq model with an encoder-decoder recurrent neural
network (RNN) to translate HG spatio-temporal activation patterns (1 second win-
dow centered at utterance onset) to phoneme sequences, with three layers: a
temporal convolution (green), a bi-directional encoder RNN (blue), and a decoder
RNN (orange) layer. The numbers in the boxes represent the number of LSTMunits
(c) Our LSTMmodel outperformed a linear model for decoding phonemes across

all positions, shown here for two example subjects, S1 (mean accuracy: 46.4% vs.
34.4%, mean phoneme error: 0.99 bits vs. 1.68 bits, n = 10 decoding instances on
test trials) and S2 (accuracy: 50.8% vs. 43%, phoneme error: 0.91 bits vs. 1.4 bits,
n = 10 decoding instances on test trials). Error bars indicate standard deviations,
and the data points indicate performancemetrics from each decoding instance on
test trials.d Subsamplingof electrodes (n = 25 instancesof electrode subsamplings)
reduced the LSTM performance in decoding phoneme sequences as validated by
one-way ANOVA (S1: F3, 99 = 40.47, p = 5.4e-17, S2: F3, 99 = 99.97, p = 2e-79) and post-
hoc t-tests (seeMain text). The red lines and the blueboxes indicate themedian and
25/75th percentile anddashed lines represent the full-rangeof thedistribution. This
improvement in decoding demonstrated the benefit of combining nonlinear
decoding models that leverage high spatio-temporal neural activation with µECoG
recordings that can sample the human brain at the micro-scale. Source data are
provided as a Source Data file.
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sequential decoding performance (Fig. 6d S1: F3, 99 = 40.47, p= 5.4e-17,
S2: F3, 99 = 99.97, p = 2e-79). Post hoc t-tests with Bonferroni correction
showed significant differences in mean across all subsampling groups
for both subjects (p<0.01). This sequential decodingmethod provides
the basis for an algorithmic framework for the decoding of entire
speech utterances using high-resolution neural recordings.

Discussion
We demonstrate the benefits of using micro-scale neural recordings
for speech decoding and as an important component of neural speech
prostheses. We successfully performed intra-operative recordings
from four speech-abled patients (3 movement disorder patients and 1
tumor patient) who completed a non-word speech repetition task.
Even with the time-constrained experimental procedure (up to
15minutes of recording duration/ 1.04minutes of total spoken dura-
tion; Fig. 1e, Supplementary Table 3), our µECoG electrodes recorded
neural signals in SMC that produced significantly higher HG-ESNR as
compared to standard intracranial methods (ECoG/SEEG). Electrodes
with HG activations spanned both the pre-central (motor) and post-
central (sensory) gyrus across the SMC for S1 (Supplementary Fig. 2 &
4). Subject S2 and S3 had predominant coverage in the pre-central and
post-central gyrus, respectively. Subject S4 had a 256-channel array
that extended anteriorly from SMC to the inferior frontal gyrus, how-
ever, most HG activations were confined to SMC. Measured HG from
SMC exhibited spatially varying temporal characteristics, with activa-
tions starting up to 1 s before utterance onset and lasting until speech
offset (Supplementary Fig. 5). These early activations sites could
indicate neural populations within SMC that transform auditory pro-
grams to motor speech9,29. Future studies will examine the neural
characteristics of these sensory-motor integration sites using micro-
scale recordings8,9. The HG activations were distinctive at the milli-
meter scale during the speech utterance, as validated by inter-
electrode correlation of r ~= 0.6 (Fig. 2d) at <2mm spacing, which
both extends previous work with coarser spatial sampling and
demonstrates the informative nature of signals within SMC at the
millimeter scale27,28. This result is also in keeping with previous work
that sampled microscale epileptic activity using high-density µECoG
arrays which revealed a striking heterogeneity in the spatio-temporal
dynamics of interictal events49–51. Importantly, in that work, micro-
seizures were most often observed occurring on just one to two
electrodes spaced 750 µm apart and were not visible on neighboring
electrodes. The higher SNR combinedwith evidence for distinct neural
patterns of activations at the micro-scale motivates the benefits of
using micro-recording technologies for human speech decoding.

On examining the spatio-temporal activation of HG, we per-
formed a cortical state-space analysis that resulted in clear clustering
of articulatory features and phonemes, which is consistent with pre-
vious work43. We built on this finding by showing that this clustering
was dependent on micro-scale spatial resolution as a decrease in
sampling produced significantly worse clustering results. This inverse
relationship shows the benefit of high-resolution neural recordings to
accurately model speech cortical dynamics.

