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Dynamic characterization and interpretation
for protein-RNA interactions across diverse
cellular conditions using HDRNet
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RNA-binding proteins play crucial roles in the regulation of gene expression,
and understanding the interactions betweenRNAs andRBPs in distinct cellular
conditions forms the basis for comprehending the underlying RNA function.
However, current computational methods pose challenges to the cross-
prediction of RNA-protein binding events across diverse cell lines and tissue
contexts. Here, we develop HDRNet, an end-to-end deep learning-based fra-
mework to precisely predict dynamic RBP binding events under diverse cel-
lular conditions. Our results demonstrate that HDRNet can accurately and
efficiently identify binding sites, particularly for dynamic prediction, out-
performingother state-of-the-artmodels on 261 linear RNAdatasets fromboth
eCLIP and CLIP-seq, supplemented with additional tissue data. Moreover, we
conduct motif and interpretation analyses to provide fresh insights into the
pathological mechanisms underlying RNA-RBP interactions from various per-
spectives. Our functional genomic analysis further explores the gene-human
disease associations, uncovering previously uncharacterized observations for
a broad range of genetic disorders.

RNA-binding proteins (RBPs) are an essential group of proteins that
interactwith RNAby recognizing specific RNA-binding domains, and are
involved in post-transcriptional regulation of RNA splicing, transloca-
tion, sequence editing, intracellular localization, and translational
control1–3. Accurately identifying RBP binding states in specific cellular
conditions is a significant challenge that required for unraveling the
underlying regulatory mechanisms and understanding their biological
function. Traditional experiment-based biological methods such as
systematic evolution of ligands by exponential selection (SELEX)4,
RNAcompete5, and RNA Bind-n-Seq6 have been developed to
characterize the sequence preferences of RBPs in vitro, while RNA
immunoprecipitation (RIP)7 and other immunoprecipitation-based
technologies8–10 were proposed to identify RBP binding sites in vivo.
Unfortunately, these laboratory-basedexperiments are time-consuming,

labor-intensive, and susceptible to measurement errors. Therefore,
developing high-throughput, accurate, and robust approaches to
investigate RBP binding modes is of great importance11.

Thanks to the development of cross-linked immunoprecipitation
sequencing technology8,12, many RBP-RNA binding targets have been
uncovered13,14, enabling us to develop effective data-driven computa-
tional methods15. These methods can be broadly classified into two
categories16, either predicting RNA-binding sites on the protein
surface17 or modeling the preferred RNA sequences of RNA-binding
proteins18. From the protein perspective, several computational tools
have been developed to predict the RBP-RNA binding sites at the
protein level. For instance, SCRIBER, uses predictions of binding resi-
dues for several partner types to effectively reduce cross-prediction of
the output protein-binding residues, combining novel and previously
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used input types19, while aPRBind, developed by Liu et al., combines
protein sequence and structural features for RNA-binding residue
prediction20. DRNApred21, a fast sequence-based method that accu-
rately predicts and discriminates DNA- and RNA-binding residues was
proposed by Yan et al., with regression that penalizes cross-predic-
tions, and a two-layered architecture. However, these statistical or
machine learning-based algorithms often encounter performance
limitations as the size of the dataset continues to grow. This is pri-
marily due to their inability to effectively capture complex patterns
and relationships in large-scale data, which can lead to unsatisfactory
predictive performance. Recently, to address such limitations, deep
learning methods have been developed; for instance, DeepSite
employs a 3D deep convolutional neural network to predict the
binding site using protein structure22. Xia et al. proposed GraphBind,
an end-to-end graph neural network that uses hierarchical graph
neural networks to identify nucleic-acid-binding residues on
proteins23. Zhang et al.24 presented DeepDISOBind, a deep multi-task
architecture that accurately predicts DNA-, RNA- and protein-binding
regions from protein sequences. Most recently, Lam et al. introduced
NucleicNet, a deep learning model that predicts the binding pre-
ference of RNA backbone constituents and different bases from local
physicochemical characteristics of the protein structure surface25.
These methods have collectively enhanced our understanding of the
binding properties of RBPs at the protein surface level.

In parallel, the establishment of links between RBPs and their
targets from the perspective of RNA sequences enables understanding
of the regulationmechanism. A variety of efforts have been developed
to address it in identical cellular conditions, referred to as static
protein-RNA interactions; for instance, Deepbind26 was developed to
understand RBP binding preferences in RNA sequence data using a
deep neural network (DNN). Ilan et al. developed DLPRB27, a new DNN
approach based on convolutional neural networks (CNN) and recur-
rent neural networks (RNN) for learning intrinsic RBP binding pre-
ferences and predicting novel interactions. Pan et al. developed
iDeep28, a hybrid convolutional neural network and deep belief
network-based model to predict the RBP interaction sites and motifs
on RNAs. Daniel et al. proposed GraphProt29 that integrates sequence
and computationally predicted RNA secondary structure information
into graph-kernel features. Laverty et al. introduced PRIESSTESS30, a
universal RNA motif-finding/scanning strategy capable of identifying
enriched RNA sequence and/or structuremotifs that are subsequently
reduced to a set of core motifs by logistic regression with LASSO
regularization. However, these methods only account for a specific
cellular condition and are hence limited in their ability to predict RNA-
protein interactions in other cell lines while considering the dynamic
contexts.

Indeed, the binding behavior of RBP-RNA interactions has been
demonstrated to be dynamic in different cell types, as it is influenced
by different cellular or tissue environments31. In other words, the
binding sites of the RBP that are exclusively present in specific cells or
tissues can be designated as dynamic protein-RNA interactions.
Recently, a new deep learning-based method called PrismNet32, was
developed to accurately predict dynamic RBP binding in various cel-
lular conditions by integrating in vivo experimental RNA structure
information33. Nonetheless, unfortunately, we conceive that there are
still room for improvements; for instance, the architectural design of
thedeepneural networkwithin PrismNet can still be investigated in the
context of neural network architecture search, indicating the potential
for further improvements in RBP-RNA binding prediction. In addition,
the one-hot encoding representation in PrismNet exhibits limitations
that may hinder its ability to capture RNA features globally. Further-
more, the heterogeneity of transcripts results in widely sequential
relationships across different contexts, such as various cell lines, tis-
sues, and normal or disease conditions. The one-hot encoding may
overlook this contextual information, treating each position

independently and potentially missing crucial sequence patterns.
Therefore, it is crucial to address these limitations by exploring alter-
native coding methods to leverage the contextual and sequential
nature of RNA sequences.

The contextual relationship has been a focus of increasing
attention, as word embedding techniques34–36 have proven to be
effective frameworks for automatically encoding RNA sequences due
to their syntactic, lexical, and semantic similarities to human
language37. On this basis, much effort has been devoted to the appli-
cation of advanced NLP techniques in RNA-related problems38–40.
However, most existing research on the application of NLP techniques
in RNA-related problems has relied on static embedding models such
as Word2Vector41, GloVe35, Doc2Vector36, and FastText42. Similar to
one-hot representation, static embeddingmethods maintain the same
nucleotide encoding across all contexts, which leads to a failure to
capture the context-based dynamic semantic information of RNA
sequences and therefore cannot represent RNA sequence features
globally. Moreover, static embedding does not capture the underlying
information of nucleotide sequences in different cellular contexts,
thus limiting the ability of dynamic prediction in other cellular con-
ditions. To address this knowledge gap, we propose to adopt and
customize the Bidirectional Encoder Representations from Transfor-
mers (BERT) model43 to learn the context-dependent information of
RNA sequences, which can generate robust expressions containing the
global contextual information by pre-training with a large-scale unla-
beled text corpus in a self-supervised fashion. In contrast to static
embeddings where nucleotide embeddings remain the same regard-
less of the context, the primary advantage of dynamic embeddings lies
in their ability to generate context-specific features in different
nucleotide contexts. Moreover, considering the heterogeneity of
transcripts under different cellular, tissue, or physiological conditions
(e.g., normal or diseased), dynamic embeddings can overcome the
limitation of a single representation for diverse contextual sequences,
enriching the global features of the sequences and surpassing the
performance bottleneck in dynamically predicting RBP binding sites.
Therefore, by leveraging the advantages of the transformer model, we
adopt the BERT model to encode RNA sequences in dynamic embed-
ding vectors that then contain rich, global contextual semantic infor-
mation for identifying dynamic RNA-binding events between different
cell lines, tissues, or physiological conditions (normal or diseased).

Here, we propose HDRNet (High-throughput Dynamic Cellular
RNA-binding Event Identification using Deep Neural Network), a new
end-to-end deep learning model for identifying RNA-binding interac-
tions fromeCLIP-seqdata in various cellular conditions. To capture the
hierarchical relationships between nucleotide sequences, we adopt
multi-source biological information, including in vivo RNA secondary
structure information and bio-language features, to characterize both
the sequence and structural features of RNA. Then, we combine bio-
logical information fromdifferent sources using the unified alignment
model to uncover possible relationships between nucleotide sequen-
ces and latent structural information. Additionally, hierarchical multi-
scale residual networks (HMRN) are leveraged to comprehend the
contextual dependencies between the nucleotides, and deep protein-
RNA binding predictor (DPRBP) is developed to extract the contextual
significance of the nucleotide sequences by stacking several pyramid
convolutional blocks, and incorporating batch normalization and
residual shortcut connections into the network to boost robustness
and reduce overfitting. We evaluate HDRNet on 261 linear RNA data-
sets and compare it with other baselinemethods.We demonstrated its
validity and scalability in both static and dynamic cellular conditions.
In addition, we performed motif and interpretation analyses to gain
new insights into the pathological mechanisms of RNA-RBP interac-
tions. Our functional genomic analysis revealed the association
between genes and human diseases, leading to previously unknown
observations on a wide range of inherited diseases.
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Results
Overview of HDRNet
The HDRNet framework has the capability to perform accurate pre-
diction of RBP binding events by leveraging robust features from
multi-source biological information to aid in the identification of high-
attention binding peaks and subsequent analysis of RBP binding data,
as depicted in Fig. 1. The HDRNet pipeline consists of four key com-
ponents aimed at achieving the reliable prediction of RNA-binding
protein (RBP) interactions. (1) The dynamic global contextual infor-
mation and in vivo RNA secondary structure information are extracted
to characterize both the sequence and structural properties of RNA; (2)
A unified alignment of multi-source feature representation is devel-
oped to embed the dynamic contextual information and icSHAPE
contour vectors with dimensional homogeneity to generate the
potential feature representations; (3) We establish the hierarchical
multi-scale residual network (HMRN) to extract the sequence and

structural information and then calculate thebinding scoreof theRNA-
RBP interaction using the deep protein-RNA binding predictor
(DPRBP), which picks the most prominent nucleotide characteristics
progressively; (4) The latent embedded representation learned by the
HDRNet model allows capturing the high-focus binding peaks and
binding patterns of RNA sequences to investigate the association
between dynamic binding sites and human diseases. In addition, it is
also possible to jointly interpret gene-level knowledge in a tran-
scriptomic context, providing insights into disease regulatory
mechanisms.

