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A canonical trajectory of executive function
maturation from adolescence to adulthood

Brenden Tervo-Clemmens 1,2,3 , Finnegan J. Calabro4,5, Ashley C. Parr 4,
Jennifer Fedor 4,6, William Foran 4 & Beatriz Luna3,4,5

Theories of human neurobehavioral development suggest executive functions
mature from childhood through adolescence, underlying adolescent risk-
taking and the emergence of psychopathology. Investigations with relatively
small datasets or narrow subsets ofmeasures have identifiedgeneral executive
function development, but the specificmaturational timing and independence
of potential executive function subcomponents remain unknown. Integrating
four independent datasets (N = 10,766; 8–35 years old) with twenty-three
measures from seventeen tasks, we provide a precise charting, multi-
assessment investigation, and replication of executive function development
from adolescence to adulthood. Across assessments and datasets, executive
functions follow a canonical non-linear trajectory, with rapid and statistically
significant development in late childhood to mid-adolescence (10–15 years
old), before stabilizing to adult-levels in late adolescence (18–20 years old).
Age effects are well captured by domain-general processes that generate
reproducible developmental templates across assessments and datasets.
Results provide a canonical trajectory of executive function maturation that
demarcates the boundaries of adolescence and can be integrated into future
studies.

Adolescence is a uniqueperiodof the lifespan, initiated bypuberty and
characterized by the maturation of cognitive, affective, and social
processes that culminate in a transition to independence and
adulthood1–3. Among maturational processes, theories from neu-
roscience and psychology have placed a particular emphasis on the
development of goal-directed cognitive abilities (e.g., response inhi-
bition, working memory, task-switching, and planning behaviors) that
are hypothesized to index a common process of executive function or
cognitive control4–6. In parallel to socioemotional development and
environmental influences, a protracted maturation7,8 and/or stabiliza-
tion of executive function9 into adulthood has been suggested to
contribute to lifespan peaks in risk-taking behaviors (e.g., substance
use initiation10; though see also refs. 11,12) and increased vulnerability
to psychiatric disorders13 during adolescence. Ongoing executive

function changes during adolescence have been used in colloquial,
legal9,14, and scientific (see4 for review) contexts to differentiate ado-
lescents from adults and clarify adolescence as a period of continued
development.

Adolescent executive function development has been studied in
relatively small (N’s ~20015,16) independent investigations using a broad
range of tasks or in relatively large studies (N’s ~ 1000)17,18 using very
narrow assessments of executive function. No large-scale, multi-
assessment, multi-dataset reproducibility investigations of adolescent
executive function development have been performed. Further,
common analytic approaches do not quantitatively define matura-
tional timing and/or plateaus toward adult-levels of performance.
Themagnitude of executive function changes during adolescence, the
precise timing of when adolescents reach adult-levels, and the
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potential diversity of processes assessed by varying executive function
tasks, thus remains widely debated.

Empirical research suggests that while adolescents can perform
complex, goal-directed behaviors that rely on executive functions,
their performance is not as accurate or as fast as adults5,15,16,19–24. Age-
related increases in correct response rates (accuracy) and decreases in
the speedof responses (i.e., latency/reaction time) havebeenobserved
for a broad range of laboratory-based and neuropsychological
executive function tasks (e.g., working memory, response inhibition,
switching, planning) during adolescence (see refs. 1,25 for reviews).
Theoretical models built from these observations and related obser-
vations in animal studies26, as well as broader27 and historical per-
spectives of psychological development28, have led to hypotheses
suggesting that cognitive development continues through adoles-
cence and may reachmaturity in the second decade of life (e.g., by 20
years old9,29) or later (e.g., ≥ 25 years old8,27) in humans. A range of
methodological, analytic, and data availability challenges, however,
have thus far prevented direct and comprehensive testing of the
maturational timing of adolescent executive function development
and the specific age when executive functions reach adult-levels.
Nevertheless, understanding not just whether behaviors are changing
with age, but also their shape and form, is fundamental to develop-
mental science15,30–32 and corresponding health policies and interven-
tion/prevention strategies for adolescents. Defining the shape and
form of cognitive development likewise has key implications for
research on mechanisms of ongoing (potentially critical period) plas-
ticity and factors influencing the opening and closing of the adolescent
period3.

There are unique challenges to defining the normative matura-
tional timing of adolescent executive function development that arises
from multiple sources, including inter-individual differences among
participants and across datasets, difficulties in designing analytic fra-
meworks that directly assess maturational timing33, and potential
variability among the many tasks designed to assess executive
function5,34. The first of these challenges is beginning to be addressed
through larger study designs (e.g., Nathan Kline Institute-Rockland
Sample35 [NKI], National Consortium on Alcohol and Neurodevelop-
ment in Adolescence36 [NCANDA], Philadelphia Neurodevelopmental
Cohort37 [PNC]) anddata aggregation techniques, as increasingdataset
sizes and the inclusion of multiple datasets can better overcome
sampling variability38,39 to estimate generalizable normative develop-
mental trajectories. Addressing the latter challenges, however,
requires conceptual and methodological advancements.

Initial investigations in adolescent research have often relied on a
fixed-developmental shape (e.g., linear, inverse linear, quadratic
regression models) or categorical comparisons (e.g., adolescents ver-
sus children/adults) to identify age-related differences32,33. While
essential to establish that age-related differences in executive function
generally occur during adolescence, such fixed-developmental, para-
metric comparisons prevent the systematic investigation of the rela-
tive rate and timing of maturation that is essential for precise
developmental science. Such approaches likewise have prevented
resolution of foundational theories of adolescent neurobehavioral
development, where distinct linear and non-linear shapes have been
proposed4. Therefore, while prominent theories suggest adolescents
may reach adult-levels of executive function between 20- and 25 years
old, such plateaus in developmental change have not been investi-
gated in most empirical research and are not testable within com-
monly used analytic frameworks. This lack of resolution on the
maturational timing of adolescent executive function also poses
challenges for related lifespan research, where a potentially distinct
developmental concept of emerging adulthood (~18–25 years old40)
has likewise been justified, in part, by potential ongoing cognitive
changes. New methods (e.g., general additive models41) that can
quantitatively define the potentially non-linear developmental

trajectoryof executive functionduring adolescence, aswell asmultiple
large publicly available datasets, now allow for precise estimation of
the maturational timing of executive function.