We performed speech decoding by classifying phonemes from all
positions within the spoken non-word. Using non-word stimuli in the
speech task enabled us to remove the effects of higher-order language
processes and to decodephonemes and articulatory features to clearly
assess the benefits of using high-density µECoG to decode speech
features from neural recordings. Previous speech decoding studies
with phoneme classification results employed electrode technologies
ranging from standard ECoG14–16,18–21 to penetrating intracortical
arrays17. These studies involved subjects performing speech produc-
tion tasks in an epilepsy monitoring unit, with total utterance dura-
tions (actual speaking time) of >~10minutes. The corresponding
neural recordings enabled speech decoding by classifying up to 39
English phonemes. With our initial experiments constrained to

15minutes of intra-operative time, we developed a 9-way phoneme
decoder and reported stronger accuracy metrics from intra-operative
data with total spoken durations of ≤ 2.5minutes (Supplementary
Table 3). We observed robust decoding for classifying spoken pho-
nemes across all subjects, with maximum accuracy reaching up to 57%
(chance: 11.11%) in predicting both consonants and vowels, and with S1
and S2 achieving the highest decoding performances (Fig. 4). Subject
S3obtained lower decoding values likely due topoor contactwith SMC
(indicated by lower SNR) that could be due to issues related with
tunneling of the electrode array through the burr hole. Subject S4
obtained decoding performance that was on par with S1 and S2. This
subject, however, performed only one block of our speech repetition
task. On examining the impact of recording duration, we observed
increased decoding performance with more trials/time for training, as
expected (Supplementary Fig. 10). Further, S4’s decoding perfor-
mance with a 256-channel array at 50 subsampled trials was higher
than the other subjects with 128 channel arrays, indicating that
improvements in decoding accuracy may be possible with increased
channel counts. This improved decodingwith coverage was specific to
electrodes from SMC, and HG activations from inferior-frontal regions
did not significantly contribute to the performance (Supplementary
Fig. 11). The decoding scores were obtained from the HG band (70 to
150Hz) and adding LFS as additional features did not improve the
performance (Supplementary Fig. 9). LFS were associated with the
temporal structure of speech (prosodics and syllabic information)52–55,
and the lack of performance improvements may be attributed to the
stimuli design of single non-word speech tokens, compared to natur-
alistic stimuli with varying syllabic/prosodic information.

The decoding performance decreased for phonemes embedded
within the non-word, most likely due to discrepancies from marking
onset times of embedded phonemes and co-articulatory effects that
arise during phoneme transitions. To investigate these effects, we
examined the amount of time necessary to decode each phoneme
(Supplementary Fig. 12).We observed increased decoding performance
with larger windows until saturation at around 500ms similar to pre-
vious results15,17. This optimal window was specific for each position
indicating a need for decoding models that do not require explicit
phoneme onsets. This decodingwindow selection, however, is essential
for online systems with an optimal tradeoff between speed and
accuracy56. Finally, we directly compared the decoding ability of µECoG
electrodes to standard IEEG (ECoG/SEEG) electrodes located with SMC.
SEEG shanks contained depth electrodes (3.5 – 5mm inter-electrode
spacing) and the ECoG arrays contained electrodes (10mm inter-
electrode spacing) that were arranged in a rectangular lattice. In both
cases, the electrodes that were directly present within/over SMC were
utilized for decoding. We showed that even when with using short time
periods, all three recording technologies obtained above-chance
decoding performance, and micro-scale neural recordings using high-
density µECoG outperformed current standard technology (Fig. 4c, and
Supplementary Fig. 16). Our work is limited by not providing a direct
comparison of decoding performance against high-density ECoG (4-
mm inter-electrode spacing) which has been previously been employed
to achieve high-quality naturalistic speech synthesis57 and text
generation22. Due to this limitation, we performed a subsampling ana-
lysis to simulate recordings at different spatial resolutions for a para-
metric and direction comparison. Future work will focus on using
longer recordings, more naturalistic speech, and direct reconstruction
of utterances from micro-scale neural recordings.

