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Direct-acting antiviral resistance of Hepatitis
C virus is promoted by epistasis

Hang Zhang 1, Ahmed Abdul Quadeer 1 & Matthew R. McKay 2,3

Direct-acting antiviral agents (DAAs) provide efficacious therapeutic treat-
ments for chronic Hepatitis C virus (HCV) infection. However, emergence of
drug resistance mutations (DRMs) can greatly affect treatment outcomes and
impede virological cure. While multiple DRMs have been observed for all
currently used DAAs, the evolutionary determinants of suchmutations are not
currently well understood. Here, by considering DAAs targeting the non-
structural 3 (NS3) protein of HCV, we present results suggesting that epistasis
plays an important role in the evolution ofDRMs. Employing a sequence-based
fitness landscapemodel whose predictions correlate highly with experimental
data, we identify specific DRMs that are associated with strong epistatic
interactions, and these are found to be enriched inmultiple NS3-specificDAAs.
Evolutionary modelling further supports that the identified DRMs involve
compensatory mutational interactions that facilitate relatively easy escape
from drug-induced selection pressures. Our results indicate that accounting
for epistasis is important for designing future HCV NS3-targeting DAAs.

Hepatitis C virus (HCV) is the major cause of liver-associated disease
and liver cancer, affecting more than 180 million people worldwide1.
Fortunately, effective drug treatments, using direct-acting antiviral
agents (DAAs), are available that achieve sustained virological
response (SVR) inmore than95%ofpatients2,3. However, drug resistant
mutations (DRMs) in the HCV proteins targeted by drugs greatly affect
the treatment outcome and often lead to drug failure2,4. Numerous
DRMs have been identified, corresponding to specific amino acid
substitutions capableof negatively affecting the activity of DAAs either
in vitro or in vivo in treated patients4–7. The extensive use of drugs for
treating HCV places selective pressure that may lead to DRM-enriched
viruses becoming prevalent in the population, which eventually would
limit efficacy of the available drugs. Interestingly, many HCVDRMs are
known to be individually deleterious for the virus8–10. Thus, it is
important to understand the evolutionary factors facilitating the
emergence of DRMs in HCV.

One such evolutionary factor is epistasis: a phenomenon in which
the phenotypic effect of a mutation at one residue is dependent on
mutations elsewhere in the protein sequence. Epistasis has been

suggested to play an important role inHCV evolution11–14. In the case of
HIV, a chronic-disease-causing RNA virus similar to HCV, drug resis-
tance has been suggested to be mediated by epistasis15–17, with the
fitness cost incurred by DRMs compensated by other mutations in the
drug-targeted protein18–20. For HCV, preliminary data suggests that
DRMs may be involved in epistatic interactions9,10,21; however, a com-
prehensive understanding of the role played by epistasis in the evo-
lution of DRMs in HCV is still lacking.

In this study, we investigate the role of pair-wise epistatic inter-
actions in the evolution of drug resistance in the NS3 protein, one of
the main targets of HCV drugs22. Using the globally prevalent HCV
genotype 1a sequence data23, we infer an in-silicomodel for the fitness
landscape of HCV NS3, which takes into account the effect of both
individual mutations and epistatic interactions between pairs of
mutations. Our inferred model correlates strongly with multiple
experimental data sources. Consistent with past studies on fitness
landscape of HCV proteins12–14,24, we find that epistatic interactions are
important contributors to HCV fitness. Applying the fitness landscape
model to study DRMs associated with NS3-targeting drugs (all known
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to be protease inhibitors4), we reveal that specific DRMs, referred as
“SC-DRMs”, are associated with strong compensatory epistatic inter-
actions and are enriched in almost all NS3 drugs. We further show, by
integrating the fitness landscape with an in-host evolutionary model,
that under selective pressure fromdrugs it is relatively easy for HCV to
incur SC-DRMs compared to other DRMs. In addition, we find that the
number of SC-DRMs seems to negatively correlate with the efficacy of
each NS3-specific drug. Overall, our results suggest an important role
of epistasis in emergence of NS3-specific DRMs. Accounting for epi-
static interactionsmight therefore be critical for studying resistance to
current HCV NS3 drugs as well as for developing new drugs targeting
the NS3 protein.

Results
Importance of epistatic interactions in predicting HCV NS3
fitness
To study the role of epistatic interactions in the development of drug
resistance for HCV NS3, we first inferred a fitness landscape for the
HCV NS3 protein using available sequences for genotype 1a. This
inference involved determining a prevalence landscape—an estimate
of the probability of observing an NS3 protein sequence among
naturally occurring HCV populations—using a “least-biased”maximum
entropy probabilistic model (Methods). In this model, the probability
of observing a sequence x= x1, x2, . . . , xN

� �
, is given by

Ph,JðxÞ=
e�Eh,JðxÞP

x0
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where the parameters hi xi

� �
represent the effect of mutations at indi-

vidual residues i and the parameters Jij xi, xj

� �
account for the effect of

epistatic interactions betweenmutations at two different residues i and
j. Eh,J(x) represents the energy of sequence x which is inversely related
to its prevalence. Similar models have been developed previously to
predict direct residue contacts25–27. Here, we observed a strong negative
correlation (r = � 0:79, Fig. 1; see “Methods” section for details)
between the sequence energy predicted from the inferred model and
the infectivity measurements for 45 sequences obtained from experi-
mental studies9,10,21,28,29 (listed in Supplementary Data 1). This suggests
that the fitness landscapemodel serves as a good proxy for the intrinsic

fitness landscapeofHCVNS3. This resultwas consistentwithmaximum-
entropy-based fitness landscapes inferred in the past for other HCV
proteins (NS5B24 and E212,13), and proteins from HIV17,30–33 and
poliovirus34. We also noted that the correlation obtained for the
inferred model was much stronger than the correlation achieved by a
model that ignores pair-wise epistatic interactions (r = � 0:55, Fig. 1
inset; seeMethods fordetails). Basedonabootstrappingprocedure, the
difference in the correlation obtained for the two models was also
found to be statistically robust (Supplementary Figure 1). This result
suggests that considering epistatic interactions is important for reliably
predicting the intrinsic fitness of HCV NS3.

Association of DRMs with compensatory interactions
Many of the DRMs in HCV NS3 are known to be individually
deleterious8–10. The emergence of DRMs may suggest that the fitness
cost of DRMs are compensated bymutations elsewhere in the protein.
To investigate if the residues involved in known NS3 DRMs4–7 (listed in
Table 1) were associated with compensatory interactions, we studied
the model parameters Jij. Large positive values of Jij in Eq. (1), that
increase sequence energy and thereby decrease its predicted fitness,
represent strong antagonistic interactions or negative epistasis
between residues i and j. Negative epistasis reduces the fitness of the
double mutants and limits acquisition of additional mutations35. In
contrast, large negative values of Jij in Eq. (1) represent strong com-
pensatory interactions or positive epistasis between residues i and j.
Positive epistasis boosts the reproduction capability of double
mutants, allowing viruses to acquire and retain drug resistance36. For
HIV protease, positive epistasis among DRMs predicted by maximum
entropymodeling (similar to ours)was shown tobe consistentwith the
results of deep mutational scanning experiments18. In the case of HCV
NS3, we found that pairs of mutations with large negative values of Jij
were more likely to involve DRMs compared to random expectations
(Supplementary Fig. 2). This suggests the enrichment of positive
epistasis in residues associated with HCV NS3 DRMs.