A further challenge to defining the maturational timing of
executive function development arises from the potential variability
among the many tasks designed to assess executive function. Empiri-
cal studies have often focused on an individual, or a relatively narrow
subset, of tasks (see for examplediscussion in refs. 5,42). Fewer studies
have therefore investigated the developmental similarity among
potential subprocesses indexedby the dozens of laboratory-based and
neuropsychological executive function measures used in the broader
literature. While there is a growing use of standardized tasks (e.g.,
Delis-Kaplan Executive Function System43 [D-KEFS], Cambridge Neu-
ropsychological Test Automated Battery44 [CANTAB], Penn Compu-
terizedNeurocognitive Battery45 [PennCNB]), systematic comparisons
across these instruments are similarly limited. Many neurodevelop-
mental and psychological theories4,7–9 emphasize a broad unitary
process of executive function development, suggesting the matura-
tion of performance on any one of these tasks may generalize to
broader executive function development. However, alternative per-
spectives have also been proposed. Prior work in adults (both healthy
college students42, as well as patients with frontal lobe damage46), for
example, has suggested that executive function tasks support a unity/
diversity framework, where commonality and correlation are observed
amongst all executive function measures (unity), but individual
aspects of executive function maintain a degree of separability
(diversity). Owing to the focus on individual functions and tasks or
narrow subsets in most adolescent research, it nevertheless remains
unclear whether adolescent executive function development is driven
by multiple, independent processes (diversity) and/or the maturation
of a more common domain-general process (unity).

Here we aggregate four large-scale, independent datasets to
construct a comprehensive set of executive functiondata spanning the
entire adolescent period as well as the relative transitional periods of
late childhood and early adulthood (total age range: 8–35, total
N = 10,766, total visits = 13,817) that includes 23 executive function
measures from 17 distinct tasks. In addition to large-scale replication,
we directly address prior challenges in defining the maturational tim-
ing and domain-generality of adolescent executive function develop-
ment with multiple large independent cohorts (two longitudinal, two
cross-sectional), non-linear modeling approaches that directly define
maturational timing, and the inclusion of a broad executive function
battery that permit the investigation of both potential unitary and
diversity processes. Taken together, this work identifies a canonical
non-linear developmental trajectory of executive function maturation
that generalizes across datasets and assessments, with rapid age-
related change from late childhood to early adolescence (10–15 years
old), small but significant changes in mid-adolescence (15–18 years
old), before stabilizing to adult-levels in late adolescence (18–20 years
old). The similarity in developmental trajectories is well accounted for
by domain-general processes consistent with theories of unitary
executive function and fluid cognition. The insights and data devel-
oped here can informneuroscientific andpsychological theories of the
adolescent period andguide future translational research in health and
disease.

Results
Executive function development follows a canonical trajectory
across datasets and tasks
Participants ranging from 8–35 years old (Supplementary Fig. S1) were
drawn from two large longitudinal studies of executive function
development, including data collected by our group (Luna, N = 196,
total visits = 666) and data collected as part of the National Con-
sortium on Alcohol and Neurodevelopment (NCANDA36, N = 831, total
visits = 3412), as well as two large cross-sectional studies, including
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data collected as part of the Nathan Kline Institute-Rockland Sample
(NKI35, N = 588), and data from the Philadelphia Neurodevelopmental
Cohort (PNC37, N = 9151). Studies relied on community-based samples
from across the United States (see Methods) that were balanced for
biological sex at birth and in the aggregate, were consistent with
national patterns of race and ethnicity (Supplementary Table S1).
Family income varied both within and between datasets, but as in
previous reports across behavioral sciences47, was generally higher
than national averages (Supplementary Table S1). Secondary analyses
however, suggested the sample composition of included datasets well
approximated broader population patterns for primary results (See
Supplementary Methods, Supplementary Fig. S2). Across the studies,
participants performed a variety of executive function tasks (twenty-
three measures from seventeen distinct EF tasks; Supplementary
Table S2), including those designed to measure processes of response
inhibition (e.g., Antisaccade, Stroop), working memory (e.g., Spatial
Span), planning (e.g., Stockings of Cambridge), as well as those from
standard computerized neurocognitive batteries (Penn Computerized
Neurocognitive Battery45) that include tasks designed to measure
executive function (e.g., Conditional Exclusion Test, N-Back Test,
Continuous Performance Test34) and a neuropsychological executive
function battery (Delis-Kaplan Executive Function System [D-KEFs]:
Tower, Trails, Design Fluency, Color-Word Interference). Response
types included button presses, eye movements, and experimenter-
administered neuropsychological performance (e.g., D-KEFs). For
most tasks, both latency (speed of responses) and accuracy (e.g.,
correct response rate) measures were available (see also Methods).

We first examined the developmental trajectory of each executive
function measure independently using non-linear regression models
with penalized splines (general additive mixed models (GAMM) for
longitudinal data; general additive models (GAM) for cross-sectional
data: see Methods). Unlike the fixed-developmental shape approaches
that are typically used in adolescent research, this allowed us to esti-
mate flexible, data-driven trajectories and explore the shape of
development (functional form of age) for each executive function
measure. These analyses revealed that nearly all executive function
measures (20/23 measures) had corrected significant (corrected p’s <
0.004, [two-sided], calculated via default procedures of GAM that
performs an equality test of parameters of the smoothed term to
zero48; see Supplementary Table S3 for full statistics as well repro-
ducible variable names from public datasets) age-related differences
and followed a similar non-linear developmental trajectory, with rapid
development in late childhood to mid-adolescence (10–15 years old),
smaller changes through mid-adolescence (15–18 years old), before
stabilizing to adult-levels in late adolescence (18–20 years old)
(Fig. 1A–D). Critically, age-related differences were observed across
nearly all tasks from all four independent datasets, with accuracy
measures showing significant age-related increases and latency mea-
sures showing parallel significant age-related decreases (Fig. 1A–D).
The average total age-related change (max-min of GAM/GAMM fits)
was large based on conventional effect size standards (mean across all
measures from all datasets in standard deviation [z] units: 1.38;
Fig. 1A–D). Overlapping visualization of all measures with significant
age-related differences from all datasets further highlights a potential
canonical shape of normative adolescent executive function devel-
opment (Fig. 1E).