The HDRNet framework starts by generating multiple sources of
biological information to represent the RNA sequence or structure,
where the dynamic global contextual embedding representation
comes from tagging the input RNA sequence as genetic codon tokens
using the k-mer method and then encoding each token as a
dynamic embedding vector using the pre-trained deep bidirectional

Fig. 1 | The network architecture of the HDRNet algorithm. a The overall fra-
mework of HDRNet, an end-to-end architecture for RNA-RBP binding identifi-
cation. After being tokenized, the RNA sequence is fed into the multi-head self-
attention layers to generate dynamic contextual embedding. The icSHAPE
pipeline is employed to generate RNA secondary structure profiles. bThe unified
alignment of multi-source feature representation in HDRNet. We employ two
diverse CNN blocks to enrich feature representation and guarantee an equal
output size. c The hierarchical multi-scale residual network (HMRN) stage of

HDRNet. The sequence and structure feature map is fed into two different multi-
scale ResNet so that local contextual dependencies can be extracted. d The deep
protein-RNA binding predictor (DPRBP) stage. We developed a multi-layer fea-
ture selector module to capture significant context-sensitive information on the
sequence before giving a final prediction. e A variety of functional genomic
analyses are carried out to shed new light on the interpretation of RBP datasets
and possible treatment of neurological diseases.
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transformermodel (BERT). Dynamic embedding implies that the same
token has different encoding in different contexts and therefore con-
tains more nucleotide contextual information as well as long-distance
dependencies. Meanwhile, the icSHAPE-pipeline is employed to ana-
lyze and generate the in-vivo RNA secondary structure profile, which is
a numerical vector of the same length as the RNA sequence, providing
the model with valuable information on the structural binding pre-
ferences of RBP.

Afterward, HDRNet utilizes a unified alignment of multi-source
feature representation, which consists of two convolutional neural
network (CNN) modules, to preliminary extract the underlying fea-
tures of both the sequence and structure, and to unify their feature
dimensionality, respectively. HDRNet then adopts two HMRNs to
analyze the sequence and structural features independently. Each
extractor comprises of CNN modules with distinct kernel size to
comprehend the contextual dependencies between the nucleotides
and their structures at varying distance, for accurate interaction pre-
diction. Thereafter, HDRNet amalgamates all the extracted features
and implements the DPRBPwith amulti-layer feature selectormodule,
which learns the underlying representation and selects the crucial
nucleotide tokens in each layer of the module. Furthermore, HDRNet
employs a sigmoid activation function on the network’s output to
forecast the binding of the RNA sequence to the protein.

Finally, we can identify and align the binding motifs of RNA
binding proteins by exploring the interpretability of HDRNet. Further,
we delved into the underlying connections between the dynamic
binding sites and human diseases by identifying the high-attention
binding regions and their potential variants. To support this finding,
our study also integrated transcriptomics to unveil disease regulatory
mechanisms, including gene ontology enrichment, KEGG pathway
analysis, protein-protein interaction network analysis, transcription
factor-gene interaction analysis, miRNA-gene interaction analysis, and
drug prediction analysis. Our analyses provide new insights into the
interpretation of RBP datasets and the treatment of human diseases.

HDRNet provides better performance than baseline methods in
static cellular protein-RNA interaction identification
Weevaluated the performanceof our proposedHDRNet by comparing
it with five other state-of-the-art computational methods, namely
PrismNet32, PRIESSTESS30, DMSK39, iDeep28, DeepBind26, and
Graphprot29 on 261 static RBP binding site datasets. The area under the
receiver operating characteristic curve (AUC) was adopted as the
performance metric for all computational methods. For each RBP
dataset, we partitioned the binding sites into training and test sets.
Then,weused the test set to benchmark all predictionmethods32. Note
that we used the data from auniformpipeline32, which ensures that the
data is accurate and consistent and that the comparison is fair.

Circos plot in Fig. 2a shows the overall experimental results of
HDRNet compared to the other methods across the 261 RBP datasets.
As depicted in this figure, we notice that HDRNet consistently out-
performed other approaches. In particular, our model substantially
enhanced the performance in identifying FMR1 and FXR2 binding sites
in HEK293 cells; for instance, FMR1: PrismNet = 0.67 vs. HDRNet =
0.80; FXR2: PrismNet = 0.71 vs. HDRNet = 0.87. Moreover, we con-
ducted additional analyses on the associated characteristics of FMR1
and FXR2, identifying their specific features (Supplementary Note 6,
Supplementary Fig. 8). Meanwhile, we notice that HDRNet out-
performed PRIESSTESS on almost all datasets. This discrepancy may
arise from the fact that PRIESSTESS is highly dependent on the motif-
extracting process in the initial stage, and may not be able to identify
salient patterns across the datasets with insufficient binding patterns,
resulting in a limited training feature set. Moreover, the size of the
dataset also plays a crucial role in influencing the efficiency of motif
recognition. When the dataset is relatively small, it can potentially
result in inaccuracies or the failure to recognize motifs, consequently

diminishing the predictive performance. In addition, the logistic
regression model based on LASSO regularization within PRIESSTESS
could yield suboptimal performance when confronted with nonlinear
decision boundaries, while deep learning methodologies tend to
exhibit more favorable outcomes. Although PRIESSTESS demon-
strated suboptimal performance, its unique Motif extraction process
could potentially enhance HDRNet, as illustrated in Supplementary
Note 3 and Supplementary Figs. 4 and 5. In the violin plot of Fig. 2b, we
observe that our proposed HDRNet performed more consistently and
hadbetter predictionperformanceon themajority of thedatasets than
the competing approaches. The reason for the improved performance
may come not only from the self-supervised capability of the trans-
former that captures the global contextual and semantic information
of the RNA sequences but also from the ability of the proposed net-
work architecture to learn and transform long-range dependencies.
We also provide the receiver operating characteristic (ROC) curve of
the first four datasets that are plotted in Fig. 2c. The ROC curve ana-
lyses demonstrated that HDRNet had a higher true positive rate (TPR)
compared to the other methods, indicating that HDRNet has a higher
sensitivity for identifying RBP binding sites. Moreover, we also iden-
tified existing sub-groups of binding events that are better character-
ized by HDRNet, as discussed in Supplementary Note 5 and
Supplementary Fig. 7. In addition,we used the t-SNE clusteringmethod
to analyze the validity of the output feature of HDRNet. As shown in
Fig. 2d, we clearly observe that HDRNet provided the best clustering
results compared with the other baseline methods, where the positive
(RNA fragment that is anRBPbinding site) andnegative (RNA fragment
that is not an RBP binding site) samples are separated, demonstrating
the superior feature extraction capability of HDRNet. In summary,
these results indicate the high effectiveness and feasibility of the
proposed HDRNet.

New insights by characterizing RNA binding events between
different cell lines in a dynamic manner
The binding of RBPs is influenced by different cellular environments,
and therefore, this binding is expected to be dynamic in diverse cell
lines. BERT extracts the dynamic semantic information from RNA
sequences globally, and is capable of revealing different RNA-protein
interactions in particular cellular conditions. We evaluated the per-
formance of HDRNet in predicting dynamic RNA-protein interactions
on 62 RBP datasets obtained from K562 and HepG2 cell lines.

Specifically, we trained HDRNet on the RBP datasets of the K562
cell line. We then used the corresponding RNA sequence information
generated by BERT and in vivo secondary structure information to
predict the RBP binding sites in the HepG2 cell line, which was per-
formed as an independent test set. Subsequently, we trained HDRNet
on the HepG2 cell line data, and used data on K562 cell line as an
independent test set. We then compared the dynamic prediction
performance of HDRNet with other state-of-the-art deep learning
methods, including PrismNet, PRIESSTESS, iDeep, DMSK, GraphProt,
and Deepbind. Figure 3a provides the heatmap of the dynamic pre-
diction results, from which we can see that the proposed HDRNet
outperformed the other methods for both K562 and HepG2 predic-
tions while Deepbind performed the worst across the majority of
datasets, with either the lowest AUC value or being incapable of
making dynamic predictions. When predicting the RBP sites in K562
cells after training on HepG2 cells, the average AUC result of HDRNet
was 0.79, which is 4% higher than PrismNet. In particular, the AUC
results of RBM15 and XRN2 RBPs are 12% and 9% higher than PrismNet,
respectively. Similarly, predicting HepG2 cells binding sites after
training on K562 cells, the average AUC result of HDRNet was also 4%
better than PrismNet. The results for RBM15, SF3B4 and SLTM also
showed improvement over PrismNet, with the performance gains of
9%, 11% and 9%, respectively. Meanwhile, we also notice that HDRNet
substantially outperformed PRIESSTESS for the dynamic tasks with
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higher AUC values while PRIESSTESS outperformed Deepbind,
GraphProt, iDeep andDMSK in terms of dynamic prediction. Figure 3b
shows the predicted vs observed binding sites of HNRNPA1 on theMT-
ND5 transcript. According to eCLIP, theMT-ND5 transcript contains 11
HNRNPA1binding sites inHepG2cells, and6binding sites inK562 cells.
We found that HDRNet correctly predicted all 11 binding sites within
the MT-ND5 transcript in HepG2 cells with no false positives, by using
themodel trained on K562 cells. In contrast, DeepBind and GraphProt,
correctly predicted only 2 of the 11 sites, and iDeep and DMSK cor-
rectly predicted 4 of the 11 sites, and PrismNet and PRIESSTESS cor-
rectly predicted 7 of the 11 binding sites. Figure 3c depicts the ROC
curves of the first two datasets. Similar to the before AUC results,