When we analyzed decoder performance, we found that the
classification errors varied systematically as a function of the utter-
ance. Phonemes with similar phonological features (e.g. /p/ and /b/)
were more often confused compared to dissimilar phonemes that
shared fewer features (/p/ and /g/)15,17. We quantified this phonological
error using Hamming distance (bits) and showed that classifier errors
were inversely proportional to phonological distance. Evaluating
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speech decoding models with phonological distance could lead to
error correction that comparatively weighs similar phonemes with a
lower cost versus phonemes with dissimilar features58. This phonolo-
gical error metric could be used in addition to classification accuracy
to optimize cost-functions for speech decoding algorithms.

We characterized the importance of spatial characteristics of
micro-scale neural dynamics for speech decoding. We observed
improved phoneme decoding performance that increased with spatial
resolution, spatial coverage, and decreased contact size. There was up
to 29% improvement in decoding performance as compared to simu-
lated spatial resolutions of standard ECoG recordings (4 – 10mm;
Supplementary Fig. 14). We also found that spacing was inversely pro-
portional to the number of unique phonemes, suggesting that with the
benefits of µECoG recordings would be even greater for larger datasets
with a greater number of phonemes (Supplementary Fig. 14c). Higher
spatial resolutionwas, therefore, required to achieve better decoding as
more unique phonemes were included in the analysis. On a subject-
specific scale, we observed high-resolution speech articulator maps,
similar to previously established group-level organization44 (Fig. 5b and
Supplementary Fig. 15). We observed that the surface area for each
articulator map ranged from 11 mm2 to 80 mm2 depending on the
location and coverage of each µECoG grid (Supplementary Table 4).
Overlaying these spatial clusters on each subject’s individual brain, we
made the following anatomical observations: S1 and S3 exhibited labial
clusters near the posterior region of post-central (sensory) gyrus, and
dorsal-tongue clusters (only S1) near the anterior-inferior region. S2
displayed labial and dorsal-tongue clusters over the pre-central (motor)
gyrus; and S4 demonstrated distinct articulatory clusters within pre-
central gyrus, indicating that electrodes with high speech articulator
informationwere containedwithin SMC.This anatomical clustering that
we show is similar to previously identified somatotopic representations
using high-density ECoG grids (4mm inter-electrode spacing), that
revealed a posterior clustering of lip articulators and an anterior clus-
tering of tongue articulators with respect to central sulcus44. Therefore,
our high-density µECoGelectrodeswere able tomaximally resolve these
spatially confined articulatory ‘hotspots’, thereby, resulting in highly
accurate decoding at less than 2mm spatial resolution. While this spa-
tial characterization resulted in anatomical maps on subject-specific
brains, the individual electrode locations were obtained by manually
overlaying the array templates on the markers from intra-operative
imaging data. Future work will include designing µECoG grids with
fiducial markers and developing automated co-registration techniques
to more accurately localize µECoG array onto the individual subject’s
brain surface59,60. Nevertheless, these subject-specific articulator maps
indicate the potential of high-density µECoG for future neural pros-
theses for individual patients.

Speech production involves the temporal sequencing of articu-
latory movements43,44, and consequently the neural properties of
articulators should be sequentially encoded. With our micro-scale
neural recordings, we demonstrated sequential dynamics of articula-
tion by successfully decoding individual phonemes in time. This tem-
poral decoding reflected the correct order of serial phoneme execution
during the speech utterance. These decoding activation patterns
overlapped in time for each successive phoneme which could be evi-
dence for co-articulatory dynamics during the speech utterance43,61. We
then leveraged this ability to decode the temporal dynamics of the
speechutterance todecode the entire utterancebyusing adeep-neural-
net based sequential model that was able to decode phoneme
sequences in the non-words with only 2minutes of training data (Sup-
plementary Table 3). We found a significant improvement when com-
pared to our linear model that required explicit phoneme onset
information. The sequential decoding performance was dependent on
high resolution sampling, further highlighting the benefits of µECoG
recordings. Since the speech production system involves continuous
generation of motor articulatory features (position and trajectories of

the vocal tract system), our decoding using RNN can be further
improved by using these articulatory features as intermediary, to sub-
sequently decode phoneme sequences57. Decoding using deep-neural
network requires a high number of parameters17,18,21,62, and future work
will study the relationship between high-fidelity cortical recordings and
deepnetwork complexity for successful speechdecoding. These results
are dependent on micro-neural activations without the addition of an
explicit languagemodel19,22 to boost performance, thereby highlighting
the role of the higher resolution of neural recordings from high-density
µECoG for entire speech utterance decoding without strong priors.
Future work, however, will explore this use of state-of-the-art, deep-
learning-based, speech-reconstruction models with large vocabulary
language models.