Executive function significantly develops through late
adolescence
To precisely quantify periods of significant developmental differences
and estimate when measures reached adult-levels, we next examined
the local slope (first derivative) of age-related differences across all
ages in 1/10th of year intervals for all non-linear GAMM/GAM models.
As in prior developmental research in other domains49,50, a simulation
approach (10,000 iterations) was used to construct confidence

intervals for the first derivative of the fitted models to assess statisti-
cally significant age-related differences at each age (p <0.05 [two-
sided] via simultaneous confidence intervals51 to account for multiple
tests across ages: see Methods). Age-ranges in which the simultaneous
95% confidence interval of the first derivative of the GAM/GAMM fits
did not include zero (p < 0.05, two-sided) were classified as statistically
significant. We note that a thresholded 95% confidence interval (an
unthreholded version can be viewed in full in Supplementary Fig. S3),
instead of for example exact p-values, are provided here as in previous
work to highlight age ranges of statistical significance49,50. Consistent
with theoretical models of adolescence, significant (p < 0.05 [two-
sided] via simultaneous confidence intervals) age-related changes in
executive function accuracy (increases) and latency (decreases) were
observed during early to middle adolescent periods (10–15 years old)
for nearly all measures (Fig. 2A–D). Effect size benchmarks do not yet
exist for short-timescale developmental changes, however given the
short span of age examined via the derivative (units scaled to per-year
change) and the total age-related changes (Fig. 1A–E), local effect sizes
are judged to be large (e.g., mean z unit change from 10–15 years old:
.142 per-year [accuracy]; −.175 per-year [latency], Fig. 2E; see Fig. 2A–D
for z unit scaling for all measures). From middle to late adolescent
periods (15–18 years old), smaller but still statistically significant
(p < 0.05 [two-sided] via simultaneous confidence intervals) changes
were observed for severalmeasures (Fig. 2A–D). After late adolescence
(>18 years old), very few measures exhibited statistically significant
(p < 0.05 [two-sided] via simultaneous confidence intervals) age-
related change (Fig. 2A–D).

Aggregate analysis across measures and tasks (three-level point-
wise meta-analysis: see Methods) support the inference from indivi-
dualmeasures anddatasets (Fig. 1A–E; see alsoSupplementary Fig. S4),
with statistically significant (p <0.05 [two-sided] via simultaneous
confidence intervals) age-related differences detected throughout
early to late adolescent periods (10–18 yearsold) for both accuracy and
latencymeasures (Fig. 2E).While statistically significant (p <0.05 [two-
sided] via simultaneous confidence intervals) age-related differences
could also be observed in this highly powered aggregate analysis until
20 yearsold for accuracymeasures (Fig. 2E), the absolutemagnitudeof
these effects were very small after 18 years old (mean z unit change in
accuracy per-year between 18–20-years old: .023 [~1/5th the average
change observed between 10- and 15 years old]); Fig. 2E). A parallel
analysis examining the magnitude of change among those measures
with statistically significant overall age effects (corrected p’s < 0.004,
[two-sided]; see also Fig. 1, Supplementary Table S3) likewise demon-
strates that, on average, over 95.0 and 99.7% of the total detectable
age-related change between 8–35 years old occurs prior to 18 years old
for accuracy and latency, respectively (Supplementary Fig. S5). These
results provide robust and reproducible evidence of statistically sig-
nificant and developmentally specific changes in executive function
during early through mid-adolescence that reach maturity between 18
years old and 20 years old and reinforce that adolescence is a period of
ongoing development of goal-directed cognition and executive func-
tion. A normative maturational stability towards adult-levels of
executive function by late adolescence (18- to 20 years old) is highly
consistent with what has been theorized in heuristic models of ado-
lescence (~20 years old), but notably earlier than lifespan accounts
suggesting executive function changes continue to occur during
emerging adulthood (18–25 years old).

Adolescent executive function development is predominantly
domain general
Building from the observation that nearly all executive function mea-
sures showed the same developmental trajectory and relative
maturational timing, we next examined the potential shared informa-
tion acrossmeasures at the per-participant level using between-person
(all datasets) and within-person (Luna, NCANDA) correlations and
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factor analysis (see Methods). Composite metrics were not used here,
as they are by construction (linear sums of original measures) corre-
lated with multiple measures. Consistent with a domain general, unity
process of executive function, per-participant scores across nearly all
measures were moderately correlated (see Methods) in all datasets in
both between-person (cross-sectional) and within-person (long-
itudinal) analyses (Fig. 3A; mean linear, bivariate correlation from data
aggregation (“all measures”) |r| = 0.261; Supplementary Table S4 for
correlation matrices). Exploratory factor analysis likewise demon-
strated that a single domain general factor (via bifactor rotation)
explains over 20% (21.9%) of total executive function variance on
average, across datasets (Fig. 3B). There was no systematic evidence

that the total executive function variance explained by a single domain
general factor varied by age (Supplementary Fig. S6). While certain
data-driven thresholds to determine the number of supported latent
factors (parallel analysis, optimal coordinate, acceleration factor, and a
factor analytic Kaiser rule; see Methods, Supplementary Fig. S7) sug-
gest the inclusion of a second or third factor across datasets (Fig. 3B),
these factors account for very small amounts of executive function
variance (on average, ~6 and 2% respectively, see Fig. 3B; Supplemen-
tary Fig. S7 for individual datasets) after accounting for the domain
general factor (via bifactor rotation). Visual inspection of loadings for
secondary and tertiary factors demonstrate that these factors tended
to capture residual effects from specific, single measures or methods
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(e.g., eye-tracking) or similar, broad domain general patterns (see
Supplementary Fig. S7). Additional factors beyond these (4 or more
factors) were not suggested for any dataset, under any data-driven
threshold (Fig. 3B; Supplementary Fig. S7). Combined, these results
provide evidence across studies for a single domain general factor or
unity framework of executive function factor that accounts for var-
iance across tasks (see Fig. 3C), although further work with expanded
measures can help clarify potential diversity and domain-specific
executive function performance (see Discussion).