Focusing on the top 10/100/300 pairs of mutations with large
values of −Jij, we observed that some specific DRMs were associated
with particularly strong compensatory interactions (Fig. 2a). Hence-
forth, we refer to the DRMs enriched in the top 300 pairs
(p = 4.8 × 10−61; two-sided Fisher’s exact test) as strongly coupled
DRMs, “SC-DRMs”. The residues associated with the majority of SC-
DRMs were involved in a sparse network of interactions (residues 36,
41, 54, 55, 71, 168, and 170), while a few haddense interaction networks
(residues 80 and 122). Among the pairs involving SC-DRMs, two
comprised both DRMs: residues 41 and 168 (ranked 1st), and residues
54 and 55 (ranked 3rd). The identified pairs involving SC-DRMs contain
multiple residues that are in contact with the resolved NS3 protein
structure, supporting the possibility that these residues may be
interacting (Fig. 2b). Similar results have been reported for strongly

Fig. 1 | Correlation between the sequence energy obtained from inferred NS3
fitness landscape and in-vitro infectivity measurements. Normalized energy
values computed from the inferredmodel correlate strongly with the experimental
fitness measurements. In contrast, a conservation-only model provided a much
lower correlation (inset). The legend shows references for fitness/infectivity
measurements9,10,21,28,29. Normalization of fitness measurements and predicted
model energies was performed by subtracting the mean from each data set and
dividing by its standard deviation. Source data are provided as a Source Data file.

Table 1 | List of NS3 drugs4–7 and the associated DRMs

Drug Class of DAAs Residues involved in DRMsa

Telaprevir NS3-specific 36, 43, 54, 155, 170

Vaniprevir NS3-specific 36, 155, 168

Boceprevir NS3-specific 36, 41, 43, 54, 55, 155, 158, 170

Simeprevir NS3-specific 36, 43, 54, 80, 122, 138, 155, 168, 170

Danoprevir NS3-specific 41, 43, 138, 155, 168

Glecaprevir Multi-protein 36, 56, 71, 80, 89, 155, 168, 170

Grazoprevir Multi-protein 36, 43, 54, 55, 56, 77, 80, 107, 109, 122, 132,
155, 158, 168, 170

Voxilaprevir Multi-protein 36, 41, 43, 54, 55, 56, 80, 122, 155, 168,
170, 180

Paritaprevir Multi-protein 36, 43, 56, 80, 122, 155, 168
aResidues associated SC-DRMs are shown in bold.
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coupled pairs of residues in maximum entropy models for multiple
protein families25.

To explore if the SC-DRMs identified by our model are also
associated with groups of residues known to mediate different NS3
functions, we applied a robust co-evolutionary analysis approach that
we developed previously37. Distinct from maximum-entropy-based
fitness landscapemodels, this approach identifies collective groups of
co-evolving residues (called sectors), rather than pair-wise interac-
tions. Such sectors, for HIV and HCV, have been shown to distinctly
associate with protein functional or structural domains37–39. Applying
the co-evolutionary analysis on the NS3 data considered in this work,
we found that SC-DRMs were enriched in multiple inferred sectors
(Fig. 2c; for details of inferred sectors, see Supplementary Table 1). (A
similar enrichment to SC-DRMs was noted for DRMs but with slightly
weaker statistical significance.) Of the sectors with known biochemical

associations40–45 (for details of the experimentally-defined biochemical
domains, see Supplementary Table 2), SC-DRMs were particularly
enriched in the sectors linked with the NS3-NS4A interface known to
mediate serine protease activity of NS340. While there is no overlap
between the SC-DRM-associated residues and the residues known to
be critical for NS3 protease activity, inference of a sector encom-
passing both of these sets of residues suggests that they may be co-
evolving. Interestingly, SC-DRMs were not enriched in the inferred
sector associated with the NS3 helicase activity. This is in line with the
fact that none of the approved HCV NS3 drugs are helicase inhibitors4.

Model predictions correlate with known NS3 DRM
compensation data
Experimental data derived from in vivo or in vitro studies offers the
most direct evidence for compensatorymutations associated with SC-

Fig. 2 | Identification of SC-DRMs and their significance. a Network of interac-
tions between top 10/100/300 ranked mutations (ranked by the values of -J from
Eq. (1)). Interactions linking at least one DRM are shown orange, and links between
non-DRMs are shaded in gray. b Pairs of interacting residues involving SC-DRMs
that are in contact based on the crystal structure of the NS3 protein (PDB ID: 4B6E
[https://doi.org/10.2210/pdb4b6e/pdb]). The carbon-alpha atoms of each pair of
residues are shown as colored spheres, and the distance between each pair is also
labeled. Two residues were assumed to be in contact if their carbon-alpha atoms
were <8Å apart. c Inferred NS3 sectors and their associationwith SC-DRMs. Sectors
(listed in Supplementary Table 1) were inferred using the GUI implementation of

the robust co-evolutionary analysis approach, RocaSec37,90. The statistical sig-
nificance (p-values) was determined using one-sided Fisher’s exact test. In addition
to the set of residues associatedwithDRMs and SC-DRMs, the following knownNS3
biochemical regions were provided to the Rocasec (listed in Supplementary
Table 2). (i) NS3-NS4A-Pro-Act NS3-NS4A interface for protease activation40; (ii)
NS3-NS4A-Mem-Asso: NS3-NS4A membrane association41; (iii) NS5A-Hyper-Phos:
NS5A hyper-phosphorylation42,43; (iv) NS3-Motif-Enz-Heli: motif important for
enzymatic and helicase activities in NS344; and (v) NS3-Intra-Dimer-Int: intra-dimer
interface in NS3 helicase45. Source data are provided as a Source Data file.
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DRMs. However, such data is currently limited. In vivo evidence is
available for the SC-DRM Q80K which has been reported to co-occur
with the A91S mutation among individuals who experience HCV
treatment failure10. This compensatory interaction has also been
observed in vitro in theH77 strain10. Experimental evidence of SC-DRM
D168E being compensated by Q41R9 has also been reported for the
H77 strain. These two pairs of compensatory mutations were both
associated with large values of−Jij; Q80K and A91S were ranked 60th,
and D168E and Q41R were ranked 1st (Fig. 2a).