Our results highlighted the benefits of high-density, high-channel-
count LCP-TF µECoG arrays for human speech decoding. Micro-scale
recordings demonstrated more accurate speech decoding than stan-
dard IEEG electrodes and better resolved the rich spatio-temporal
dynamics of the neural underpinnings of speech production. These
findings motivate the use of high-density µECoG for brain-computer-
interfaces to restore speech for patients suffering from debilitating
motor disorders who have lost verbal communication abilities22,63.

Methods
All our research studies were approved by the Institutional Review
Board of the Duke University Health System under the following
protocol IDs:

Pro00072892: Studying human cognition and neurological dis-
orders using µECoG electrodes Pro00065476: Network dynamics of
human cortical processing.

Participants
We recorded neural activity from speech motor cortex (SMC) of four
awake patients (mean age: 53, 1 female patient) with no speech-
impairments using LCP-TF µECoG arrays, during intraoperative proce-
dures at the Duke University Medical Center (DUMC - Supplementary
Table 1). Three of the four subjects (S1, S2, and S3) were being treated
for movement disorders and the intraoperative recordings were per-
formed during awake deep brain stimulator (DBS) implantation surgery
for movement disorder treatment. The fourth subject (S4) underwent
brain tumor resection and neural data were recorded during the awake
craniotomy prior to resection. As a control, we recorded from eleven
patients (mean age: 30, 7 female patients) with epilepsy (no speech-
impairment) implanted with conventional electrodes (ECoG or SEEG)
and recorded with a clinical IEEG system (Natus Quantum), during
preoperative intracranial monitoring at DUMC. All subjects were fluent
in English, and we obtained written informed consent in accordance
with the Institutional Review Board at the DUMC.

Intra-operative µECoG array implantation
We performed intraoperative recordings using non-commercial, cus-
tom designed LCP-TF µECoG arrays that were fabricated by Dyconex
Micro Systems Technology (Bassersdorf, Switzerland) with two dif-
ferent designs. For the first design, we used an array with 128 micro-
electrodes (200 µm electrode diameter) in an 8 × 16 design with
1.33mm center-to-center spacing (Fig. 1a, b, top).

The 128-channel array design is narrow and flexible enough
to be implanted through the burr-hole opened during DBS
implantation. Each subject’s cortical anatomy was assessed using
preoperative MR imaging with contrast, to ensure the absence of
large cortical bridging veins. Following the burr hole craniotomy,
the surgeon tunneled the electrode array in the subdural space
using neuro-navigation (Stealth Station Surgical Navigation,
Medtronic, Minnesota) and preoperatively determined the cor-
tical target (SMC). The tail of the array was then reflected such
that the burr hole remained open for the placement of the DBS
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electrodes. A clinically-indicated intraoperative CT was obtained
to ensure accurate placement of DBS electrodes which was also
used to localize the placement of the array. The DBS insertion
canula was used as the ground/reference.

The second LCP-TF µECoG design had 256 microelectrodes
(200 µmdiameter) in a 12 × 22 array (1.72mmspacing) andwas used to
target anatomydirectly over eloquent cortex exposedduring anawake
craniotomy (Fig. 1a, b, bottom). Following clinically indicated cortical
mapping, the array was placed over the functionally relevant cortex
(SMC) and affixed to a modified surgical arm. A grounding/reference
wire was connected to a surgical retractor attached to the subject’s
scalp. Finally, the corners of the array were registered using Brainlab
Neuronavigation (Munich, Germany), and were colocalized to the
subject-specific anatomical T1 structural image.

The arrays were connected to custom headstages with Intan
Technologies RHD chips for amplification and digitization. These
headstages were connected to an Intan Technologies RHD recording
controller through micro- high-definition multimedia interface
(µHDMI) cables passed outside of the sterile zone. The entire µECoG
set up was sterilized using ethylene oxide gas at DUMC prior to
surgical implantation.