Beyond the general dimensionality of participant-level, individual
differences, a primary goal of the current work was to determine the
timing and complexity of age-related differences in executive function
from adolescence to adulthood. Therefore, we next tested the extent
to which age-related, developmental differences in any one specific
executive function measure could be explained by the general
executive function processes supported in our previous analyses.
Through nested model comparisons (see Methods), we determined
the percentage of age-related differences on each specific executive
function measure explained by a single domain general composite
metric of the accuracy and latencymetrics from the remaining tasks in
the dataset (“leave one task out” compositemetric; see Supplementary
Fig. S8 for visualization of this procedure) versus a measure and/or
task-specific process. As the broadest test of such a domain-general
executive function process and consistent with prior suggestions from
related literature in aging52,53, in datasets (Luna, NKI) where multiple
measures had the same putative, primary executive function sub-
domain (see first listed Domain in Supplementary Table S2), these
measures were likewise left out of the composite metric (“leave out all
measures from the same domain”). To furthermaximize comparability
across studies and toprevent bias from shared, non-executive function
visit effects (e.g., practice effects; see Sensitivity Analyses and Sup-
plementary Fig. S9), analyses here were performed with the larger
cross-sectional data, but were consistent with longitudinal data (cf.,
within-person factor structure in Fig. 3B, D).

Results demonstrated that a general component of executive
function (as a single compositemetric) often explainedmore than half
of age-related information (via deviance testing in model comparison;
see Supplementary Fig. S8) in individual executive function measures,
with age effects for several measures nearly fully explained by a gen-
eral executive function process (Fig. 4A–D). Aggregate analysis (three-
level meta-analysis) revealed that on average, close to three-fourths
(i.e., 75%) of age-related information in any one executive function
measure could be explained by a domain-general executive function
process (via a single composite metric of [equally weighted] out-of-
domain measures; percentage of explained age-related deviance
by common executive function for accuracy measures: 79.3%, latency
measures: 70.6%; Fig. 4E). There was, however, notable variability
between the proportion of explained variance by common executive
function across datasets. One possible explanation for these

differences is that the datasets (NCANDA, PNC) with fewer executive
function measures have less precision to estimate a domain general
executive function process. Consistent with this, the percentage of
age-related information explained by a common executive function
process decreased and becamemore variable acrossmeasures in Luna
and NKI datasets in simulations that used iteratively smaller numbers
of variables to estimate an executive function composite (see Sup-
plementary Fig. S10). Combined, these results provide the strongest
evidence for a core domain general or unitary process related to
observed age-related differences in executive function that is repro-
ducible across measures and datasets. Together with our previous
analyses, these results support adolescence as a potentially specific
period of the lifespan of ongoing executive function, where a core
unitary maturational process may give rise to improvements across
related but distinct assessments.

Scaled domain general executive function scores generate
reproducible normative maturational templates across
datasets and tasks
Having established that executive function measures follow a canoni-
cal developmental trajectory during adolescence and age-related
changes are well captured by domain-general processes, our final
analyses sought to build upon these results to create normative
maturational templates applicable across datasets and tasks. That is, if
a substantial portion of executive function development follows the
same trajectory (Figs. 1, 2) and is driven by a common, domain-general
process (Figs. 3, 4), we testedwhether a simplified normative template
of change would be representative across new datasets and tasks and
could be used to quantitatively guide future research.

A standard growth chart54 constructs a normative template of
developmental change and inter-individual variability (e.g., percentile)
for a single assessment with a single scale ofmeasurement (e.g., height
in inches). Executive function, however, is assessed with dozens of
different measurements5 and owing to the potential range of partici-
pant ages included in any one developmental dataset, the total extent
of observed individual variability may substantially differ across
datasets, even if developmental change proceeds according to the
shape of the canonical executive function trajectory. In the current
datasets, scaling to adult performance (standard deviation units based
on performance of 20–30-year-olds in each dataset; see Methods) to
approximate a common scale provides a further robust demonstration
of the shape of the canonical executive function trajectory for domain
general accuracy (Fig. 5A) and latency (Fig. 5B) across datasets and
tasks (given each dataset includes different measures; see Supple-
mentary Table S2). Differences in the precise scaling (absolute y values
at each age) persist, however, as to be expected by datasets taken from
different age ranges with different tasks. Furthermore, such universal
scaling to adult performance, while potentially useful for creating a
common metric across measures and tasks, would not be possible for

Fig. 1 | Age trajectories of executive function measures. All measures scaled to
per-dataset standard deviation (z) units. A Non-linear fits from the Luna dataset
(N = 196; 666 total visits) of general additive mixed model (GAMM; multilevel
penalized spline regression) for Antisaccade (ANTI), Fixation Breaks (FIX), Mixed
Antisaccade/Visually Guided Saccade (MIX), Spatial Span (SSP), Delayed Matching
to Sample (DMS), Memory Guided Saccade (MGS), Stockings of Cambridge (SOC),
and equally weighted composite metrics (z score sum of all accuracy, latency
measures; COMP) as a function of age for accuracymeasures (acc; top) and latency
(lat; bottom). All models covaried for a smoothed effect of visit number. Solid line
indicates models with Bonferroni corrected significance (corrected p <0.05 [two-
tailed], unadjusted p <0.003 [two-tailed]). Dashed indicates models that do not
surpass this threshold. B Non-linear, GAMM fits from NCANDA dataset (N = 831;
3412 total visits) for Penn Conditional Exclusion (PCET), Penn Continuous Perfor-
mance (PCTP), Penn N Back (PNBK), and Stroop (STRP) tests and equally weighted
accuracy, latency composite metrics (COMP) as a function of age. All models