We further investigated the mutational interactions predicted by
our model for these two SC-DRMs, Q80K and D168E. We specifically
examined the energy changes in the H77 strain bearing the D168E or
Q80K mutants (denoted H77D168E and H77Q80K respectively) upon
introducing all possiblemutations. A negative energy change indicates
increased fitness, whereas positive change suggests a fitness reduc-
tion. Strikingly, ourmodel predicted that theQ41R andA91Smutations
yielded the second-most negative energy change compared to all
other mutations in the H77D168E and H77Q80K strains, respectively
(Fig. 3). This outcome is consistent with the documented compensa-
tory roles of thesemutations for DRMsD168E andQ80K, and points to
the specificity of our model in describing epistatic compensatory
pathways.

Extending the analysis to predict compensatory mutations asso-
ciatedwith SC-DRMs in different sequence backgrounds asopposed to
only H77 (see “Methods” section for details), we found that 168E and
41Rwere compensatory (for each other) for all sequence backgrounds,
while 91S compensated for 80K in ~23% of sequence backgrounds
(Supplementary Table 3). We also identified potential compensatory
mutations for SC-DRMs 36L, 55A, 122C/G, and 177V. These identify
specific targets for future experimental studies.

Enrichment of SC-DRMs in NS3 drugs
Currently, there are nine known NS3-targeting drugs used for treating
HCV genotype 1a infections4–7. These drugs can be divided into two
classes: NS3-specific DAAs that exclusively target NS3 (telaprevir,
boceprevir, simeprevir, vaniprevir, and danoprevir) and multi-protein
DAAs that target NS3 together with other proteins (paritaprevir, gra-
zoprevir, voxilaprevir, and glecaprevir). For all of these drugs, a total of
20 NS3-specific DRMs have been identified, ranging from 3 to 15 DRMs
per drug. Each NS3 drug, irrespective of the drug class, was found to
comprise at least two identified SC-DRMs (Table 1). This association
reached statistical significance (“Methods” section) for most drugs (5/
9; two from NS3-specific DAAs and three from multi-protein DAAs;

Fig. 4) andwas robust to the number of top-coupledpairs ofmutations
used for defining SC-DRMs (Supplementary Fig. 3). In contrast, the
remaining DRMs (non-SC-DRMs) were generally not significantly
enriched in drugs (1/9, Supplementary Fig. 4). The enrichment of the
identified SC-DRMs in NS3-targeting DAAs suggests that they play a
significant role in conferring resistance to both classes of drugs. This
observation suggests that epistasis is an important factor contributing
to the acquisition of resistance to NS3 drugs.

Some DRMs have been reported to disrupt drug binding while
having minimum effect on the NS3 protease function7,46. Thus, we
investigated whether SC-DRMs may also be enriched in binding resi-
dues of the drugs. Structures for four drugs in complex with the NS3
protein are available (PDB ID: [3M5L] for danoprevir, [3SU3] for vani-
previr, [3SV6] for telaprevir, and [3SUD] for grazoprevir). Based on
these, we identified binding residues for each drug as those NS3 resi-
dues that are within 5Å of a drug atom46. While, for each drug, not all
drug-specific DRMs are located within the binding residues (Fig. 5a),
DRMs were found to be statistically significantly enriched within them
(Fig. 5b). The same was also true for SC-DRMs of danoprevir and

Fig. 3 | Model predictions of mutational interactions for SC-DRMs Q80K and
D168E. Histogram of the change in energy observed by all single mutations X in the
H77 strain carrying (a) theD168Emutant and (b) theQ80Kmutant. Energy(H77D168E)
and Energy(H77Q80K) are the predicted energy for the H77 strain carrying the D168E

and Q80K mutant. The predicted energy for the H77 strain carrying the D168E
mutant and an additional singlemutation X, as well as for the H77 strain carrying the
Q80K mutant and an additional single mutation X, are given by Energy(H77D168E+X)
and Energy(H77Q80K+X), respectively. Source data are provided as a Source Data file.

Fig. 4 | SC-DRMs are enriched in NS3 drugs. Statistical significance of the iden-
tified number of SC-DRMs associated with each drug. The p-value measures the
probability of observing by a random chance at least the observed number of SC-
DRMs among all DRMs associated with a drug (one-sided test; see “Methods” sec-
tion for details). Results with p-value < 0.05 are marked with a star on the top of
each bar. Source data and exact p-values are provided as a Source Data file.
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grazoprevir, but not for vaniprevir and telaprevir (Fig. 5b). This sug-
gests that DRMs associated with these drugs, and SC-DRMs in the case
of danoprevir and grazoprevir, may confer resistance by directly
affecting drug binding.

The known DRMs for each drug have been identified either via
limited in-vitro experiments based on their adverse impact on DAA
activity, or in-vivo in a few treated patients in clinical trials4. Hence,
informationofDRMsavailable for eachNS3drugmaynotbecomplete.
This, in addition to the observation that several DRMs are shared
across multiple NS3 drugs (Table 1), motivates analysis of the enrich-
ment of the collective set of DRMs (i.e., associated with all NS3 drugs)
in the binding residues of the four drugs with available structures

(detailed in Supplementary Table 4). In this case, the enrichment of
DRMs was statistically more significant (Fig. 5c) than that observed for
drug-specific DRMs (Fig. 5b). SC-DRMs were also now statistically sig-
nificantly enriched in all four drugs (Fig. 5c). This analysis identified
numerous DRMs and SC-DRMs that have been determined for specific
drugs and which lie within the binding footprints of other drugs, but
have not yet been reported as conferring resistance for those drugs.
Hence, thesemay correspond to putative DRMs or SC-DRMs that have
yet to be observed in-vitro or in-vivo. SC-DRMs at residues 41, 55, and
168 were common among the binding residues of all four drugs, with
two of these SC-DRMs (41 and 168) known to be involved in compen-
satory interactions via ex-vivo experiments9. Collectively, this analysis

Fig. 5 | SC-DRMs appear to impact binding of NS3 drugs through direct inter-
actions. a Binding residues of drugs shown on the crystal structure of the NS3
protein-drug complexes (PDB ID: 3M5L [https://doi.org/10.2210/pdb3m5l/pdb] for
danoprevir, 3SU3 [https://doi.org/10.2210/pdb3su3/pdb] for vaniprevir, and 3SV6
[https://doi.org/10.2210/pdb3sv6/pdb] for telaprevir and 3SUD [https://doi.org/10.
2210/pdb3sud/pdb] for grazoprevir). The carbon-alpha atoms of the identified
drug-binding residues are shown in colored spheres. The drug-binding residues
associated with DRMs and SC-DRMs for each drug are shown in green and blue,
respectively, while those that do no fall under DRMs are shown in gray. Drugs in
each structure are shown as black sticks. The NS3 residues within 5Å7D2of drug

atoms were considered as drug-binding residues. b, c Statistical significance of the
number of (b) drug-specific DRMs/SC-DRMs and (c) all DRMs/SC-DRMs in binding
residues of each of the four considered drugs. Here, drug-specific DRMs/SC-DRMs
are listed in Table 1 for each of the four drugs, while all DRMs/SC-DRMs refer to the
DRMs/SC-DRMs known for all drugs. The p-value measures the probability of
observing by a random chance at least the observed number of DRMs or SC-DRMs
among all binding residues for eachdrug (one-sided test; see “Methods” section for
details). Results with p-value < 0.05 are marked with a star on the top of each bar.
Source data and exact p-values are provided as a Source Data file.
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suggests that DRMs may facilitate resistance by interrupting binding
ability of drugs to the NS3 protease. In the case of SC-DRMs, this
resistance is further facilitated through compensatory interactions of
networked mutations, wherein the deleterious effect of a SC-DRM
might be compensated by another mutation in the network.