HDRNet had superior dynamic prediction than the other methods
supported by better TPR values. Furthermore, we also used t-SNE to
represent the significance of HDRNet features in dynamic prediction
tasks. As shown in Fig. 3d, we see that the clustering results of HDRNet
were still the best under the dynamic prediction task, illustrating the
superior feature learning ability and robustness of HDRNet in cross-
cell prediction. In addition, we comparedHDRNetwith sevenmachine-
learning algorithms. As shown in Supplementary Note 1 and Supple-
mentary Fig. 1, HDRNet exhibited better performance compared to
these algorithms, in both static prediction and dynamic prediction
tasks. Moreover, HDRNet had better performance for RBPs with high
and low expression levels and for target RNA events with high and low

Fig. 2 | HDRNet predicts RBP binding eventsmore accurately than other state-
of-the-artmethods. aTheCircosheatmapof the respective AUC scores ofHDRNet
vs. other methods, including PrismNet, PRIESSTESS, DMSK, iDeep, GraphProt, and
DeepBind on all 261 RBP datasets. b The violin plot of the overall results of HDRNet
and theothermethods (n = 261 ineach group; center line,median; box limits, upper

and lower quartiles; whiskers, 1.5 × interquartile range; Dunn’s test). c The ROC
curve on the first 4 RBP datasets using HDRNet and the other methods. d t-SNE
clustering results of the output features of HDRNet and the other baseline meth-
ods. Source data are provided as a Source Data file.
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expression levels in different cellular contexts, as illustrated in Sup-
plementary Note 7 and Supplementary Figs. 9 and 10. In summary, the
results indicate that the proposed dynamic contextual information
representation scheme contains comprehensive features that are
valuable for the identification of dynamic RBP binding sites.

HDRNet predicts dynamic RNA-protein interactions across tis-
sues in normal and disease conditions and captures significant
binding regions
We went on to explore the dynamic prediction capabilities of HDRNet
between different in vivo tissue contexts, especially in normal and

Fig. 3 | HDRNet successfully performsdynamicRBPbindingpredictions inboth
K562 cells and HepG2 cells. a The heatmap of the respective dynamic prediction
AUC scores of HDRNet and other baseline methods, including PrismNet, PRIES-
STESS, iDeep, DMSK, GraphProt, and deepbind. b Predicted vs observed binding
sites of HNRNPA1 on the MT-ND5 transcript. Green/Brown, observed binding sites
in K562/HepG2 cells by eCLIP, used as the training/ground truth reference data;

Blue and red indicate, respectively, true positive and false positive predictions in
HepG2 cells, based on the models trained using K562 data. c The dynamic pre-
diction ROC curve of the first two RBP datasets using HDRNet and the other
methods. d t-SNE clustering results of the output features of HDRNet and the other
baseline methods in a dynamic manner. Source data are provided as a Source
Data file.
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disease conditions. Specifically, we collected the MBNL2 (Muscleblind
Like Splicing Regulator 2) binding data44 (GEO accession: GSE68890)
from POSTAR45, which studied the regulation of MBNL proteins in
human brain tissues. In particular, a total of 5 datasets were obtained
from autospy tissues (hippocampus and frontal cortex) of patients
withmyotonicdystrophy type 1 (DM1, 2 datasets),myotonic dystrophy
type 2 (DM2, 1 dataset of hippocampus), and control patients (2
datasets). HDRNet and the baseline models, including PrismNet,
DMSK, iDeep, GraphProt, DeepBind, and PRIESSTESS were then
trained on these datasets separately, and the trained models were
tested on different tissues with different control context. As illustrated
in Fig. 4a, HDRNet had the best performance in dynamic prediction
across tissues comparing with baseline models. Moreover, we notice
that PRIESSTESS failed to optimize the binding sites in the frontal

cortex of DM1 dataset, and thus cannot perform dynamic prediction.
In addition to dynamic prediction in the same control condition, we
also observe that HDRNet demonstrated the capability of dynamic
prediction between control context. For instance, as depicted in
Fig. 4b, when predicting the DM1-frontal cortex RBP binding sites
using the control-hippocampus model, HDRNet achieved the highest
AUC of 0.8, whereas the other baseline methods only reached up to
0.7. This indicates that HDRNet could provide potential insights into
disease-related biological analyses. Indeed, as revealed in refs. 44,46,
MBNL2 directly interacts with DM1 expanded CUG repeats and DM2
CCUG expansion RNAs in the brain, which functionally depletes the
MBNL proteins. As illustrated in Fig. 4c and Supplementary Fig. 11a, by
employing the SHAP tool47 to extract high-attention dynamic semantic
information, we discovered that HDRNet successfully captured these

Fig. 4 | HDRNet Predicts dynamic binding sites across tissues. a Performance
comparison of MBNL2 dynamic prediction in different tissues in human brain.
bMBNL2 dynamic binding prediction performance comparison across normal and
disease conditions. c The high attention binding region of MBNL2 in DM2 hippo-
campus dataset captured by HDRNet. HDRNet successfully identifies the disease-

related RNA repeats. d HDRNet identifies the salient DGCR8 binding region of
G-rich segment with the G-quadruplex structure. e HDRNet outperforms other
baselines in the dynamic prediction tasks on mice tissues, using model trained on
C2C12 dataset. Source data are provided as a Source Data file.
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disease-related high-attention regions. For example, in both DM1
datasets, HDRNet highlights continuous segments of CUG expansions,
while in the DM2 dataset, HDRNet also detected significant regions of
continuous CCUG expansions. These findings further confirm the
superior biological interpretability of HDRNet and its potential to
provide theoretical support for pathological research.

Besides tissue-specific dynamic prediction, we asked whether the
HDRNet model trained using cell line data is sufficient for predicting
dynamic interactions in tissues. To clarify this, we retrieved two
additional eCLIP RBP datasets from ENCODE, DGCR8, and HNRNPU,
whichwereboth derived fromadrenal gland tissue.We then employed
the models trained on K562 and HepG2 cell line data to validate these
tissue RBP binding data. As expected, Supplementary Fig. 11b
demonstrates that HDRNet performed best when predicting the
dynamicbinding in tissue data using the cell line-trainedmodel in both
of the newly retrieved datasets. Interestingly, we observed an

improvement in the performance of PrismNet on the new eCLIP data
compared to the previous MBNL2 data, albeit slightly inferior to
HDRNet.We speculate that this improvement is due to the fact that the
PrismNet model was proposed based on eCLIP data. However, its use
of static encodings limits its performance on data from other plat-
forms, which highlights the advantage of HDRNet. Moreover, HDRNet
notably discerned the prominent binding domains of DGCR8 and
HNRNPU, including the CGG-rich segment associated with DGCR8 and
the G-quadruplex structure in the context of HNRNPU, as illustrated in
Fig. 4d and Supplementary Fig. 11c. In addition, to further validate the
robustness of HDRNet for dynamic prediction of RBP binding sites on
different data platforms, we collected MBNL1 binding data from46 that
studied the direct regulatory targets of MBNL1 in brain, heart, muscle,
and myoblasts from mice. We obtained a total of five datasets (GEO
accession: GSE39911), including two from the brain, one from muscle,
one from heart, and one frommyoblasts (C2C12 cells). As illustrated in

Fig. 5 | Validation Study of HDRNet on contextual and structure information.
a Overall static prediction performance of HDRNet using different feature
descriptors. b Dynamic prediction performance comparison of HDRNet using dif-
ferent feature descriptors (n = 62 in each group; center line, median; box limits,
upper and lower quartiles; whiskers, 1.5 × interquartile range; Games-Howell test).
c The correlation heat map of features generated by HDRNet using different NLP
descriptors. d The average AUC scores for static prediction tasks using different

NLP descriptors for HDRNet with andwithout in-vivo structure. e The performance
comparison of HDRNet using in vivo structures vs. without structural information,
with different NLP descriptors for dynamic prediction tasks (n=62 in each group;
center line, median; center dot, mean; box limits, upper and lower quartiles;
whiskers, 1.5 × interquartile range; Wilcoxon rank sum test). Source data are pro-
vided as a Source Data file.
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Fig. 4e and Supplementary Fig. 12a, HDRNet provided significant per-
formance improvements compared to other baselinemethods in each
dynamic prediction task. Furthermore, HDRNet also highlighted the
specific disease-related binding preferences similar to MBNL2, as
depicted in Supplementary Fig. 12b. Overall, the experimental results
and analyses presented above and in Supplementary Note 8 demon-
strate that only HDRNet is capable of handling dynamic prediction
tasks across different platforms and even different species, high-
lighting the remarkable effectiveness and robustness of HDRNet.
Moreover, through the investigation of RBP data from diseases, we
have observed that HDRNet is able to extract the salient binding
regions associated with diseases, thereby providing new insights for
subsequent pathological studies.

Validation of HDRNet from the contextual information and
structural perspectives
We further discuss the superiority of HDRNet from the perspective of
NLP methods and RNA secondary structure, respectively. We first
conducted experiments comparing BERT with other existing static
embeddingmethods, includingWord2Vector41, Glove35, Doc2Vector36,
FastText48, and the One-Hot coding scheme. Briefly speaking, the dif-
ference between dynamic and static methods is that dynamic encod-
ing generates different embeddings in different contexts, while the
embedding of each token is fixed in the static encoding methods.
Figure 5a depicts the consolidated results of static predictionon all 261
datasets using different feature descriptors.We notice that integrating
BERT brought the best performance compared with the other static
embedding methods, with an average AUC of 0.84 for HDRNet using
BERT on the 261 RBP datasets, much higher than One-Hot (0.83),
Word2Vec (0.80), Doc2Vector (0.80), Glove (0.76) and FastText
(0.80). The main reason is likely due to the pre-training process and
themulti-head self-attentionmechanism; words consisting of multiple
nucleotides contain more information about the word’s position and
the connection between each nucleotide and its context. We then
evaluated the performance of the dynamic embedding method and
static embedding methods on the dynamic prediction task using
HDRNet. First, to predict the RBP binding sites in K562 cells using
HepG2 models, we observe in Fig. 5b that HDRNet using BERT as the
feature descriptor performed the best of all the NLPmethods, with an
averageAUCof0.81, better than the other encoding schemes,One-Hot
(0.71), W2V (0.75), D2V (0.74), Glove (0.75), and FastText (0.75).
Indeed, we found that the static NLP methods do not provide better
RNA-RBP binding recognition performance, also indicating that static
coding schemes do not represent the contextual information of
nucleotides. Second, we evaluated the performance of predicting
binding sites inHepG2 cells using theK562-trainedmodel. As indicated
in Fig. 5b, BERT still achieved the highest performance (0.78) despite a
decreased difference in results between BERT and static NLPmethods.
In addition, Fig. 5c visualizes the correlation heatmap of features
generated by HDRNet using different NLP descriptors, where we
observed that the features generated by HDRNet using BERT showed a
stronger correlation than the other static descriptors, indicating that
HDRNet effectively learns the contextual dependence of the RNA
sequence via the dynamic contextual information generated by BERT.
These evaluation results demonstrate the superior adaptability of the
dynamic global contextual information generated by BERT, which
contains rich context dependencies of nucleotide sequences in dif-
ferent cellular conditions, providing better adaptability in dynamic
prediction tasks.