covaried for a smoothed effect of visit number. Solid line indicates models with
Bonferroni corrected significance (corrected p <0.05 [two-tailed], unadjusted
p <0.006 [two-tailed]). Dashed indicates models that do not surpass this thresh-
old. C Non-linear fits from NKI dataset (N = 588) of general additive models (GAM;
penalized spline regression) for D-KEFS Color-Word Interference (CWI), Penn
Conditional Exclusion (PCET), Penn N Back (PNBK), D-KEFS Tower (TOW), D-KEFS
Design Fluency (DFL), DKEF Penn Continuous Performance (PCTP), and D-KEFS
Trails (TMT) tests and equally weighted accuracy and latency composite metrics
(COMP) as a function of age. All models were corrected, significant (corrected
p’s < 0.001 [two-tailed]). D Non-linear, GAM fits from PNC dataset (9151) for Penn
Conditional Exclusion (PCET), Penn Continuous Performance (PCTP), and Penn N
Back (PNBK) and equally weighted accuracy and latency composite metrics
(COMP) as a function of age. All models were corrected, significant (corrected
p’s < 0.001 [two-tailed]). E Fits from all corrected significantmodels fromA–D. See
also Supplementary Table S3 for accompanying statistics.
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future studies that only assessed a narrower age range (e.g., 10–18
years old).

We sought to establish a procedure for constructing normative
maturational templates applicable to all relevant ages (8–35 years old)
that utilizes a linear scaling of the canonical executive function tra-
jectory to a specific measure (via basis function regression; see
Methods). Unlike the GAM/GAMMs used to initially derive the cano-
nical executive function trajectory or alternative, multiparameter non-
linearmodels of age, we tested a procedure that only requires a simple
linear transformation of the age variable in each dataset (via linear
interpolation to the canonical trajectory [estimated out-of-dataset];

see Methods) and is then fit as a single parameter in a general linear
model/general linear mixed effects model. This data-driven basis
function process (see analogous ideas in functional brain imaging55) is
therefore the sameaswhat occurswith standardparametric functional
forms of age (e.g., linear, inverse linear age [1/age], quadratic poly-
nomial age [age + age2]), butwould have the addedbenefit of its shape/
functional form being directly informed by prior developmental data.
We tested this procedure to directly assess whether the insights gen-
erated in the current work regarding a canonical executive function
trajectory could quantitatively guide future research allowing for
simplified modeling approaches that are developmentally informed
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E. All Measures
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Fig. 2 | Developmental periodswith significant age-related change in executive
function. Age-ranges in which the simultaneous (to account for multiple testing)
95% confidence interval (generated via posterior simulation50 with 10,000 itera-
tions) of the first derivative of the GAM/GAMM fits did not include zero (p <0.05,
two-sided) were classified as statistically significant. Using this method, raster plots
display color (red: age-related increases; blue: age-related decreases) when the
derivative is statistically significant (p <0.05, two-sided) and white when the deri-
vative is not statistically significant (p >0.05, two-sided). Vertical black lines in each
bar denote the minimum and maximum age of the included dataset. Gray bars
indicate no data within the specified age range for that analysis dataset. Accuracy
measures for all datasets are shown on the left and latency on the right. A Luna
dataset (N = 196; 666 total visits) measures from equally weighted composite
metrics (z score sumof all accuracy, latencymeasures; COMP), Antisaccade (ANTI),
DelayedMatching to Sample (DMS), FixationBreaks (FIX),MemoryGuided Saccade
(MGS), Mixed Antisaccade/Visually Guided Saccades (MIX), Stockings of Cam-
bridge (SOC), and Spatial Span (SSP). B NCANDA dataset (N = 831; 3412 total visits)

measures from equally weighted accuracy, latency composite metrics (COMP),
Penn Conditional Exclusion (PCET), Penn Continuous Performance (PCTP), Penn N
Back (PNBK), and Stroop (STRP). C NKI dataset (N = 588) measures from equally
weighted accuracy and latency composite metrics (COMP), D-KEFS Color-Word
Interference (CWI), D-KEFS Design Fluency (DFL), Penn Conditional Exclusion
(PCET), Penn Continuous Performance (PCTP), Penn N Back (PNBK), D-KEFS Trails
(TMT), and D-KEFS Tower (TOW). D PNC dataset (N = 9151) measures from equally
weighted accuracy and latency composite metrics (COMP), Penn Conditional
Exclusion (PCET), Penn Continuous Performance (PCTP), and Penn N Back (PNBK).
E An aggregate analysis (pointwise three-level meta-analysis), incorporating all
measures from all datasets was performed using themetafor package51 with effects
nested in measure and study (see also Methods) and thresholded in the same
manner as the other bars (red or blue denoting statistically significant [p <0.05,
two-sided; via simultaneous confidence intervals] age-related increases or decrea-
ses, respectively).
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and computationally efficient. To mirror the use of this approach in
future developmental research with new datasets and new measures,
we tested the generalizability of this procedure through cross-
validation (“leave one dataset out”) and compared performance to
standard functional forms of age used in developmental research
(linear age, inverse linear age [1/age], quadratic polynomial age [age +
age2]) thatmay otherwise be used to understand age-related executive
function change and deviations from normative development.