Our analysis can be used to predict mutations that could poten-
tially confer drug resistance. Specifically, we identified 25 binding
residues for drugs with known structures (PDB ID: [3M5L] for dano-
previr, [3SU3] for vaniprevir, [3SV6] for telaprevir, and [3SUD] for
grazoprevir), out of which 14 residues were not previously associated
with any known DRMs (Supplementary Table 5). However, based on
our model, we found that mutations at four of these 14 residues
(residues 78, 79, 123, and 159) were associated with strong compen-
satory interactions. Furthermore, at least two of these four residues
were present in the binding residues of all four drugs considered,
suggesting that mutations at these residues may potentially confer
resistance to the drugs.

SC-DRMs provide an easy escape from drug-induced selection
pressure
In general, the initiation of drug treatment alters the in-host environ-
ment in which HCV replicates. Selective pressure exerted by a drug
may promote mutations that simultaneously resist the drug and
maintain replicative capacity. Since we observed that SC-DRMs were
statistically significantly enriched in most drugs (Fig. 4) while the
remaining DRMs (non-SC-DRMs) were generally not (Supplementary
Figure 4), we investigated whether it is easier for these SC-DRMs to
accumulate in the viral population than otherDRMs.We integrated the
inferred fitness landscape in an in-host evolutionary model to quantify
the average time, termed “escape time”, that the virus takes to escape
from selective pressure targeting the residues involved in DRMs (see
Methods for details). This Wright-Fisher-like model47 accounts for the
complex stochastic dynamics involved in in-host evolution of HCV
quasispecies, including host-virus and virus-virus interactions, and
multiple pathways that HCV may employ to escape from selective
pressure exerted by a drug. Similar evolutionary models have been
employed previously by us and others for determining the average
immune escape time associated with residues in HCV E212,13 and
HIV Gag32.

Contrasting the escape times of residues associated with SC-
DRMs against those for the residues associatedwith the remainingNS3
DRMs revealed that the former set of residues carries shorter escape

times (p =0.0018, Mann-Whitney test; Fig. 6a). Investigating the
escape time of the residues associated with individual NS3 DRMs
showed that almost all residues associatedwith SC-DRMshad a shorter
escape time than the remaining NS3 DRMs (Fig. 6b). These results
suggest that SC-DRMs provide relatively easy pathways, enabled via
epistatic interactions, for HCV to escape drug-induced selective pres-
sure. This provides a rationale for the enrichment of SC-DRMs in NS3
drugs (Fig. 4).

Accumulation of SC-DRMs appears to impact the efficacy of
NS3 drugs
We further explored whether there exists any (inverse) relation
between the number of SC-DRMs associated with a drug and the
expected efficacy of the drug. Efficacy data was collected from multi-
ple clinical studies (listed in Supplementary Table 648–69). (Multi-pro-
tein DAAs have generally been reported to achieve much higher
efficacy than NS3-specific DAAs.) We observed a strong negative cor-
relation between the number of SC-DRMs and the efficacy of NS3-
specific DAAs (r = −0.67; Fig. 7a) as well as for multi-protein DAAs
(r = −0.77; Fig. 7b). While the limited number of drugs didn’t allow
these tests to reach statistical significance, the observed strong nega-
tive correlation is suggestive of the potential impact that abundance of
SC-DRMs can have on the efficacy of HCV drugs.

Discussion
Emergence of DRMs is a common phenomenon observed in patients
undergoing HCV drug therapy, which often negatively impacts the
treatment outcome. Studies indicate that a notable proportion of
patients who fail DAA treatment have DRMs, with prevalence rates
ranging from 20-90% depending on the specific DAA used70–72. The
accumulation of DRMs in such patients carries clinical and public
health concern due to the limited treatment options available73 and the
potential transmission of drug-resistant strains to other individuals74.
In addition, the widespread use of HCV DAAs could lead to the pre-
valence and dominance of DRMs in the future, similar to the observed
increase in HIV DRMs with the use of antiretroviral therapy (ART)75.
Thus, it is important to understand the evolutionary factors that con-
tribute to emergence of HCV DRMs.

Many of the DRMs are known to be individually deleterious.
Therefore, other evolutionary factors, such as epistasis, may be facil-
itating their emergence. To investigate this aspect, we first inferred a
fitness landscape for the NS3 protein (one of the main proteins

Fig. 6 | Escape time of residues involved in NS3 DRMs. a Comparison between
escape time of residues involved in SC-DRMs and the remaining residues involved
in DRMs. In each box plot, the middle line indicates the median, the edges of the
box represent the first and third quartiles, and whiskers extend to span a 1.5
interquartile range from the edges. The reported p-value was calculated using the

two-sided Mann–Whitney test (n1 = 9 SC-DRMs and n2 = 11 remaining DRMs).
b Individual escape time of residues involved inDRMs of theNS3 protein. SC-DRMs
are shown in blue and the remainingDRMs in orange. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-023-42550-6

Nature Communications |         (2023) 14:7457 6

http://doi.org/10.2210/pdb3m5l/pdb
http://doi.org/10.2210/pdb3su3/pdb
http://doi.org/10.2210/pdb3sv6/pdb
http://doi.org/10.2210/pdb3sud/pdb


targeted by HCV drugs) considering both the effects of individual
mutations and interactions between mutations at different residues.
Predictions obtained from the inferred model correlated well with
multiple experimental data sources. The analysis of model parameters
capturing pair-wise epistatic interactions (couplings) showed that
certain DRMs, namely SC-DRMs, were associated with strong com-
pensatory interactions, were seemingly involved inmediating protease
function, and were prevalent among NS3 drugs. Upon integrating the
inferred fitness landscape into an evolutionary model, we found that
SC-DRMs were associated with a relatively easy escape from drug-
induced selection pressure. The number of SC-DRMs also appeared to
correlate inversely with the efficacy of NS3-targeting drugs. Overall,
our results suggest that epistatic interactions associatedwith SC-DRMs
provide easy pathways that contribute to drug resistance.