Then, to further investigate the advantage of adding in vivo sec-
ondary structure information in vivo, we conducted several experi-
ments to dissect how RNA sequence and structural information
contribute to the accurate prediction by HDRNet. Firstly, we evaluated
the performance of HDRNet with or without the secondary structure
information in static prediction tasks, respectively. As expected,

Fig. 5d shows that the HDRNet model adding secondary structure
features outperformed the model without structural information for
almost all RBP binding prediction, indicating that RBPs incorporate
structural preferences for binding recognition, and that secondary
structure features enrich the static representation from a biological
perspective leading to improved prediction results. In addition, we
evaluated the impact of secondary structure information on the per-
formance of dynamic binding site predictions. As depicted in Fig. 5e,
we observed a significant reduction in accurate dynamic prediction
when only sequence features were used as input data in HDRNet.
Moreover, we extended our evaluations to include other in vivo or
computationally predicted secondary structure features, and eval-
uated theperformanceofHDRNet using various combinations of these
different structural feature descriptor. As illustrated in Supplementary
Note 2 and Supplementary Figs. 2 and 3, the original HDRNet con-
sistently demonstrated optimal performance, indicating that the
structure is relevant to RBP-RNA binding and the robustness of
HDRNet.

Evaluation of hyperparameter selection and ablation study
We explored the impact of several key parameters on HDRNet func-
tioning. We first investigated the performance of different k-mer sizes
in HDRNet, including 3bp to 6bp. As visualized in Fig. 6a, we note that
the 3-mer model achieved the best AUC value of 0.875, surpassing the
4-mer, 5-mer, and 6-mer models, achieving 0.868, 0.862, and 0.869,
respectively. We found surprisingly only a slight decrease in perfor-
mance as the value of K increased, which is in contrast to the results of
previous studies49.We speculate that the reason for this is thepowerful
feature learning capability of HDRNet, able to extract important
information from dynamic embeddings at different levels. After the
Hierarchical Multi-scale Residual Network and before DPRBP, we also
tried a different way to combine features by adding sequence features
and structural features together instead of stringing them together.
The experimental results are summarized in Fig. 6b, we observe that
the concatenated features outperformed the summed features, andwe
speculate that this is because summing up two features destroys the
feature construction learned by the hierarchical network, which leads
to a decrease in performance.

Then, to assess the contribution of each component in our pro-
posed deep network architecture, we ablated each component of
HDRNet as follows: (1) We first removed the Hierarchical Multi-scale
Residual Network and DPRBP and replaced them with a fully con-
nected network, called HDRNetDUSO; (2) We employed only the DPRBP
stage of HDRNet for prediction, called HDRNetDPRBP; (3) We tested
HDRNet without the Hierarchical Multi-scale Residual Network, called
HDRNetNMVRS

; (4) We replaced the max-pooling layer of DPRBP in
HDRNet with an average-pooling layer, called HDRNetAVGpool. As
depicted in Fig. 6c, the performance of HDRNet outperformed all the
ablated frameworks, with an optimal AUC value of 0.88. Indeed, with a
fully connected network, HDRNetDUSO is unable to provide accurate
predictions, indicating that DPRBP has significant feature extraction
and prediction ability. Furthermore, using only DPRBP, the perfor-
mance of HDRNetDPRBP decreased by 4%, demonstrating that multiple
deep learningmechanisms are effective in learning and integrating the
underlying features of sequence and structure information. Moreover,
the proposed HDRNet is higher than HDRNetNMVRS

without the Hier-
archical Multi-scale Residual Network (0.86). In depth, to intuitively
visualize the featuremaps ofHDRNet andHDRNetNMVRS

, the correlation
heatmaps are depicted in Fig. 6d.We canclearly observe that therewas
a significant positive and negative correlation in theHierarchicalMulti-
Scale Resnet output, allowing us to accurately identify RNA-RBP
binding. Additionally, we highlighted the advantages of the hier-
archical structure, as discussed in Supplementary Note 4 and depicted
in Supplementary Fig. 6, demonstrating the necessity of the Hier-
archical Multi-scale Residual Network.
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Furthermore, after each DPRBP block, the sequence length is
halved using pooling layers that preserve themost important features.
We conducted an experiment to investigate the impact of various
pooling layers, employing either the maximum pooling layer or the
average pooling layer. Figure 6c shows that the average AUC of
HDRNet with the maximum pooling layer and the average pooling
layer is 0.88 and 0.86, respectively. To further demonstrate the influ-
enceof themaximumpooling layer, we projected the embedding layer
into two dimensions using t-SNE and annotated them with the true
labels in order to display the features extracted by the two pooling
layers of HDRNet as summarized in Fig. 6e. We can clearly see that the
positive and negative samples were separated, and the clustering
effect of HDRNet using themaximumpool was clearly better than that
using the average pooling. A potential reason could be that the max-
imum pooling layer always selects the features of the most prominent
tokens, resulting in the most prominent features being kept until the
end,whereas the averagepooling layer fuses the featuresof each token
together, resulting in the loss of important information. In conclusion,
the results indicate the validity and reasonableness of each HDRNet
component.

HDRNet’s attenations reveal biologically meaningful inter-
pretable learning patterns and motif inferences
The self-attentive mechanism can capture critical RNA sequence
fragments, hence enhancing the ability to recognize motifs50. To
identify motifs by our HDRNet, we put all of the RNA sequences
through BERT’s fine-tuning process and generated an attention vector
for each sequence. Then, we used the attention vectors to find con-
secutive high-attention segments using sliding windows and aligned
related subregions as the final binding motifs. Once all high-attention
sequence fragments were recovered, their nucleotide occurrences

were counted and transformed into position weight matrices (PWMs).
As visualized in Fig. 7a, a total of 172 motifs were found that matched
the known RNA-bindingmotifs of RBPs. Interestingly, RBPs involved in
the same RNA regulatory pathways were generally grouped together
via hierarchical clustering. We then utilized the TOMTOM tool51 in the
MEME Suite to match the authenticated motifs in the ATtRACT data-
base with themotifs discovered by the transformers. As can be seen in
Supplementary Table 1, the extractedmotifs from the transformers are
very comparable to known motifs. We also showed that the dynamic
contextual embedding takes into account the location of global words
and supports out-of-vocabulary words by implementing a multi-
headed self-focus mechanism, thus flexibly adapting to multiple cases
of motif pattern extraction.

Moreover, the SHAP tool47 was employed to extract high-
attention dynamic semantic information. We found unexpectedly
that HDRNet captured the binding peaks associatedwith the extracted
motifs and identified the structural preferences of the binding events.
Taking the input sequence of RBP TIA1 in Hela cells as an example,
Supplementary Fig. 13 reflects the impact of each token of the input
dynamic contextual feature and the icSHAPE structural information,
where HDRNet successfully captured the poly-U binding motifs with
structural preference of single-stranded, which is in line with the
confirmations of earlier investigations32 (Supplementary Note 10). In
addition, HDRNet can successfully identify specific binding events in
different cellular conditions. The saliency maps of the dynamic pre-
diction of RBP LIN28B are presented in Fig. 7b, where the top strip
plots the potential binding motifs; the second strip is the heatmap of
the sequence attention scores; the third strip indicates the specific
sequences; and the bottom strip contains the icSHAPE scores repre-
sented as a line plot and structural attention heat-map. From this we
understand that HDRNet was capable of identifying dynamic binding

Fig. 6 | Ablation study of HDRNet. a The overall performance comparison of
HDRNet using different k-mer representations of BERT (n = 20 in each group;
center line, median; box limits, upper and lower quartiles; whiskers, 1.5 × inter-
quartile range). b The impact of different feature representations when con-
catenating and adding. c Performance comparison of the various deep network

architectures of HDRNet. d Visualization of the HDRNet feature map with and
without the Hierarchical Multi-scale Residual Network. e t-SNE clustering visuali-
zation of the output of DPRBP with max-pooling layer and average-pooling layer,
respectively. Source data are provided as a Source Data file.
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events of the same transcript in different cells, as depicted in Fig. 7b,
showing that the binding probability of the local region is 0.948 in
HepG2 cells and 0.002 in K562 cells, respectively, indicating the pos-
sible existence of diverse gene expression in the different cells. Then,
as shown in Fig. 7c, we used the HepG2 model to scan the K562 data,
andwe observed that the LIN28B binding fragmentwith high attention
was highlighted by HDRNet (GAGAAGA). Similarly, we used the K562
model to scan HepG2 data and we obtained the same binding peak as
with the K562 data. Moreover, we noticed that LIN28B RBP shares the
same structural binding preference (single-stranded) in both K562 and
HepG2 cells, since the icSHAPE score of the obtained binding peaks
regions was >0.8. These results demonstrate the potential of HDRNet
for biological interpretability tasks. We also evaluated the advantages

of adopting the dynamic global contextual embedding, by exploring
the distribution of attention weights in BERT from HDRNet. As shown
in Supplementary Note 11 and Supplementary Fig. 14, we see that the
selected tokens did not decay noticeably with increasing distance,
indicating that BERT successfully learned and preserved the long-
distance dependencies and short-distance context of the sequence.