A canonical executive function trajectory, estimated out-of-
sample (“leave one dataset out”) and used as a single parameter
basis function (e.g., shape of age model for Luna dataset determined
by NCANDA, NKI, and PNC datasets; see Supplementary Fig. S11 for
visualization of workflow), generally outperformed standard func-
tional forms of age (linear age, inverse linear age [1/age], quadratic
polynomial age [age + age2]) during model comparison testing that
aggregated multiple metrics of model fit and complexity (Fig. 5C, D).
Followingmodel selection criteria based on allmetrics across accuracy
and latency measures, the simplified, single parameter basis function
was themost selectedmodel (55.6% of the time; compare to quadratic
[age + age2]: 37.3%; inverse linear age [1/age]: 7.03%; linear age: 0%),
which was significantly higher than all other age models (vs. inverse
linear age [1/age]: χ2 = 21.6, p < 0.001; vs. linear age χ2 = 30.6, p < 0.001;
all p values two-sided; chi-square test with Yate’s correction for con-
tinuity) other than the quadratic model (vs. age + age2 (best model
37.3%), χ2 = 2.29, p [two-sided] = 0.130). Results were further unchan-
gedwhen specifically looking at generalizability between Luna andNKI
datasets that do not share any measures (data-driven age basis model
was best age model overall 69.2%). Consistent with the strength of the
basis function being derived from its developmentally precise shape,
offsetting the basis function with respect to age led to lower andmore
variable model performance (Supplementary Fig. S12). Combined,
these results establish a simplified, single parameter data-driven basis
function version of the canonical executive function trajectory as an
alternative, developmentally informed functional form of age that is
superior or highly competitive with standard, parametric functional
forms of age when applied to new datasets and new measures.
Therefore, we suggest that, along with full, multi-parameter complex
spline models (GAM/GAMMs used throughout the rest of the manu-
script) and standard functional formsof age (e.g., linear, inverse linear,
quadratic), such a simplified, developmentally informed basis function
may quantitatively (see Data and Code Availability) inform future
research on normative development and deviations from normative
development in health and disease (see Discussion).

Sensitivity analyses
Sensitivity analyses demonstrated that primary results concerning the
magnitude and timing of executive function accuracy and latency
development were consistent across males and females (Supplemen-
tary S13). Additional sensitivity analyses demonstrated that our pri-
mary results did not change when covarying for socioeconomic
indicators (parental education and family income, Supplementary S14,
S15) and assessments of culturally acquired knowledge (verbal rea-
soning and vocabulary, Supplementary S16), and remained consistent
across mental health inclusion/exclusion thresholds (Supplemen-
tary S17). This suggests that mathematically holding these factors
constant did not change the current results that focused on aggregate
and average executive function changes during adolescence. Thus, our
results do not speak to for example past findings suggesting economic
disparities impact cognitive measures, and variability between indivi-
duals (cf.,56,57). However, the tools and insights from the current work
can be used for future studies focused on relationships between these
factors and executive function in more detail (see Discussion). As in
previous longitudinal investigations of computerized and neu-
ropsychological performance58, age-independent visit effects (e.g.
practice effects) on cognitive testing were observed for many
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Fig. 3 | Correlation and factor structure of executive function measures.
A Linear, bivariate correlation (r) for Luna (N = 196; 666 total visits), NCANDA
(N = 831; 3412 total visits), NKI (N = 588), and PNC (N = 9151) datasets among
accuracy measures (acc w/ acc), accuracy with latency measures (acc w/ latency),
and among latency measures (lat w/ lat). For longitudinal datasets (Luna,
NCANDA), baseline correlations were calculated from first visit, longitudinal
correlations were calculated from disaggregation analysis (see Methods). “All
measures” indicates estimate (black dot; measure of center) and 95% confidence
interval (± 2 standard errors) from three-level meta-analysis (correlation pairs
nested in task pairs and datasets). B Top panel displays total executive function
(EF) variance explained as a function of extracted factor using a bifactor rotation
for each dataset (maximum number of factors extracted per dataset based on
total measures per dataset [Luna, 12 measures/factors, NCANDA 7 measures/
factors, NKI 10 measures/factors, PNC 6 measures/factors]. Black line indicates
mean across datasets. Bottom panel displays factor inclusion across thresholds
(parallel analysis, optimal coordinate, acceleration factor, and a factor analytic
Kaiser rule; seeMethods) anddatasets (e.g., 100% indicates factor included across
all thresholds and datasets; see Supplementary Fig. S7 for individual datasets).
C Loadings for domain general factor (factor 1 via bifactor rotation) for each
dataset and by baseline and longitudinal (via disaggregation; see Methods) for
Luna and NCANDA.
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executive function tasks in longitudinal samples (Supplementary S9).
However, all longitudinal analyses (Luna, NCANDA samples) covaried
for a non-linear effect of visit number (see Methods) and we demon-
strate replication to two cross-sectional datasets (NKI, PNC)where visit
effects could not have occurred, indicating that our primary results are
likewise robust to practice effects on cognitive testing.

Discussion
Defining the adolescent period through a reproducible,
canonical trajectory of executive function and significant
periods of development
The development of executive function has been studied in relatively
small (N’s ~20015,16) independent investigations using a broad range of
tasks or in relatively large studies (N’s ~ 100017,18; although still smaller
than the total sample used here: N = 10,766, total visits =13,817)) with
few, very narrow assessments of executive function in intelligence
testing. Collectively, prior work demonstrates significant improve-
ments from childhood through adolescence5,15,16,19–24, but the precise
magnitude, maturational timing, and significant periods of develop-
ment in executive function during the transition from adolescence to
adulthood has not been defined. With four, large independent data-
sets, andnon-linearmodeling techniques to identify specificperiods of
significant development, we provide reproducible and direct evidence
that executive functions continue to develop into late adolescence,
which has been widely suggested by theory4,7–9 but has rarely been
directly tested in empirical research. Building from prominent
neurodevelopmental4,7–9 and psychological27,28 theories, these results

highlight adolescence as an essential period of transition during which
individuals reach maturity in goal-directed cognition. This suggests
that while adolescents clearly possess complex cognitive abilities,
including the ability to inhibit prepotent responses, maintain and
update information in memory, and abstractly plan for future events,
such abilities do not reach their full potential until 18–20 years old (late
adolescence). Adolescent periods prior to this age-range (i.e., early to
mid-adolescence ~10–15 years old, andmid to late adolescence ~15–18-
years old) are therefore likely critical final stages of this type of cog-
nitive development, where deviations from normative development
may lead to poorer outcomes in adulthood. Identifying these sensitive,
or even critical3, periods of cognitive development is essential for
advancing neurocognitive growth-charting to determine normative
development and deviations from this normative development in
health and disease19,45, in designing developmentally informed inter-
ventions/preventions for youth59–62, and policy concerning
adolescents9,14.