To co-register the electrode arrays on the individual subject’s
brain, the array locations were first assessed using intraoperative CT
scan (S1, S2, and S3) or registration markings from Brainlab Neurona-
vigation software (S4). For each subject, the cortical surface was
reconstructed from a preoperative MRI image, using Freesurfer64,65.
For subjects S1, S2, and S3, the array landmarks (distal ends) were then
localized using BioImage Suite, after aligning the reconstructed T1
volume with CT scans. For subject S4, we used key anatomical land-
marks to localize the BrainLab coordinates on the individual subject’s
reconstructed brain. Finally, to localize individual electrodes, the
electrode array templates (for both 128 & 256 channels) were then
mapped to each individual subject brain by manually aligning the
template to the array locations. Figure 1d and Supplementary Fig. 2
show three templates of 128-channel grids (violet, green, and blue for
S1, S2, and S3 respectively), and a 256-channel template (S4: purple)
implanted over SMC of a subject averaged brain and subject-specific
brains, respectively.

Neural Recording
Neural data from the µECoG arrays were recorded with an Intan RHD
recording system (using Intan RHX data acquisition software, v3.0;
Intan Technologies, Inc.). The recordings were analog filtered between
0.1Hz and 7500Hz and digitized at 20,000 samples per second. The
control subjects implanted with the standard IEEG system (ECoG or
SEEG) during pre-operative epilepticmonitoring. For ECoGmonitoring,
the subjects had Ad-Tech electrode grid (48 or 64 channels; Ad-Tech
Medical Instrument Corporation) with 10mm inter-electrode spacing
and 2.3mmexposeddiameter. The subjectswith SEEGmonitoringwere
implanted with either PMT (PMT Corporation) or Ad-Tech depth elec-
trodes with 3.5mm and 5mm inter-electrode spacing, respectively
(Supplementary Table 1). The intracranial IEEG data were recorded
using a Natus Quantum LTM amplifier (with Natus Neuroworks EEG
software from Natus Medical, Inc.), with an analog filter between
0.01Hz and 1000Hz and digitized at 2,048 samples per second.

Speech task
Each subject performed a speech production task during their intra-
operative procedure. In each trial, they listened to and repeated one of
52 non-words that were designed to sample the phonotactics of
American English (Supplementary Table 2). The non-words contained
an equal number of consonant-vowel-consonant (CVC: 26) and vowel-
consonant-vowel (VCV: 26) tokens, which included a total of nine dif-
ferent phonemes (four vowels: /a/, /ae/, /i/, /u/ and five consonants: /b/,
/p/, /v/, /g/, /k/). Each trial lasted between 3.5 – 4.5 s including the

auditory stimulus (mean stimulus duration: 0.5 second) followed by a
three second response windowwith a 250ms jitter between trials. The
trials were presented in three consecutive blocks with 52 unique non-
word tokens shuffled for each block. The overall task time took
approximately 15minutes for each subject. The control subjects
implanted with ECoG/SEEG during preoperative clinical monitoring in
the epilepsy monitoring unit at the DUMC performed a similar speech
production task, but some repeated different speech tokens. Equiva-
lent phonemes and number of trials were used for the direct com-
parison between recording techniques. The speech task was designed
using Psychtoolbox scripts in MATLAB R2014a.

Audio recording
Auditory stimuli were presented using a battery-powered stereo-
speaker (Logitech) through a USB DAC and audio amplifier (Fiio).
The beginning of each trial was marked by a flashing white circle
on the stimulus laptop screen which was detected by a photo-
diode (Thorlabs, Inc.) attached to an auxiliary channel on the
Intan recording system. The audio waveforms were recorded
using a clip-on microphone (Movophoto, Inc.) which was con-
nected to a pre-amplifier (Behringer) and digitized at 44,100 Hz
by the Psychtoolbox module in MATLAB on the recording laptop.
This microphone recording was also digitized on the Intan
Technologies RHD recording system at 20,000 samples
per second (along with the photodiode). The auditory stimulus,
spoken non-word production response, and phoneme onsets
were manually identified using the Audacity software package.

Neural data analysis and decoding models
For preprocessing, the neural recordings from µECoG electrodes were
decimated to 2,000 samples per second using an anti-aliasing filter
followed by common-average-referencing (CAR). The electrodes with
impedance greater than 1 MOhm or with recordings greater than 3 *
log-RMS were excluded from CAR. Further, we removed trial epochs
(after CAR) with excessive artifacts (greater than 10 RMS). All of our
data analysis and neural decoding were performed using the following
software: MATLAB R2021a, Python 3.7, Tensorflow 2.0, and Keras 2.4.