In addition, we explored the contribution of the refined in-vivo
biological features and the dynamic contextual information for RNA-
RBP binding event identification. The analyses results are depicted in
Fig. 7d, e. First, we extracted the output featurematrixof eachphaseof
HDRNet during the training process and projected it onto a two-
dimensional spaceusing t-SNE tobetter explain the learning processof
HDRNet. As shown in Fig. 7d, the first subplot represents the t-SNE

Fig. 7 | Interpretation study of HDRNet. a Circos plot of the extracted binding
motifs of all 172 RBP datasets. RBPs involved in the same RNA regulatory pathway
are generally grouped together via hierarchical clustering. b LIN28B binding
probabilities and saliencymaps inHepG2 andK562 cells and the visualization of the
RNA structure. c Saliency maps of RBP LIN28B under dynamic prediction tasks,
where thedynamicbindingmotif regions are successfully identifiedbyHDRNet and

highlighted. d t-SNE clustering results of the output featuremap HDRNet. It can be
clearly observed that the positive and negative clusters becomedistinct as HDRNet
processes. e The attention distribution visualization measured by the SHAP tool,
where the potential binding peak is highlighted. Source data are provided as a
Source Data file.
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clustering results of the output features of the dimensionality reduc-
tion and up-sampling network, where the prototype of each cluster
appeared; the second subplot displays the t-SNE results of the output
features of the multi-scale ResNet, where the features have a regular
distribution. The last subplot reveals the t-SNE results after processing
by DPCNN, where we can clearly observe a distinct clustering result,
demonstrating the robustness of the HDRNet architecture. Figure 7e
depicts the impact of dynamic contextual information of RNA
sequence and icSHAPE structural features on identification of RNA-
RBP binding events after the learning of the deep neural network in
HDRNet, where the higher SHAP values denote that the particular
feature plays a greater role in the final prediction decision, namely the
high-attention region. FromFig. 7e, it is evident that the regions of high
attention for both dynamic contextual information and secondary
structure information were located in the same continuous tokens,
forming a binding peak that may represent the final binding point. In
addition, we observed that the dynamic contextual information was
given greater weight with higher SHAP values than structural infor-
mation, indicating that RNA sequence information is more relevant
than RNA secondary structure information for predicting RNA-RBP
interaction events. On this basis, we confirmed the effectiveness of the
suggested deep network architecture and the possible biological
interpretability of HDRNet.

Identification and visualization of TDP-43 binding patterns
under potential genetic variants
Genetic variants (GVs), primarily including Single-Nucleotide Poly-
morphisms (SNPs) and Single-Nucleotide Variations (SNVs), are per-
manent changes in the nucleotides of DNA sequence that makes up a
gene. The alternative alleles of a GV may confer different binding
specificity to an RBP since each RBP has its own sequence specificity,
implying that GVs may disrupt the identification of RNA substrates by
the RBP, resulting in allele-specific functional consequences and
leading to severe diseases52.

TARDBP, or TDP-43 (TAR DNA binding protein 43) protein that
binds to DNA and RNA, plays an important function in intracellular
RNA transcription, selective shearing, and regulation of mRNA
stability53. Many studies have demonstrated that TDP-43 is associated
with cancers54 and severe neurological disorders such as epilepsy,
amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTLD)
and Alzheimer’s disease (AD)55–58. To further elaborate the relationship
between TDP-43 binding properties and disease-related genetic var-
iants, we first used HDRNet to scan the TDP-43 dataset and obtained a
total of 10589TDP-43 binding sites (5231 binding sites inK562 cells and
5298 binding sites in HEK293 cells, respectively). By comparing with
the dbSNP59 and COSMIC databases60, we found that the TDP-43
binding sites were enriched with a substantial number of SNP and SNV
mutant alleles, especially in the high-attention regions identified by
HDRNet. To elucidate the correlation between diseases and potential
genetic variants identified by HDRNet, we conducted experiments to
observe binding behavior after applying a transformation to the var-
iant alleles. As shown in Fig. 8 and Supplementary Fig. 15, we found a
decreasing trend of TDP-43 binding to RNA in most of the transcripts,
where alteration in the variant resulted in significant changes of
binding events in the high-attention region; for example, in transcript
ENST00000547986 fromK562 cells shown in Fig. 8a, amutation of the
poly-U binding peak at position 94,971,529 on chromosome 12 resul-
ted in a significant reduction ofbinding in this local region, leading to a
risk of breast and lung tumor; in transcript ENST00000533549 of K562
cells shown in Fig. 8c, the SNVmutation associated with large intestine
tumor also affects the TDP-43 binding event in the adjacent region,
suggesting that this genetic variant may affect gene regulation and
thus lead to possible disease pathogenesis. Notably, we observed that
nucleotide mutations lead to potential RNA structural changes, as
demonstrated in Supplementary Note 13 and Supplementary Figs. 16-

17. In addition, as depicted in Fig. 8f in transcript ENST00000533549of
HEK293 cells, intron variant located at chr10:100517088 also reduced
the binding tendency and is also associated with large intestine tumor.

Notably, we show that the dynamic binding events of Fig. 8c, f
located in the NDUFB8 transcript were highly associated with the large
intestine cancer, indicating that the disruption of such dynamic RNA-
RBP interactions are potential links with carcinogenesis. In summary,
we can conclude that these analyses validate the biological interpret-
ability of HDRNet to identify potential genetic variants and reveal
underlying associations of the RBP binding sites with human diseases.

Characterizing human disease-associated RNA and protein
interactors with TDP-43 from a transcriptomic angle
After examining the latent relationship between RBP binding sites and
human disease, we continued to study the link between RBP dynamic
binding and human disease with a view of functional genomic and to
find possible medical interventions from a transcriptomic angle. After
obtaining TDP-43 binding sites, we mapped the binding transcript IDs
to gene symbols and defined these genes as TDP-43-binding genes. In
particular, the shared mapped binding sites were defined as dynamic
binding genes. Firstly, we examined the interrelationships between the
TDP-43 binding sites in K562 and HEK293 cells. Among the identified
binding sites, 1063 binding genes (BGs) for K562 cells and 1894 BGs for
HEK293 cells were recoginzed. The Venn diagram61 in Fig. 9a shows
that the two cell lines shared 544 TDP-43 BGs. Then, we used Enrichr62

to perform a gene ontology enrichment analysis on the 544 TDP-43
binding genes of K562 and HEK293 cells. This helped us to understand
what theymightmeanbiologically andwhich pathways were enriched.
Then, we used the GO database as an annotation source to annotate
three types of gene ontology analysis: biological processes, molecular
function, and cellular components. The top 10 terms of these three
categories based on p-value are depicted in Fig. 9b. For the biological
processes, cytoplasmic translation (41 genes) and gene expression (68
genes) were among the top GO terms. Indeed, it has been disclosed
that in ALS motor neurons, especially neurons with mislocalized TDP-
43, the amount of TARDBP mRNA is increased in the cytoplasm63, and
is involved in other cellular processes such as microRNA biogenesis,
apoptosis, and cell division64. In the molecular function experiment,
we saw RNA binding (220 genes) and mRNA binding (55 genes) were
the two topGO terms. It is known that RNAbinding proteins (RBPs) are
highly associated with neurological diseases65, corroborating the cru-
cial need for studying and predicting RNA-RBP interactions. The
nucleus (265 genes) and intracellular membrane-bounded organelles
(283 genes) were the top GO terms for cellular components. Previous
research has demonstrated a significant loss of neurons within the
lateral part of the pedunculopontine nucleus in individuals with idio-
pathic Parkinson’s disease and in individuals with combined Parkin-
son’s andAlzheimer’s diseases66, revealing the association between the
nucleus and the neurological disease. In addition, variations in intra-
cellular membrane-bounded organelles are likewise a potential cause
of neurological disorders67,68.

Further, we performed KEGG pathway analysis on the 544 shared
TARDBPbinding genes betweenK562 cells andHEK293 cells, revealing
that the organism is capable of reacting to inherent modifications.
KEGG pathway analysis can demonstrate the interaction between
various diseases through basic molecular or biological processes69.
The most significant pathways of the genes in K562 cells and HEK293
cells of the TARDBPbinding sites evaluated byp-value are summarized
in Fig. 9b. Among the top 10 KEGGhuman pathways listed, we observe
that they were highly associated with neurological diseases, including
Parkinson’s disease (PKD)70, Amyotrophic lateral sclerosis (ALS)56,
Huntington’s Disease (HD)71, Prion Disease (PD)72, and Alzheimer’s
disease (AD)73.

In another context, we fed the TARDBP binding genes into the
STRING74 to build a protein–protein interaction (PPI) network to
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visualize the interactions and adhesion pathway. As depicted in Sup-
plementary Fig. 18 and Supplementary Note 14, a total of 537 nodes
and 1851 edges were obtained, where neurological disease-related
genes are highlighted (PKD - red, ALS - blue, HD - green, PD - yellow, AD
- pink, a total of 68 genes, see Supplementary Figs. 18 and 19), and we
observed that these genes are highly correlated and clustered. Fig-
ure 9c depicts the most significant disease-related genes, including a
total of 28 genes. Then, the Molecular Complex Detection (Mcode)
plugin75 in Cytoscape was adopted to identify the most important
modules, as shown in Fig. 9d. Further, the top three hub genes were
selected by the Cytohubba plugin in Cytoscape76 using the MCC
method76. As shown in Fig. 9e, the top three hub genes were NDUFA12,
NDUFB9 and NDUFB8, and mutations in these genes are new causes of
complex I deficiency77–79, which is known to be associated with Par-
kinson’s disease80. Moreover, focusing on these top hub TARDBP
binding genes, we performed the pan-cancer analyses to characterize
the differential expression of these genes in various cancers using
TIMER81 (Supplementary Note 15). As depicted in Supplementary
Fig. 20, we observe that the human disease-related TDP-43 binding
genes were also significantly differentially expressed between tumors

and normal tissues in human cancers. Notably, some of the cancers
identified (Breast Cancer (BRCA), Lung Squamous Cell Carcinoma
(LUSC), Lung Adenocarcinoma (LUAD) and Colon adenocarcinoma
(COAD) were consistent with those we found in RBP binding site
mutations, thus corroborating the potential association of RBPs with
cancer. In addition, Supplementary Fig. 21 in Supplementary Note 16
depicts the hub gene-disease association network, where we found a
possible link between liver tumors and subunits of NADH dehy-
drogenase. Supplementary Figs. 22–23 in Supplementary Note 17
showed the interaction network of TFs and miRNAs and the disease-
related genes, and we indeed observed diseases related to the nervous
system. Basedon the identifieddisease-linkedbinding genes,wefinally
investigated possible drug molecules for treatment of neurological
disorders, as tabulated in Supplementary Table 2 and Supplementary
Note 18.