Given the reproducible and converging evidence for adolescence
as a distinct period of the lifespan, and one nowbetter conceptualized
as a period of normative closure in goal-directed cognitive develop-
ment prior to the establishment of adult-level trajectories, the current
results support a broader understanding of the neurobehavioral basis
for the adolescent period. Together with essential additional historical
and sociocultural frameworks27, such charting of neurobehavioral
processes throughout adolescence emphasize the importance of
developmentally relevant considerations for adolescents across
research and clinical care. Thus, our identification of the maturational
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for workflow visualization, Methods). Through model comparison, nonspecific
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mated via three-level meta-analysis nesting effects in measures and datasets.
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timing of executive function, in combination with similar investiga-
tions of affective and social processes2,63 may guide further discussion
on how to define the adolescent period and demarcate its
boundaries27, essential for basic and translational developmental

research. To assist in this pursuit, we have made available summary
data (note participant-level data is also available with necessary data
use agreements; see Data availability) for the canonical executive
function trajectory,with the goal that subsequentworkmayutilize and
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Fig. 5 | Scaled domain general executive function scores generate reproducible
adolescent growth charts across datasets and tasks. Accuracy (A) and latency
(B) composite (z score sum of all accuracy, latency measures; see Supplementary
Table S2) executive function scores for Luna (N = 196; 666 total visits), NCANDA
(N = 831; 3412 total visits), NKI (N = 588), and PNC (N = 9151) datasets. Eachmeasure
within each dataset is z scored to the performance of adults (participants 20–30
years old). Fit lines are from GAM/GAMM models. Error bars represent two times
the standard error added above and below these fits (measure of center). C,DOut-
of-dataset performance as boxplots (center line, median; box limits, upper and
lower quartiles; whiskers, 1.5x interquartile range; points, outliers) of the single
parameter data-driven age basis function for accuracy (C) and latency (D)measures
relative to typical age models (quadratic [age+age2], inverse age [1/age], linear age
[age]) and an intercept only (no age) model. One dot permeasure from all datasets
(N = 22 accuracy; N = 21 latency). Cross-validation (“leave one dataset out”) was

used to validate the age basis function derived from the canonical executive tra-
jectory. See Supplementary Fig. S11 for diagramof procedure. Potential agemodels
were evaluatedwithmultiplemetrics ofmodelfit and complexity (seeMethods and
Supplementary Fig. S11). Using the performance package (rank function) in R55,
model fit metrics were scaled 0 (worst model on that fit metric) to 1 (best model on
thatfitmetric, accounting for thedirectionality of improvedfit for eachmetric [e.g.,
R2 larger values, RMSE lower values]) across candidate age models and the mean
value across all model fit metrics was taken for each candidate age model to create
an overall performance score (y-axis; C,D). Pie charts indicate the percent of times
that each age model was the top ranked according to this procedure; color in pie
chart corresponds to age models color from boxplots. Number of age parameters
(# age params.) specifies the number age variables used in each candidate age
model (see also Supplementary Fig. S11).
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continue to refine empirically defined normative maturational tem-
plates in executive function research. While such refinement should
include ongoing model comparison of other candidate functional
forms of age (cf., Fig. 5), we suggest sharing of reproducible and well-
powered adolescent trajectories of executive function can be directly
integrated in future analysis (e.g., basis function regression) in meth-
ods that mirror the development, refinement, and use of summary
statistics in other fields (e.g., polygenic risk scores64). As in these and
related fields65, large-scale reproducible normative templates of
change can be leveraged to better understand risk factors or con-
sequences of mental and physical health conditions related to execu-
tive function during adolescence and across a range of experimental
conditions.

Three of the four datasets used here (NCANDA, NKI, PNC), as
community samples, did not exclude participants on the basis of
mental health presentations. However, our sensitivity analyses
demonstrated that our approach (used in an effort to maximize gen-
eralizability; c.f.,66,67) did not bias our results that focused on aggregate
and average executive function changes during adolescence. The tools
and insights developed here can support future studies of executive
function differences in psychopathology both in new datasets, as well
as targeted investigations within the current datasets. Normative
templates of age-relateddifferences in executive functionderivedhere
may also be useful for future research to disambiguate developmental
effects and non-developmental visit effects (e.g., practice effects) that,
consistent with prior reports58, we observed in longitudinal executive
function data. Future work may also use these insights towards opti-
mizing developmental study designs with respect to the number of
participants, construct breadth of assessments, and the number of
longitudinal time points.

The results of the current work provide support for prior theo-
retical and quantitative work suggesting non-linear developmental
trajectories of cognition during adolescence15,20,32. Updating theore-
tical models requires broad conceptual consideration, nevertheless,
the clear presence of non-linearity in age-related executive function
differences from late childhood through adulthood can directly help
refine neurodevelopmental models of adolescence. Our results for
exampleprovide less support for linear increases of executive function
development throughout adolescence8 as well as maturational timing
of this process after twenty years old27. Instead, our results clearly
support a reproducible, canonical non-linear trajectory of executive
function development from adolescence to adulthood. The shape and
timing of this canonical trajectory is consistent with prior theories of
adolescence9 and empirical work with fewer executive function
assessments and/or smaller samples that suggest non-linear cognitive
development processes17,32. The robust, large-scale multi-dataset
replication here provides key advances towards formalizing such a
non-linear trajectory, and through the employed data-drivenmodeling
approaches, explicitly defines significant periods of executive function
development that identify the potential closing of the adolescent
period for this process between 18–20 years old. Such distinctions on
the relative bounds of the adolescent period are not only essential for
psychological and neuroscientific theories, but also for clinical care
and policy. Our work also sets key areas for future work regarding
maturational timing in more fundamental studies of executive func-
tion development (e.g., disambiguating age-related change from
pubertal development, generalizability to populations outside of the
United States, targets for brain imaging, and considerations for
affective versus nonaffective executive function tasks: see Considera-
tions for Future Work).