The inference of the fitness landscape from population-level
sequence data for NS3 is complex given the selective pressure from
host immune responses and recent use of DAAs. The high correlation
between prevalence and fitness of NS3 (Fig. 1) may be surprising, but a
similar relationship has been reported for other HCV proteins12,13,24, as
well as several HIV proteins17,30–33. The mechanistic rationale for this
correspondence has been previously proposed for HIV proteins, with
three key factors identified76: (i) a diverse and largely ineffective
immune response due to host genetic diversity, (ii) reversion to the
ancestral (fitter) sequence upon transmission to a new host, and (iii)
the absence of robust and effective natural or vaccine-induced herd
memory responses, which would shift the virus away from the steady
state. Although HCV differs from HIV, it shares several similarities and
may also involve these factors. Specifically, since the lack of a func-
tional vaccine, most NS3 sequences sampled from chronic patients,
and NS3 being a target of T cells77, it is likely that NS3 experiences
diverse and ineffective immune responses in such patients. Reversion
to the consensus amino acid upon HCV transmission to a new host has
also been documented78.

DAAs could potentially lead to population-wise selective pressure
that may bias our data, however such effects are not expected to be
strong. This is because DAAs are currently only available to a limited
fraction of HCV-infected individuals (less than 20%79). To examine this
more explicitly for the NS3 data set that we used (comprising
7370 sequences), we investigated the 58 papers from which these
sequenceswere reported. This analysis revealed that the largemajority
of the sequences (5877 sequences) were indeed from drug-naïve
patients. Comparing statistical properties of the complete dataset

(7370 sequences)with thoseof thedrug-naïve subset (5877 sequences)
revealed a strong correlation (r >0.9, Supplementary Fig. S5a)between
the mutation frequencies and pair-wise mutation frequencies in both
datasets. We also constructed a maximum entropy model using only
the drug-naïve sequences and found that the predicted sequence
energies from the drug-naïvemodel exhibited a correlation (r = −0.70,
Supplementary Fig. S5b) with the in-vitro fitnessmeasurements, which
was comparable to the correlation observed with the complete
dataset.

It is noteworthy that 36 out of the 45 fitness measurements
compiled from different experimental studies were associated with
DRMs. The high correlation between ourmodel’s predictions (inferred
using the complete dataset) and the experimental fitness measure-
ments (Fig. 1) supports that our model can accurately capture the
intrinsic effect of DRMs, despite being trained mainly on drug-naïve
sequences. This is because DRMs have been observed in drug-naïve
patients as well80,81. We further evaluated the correlation between our
model predictions and the 36 fitness measurements exclusively asso-
ciated with DRMs and found it also to be high (r = −0.72, Supplemen-
tary Fig. 6), providing additional evidence for the ability of our model
to capture the effect of NS3 DRMs.

Among thepairs of residues involving SC-DRMs (Fig. 2a), twopairs
(pairs 41–168 and 80–91) have been demonstrated to be involved in
compensatory interactions using ex-vivo experiments9,10. For the
remaining pairs, based on the available NS3 protein structure, a few
pairs were found to be in contact (pairs 36–45, 54–55, 66–71, and
170–174) (Fig. 2b), further suggesting that epistatic interactions may
exist between these pairs. Such pairs of residues involving SC-DRMs
provide directions for future experimental studies investigating com-
pensatory interactions. These may include experiments that quantify
the change in replicative fitness, protein folding, or protease enzy-
matic function upon mutating these pairs of residues individually and
simultaneously.

Our analysis revealed an inverse correlation between the number
of SC-DRMs and the efficacy of NS3-targeting drugs (Fig. 7). However,
this relationship may be influenced by various confounding factors.
These include, for instance, differences in drug dosage and duration,
whether the drug was used in combination with interferon and/or
ribavirin, whether peg-interferon therapy was administered prior to
DAA treatment, as well as different host-specific factors of patients
(cirrhotic status, HCV RNA level, and HLA composition). These factors
could not be explicitly accounted for in our analysis. Further research

Fig. 7 | Correlation between the drug efficacy and the number of SC-DRMs
associated with each drug. Efficacy of a drug is represented by the weighted
average of sustained virological response (SVR) rate reported for the drug. Results
are shown for (a) NS3-specific DAAs and (b) multi-protein DAAs. SVR rates for each

drug were curated from the literature48,69 (listed in Supplementary Data 1; see
Supplementary Table 6 for details). Source data are provided as a Source Data file.
The p-valuesmeasure the two-sided significance level of the Spearman correlation.
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with more detailed data on these confounding factors is needed to
fully understand their influence on drug efficacy and to provide more
robust conclusions.

While we focused on epistasis within the NS3 protein, inter-
protein interactions may also play a role in conferring resistance to
drugs. For instance, interactions between NS5A and NS5B – the two
other proteins targeted by multi-protein DAAs – are known to be cri-
tical for HCV RNA replication82, and hence, interactions between these
proteins might also affect the emergence of DRMs. Moreover, we
observed a marginally significant (p =0.07, Mann–Whitney test) dif-
ference in the number of DRMs of NS3-specific DAAs (4–10) andmulti-
protein DAAs (8–16). This suggests that the resistance profile of these
two classes of drugs may be different, thereby motivating further
investigation into inter-protein interactions between different HCV
proteins for conferring drug resistance.

We predicted SC-DRMs to be associated with shorter escape time
from drug-induced selective pressure (Fig. 6a), which provides sup-
port to their enrichment in each NS3 drug (Fig. 4). In addition, this
analysis revealed that DRMs at residues 138 and 158 were associated
withmuch higher escape time compared to other DRMs (Fig. 6b). This
is suggestive that it may be hard for HCV to escape from drug-induced
selective pressure by incurring mutations at these NS3 residues. Thus,
preferentially targeting such residues may be desirable for designing
robust next-generation HCV drugs and vaccines.

The high genetic variability among different HCV genotypes and
subtypes makes them differently susceptible to the development of
NS3 DRMs83. Thus, certain drugs only work for specific genotypes/
subtypes. For instance, telaprevir, boceprevir, and vaniprevir only
work for genotype 1 infections, while simeprevir, paritaprevir, and
danoprevir canbe used for treating both genotypes 1 and 4 infections4.
In line with this, we have also shown in a previous study that evolu-
tionary constraints are different acrossHCV subtypes13, whichmayalso
be a contributing factor in the observed difference in efficacy of drugs
against different genotypes/subtypes. Thus, while we focused here
only on NS3 subtype 1a, extending this analysis to study different HCV
genotypes/subtypesmight be helpful to understand genotype-specific
differences in drug efficacies.

There are also multiple limitations of our study. First, we focused
on pair-wise epistatic interactions only. Higher-order epistatic inter-
actions may also contribute to viral fitness, and these are not captured
by our model. Inferring such higher-order effects is challenging and
requires larger data sets with higher sequence variability. Second, we
are unable to systematically study the resistance profile of multi-
protein DAAs. This would require a joint model considering multiple
proteins together. Again, data limitations currently preclude the
development of such joint multi-protein models. Third, while our
analysis shows an inverse relation between the efficacy of a given drug
and the number of associated SC-DRMs, there aremultiple factors that
may potentially confound a relative analysis of reported drug effi-
cacies. These include differences among drugs with respect to dosage,
duration, and administration, along with differences among char-
acteristics of patients. Each of these factors may influence the efficacy
of drugs, and they could not be explicitly accounted for in our analysis.
More detailed data related to the effect of these confounding factors is
required to deconvolve the impact of SC-DRMs on drug efficacy.