Discussion
Cross-linked immunoprecipitation sequencing technology enables the
high-throughputmeasurements of RNA-binding protein (RBP) binding
patterns at the transcript level, accounting for the dynamic cellular

Fig. 8 | Identification and visualization of potential disease-causing genomic
variants. a Disruption of the TDP-43 binding site in the coding region of NDUFA12
contributes to the risk of breast and lung tumors, respectively. b An SNP variant in
the coding region of NDUFB9 leading to reduced binding affects gene pleiotropy.
c An SNV variant that alters the coding sequence affects binding events in a local
region and plays a role in colorectal tumors. d Weakening of the 3’UTR variant at

the NDUFA12 binding site in HEK293 cells. e Potential variant affecting the NDUFB9
binding events. f Transcript variants occurring in introns, where the SNV variant
located in chr10:100517115 is associated with large intestine tumors. g Variants of
the 5’UTR that are associatedwith large intestine tumors. Source data are provided
as a Source Data file.
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conditions. However, current computationalmethods have limitations
in considering the diversity of cellular conditions, which poses a sig-
nificant challenge for predicting the cross-prediction events between
RNAs and proteins in different cells. Here, we proposed an end-to-end
deep learning-based framework to precisely predict dynamic RBP
binding events across diverse cellular conditions. Specifically, we
adopted multi-source biological information including the dynamic
global contextual embedding and the in-vivo RNA secondary structure
profile to characterize both the sequence and structural properties of
RNA. Then, a unified alignment of multi-source feature representation
was employed to generate potential feature maps with dimensional
homogeneity for both biological representation. After that, we pro-
posed a hierarchical multi-scale residual network to comprehend the
contextual dependencies between the nucleotides and their structures
at varying distances. Finally, a deep protein-RNA binding predictor
with a multi-layer feature selector module was developed to learn and
select the underlying key nucleotides tokens and employed a sigmoid
function to forecast the binding of the proteins to RNA sequences.

We compared HDRNet with five RBP prediction methods in static
cellular protein-RNA interaction identification. The experimental
results showed that HDRNet had the best prediction performance,
outperforming all comparedmethods onmost benchmark datasets. In
particular, HDRNet was able to efficiently learn implicit representa-
tions of RNA sequences and structural information. Meanwhile,
HDRNet brought new insights by characterizing RNA binding events
between different cell lines in a dynamic manner. Specifically, we
trained HDRNet on the RBP dataset of K562 or HepG2 cells, and then
predicted the RBPbinding sites in the other cell line as an independent
test set. We compared the dynamic prediction performance of
HDRNet with the 5 benchmark methods, and found that HDRNet
outperformed other methods on both K562 and HepG2 cells. HDRNet
successfully predicted all binding sites of RBP HNRNPA1 on the MT-
ND5 transcriptwith no false positives.Moreover,HDRNet pioneeringly
accomplished cross-tissue dynamic prediction tasks and successfully
highlighted the significant binding regions, illustrating the robustness
of HDRNet in dynamic prediction.

Fig. 9 | Transcriptomic analysis of human disease-associated RNAs and pro-
teins interactingwithTDP-43. aTARDBPbinding site datasets fromK562 cells and
HEK293 are integrated. The integrated analysis revealed 644 shared TARDBP
binding genes between the two cell lines. b Bar graph representing the biological
process, molecular function, cellular component and KEGG pathway enrichment

ontological analysis of shared TARDBP binding genes (two-sidedWilcoxon test and
adopt BH to adjust p-values for multiple comparisons). c The protein-protein
interaction network of the TDP-43 binding genes for neurological diseases locali-
zation. d PPI networks inMCODE analysis. e The top three hub genes in CytoHubba
analysis. Source data are provided as a Source Data file.
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In addition, HDRNet can also elucidate the underlying binding
motifs from the dynamic global contextual embedding. We obtained a
total of 172 motifs and discovered that RBPs involved in the RNA reg-
ulatory pathways were generally grouped together via hierarchical
clustering. In addition, we found that HDRNet can detect the specific
binding-peak by capturing the attention of the input data, thus
enabling the identification of specific binding events in different cel-
lular conditions. Then, through comparison with the genomic variants
dataset, we identified that HDRNet captured high attention regions
enrichedwithmutable alleles, and that alterations in these variants had
significant changes in binding events in these high attention regions,
revealing a potential link between RBP binding sites and human dis-
eases. We also investigated the interrelationships between RBP bind-
ing sites and human diseases from a transcriptomic perspective by
mapping the binding sites onto gene symbols and performing a series
of genomic analyses, andprovidedpossible drugmolecules fordisease
treatment.

In summary, HDRNet discards the traditional RNA sequence
representation and uses multi-source biological information to char-
acterize the binding patterns of RNA binding proteins. As a new deep-
learningmethod, HDRNet can simultaneously perform both static and
dynamicRBP binding prediction, potential feature extraction, binding-
peak identification, and interpretability analyses.

Methods
Data processing
For each RBP dataset, the resulting peaks were defined as binding
sites, and the top 5000 binding sites with the most confident peaks
were reserved for training and test sets as positive samples32. Among
these, the length of each binding site was fixed at 101 nt while a
region shorter than 101 nt was extended from the middle to both
sides and a region longer than 101 nt was cut off from both sides. In
addition, 10000 negative samples were generated by randomly
selecting 101 nt from the whole transcriptome. Then, we labeled the
positive samples as ’1’ and negative samples as ’0’. For each RBP
dataset, we constructed a HDRNetmodel for each cell line separately.
During the training of each RBP dataset, 20% of the samples were
randomly selected as an independent test set to evaluate the per-
formance of the model. Among the remaining 80% of the training
samples, 20% of the training samples were randomly selected as the
validated set to optimize the model parameters, while the rest of the
data was considered as the training set. For convenience, we have
provided all datasets and the BERT model on the website https://doi.
org/10.6084/m9.figshare.24132423.

In-vivo RNA secondary structure representation
In general, the function of RNA is closely related to its complex fol-
ded secondary and tertiary structures. In addition, RNA secondary
structure motifs are essential for the regulation of several biological
procedures, such as protein binding, subcellular localization, and
RNA decay82. Therefore, it is essential to effectively identify RNA
secondary structure features for precise RBP binding prediction.
Although computational methods of structural analysis can also yield
predictions of RNA structure from sequences with a certain degree of
accuracy, the predicted RNA structures do not reflect the real
situation under dynamic cellular conditions, which greatly limits
dynamic RBP prediction. In vivo click selective 29-hydroxyl acylation
and profiling experiment icSHAPE83 pipeline allows for the genera-
tion of RNA structure profiles, providing insights into the dynamic
nature of RNA structure across the entire transcriptome from in vivo
experiments, enabling the global and accurate characterization of
the relationship between RNA structure and RNA binding protein
(RBP) interactions84,85. In particular, icSHAPE is a chemical
modification-based approach, which is known for providing the
natural reflection on RNA folding.82. Lastly, another key factor is the

widespread acceptance and usage within the research community of
icSHAPE84,85, and this tool has garnered significant support and is
backed by high-quality data. Thus, in our study, we adopted the
icSHAPE technique to characterize the in vivo RNA secondary
structure in different cellular conditions.

Briefly, the icSHAPE structure score R is calculated based on
reverse transcription (RT) counts and polymeric sequencing coverage
(base density, BD) on individual bases, where each mapped read
contributes anRTvalue for thefirst baseupstreamof the starting point
of the mapping and a BD value for all bases covered. For each
sequence, the window of sizewSize is initialized in the 5’ direction and
slid to the 3’ direction with window stepwStep. Indeed, the RT and BD
between two replicates of the DMSO library and theNAI library of each
base are combined by direct addition as follows:

rCi = r
C1
i + rC2i ð1Þ

rTi = r
T1
i + rT2i ð2Þ

bC
i =b

C1
i +bC2

i ð3Þ

1≤ i≤wSize ð4Þ

where rCi is the RT of the DMSO library, rTi is the RT of the NAI library,
and bC

i is the BD of the DMSO library. Then, these values are normal-
ized by dividing by the average of the previous 90% to 95% values:

rCi = r
C
i =r

C
q95 ð5Þ

rTi = r
T
i =r

T
q95 ð6Þ

bC
i =b

C
i =b

C
q95 ð7Þ

1≤ i≤wSize; ð8Þ

where rCq95, r
T
q95, and bC

q95 are the calculated normalization factors for
each replicate. On this basis, the enrichment signal is computed as
follows:

ei =
rTi � α × rCi

bC
i

ð9Þ

where α is the subtraction factor to measure the effect of background
noise from the DMSO sample in the signal of the NAI-N3 sample.
Finally, the resulting icSHAPE score is normalized to [0, 1] as below:

Ri =
min 1,max 0,

ei�eq5
eq95�eq5

� �� �
, bC

i ≥ 200

NULL, bC
i <200

8<
: ð10Þ

where eq5 is the bottom 5% signal value and eq95 is the top 95% value. In
the final icSHAPE score, it is noteworthy that only nucleotides with
more than 200x coverage are considered as effective quality control.
Accordingly, we process the RNA sequences using icSHAPE, and each
RNA fragment generates an equal-length vector of real numbers
representing secondary structural features as the input of the
identification of RNA binding events in various cellular conditions.

Dynamic global contextual embedding
To characterize the sequence information of RNA, traditional one-hot
encoding methods for RNA sequence information characterization
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focus solely on the sequential alignment of nucleotides, neglecting the
biological properties and contextual information of RNA sequences,
thus restricting the performance of the model. We thus adopted the
Bidirectional Encoder Representations from Transformers (BERT)
model43, a self-attention-based language representation model, within
the HDRNet framework to generate the dynamic global contextual
information for RNA sequences in diverse cellular conditions. Bene-
fitting from the multi-head self-attention mechanism, BERT has been
widely used for capturing the long-range dependencies between
tokens in sequential data (discussed in Supplementary Note 19).
Inspired by ref. 50, we first converted all the input data into k-mer
tokens. For instance, given an RNA sequence ’ACGUGA’, we can obtain
fragments {ACG, CGU, GUG, UGA} after 3-mer processing. Then, we
added two special tokens, [CLS] and [SEP], denoting the beginning and
end of the sequence respectively, to each RNA sequence. Following
this, all the input tokens were embedded into dynamic feature vectors
of 768 dimensions, resulting in the construction of a feature matrix X
for each sequence. To generate the weighted sum of the feature vec-
tors across all tokens, we utilized a multi-head self-attention module.
This module employs a multi-headed attention mechanism to capture
the dependencies between tokens, resulting in a weighted sum of
feature vectors as follows:

Output = MultiHead ðQ,K,VÞ= Concat ðhead1, :::,headhÞWO ð11Þ

headi = Attention ðQ,K,VÞ ð12Þ

Attention ðQ,K,VÞ= softmax
QKTffiffiffiffiffiffi

dk

p
 !