Spectrogram visualization
We computed spectrograms for each electrode to determine the
presence of speech-neural activity. The spectral information was
extractedwithin a 500msanalysis window (50ms step-size)with 10Hz
frequency smoothing using a multi-taper time-frequency analysis
method8. The resultant spectrogramswere normalized with respect to
a baseline period (500ms window pre-stimulus across trials) by
dividing the resultant spectrogram by its average baseline power-
spectral-density to remove 1/f broadband activity. The normalized
spectrograms were then averaged across trials and the log-power was
computed around the speech utterance (−500 ms to 500ms) to
quantify neural activations in decibels.

HG� ESNR dBð Þ= 20 � log10

X0:5

t =�0:5

X150

f = 70

Spect t,fð Þ
1
τ

P
τ
Spectbaselineðτ,f Þ

0
B@

1
CA ð2Þ

Neural feature extraction
Neural high gamma signals (HG: 70 – 150Hz) have been previously
shown to characterize localized neural activity from cortical regions
and are highly correlated with multi-unit firing23,24. They therefore
serve as a robust marker for localizable neural activity. The pre-
processed neural signals from each electrode were band-pass filtered
into 8 center frequencies (logarithmically arranged) between 70 and
150Hz66. The envelope of each frequencybandwas extractedusing the
Hilbert transform and was averaged across bands. The resultant
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envelope was then downsampled to 200Hz using an anti-aliasing filter
and mean-normalized with respect to the baseline period (500ms
windowpre-stimulus across trials). For each trial,weused aone second
window of normalized HG centered at phonemic onset (−500 ms to
500ms) to represent speech neural activity. The low frequency signals
(LFS) were band-pass filtered between 1 and 30Hz using a two-way
least-squares finite-impulse-response filter, downsampled to 200Hz,
and mean-normalized to the baseline period.

Cortical state space analysis using SVD-tSNE
We used a singular value decomposition (SVD) to transform normal-
ized HG activity into a low-dimensional sub-space41,67. SVD was carried
out on the covariance matrix of the HG activity to decompose highly
covarying space-time activations across the array.

H : UX ET ð3Þ

U – number of utterance trials, E – number of significant HG µECoG
electrodes, T – time duration of HG.

E HTH
h i

=QλQT ð4Þ

The eigen-vectors (Q) served as basis for spatio-temporal activa-
tions with each trial receiving principal component (PC) scores cor-
responding to the eigen-vectors. To control for HG variability across
subjects, we selected the set of ordinal eigen-vectors that cumulatively
explained 80% of neural variance. The resultant PC scores were further
projected to a two-dimensional subspace using t-distributed Stochas-
tic Neighbor Embedding (t-SNE; Barnes-Hut algorithm, perplexity =
30)45, a non-linear affine transformation technique for visualizing high-
dimensional data. Finally, the trial embeddings were coded to repre-
sent either phoneme or articulatory features.

To evaluate the clustering of trials with respect to either articu-
latory features or phonemes, we performed a silhouette analysis
(Euclidean distance)68 for each state-space trial that measured the
closeness of trial to a given cluster with respect to the other clusters.
We further determined twometrics to evaluate the clustering strength
of the cortical state-space: 1) silhouette ratio: ratio of the number of
trials with positive silhouette score to the total number of trials, and 2)
silhouette score: the average silhouette values of positive silhouette
trials. Finally, to motivate the benefit of high-resolution neural
recordings, we repeated the cortical state-space analysis on spatially
sub-sampled electrodes extracted using Poisson disc sampling32, by

spatially constraining the minimum distance ðr = 2*
ffiffiffiffiffiffiffiffiffiffi
X�Yð Þ
n�3:5

q
Þ between

subsampled electrodes (n).

Linear decoding model using SVD-LDA
We constructed a linear-classification model with 20-fold cross vali-
dation to decode phonemes from normalized HG neural activations.
First, we used SVD to compress the HG matrix (training set) to a low-
dimensional subspace as explained in the previous section (Eq. 3 & 4).
Then, we utilized the resultant principal component scores to classify
phonemes using a supervised linear-discriminant (LDA) model. The
optimal number of eigenvectors (or principal components) was iden-
tified using a nested cross-validation procedure, where a separate 20-
fold cross-validation with grid-search was conducted on the training
set. The nested cross-validation was conducted on every training fold.
The overall decoding accuracy was calculated by calculating the pro-
portion of correctly predicted labels in the test set. We trained
decoding models to decode phonemes for each of the three positions
in the non-word (P1, P2, and P3) and by collapsing phonemes across all
positions.