Methods
Sequence data preprocessing
We downloaded 9683 NS3 genotype 1a aligned protein sequences
(coverage ≥ 99%) from the HCV-GLUE database, http://hcv.glue.cvr.ac.
uk5,6. We conducted principal component analysis (PCA) of the pair-
wise similarity matrix (9683× 9683) constructed from the sequence
data84 to remove 148 outlying sequences. Briefly, all those sequences
were considered outliers that appeared at more than 3 scaled median

absolute deviations away from the median of either the first or
second PC85. The scaled median absolute deviations is given
by: c×median abs Ai �median ðAÞ� �� �

, where A is the first or second
PC, Ai is the i th element in the first or second PC , c= � 1=ð

ffiffiffi
2

p
×

erfcinv ð3=2ÞÞ≈1:482, and erfcinv() is the inverse complementary error
function. To avoid unnecessary patient bias that can compromise
model predictive ability (Supplementary Figure 7), we excluded
2167 sequences that were not associated with any patients. These fil-
tering procedures resulted inM = 7370 sequences (accession numbers
listed in Supplementary Data 2) from W = 4773 patients. Next, we
excluded from this data 116 fully conserved residues, i.e., residues
where no mutation was observed in any sequence. This excluded
residue 156 from our analysis as it was fully conserved in our data, and
therefore, DRMs associated with it were not investigated in our work.
The final multiple sequence alignment (MSA) comprised
M = 7370 sequences and N = 515 residues.

Inference of HCV NS3 fitness landscape
We constructed a least-biased maximum entropy model for the NS3
protein that can reproduce the single and doublemutant probabilities
of the MSA that are given by

f iðaÞ= 1
W

PM
k = 1

wkδðxki ,aÞ

f ijða,bÞ= 1
W

PM
k = 1

wkδðxki ,aÞδðxkj ,bÞ:
ð2Þ

Here, xk
i is the ith amino acid in the sequence k,wk is the reciprocal of

the number of MSA sequences from the patient that sequence k was
obtained from, and δ(a, b) is the Kronecker delta function. As descri-
bed in Eq. (1), the maximum entropy model assigns a sequence
x= x1, x2, . . . , xN

� �
the probability

Ph,JðxÞ=
e�Eh,JðxÞ

Z
, whereEh,JðxÞ=

XN�1

i= 1

XN
j = i + 1

Jij xi, xj
� �

+
XN
i= 1

hi xi
� �

,

whereh is the set of all fields that represent the effect ofmutations at a
single residue, and J is the set of all couplings that represent the effect
of interactions between mutations at two different residues.
Z =

P
xe

�Eh,JðxÞ is a normalization factor, and Eh,J(x) represents the
energy of sequencex. Thefieldsh and couplings J are chosen such that
the single and double mutant probabilities obtained from the model
match respectively fi(a) and fij(a, b) (Eq. (2)), i.e.,

P
x
δ xi,a
� �

Ph, JðxÞ= f iðaÞP
x
δ xi,a
� �

δ xj,b
� �

Ph,JðxÞ= f ijða,bÞ:
ð3Þ

The problem of inferring the model parameters can be cast as the
following convex optimization problem24

h*, J*
� �

=
arg min

h,J
KL P0jjPh,J

� �
=

arg min

h,J

X
x

P0ðxÞ ln
P0ðxÞ
Ph,JðxÞ

ð4Þ

where KL �jj�ð Þ denotes the Kullback-Leibler divergence between
probability distributions, and

P0ðxÞ=
1
W

XM
k = 1

wkδ xk ,x
� �

is the patient-weighted probability of observing strain x in the MSA.
To obtain the fieldsh and couplings J such that the inferredmodel

reproduces the single and doublemutant probabilities of the MSA, we
used the GUI realization of MPF-BML86, an efficient inference
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framework introduced in ref. 33. This framework has been used pre-
viously to infer the fitness landscape of the HIV envelope protein33 and
the HCV E2 protein12,13. The MPF-BML inference framework comprises
the following three steps:

1. The first step in the inference framework is to prevent overfitting
of ourmodel and reduce the computational time. To achieve this,
we employ a process that retains only the top ki most frequent
mutants out of the total qi mutations. The remaining mutants,
qi − ki in number, are grouped together in a way that the entropy
associated with the grouping accounts for a certain fraction ϕ of
the entropy without grouping. For a specific residue i, we need to
find the smallest integer value of ki that satisfies the following
condition:

Si ki

� �
≥ ϕSi qi

� �
,

where

Si ki

� �
= �

Xki

a= 1

f iðaÞ ln f iðaÞ � f i ln f i,

and

f i =
Xqi

a= ki + 1

f iðaÞ:

ϕ is chosen such that the mean of

βiðϕÞ=
Pqi

a = 1 f iðaÞ � f iðaÞ
� �2

Pqi
a = 1

f iðaÞ 1�f iðaÞð Þ
W

is approximately one, and

f iðaÞ=
f iðaÞ if a< ki + 1

f i if a = ki + 1

0 if a> ki + 1

8><
>: :

The main concept is to achieve equilibrium between the bias
(numerator) and the variability in the estimated amino acid fre-
quencies (denominator) until they become approximately equal.
Specifically, each amino acid at the ith residue is encoded using qi
binary digits, where qi = ki + 1, and ki represents the number ofmutants
after combining. The jthmost frequent amino acid is then represented
by a qi-bit binary code with the value of 2j−1. Consequently, the con-
sensus sequence is represented by an all-zero vector. We define a
binary matrix based on the amino acid matrix as Y, with the ith row
denoted by yi.
2. Because the normalization factor Z is intractable in Eq. (1), the

second step, called the minimum probability flow (MPF) method,
is to alleviate this computational burden by replacing Ph,J(x) with
an alternate probability mass function (PMF) by considering a
continuous-time Markov chain whose states correspond to the
B=

QN
i = 1 qi + 1
� �

possible sequences. Themaster equation describ-
ing this Markov chain is given by

d
dt

Ptðyijh, JÞ
�
=
XM

j = 1, j≠i

ΓijPtðyjjh, JÞ �
XM

j = 1, j≠i

ΓjiPtðyijh, JÞ
�
, ð5Þ

where Ptðyijh, JÞ
�
denotes the probability of observing yi at time t, and

when t =0, we have Pt(h, J) = P0.We can derive the solution to Eq. (5) as

Pt ðyijh, JÞ
�
= expðtΓÞP0

� �
i,

where [a]i denotes the ith element of the vector a. The matrix Γ is the
B ×B transition rate matrix with (i, j)th element Γij given such that

lim
t!1

Ptðyijh, JÞ
�
=Pðyijh, JÞ

�
:

The details of matrix Γ can be found in ref. 87. The idea is that,
regardless of the initial values of h and J, the PMF can evolve towards
Pt h, Jð Þ as time increases. Then we choose a t to make this problem
tractable. After replacement, Eq. (4) expands as a Taylor series around
t =0, and can be written as

KLðP0 kPtðh, JÞÞ= tKðJ,hÞ+ oðtÞ,

where

KðJ,hÞ=
XM
b= 1

XN
i = 1

Xqi
a= 1

exp
1
2

2yb,ði�1ÞN +a � 1
� �XN

j = 1

Xqj
c= 1

yb,ðj�1ÞN + c Jijða, cÞ � hiðaÞ
 ! !

and yb,n stands for the (b, n) entry of matrix Y. Then the estimation of
the parameters can be obtained by minimizing K(J,h) plus L1 and L2
regularization factors, which can be written as

JMPF,hMPF
� �

=
arg min

h,J
Kð J,hÞ+ λ1

XN
i = 1

Xqi
a= 1

XN
j = i+ 1

Xqj
b= 1

Jijða,bÞ
			 			

 

+ λ2
XN
i = 1

Xqi
a= 1

XN
j = i+ 1

Xqj
b= 1

Jijða,bÞ2
!
,

ð6Þ

where λ1 and λ2 are the coefficients of the L1 and L2 regularization
factors respectively and are chosen manually based on the third step.
3. The third step is to choose a set of couplings and fields that satisfy

Eq. (6) to initialize a gradient descent algorithm where the gra-
dient is approximated using Markov chain Monte Carlo (MCMC)
simulations. The gradient descent employs a modified RPROP
algorithm88 for each parameter set. This particular step is referred
to as the Boltzmann machine-learning (BML) method, which
refines the parameters obtained in the previous MPF step to
achieve a more accurate model fit. During this BML process, the
couplings that were forced to zero due to L1 regularization in Eq.
(6) remain fixed at zero in each iteration. Eventually, we adopt the
parameter set described in ref. 89, such that

ϵ1 =
1
W

XW
i = 1

Xqi
a= 1

fmodel
i a; λ1, λ2

� �� f i a,ϕ
*� �
 �2

1
W f i a,ϕ*� �

1� f i a,ϕ
*� �� � ≈ 1

ð7Þ

ϵ2 =
1PW

k = 1
qk

PW
l = k + 1

ql

XW
i= 1

Xqi
a = 1

XW
j = i+ 1

Xqj
b= 1

fmodel
ij a,b; λ1, λ2

� �� f ij a, b,ϕ*� �
 �2

1
W f ij a,b,ϕ*� �

1� f ij a,b,ϕ*� �� � ≈ 1,

ð8Þ

where fmodel
i a; λ1, λ2

� �
and fmodel

ij a,b; λ1, λ2
� �

are the single and double
mutant probabilities obtained from the model, while
f i a,ϕ*� �

and f ij a,b,ϕ*� �
are the single anddoublemutant probabilities

of the MSA after grouping with combining factor ϕ*. λ1 and λ2 are
chosen to balance between overfitting and underfitting in the single
and double mutant probabilities.

TheMPF-BML software requires an input comprising theMSA and
the patient weight of each sequence in the MSA. For model inference,
all parameters were set to default values in MPF-BML software except
for L1 and L2 regularization parameters that were set to λ1 = 10−4 and
λ2 = 150, respectively. The inferred model accurately reproduced the
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statistics of the NS3 MSA (Supplementary Figure 8). These included
statistics used to train the model (i.e., single mutant probabilities and
double mutant probabilities) as well as the statistics predicted by the
model (e.g., connected correlations and distribution of the number of
mutants per sequences).

Fitness verification
Ex-vivo experimental infectivity measurements were compiled from
the literature9,10,21,28,29 to check if our inferred NS3 prevalence land-
scape model is capable of capturing the underlying protein fitness
landscape. We used our model to compute energies of the
NS3 sequences (Eq. (1)) and compared them with their corresponding
reported infectivities. Since the energy of a sequence is inversely
related to its prevalence, a strong negative correlation betweenmodel-
based energy and infectivity would indicate that the inferred pre-
valence landscape model is a good proxy of the intrinsic NS3 fitness
landscape. The details of the specific fitness measurements (listed in
Supplementary Data 1) from each study are presented in Supplemen-
tary Table 7. As experiments were conducted under different lab set-
tings, we considered the weighted average of Spearman correlation
coefficients from different experiments. This can be written as

r =

Pqexp
i = 1QiriPqexp
i= 1Qi

,

where ri is the Spearman correlation coefficient between model pre-
dictions (energies) and infectivity measurements reported in experi-
ment i,Qi is the number of measurements for experiment i, and qexp is
the total number of experiments.

Conservation-only model
To compare our model with a model that ignores all interactions
between residues, we defined a conservation-basedmaximumentropy
model that is parametrized only by the “fields” h as follows

hiðaÞ= ln
1� f iðaÞ
f iðaÞ

, i= 1, 2, . . . ,N: ð9Þ

Here fi(a) is the frequency of observing amino acid a at residue i.

Acquisition of drug-resistant mutations for NS3-specific drugs
A total of 21 residues with DRMs from nine NS3-specific drugs used for
treating HCV genotype 1a infections (listed in Table 1) were obtained
from the GLUE database (http://hcv.glue.cvr.ac.uk)5,6, as well as from
other relevant studies4,7. An NS3 DRM is defined by an amino acid
substitution at a specific residue of NS3 that is able to adversely impact
the activity of a DAA in-vitro and/or in-vivo in treated patients.

Identification of sectors using robust co-evolutionary analysis
We employed the robust co-evolutionary analysis (RoCA) method to
identify ‘sectors’ or co-evolving groups of residues in the NS3 protein
ref. 37 RoCA achieves this by performing an eigenvector-based spec-
tral analysis on the MSA correlation matrix, followed by a data-driven
random-matrix-based clustering procedure. We used the GUI-based
implementation of the RoCA method, RocaSec90, to predict
NS3 sectors. Note that we chose not to use the well-known Statistical
Coupling Analysis (SCA) method91 due to its limited ability to resolve
co-evolutionary structures in viral proteins, as has been demonstrated
in our previous study37.

Visualization of interactions between top-coupled pairs of
mutations
For visualizing the interactions between top-coupled pairs of muta-
tions, we used the Circos plot. EachNS3 residuewas evenly distributed
along the outer space of the circle in Fig. 2. Residue numbering was

started from 1 at the 3 o’clock position and increased in the counter-
clockwise direction. Only residues involving DRMs were labeled. Each
link within the circle represents a pair of top-coupled mutations
(ranked by the values of -J from Eq. (1)). Links involving at least one
DRM were shown in orange, while those between non-DRMs were
shaded in gray.