� V ð13Þ

Q =X �WQ
i

K=X �WK
i

V=X �WV
i

8>><
>>: ð14Þ

where Q,K,V denote Query, Key and Value, respectively, which are
projected through h diverse transformers encoder.

ffiffiffiffiffiffi
dk

p
stands for the

scaling factor to control the magnitude of the dot product.
fWQ

i ,W
K
i ,W

V
i g

h

i=0 are trainable parametersmatrices of Query, Key, and
Value vectors of the i-thhead, respectively, andWO is the learnt weight
matrix of the final linear projection of multi-heads. After L such
transformation layers, the model is capable of learning rich global
semantics and encoding tokens into dynamic embedding representa-
tions. On this basis, we extracted the hidden states from the final layer
of the model as numerical representations and removed the special
markers [CLS] and [SEP] that are added at the beginning and endof the
sequence. Additionally, the BERT architecture used in our work has 12
transition layers, each of which has 768 hidden units and 12 self-
attention heads, and the weights of the model were obtained from
ref. 50. This attention mechanism enables the model to dynamically
focus on the crucial nucleotide in the sequences under different
cellular conditions and capture the contributions of features at
individual tokens to facilitate the final prediction.

Hierarchical deep neural networks
After obtaining multi-source biological characteristics of RNA
sequences, an end-to-end hierarchical deep neural network was
designed to simultaneously learn feature representation and identifi-
cation via explicit modeling of those RBP binding data, as depicted
in Fig. 1.

Unified alignment of multi-source feature representation. As
expounded in the preceding section, we presented two distinct

methods for characterizing RNA sequences. The first approach
involved in vivo secondary structure representation produced by
icSHAPE, while the second approach utilized dynamic global con-
textual sequence embedding generated by BERT. However, as the
distributions of the two feature descriptors differ, a unified alignment
model was developed to extend and extract structural and sequence
features respectively, which can effectively capture global features of
the in vivo secondary structure representation and local features of
dynamic global contextual sequence embedding.

Considering the structural information, we first embedded the
RNA sequences of the RNA-RBP binding datasets into a one-
dimensional vector of size d, which is defined as
S = [s1, s2, s3, s4,⋯ , sd], where si denotes the i-th in-vivo RNA secondary
structure score. We can clearly observe that the structural feature
vector has a small number of channels, which limits the global struc-
tural information contained in the in-vivo RNA secondary structure
representation. To address this limitation, we first fed such one-
dimensional vector into a CNN block to enrich the global dependence
of the structural information, as follows:

~S = FC ðSÞ ð15Þ

FC ðxÞ= ReLUðBNðConv ðxÞÞÞ ð16Þ

Conv ðxÞ=
Pl
i = 1

Wc,i � xn, i�pl
if pl < i<pl + l

0 else

8><
>: ð17Þ

where FC is the customized sequential CNN block designed to detect
the local sensitive regions of RBP binding. Conv(x) denotes a 1D-
convolutional layer with a learnable convolutional kernel W∈Rd of c
channels and a padding pl to ensure that the input and output sizes are
identical. After that, to enhance the ability of the model to detect
sensitive regions and to avoid overfitting, we add a batch normal-
ization layer (BN)86 after the convolution layer as follows:

BN ðxÞ= γ x � EðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðxÞ+ ε

p
 !

+ β ð18Þ

where γ and β are learnable parameters in the batch normalization
layer. E(x) and Var(x) represent the mini-batch average and variance,
respectively, and ε is added for numerical stability. During the training
process, the batch normalization layer continuously updates running
estimates of the mean and variance, which are used for normalization
during evaluation. These running estimates have a defaultmomentum
value of m=0.1. The current estimate x̂ is calculated as a combination
of the normalized input x, the previous estimate x̂p, and the
momentum value m using the formula:

x= ð1�mÞ× x̂p +m× x̂ ð19Þ

Then, to retain and enhance the learned RBP-sensitive regions and to
prevent the gradient from vanishing, the Rectified Linear Unit
activation function (ReLU)87 was employed to efficiently transfer the
gradient, thus accelerating the convergence of the model as follows:

ReLU ðxÞ= x if x >0

0 else

�
ð20Þ

In line with the approach taken for structural features, we applied a
similar procedure to the BERT features. However, unlike secondary
structure features, BERT features possess a higher number of channels,
which presents an issue of global information being overly rich, thus
disregarding the local dependence of nucleotides. Therefore, for BERT
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features, we also utilized CNN modules with varying numbers of
channels to extract and enrich the local information of the BERT
features.

Hierarchical multi-scale residual network. To capture the hier-
archical relationships between the nucleotides and their structure, we
developed a hierarchical multi-scale residual network to capture the
contextual dependencies between the nucleotides and their structure
in an exhaustive manner. In comparison with traditional conventional
convolutional neural networks (CNNs), residual neural networks
(ResNet) have been shown to improve information flow and prevent
the vanishing gradient problem, which often leads to overfitting in
deep neural networks88 (also discussed in Supplementary Note 19). As
mentioned previously, the Unified Alignment of Multi-source Feature
Representation was utilized to obtain the unified multi-source biolo-
gical features. To further investigate the potential representations of
these multi-source biological features, we constructed a hierarchical
multi-scale CNN network with multiple sequential CNNmodules, each
of which has a different scale, to capture the potential different dis-
tance dependencies, which is represented as follows:

MultiScale ðxÞ= ~O1ðxÞ, ~O2ðxÞ, ~O3ðxÞ, ~O4ðxÞ
��� ��� ð21Þ

~OjðxÞ=
Y
j

FCj
ðxÞ

� �
ð22Þ

FCj
ðxÞ= Fj � xi+p�1 = ReLU BN wj � xi +p�1 +b

� ��
ð23Þ

j 2 f1, 2, 3, 4g ð24Þ
where ∣∣ ⋅ ∣∣ denotes the concat operation, ~OjðxÞ denotes the output of
each scale network, FC denotes a CNN block consisting of a one-
dimensional convolutional layer, BN layer and ReLU activation, w is a
learnable convolutional kernel, and b is a bias term. ∏j denotes j
sequential CNN blocks in scale ~OjðxÞ, each of which has the identical
number of channels.

Throughmulti-scale learning, themodel is able to efficiently learn
the different contextual dependencies of structural features at differ-
ent distances to capture their unique binding properties. After that, we
employed a residual mechanism to fuse the uniformly aligned sec-
ondary structural or dynamic global contextual embedding features
with their corresponding multiscale biological features to enhance
their local information, which is formulated as follows:

ResidualBlock ðxÞ= ReLU ðx+ MultiScale ðxÞÞ ð25Þ
Deep protein-RNA binding predictor. After applying the structural
and sequence information to the hierarchical multi-scale residual
network, we first fused the two enriched features by concatenating
them to obtain a comprehensive feature matrix. However, the
restriction on sequence length still makes it challenging to make pre-
cise predictions. To address this challenge, we developed the Deep
protein-RNA binding predictor based on deep pyramid convolutional
neural network89, which is capable of capturing global dependence of
long-distance nucleotides at the token-level resolution. In our deep
protein-RNA binding predictor, we set the sequence length halved
after each layer, which specifically carries out a max-pooling layer and
produces a new internal representation of the RNA sequence by taking
the token-wise maximum over three consecutive internal vectors,
which shortens the sequence while maintaining all its information.
Since the number of feature channels is fixed, the computational
complexity is also halved after each layer as the sequence length is
halved.Moreover, unlike the original DPCNN89, inDPRBPwe set up two

independent CNN blocks instead of sharing their parameters to
dynamically learn global context dependencies. The specific repre-
sentation is as follows:

tðxÞ= FC1
FC2

ðxÞ
� �

ð26Þ

rðxÞ= ReLU ðx + tðxÞÞ ð27Þ

where t denotes two consecutive distinct CNN blocks C1 and C2, which
are capable of dynamically learning the spatial relationships between
sequences and structures. In addition, a residual connection r was
added to enhance the perception of DPRBP in the high-attention
region of sequences and structures. Subsequently, amax-pooling layer
of size 3with a step size of 2wasutilized to identify the specific binding
of RBPs from the token-level loci, as follows:

gðxÞ= MaxPool ðrðxÞÞ ð28Þ

Through thismax-pooling layer, the length of the sequence is halved in
such a way that the most significant nucleotides in the sequence are
retained. Simultaneously, since each CNN layer has the same number
of channels, the corresponding computational complexity is also
halved. After log2ðLÞ layer, the length of the sequence is finally reduced
to 1, and a feature vector h is generated that is enriched with the
structure-sequence space relationship and contains the global
information of the whole sequence, denoted as follows:

h= ReLU
Y
log2l

gjðxÞ
� �0

@
1
A ð29Þ

Afterwards, to predict the interaction of RBP with RNA, the obtained h
will be fed into a fully connected neural network:

P = σ Wd ×h
� � ð30Þ

σðxÞ= 1
1 + e�x

ð31Þ

where d denotes the dimension of the vector h and σ(⋅) is the sigmoid
activation function. Finally, the output P is considered as the prob-
ability of whether it is an RBP binding site or not.