To characterize decoding error, we examined values in the con-
fusion matrix to test for confusion between phonemes that share

similar phonological features. To characterize each phoneme, we
created a 17-bit categorical vector based on work by Chomsky and
Halle to represent phonological features47. We then computed the
Hamming distance (bits) for each phoneme pair to determine the
pairwise phonological distance. Phonemes with similar phonological
features (e.g., /p/ vs. /b/) differed by 1-bit, whereas phonemes with
dissimilar features differed by a maximum of 9 bits (e.g., /p/ vs. /i/).
Finally, we mapped the percentage misclassification onto phoneme
distance to evaluate phonological confusion of the neural signals and
our classifier. The decoding error in terms of phonological distance
was calculated using the equation:

e=
1
9

X
i,j

1
2
Ci,jDi,j ð5Þ

e is phoneme error (bits), C is normalized confusion matrix, D is
phonological distance (bits).

In addition, we used the decoding strategy to infer the spatial and
sequential representation of phonological features. To infer the spatial
encoding of features, we first grouped nine phonemes into four
articulator features (low: /a/, /ae/, high: /i/, /u/, labials: /b/, /p/, /v/, and
dorsal: /g/, /k/).We then trained an SVD-LDAdecodermodel (four-way)
on each electrode to decode these articulatory features. The Area
Under the Receiver Operating Characteristic Curve (ROC-AUCor AUC)
was calculated for each electrode to quantify the specificity of articu-
latory feature encoding.

To examine the sequential representation of phonemes, we used
temporal decoder models to train and test at every time-segment t,
with respect to the speech utterance69. With this temporal modeling
strategy, each SVD-LDA model was trained on sequential time-
segments with respect to utterance onset, and the accuracy values
were evaluated on the same time-segments. Through this strategy, we
could assess the presence of temporal phoneme information present
in the raw time signal. In both training and testing, the time-segments
consisted of 200mswindows (10ms step size) ranging from −1000ms
to 1000ms aligned to the utterance. The resultant time-series of
accuracy values was used to determine the temporal activation of
phoneme representations during speech production.

RNN based seq2seq model for phoneme sequence decoding
We constructed a seq2seq encoder-decoder network to simulta-
neously decode all phonemes in a non-word fromHGactivations21. The
neural-network contained three layers to translate HG activity to
phoneme sequences: 1) Temporal convolutional layer, 2) Encoder
recurrent neural network (RNN), and 3) Decoder RNN.
1. Temporal convolutional layer: The first layer contained a set of

sequential kernels to transform HG into downsampled features.
This convolutional layer tomodel temporal features was essential
to reducememory loading on the encoder RNN.Wefixedboth the
kernel width and the hop length to 50ms and no non-linearitywas
applied to the convolution kernels. The convolution layer resulted
in linear temporal decomposition of HG.

2. Encoder RNN: The second part of the network contained a single
layer of RNN units to model the output of convolutional layer at
each time step. We used bi-directional LSTM (Long-Short-Term-
Memory)70 cells to represent eachRNNunit, and thememory states
of both forward (right arrows) and backward (left arrows) layers
were averaged to return the final memory state as the output.

3. Decoder RNN: The final layer contained a sequence of a unidirec-
tional RNN to predict one-hot encoded phoneme units at each
position. The decoder RNN was instantiated by the final output
state of the encoder RNN and was configured to return both the
memory state and output sequences. The output values from
each time-bin were then converted to phoneme probabilities
through a dense neural net with SoftMax activation.
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The architecture was implemented in Keras-Tensorflow71. The
network was trained using the Adam48 gradient descent optimization
(learning rate = 1e-3; 800 epochs) byminimizing the categorical cross-
entropy between true and predicted phoneme probabilities48. We
included an L2 regularization termatboth convolutional and recurrent
layers to prevent overfitting. Overall, the architecture contained the
following hyperparameters: 1) number of convolutional kernels, 2)
number of RNN units, and 3) L2 penalty. For each subject, we held 20%
of trials for testing and we performed training and hyperparameter
optimization on the remaining 80% of trials.