Visualization of protein crystal structures
All NS3 protein crystal structures (PDB ID: [4B6E], [3M5L], [3SU3],
[3SV6], [3SUD]) were obtained from the Protein Databank (https://
www.rcsb.org). The PyMOL software (https://www.pymol.org) was
used for computing the distance between atoms in each protein
structure and for drawing the structural figures.

Prediction of compensatory mutations associated with SC-
DRMs in different sequence backgrounds
To predict compensatorymutations connected to SC-DRMs in various
sequence backgrounds (as opposed to only H77; the sequence back-
ground considered in Fig. 3), we introduced each SC-DRM into all MSA
sequences lacking that mutation and computed the inferred energy
change upon introducing all associated strongly coupledmutations in
each selected sequence. We repeated this process for all SC-DRMs.
Mutations that compensated for an SC-DRM in at least 10% of the
selected sequences are listed in Supplementary Table 3.

Statistical significance testing
We calculated the statistical significance of the number of SC-DRM
residues (identifiedby ourmodel) associatedwith a specific drug using
a p-value. For each drug and a given number of top-coupled pairs of
mutations inferred by our model (e.g., 10, 100, or 300), the p-value
represents the probability that, given j total DRMs associated with a
specificdrug,wewould identify at least iof themasSC-DRMspurely by
chance. Let n represents the number of residues involved in the top-
coupled pairs, which is a subset of the N total residues in the NS3
protein. Inour case,N = 515,with 116 fully conserved residues removed.
Note that in this calculation same residues involved inmultiple pairs of
mutations were only counted once. This p-value is computed as:

p=
Xminðj,nÞ

q= i

j

q


 �
N � j

n� q


 �
N

n


 � : ð10Þ

The above equation sums up the probabilities of observing i or more
SC-DRMs associated with a drug using ourmodel. If p <0.05, we reject
the null hypothesis that the SC-DRMs associated with a drug were
observed by a random chance.

Evolutionary simulation
We considered a Wright-Fisher-like viral evolutionary model47 to
quantify the relative ease of escape from selective pressure targeting
each residue involved in the DRMs known for HCV NS3-targeting
DAAs4–7 (listed in Table 1). Similar evolutionary models have been
shown tobe representative of the relative easeof escape fromselective
pressure of immune system for HCV E2 genotype 1a and 1b12,13, and are
informative of protein structures92–94. As in refs. 12,13, we adopted the
“escape time”metric to represent the number of generations required
for mutations at a residue under selective pressure to reach a fre-
quency of >0.5 in a fixed-size virus population.

The model set-up can be summarized as follows. The fixed virus
population size was set toMe = 2000 in accordancewith the estimated
HCV effective population size in in-host evolution95). For a given NS3-
DRM-associated residue i, we started the simulation with a homo-
geneous population comprising copies of a randomly selected
sequence from the MSA having the consensus amino acid (i.e., the
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most frequent amino acid) at residue i. For eachgeneration of the virus
population, sequences undergo the following three steps.
1. Mutation. Each nucleotide in the sequences is randomly mutated

to another nucleotide with a fixed probability μ = 10−4 in accor-
dance with the HCV mutation rate reported in refs. 96,97.

2. Selection. Each sequence in the viral population survives with a
probability calculated based on its fitness predicted from the
inferred landscape (see ref. 12 for details). In addition, fitness of all
sequences having the consensus amino acid at residue i is
decreased by a fixed value b. This models the selective pressure
exerted by a drug at residue i and provides a selective advantage
to the sequences having amutation at this residue. bwas set as the
largest value of the field parameter h in the inferred fitness
landscape.

3. Random sampling. A standard multinomial sampling process,
parameterized by the survival probabilities calculated in the pre-
vious step andMe, is performed to generate thenext generationof
the virus population.The above three steps (mutation, selection,
and random sampling) are repeated until the frequency of
sequences having a mutation at residue i exceeds 0.5 in the
population and the corresponding number of generations is
recorded. This number is considered the time (generation) it took
for the virus to escape from selective pressure at residue i. We re-
ran this procedure multiple times (100) using the same initial
sequence, as well as for multiple distinct initial sequences (25),
yielding a total of 2500 values). The mean of the number of
generations recorded over all these simulation runs represented
the escape time associated with residue i (listed in Supplemen-
tary Data 3).

Acquisition of efficacy data for NS3-specific drugs
A total of 22 studies reporting efficacy data of nine NS3-specific drugs
for treating patients infected with HCV genotype 1 were included
(listed in Supplementary Table 648–69). In each study, efficacy of a drug
was reported as the proportion of patients with SVR for 12 or 24 weeks
after the end of the treatment. We used the weighted average of SVR
rates associated with a drug to represent its aggregated efficacy.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For inferring the maximum entropy-based fitness landscape model,
NS3 subtype 1a aligned sequences (coverage ≥99%) were downloaded
from the publicly available HCV GLUE sequence database, http://hcv.
glue.cvr.ac.uk. For validation of the inferred NS3 1a fitness landscape
model, the ex-vivo experimental fitness (infectivity) measurements
were compiled from five literature reports9,10,21,28,29. Information of
drug resistant mutations of nine NS3-specific drugs used for treating
HCV genotype 1a infections were obtained from the HCV GLUE data-
base http://hcv.glue.cvr.ac.uk, as well as from two relevant literature
studies4–7. All NS3 1a protein crystal structures (PDB ID: [4B6E], [3M5L],
[3SU3], [3SV6], [3SUD]) used in the analysis were obtained from the
Protein Databank (https://www.rcsb.org). For the drug efficacy analy-
sis, efficacy data of nine NS3-specific drugs used for treating patients
infected with HCV genotype 1a was compiled from 22 literature
studies48–69. All data used in this work has been provided in the sup-
plementary data files and is publicly available as of the date of pub-
lication. The infectivity measurements for NS3, used for correlating
with predictions from the fitness landscape model, are included in
Supplementary Data 1. Accession numbers of NS3 sequences used for
inferring the model are listed in Supplementary Data 2. The mean
escape time predicted by the in-host evolutionary model for each
residue with DRMs is provided in Supplementary Data 3. Source data

for all figures are provided with this paper. Source data are provided
with this paper.

Code availability
Scripts for reproducing the results are available at https://github.com/
hangzhangust/HCV_NS398. The GUI-based software implementation of
the MPF-BML method33, used for inferring the fitness landscape para-
meters, is available at https://github.com/ahmedaq/MPF-BML-GUI86.
The GUI-implementation of the robust co-evolutionary analysis
approach, RocaSec, is available at https://github.com/ahmedaq/
RocaSec90. For computing the distance between atoms in each pro-
tein structure and for drawing the structural figures, the PyMOL soft-
ware (https://www.pymol.org) was used. All statistical analyses in this
work were performed using MATLAB R2021a. Any additional infor-
mation related to the data reported in this paper is available from the
lead contact upon request.
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