Training of HDRNet
Generally, we trained an HDRNet model for identifying dynamic
cellular RNA-binding events, including 261 RBP datasets for 172
human proteins. First, we used RNA sequences as the input data with
BERT and icSHAPE secondary structures for multi-source feature
representation. During the training process, we randomly selected
20% of the samples as the independent test set for performance
evaluation, and the rest were considered as the training set, where
20% of the training set was randomly selected as the validation set.
HDRNet was trained to learn the parameters that minimize the
binary cross-entropy loss function:

Loss ðP,YÞ= � 1
N

XN
i= 1

½yi � logpi + ð1� yiÞ � logð1� piÞ�+ λjW j2 ð32Þ

where N denotes the mini batch size, yi is the true label and pi is the
predicted binding probability. λ∣W∣2 denotes the L2 norm on all para-
meters, which acts as the weight decay term to reduce overfitting in
the trainingmodel. In addition, todemonstrate theperformanceof our
model, the area under the receiver operating characteristic curve
(AUC) is chosen for performance evaluation.
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Parameter settings
In the experimental section, we describe the implementation details
of HDRNet. Sequence features obtained from BERT were first
reduced in dimensionality using 128 one-dimensional convolutional
kernels with a kernel size of 1. In addition, RNA secondary structure
features were upsampled using 128 one-dimensional convolutional
filters with a kernel size of 3. The resulting sequence and structural
features were then separately fed into a Hierarchical multi-scale
ResNet with identity maps for information enrichment, which con-
tains one-dimensional convolutional layers with kernel sizes of 1, 3, 5
and 7 and CNN blocks of 1, 2, 3 and 4 in each view, totaling 32
channels. After concatenating the feature maps, they were passed
through the deep protein-RNA binding predictor module, which had
a kernel size of 5 and 256 channels, followed by a fully connected
layer with one hidden unit and a Sigmoid activation function. All
CNN layers were arranged in the order of Conv-BN-ReLU and had no
bias. The model is trained on PyTorch 1.10 with parameters initi-
alized using Kaiming initialization90. To prevent overfitting, dropout
layers with a rate of 0.3 were added after each activation layer. The
network was trained end-to-end using the Adam optimizer with a
batch size of 32, a learning rate of 0.001, and a weight decay of 1e-6.
In addition, we employed a linearly scaled warm-up scheme to
calibrate the learning rate to overcome optimization challenges in
the early training. Ourmodel was trained on an NVIDIA GeForce RTX
3090 GPU with 24 GB of memory and early stops were controlled by
validation loss, and taking ~80 h on all 261 RBP datasets.

Competing methods
HDRNet was implemented in Python, and the core model was built on
the PyTorch framework that is publicly available at https://github.com/
zhuhr213/HDRNet. To elucidate the effectiveness of our proposed
model, we compared HDRNet with several deep learning models and
machine learning algorithms as follows:

• PrismNet32 (https://github.com/kuixu/PrismNet) is a recent
study that developed a convolutional neural network (CNN)-
based deep learning approach, which effectively incorporates
in vivo RNA structure data and RNA-binding protein (RBP)
binding data to make precise predictions of RBP binding sites.
This method applied an “attention” strategy to precisely identify
RBP binding nucleotides. Notably, PrismNet is the first tool
designed for dynamic prediction tasks.

• PRIESSTESS30 (https://github.com/kaitlin309/PRIESSTESS)
introduces a universal RNA motif-finding/scanning strategy
capable of identifying enriched RNA sequences and/or structure
motifs. PRIESSTESS consists of two steps. The first step gen-
erates a large collection of enriched motifs encompassing both
RNA sequence and structure. The second step produces an
aggregate model, which combines the motif scores into a single
value, and gauges the relative importance of each motif.

• iDeep28 (https://github.com/xypan1232/iDeep) is proposed
and leverages a novel hybrid CNN network and deep belief
network to predict the RBP interaction sites and motifs on
RNAs by converting the original data into a high-level
abstraction feature space using multiple layers of learning
blocks, where the shared representations across different
domains are integrated.

• DMSK39 (https://github.com/Rebecca3150/DMSK) is a novel
identification method based on multi-view deep learning, sub-
space learning, and amulti-view classifier for the identificationof
circRNA-RBP interaction sites involved in computationally
predicted RNA secondary structures.

• GraphProt29 (https://github.com/dmaticzka/GraphProt) models
the sequence and structure binding preferences of RBP binding
sites using graph kernel features based on sequence and com-
putationally predicted structure information.

• DeepBind26 (https://github.com/jisraeli/DeepBind) is a CNN-
based deep learning model that predicts RBP binding sites
based on only RNA sequences.

In addition, we conducted a comprehensive analysis of machine
learning methods to compare performance to our proposed HDRNet.
Specifically, we evaluated XGBoost91, Random Forest (RF)92, Logistic
Regression (LR)93, Artificial Neural Network (ANN)94, Extra-
TreeClassifier (ETC)95, SGDClassifier (SGDC)96, andGaussianNB (GNB)97

using the same feature representation as HDRNet, including the
dynamic contextual embedding and the icSHAPE secondary structure
information. For the ANN implementation, we used a Pytorch envir-
onment and set the size of the hidden layers to 512, 32, and 1,
respectively. XGBoost was implemented using the Python package of
version 1.5.0. The remaining algorithms were implemented using the
scikit-learn package98. Meanwhile, we applied the default parameter
settings for Logistic Regression, Random Forest, and XGBoost.

Tissue data pre-processing
The raw data for tissue dataset is stored in the ’.bed’ format, which
records the genomic positions of each binding peak.We employed the
’bedtools getfasta’ function or ’getFastaFromBed’ to obtain the cor-
responding nucleotide sequences based on the chromosomal coor-
dinates. Specifically, for human tissue data, we utilized hg38 as the
reference genome, while for mouse data, we employed mm9 as
reference.

Motif calculation
The multi-head self-attention mechanism has the capacity to accu-
rately identify and decode significant genomic regions. In our study,
we leverage dynamic global contextual embedding to explore the
biological functionalities of RNA sequences. More explicitly, we com-
puted the attention score for the i-th embedded k-mer token, denoted
as Scorei through the summation, thereby identifying the transcript
fragment in each RNA sequence that offers the most substantial con-
tribution towards downstream classification, which can be formulated
as follows:

Scorei =
XN
n = 1

exp QT
CLS � Ki=

ffiffiffi
d

p� �
PT

t = 1 exp QT
CLS � Kt=

ffiffiffi
d

p� � ð33Þ

where N symbolizes the number of attention heads, T represents the
number of tokens in a given RNA sequence, QT

CLS denotes the query
vector of the special tokens [CLS],Ki denotes the key vector of the i-th
k-mer token with i∈ {1, 2, . . . , L} where L denotes the number of input
tokens, and d is the dimensionality of the feature vectors. After com-
puting the attention score for each token, we classified RNA fragments
as RBP-binding motifs based on the following three criteria: (1) The
attention score of the fragment exceeds the average score of the
sequence; (2) The attention score of the fragment is 10 times higher
than the lowest attention score; and (3) The minimum length of the
fragment is 6.

High attention region visualization
We adopted the SHAP tool47 to calculate the specific attention score
for each token of the input RNA sequence. The ’GradientExplainer’
function was employed, where a score matrix of the same size as the
input dynamic contextmatrix coule be obtained. Each numerical value
in this matrix represents the attention value at the corresponding
position in the input matrix. We then selected the maximum value of
each token as the final attention score, and got an attention vectorAtt
with length 99. Subsequently, we allocated the attention scores of each
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token evenly across every nucleotide, as demonstrated below:

Scorei =

Atti, i= 1
Atti�1 +Atti

2 , i=2
Atti�1 +Atti�2

2 , i= 100

Atti�1, i= 101
Atti +Atti�1 +Atti�2

3 , else

8>>>>>>><
>>>>>>>:

ð34Þ

where Scorei denotes the attention score of the i-th nucleotide, and i is
in range [1, 101].

Functional enrichment
We used the R package ClusterProfiler99 to perform KEGG and GO
enrichment analysis on the 544 TDP-43 binding genes. We utilized the
function ’enrichKEGG’ for the KEGG analysis, where the parameters
were set to “pAdjustMethod = fdr, pvalueCutoff = 0.01, qvalueCutoff =
0.05". The GO analysis was performed by function ’enrichGO’, where
the parameters were set to “ont = ALL, pAdjustMethod = BH, pvalue-
Cutoff = 0.01, qvalueCutoff = 0.05".

PPI network
We performed preliminary PPI network construction on the 544 shared
TDP-43 binding genes using STRING74 and the most significant disease-
related genes, including a total of 28 genes were input to Cytoscape for
visualization. To identify themost importantmodules in the PPI network,
we adopt MCODE75 for the network and give the top three modules.

Statistics and reproducibility
The detailed statistical tests were explained in each figure legend.
Sample data were obtained from public repositories. Sample size was
not predetermined and is the maximum number of samples available
for each datasets. No data were excluded from the analyses. No
experimental groups were assigned. Our study does not involve group
allocation that requires blinding. To reproduce the results, please find
the Source Data file we provided.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We collected 261 RBP binding sites datasets for cell lines across mul-
tiple databases, including 172 RBPs constructed using the same flag-
marked technique in K562, HepG2, HEK293, HEK293T, HeLa and H9
cell lines. Thesedatasets include65CLLP-seqdatasets for 61 RBPs from
POSTAR database45 and 196 eCLIP datasets for 111 RBPs from the
ENCODE project100. These data have been deposited in32. In terms of
the RBP binding data in tissues, the processed MBNL2 (Muscleblind
Like Splicing Regulator 2) binding peak data in human brain tissues44

were available in POSTAR database45 under accession code GSE68890
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68890];
the DGCR8 and HNRNPU binding data in human adrenal gland were
collected from ENCODE project100; and the MBNL1 (Muscleblind Like
Splicing Regulator 1) binding data in brain, heart, muscle, and myo-
blasts frommicewereobtained from46 under accession codeGSE39911
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39911]. We
havedeposited thesedatasets in FigSharedatabase [https://doi.org/10.
6084/m9.figshare.24132423]101. These datasets can also be down-
loaded from our HDRNet web-server at http://www.aibio-lab.com:
5050/. Source data are provided with this paper.

Code availability
HDRNet is an open-source tool available at https://github.com/
zhuhr213/HDRNet102, where all packages are implemented in Python.

We provide a user-friendly web server for the HDRNet method at
http://www.aibio-lab.com:5050/, which enables users to determine
whether a given RNA sequence is a binding site for an RNA-binding
protein. Users can choose the precise RBP types and the cell lines by
clicking on their corresponding buttons to complete the static and
dynamic predictions based on their requirements. To facilitate use,
users can enter the query RNA sequences in the input box or upload a
text file containing RNA sequences in any format. The submitted jobs
and predicted results, including the probability of the RNA sequence
binding to the RBP, are then sent to the users’ provided contact
addresses. In addition, we provide all datasets along with the BERT
model used in this study, which can be downloaded directly from the
web server and FigShare101.
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