During training (80% trials), the decoder RNN evaluated the
phoneme probability at every position and the RNN input was set to
one-hot encoded vector of phonemes at the previous step. For faster
convergence and stable modeling, we utilized the “teacher – forcing”
approachwherewe used the ground truth (true phonemes) as input to
the decoder RNN72.

We identified the optimal hyperparameters on the training-set
(80% trials) for the neural-network using the keras-tuner platform73.
For each subject, we randomly explored the hyperparameter space
through 200 hyperparameter combinations. We then calculated the
validation accuracy (10-fold cross-validation, three repetitions) for
each combination, and identified the hyperparameter set with the
maximum-validation accuracy. The hyperparameters for each subject
are summarized in Supplementary Table 5.

During testing (20% trials), we used the trained decoder model
(using optimal hyperparameters) to generate the most probable
phoneme sequence by identifying the most likely phoneme at each
position and used it as the input to the next position.

Overall, we evaluated the model by calculating its phoneme
decoding accuracy between the tested and predicted phonemes.
To validate the seq2seq model against the linear approach, we
trained an SVD-LDAmodel (5-fold cross-validation; analogous to 20%
held-out) and calculated the accuracy and phoneme error in decod-
ing phonemes across all positions. Further, to quantify the influence
of spatial resolution, we evaluated the decoding performance at
different spatial resolutions through subsampling and training the
encoder-decoder models on subsampled versions of the µECoG
recordings.

Objective assessment of acoustic contamination
We objectively quantified the presence of acoustic contamination in
µECoG recordings by comparing spectral information between
microphone audio channel and voltage time series of each electrode
(convolution using a 200ms Hamming window, followed by estima-
tion of the power spectral density)74. We measured the contamination
in each electrode by computing the correlation between audio and
neural signals across all possible pairs of frequency bins, resulting in
the audio-neural contamination matrix per electrode. The statistical
significance of the correlation values in the HG band is estimated by
comparing the mean diagonal of the contamination matrix (between
70 and 150Hz) against the distribution of shuffled versions of the
contaminationmatrix (10 000 iterations) and the resultant p-valuewas
corrected for false discovery rate.

Statistical analysis
We used multiple statistical methods to validate µECoG recordings
for speech decoding. To identify electrodes with significant speech-
neural activation, we comparedHG power between the response and
the baseline period, using a 10,000-iteration one-sided permutation
test (corrected for false discovery rate). For the control subjects, we
performed similar non-parametric test on SEEG/ECoG electrodes
anatomically localized to SMC to identify significant speech-neural
activations. To characterize the morphology of HG responses, we
extended the above non-parametric test to estimate the significance
at every time point during utterance. The resultant time-series

statistical scores were subjected to a second-level non-parametric
temporal cluster68. For each electrode with significant clusters,
we estimated the onset and durations of the cluster with
respect to utterance. For ESNR comparisons to standard IEEG, we
used one-sided Mann-Whitney U test to compare the HG power
(during the speech production response) between the population of
µECoG electrodes and the control IEEG. Finally, we used one-way
ANOVA to examine the effect of spatial subsampling, as well as post
hoc t-tests to identify subsampling groups with significant differ-
ences in means.

To quantify signal sharing between µECoG electrodes, a cross-
channel Pearson correlation coefficient ðρÞwas calculated betweenHG
time-series (during the speechproduction response) andwas linked to
corresponding Euclidean distance ðxÞ. The mean correlation coeffi-
cient was identified at each unique spatial distance to assess the spatial
relationship of HG between electrode pairs.

For phoneme decoding, the prediction accuracies were tested
against chance using a binomial cumulative distribution test46. All
population data are indicated with mean and standard errors, and we
estimated the significance of model fits using linear regression.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data from µECoG recordings that support the decoding analysis
are available via the Data Archive for The Brain Initiative (DABI;
accession code: https://dabi.loni.usc.edu/dsi/7RKNEJSWZXFW) under
restricted access (restrictions will be exempted after appropriate
modifications of the IRB protocol: Pro0072892). The access can be
obtained upon written requests from the corresponding authors
(gregory.cogan@duke.edu, j.viventi@duke.edu). Source data are
provided with this paper.

Code availability
The MATLAB files to perform decoding analysis are available
through Zenodo at Suseendrakumar Duraivel. coganlab/micro_-
ecog_phoneme_decoding: v1.0. (2023) https://doi.org/10.5281/zenodo.
8384194.
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