Domain general executive function development
While prior work in adults52,68 and younger children69–71 has provided
evidence for a potential unity/diversity framework of executive func-
tion, the relative domain-generality versus specificity of executive

function has largely not been examinedwith respect to changes during
adolescence. The strongest evidence across the large-scale data
aggregated here suggests that age-related differences and longitudinal
changes across executive function tasks are driven predominantly by a
domain-general process. This indicates that across executive pro-
cesses (e.g., inhibitory control, attention, working memory, planning)
there is a common system of goal-directed cognition that may lead to
developmental improvements across multiple contexts. Such domain-
general executive function development may help explain, for exam-
ple, wide-spread differences across executive function tasks in
clinical72,73 and/or population research (e.g., social determinants of
health71,74,75), as well as the tendency for many executive function tasks
to engage common neural circuitry76,77. Domain-general executive
function development during adolescence also provides support for
general heuristic perspectives of adolescence that emphasize a core
set of cognitive development4,7–9. The current work that focused on
multi-assessment and multi-dataset reproducibility of trajectories of
adolescent executive function across large-scale cross-sectional and
longitudinal data further sets priorities for additional within-person
modeling (e.g., multivariate sparse functional principal components
analysis78, multivariate growth curve modeling79) in future targeted
investigations.

Although we found a considerable degree of commonality in
adolescent executive function development, as in related work from
adults42, current measures and methods do not rule out additional
executive function variance relevant to development (even if such
domain/measure-specific variance is less prominent than domain-
general processes). Our analyses were generally well accounted for by
a domain general perspective of executive function, and further
exploring this allowed us to examine multi-assessment multi-dataset
estimates towards reproducibility and generalizability. However, as in
other reports42,69–71, executive function variance was not entirely cap-
tured by a single factor. Future work, including using the tools and
insights developed here, may address these questions inmulti-dataset
reproducibility and generalizability investigations. With respect to
potential distinction among other cognitive processes, our sensitivity
analyses did however demonstrate that the canonical executive func-
tional trajectory was robust to individual differences in measures of
culturally acquired knowledge (see Supplementary S16). The results
here nevertheless raise further questions regarding the conceptual
distinction of executive function performance and development from
that of related domain-general concepts like fluid cognition that are
theorized to account for the coherence of performance-based cogni-
tive abilities (and the distinction from culturally acquired knowledge)
in the context of general ability testing (see80 for additional discus-
sion). Future empirical and theoretical work, to add to existing fra-
meworks, will be required to rectify these related but often historically
distinct accounts. From either account, we suggest that commonality
across measures, while essential for basic and translational research
and practical demarcations of adolescent development, be expanded
to consider broader sociocultural and historical perspectives as well.
The increasing availability of future large-scale population-level
cohorts (e.g., Adolescent Cognitive Brain Development [ABCD]
Study81), together with themethods used and developed in the current
work, can facilitate future empirical investigations into these areas.

Common driver of executive function development
Conceptually, the potential cognitive and psychological mechanisms
of such domain general executive function development remain
somewhat of an open question. As inhibitory control tasks (anti-
saccade, color-word interference, trail-making-test) often had both the
highest loadings on domain-general factors observed here (which is
consistent with similar prior work in adults68) and amongst the largest
developmental effects, it is possible a global inhibitory control process
provides the most parsimonious explanation for domain-general/
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unitary executive function. If, as has been suggested, executive func-
tion tasks often fail to solely isolate a specific cognitive process (the so-
called task “impurity problem”5,68,82), global inhibitory control pro-
cesses may give rise to broad executive function changes through
adolescence across diverse tasks, each of which requires some level of
global, goal-directed inhibition. Nevertheless, we suggest that future
work determining the common driver of executive function changes
will benefit most from novel dense longitudinal study designs (e.g.,
repeated ambulatory smartphone/web-based assessment of
cognition83) and/or further multi-method investigations (e.g., fMRI76)
that provide a means to understand temporal processes and/or cor-
related neurobiology, respectively. This would help protect against the
possible circularity of descriptions of a common driver of executive
function that are limited to functions assessed contemporaneously
and/or with the same methodology. As demonstrated in the current
work, however, even without a clear narrative description of the ori-
gins of domain-general executive function, the maturation of domain-
general executive function provides a means to qualitatively under-
stand the adolescent period and quantitatively guide future work. In
pursuit of these goals, the current results emphasize the utility of
research designs that include not just large sample sizes and/or long-
itudinal data, but also multiple measures within a broader construct
(executive function). Our results suggest the utility of shared infor-
mation and/or thepotential utility of convergent validity frommultiple
executive function indicators in outcome research when such con-
struct depth is available. Even when more domain-specific effects are
of interest, our results suggest that the estimation of domain-general
executive function via a broad battery is optimal, as developmental
differences on nearly all measures had sizeable influences from amore
general process.

Considerations for future work
The identification of common adolescent executive function devel-
opment may guide future translational andmultidisciplinary research.
For example, our results suggest that neuroimaging research of ado-
lescent executive function may be well-suited by leveraging multiple
executive function tasks to examine shared information in association
with brain structure/function or to better isolate domain-specific
effects. Likewise, as has become increasingly common72, translational
researchaiming touncover adolescent executive function asapossible
predictor or consequence of clinical presentations and/or as a target
for intervention, may be best suited to approach executive function
from a unitary, domain-general process that follows the canonical
executive function trajectory revealed here. Methodologically, com-
mon metrics of domain-general executive function, and normative
templates of change (even in scaledunits: basis functions)mayserve to
increase reproducibility by facilitating overlap and replication efforts
across instruments and datasets.

The current project leveraged multiple large independent data-
sets, developed methodological improvements permitting the identi-
fication of maturational timing of executive function, and investigated
both common and specific components of executive function pro-
cesses, but nevertheless potential limitations and explicit suggestions
for futurework should be considered. First, although this investigation
used a comprehensive approach to characterizing executive function,
these analyses focused on the most prominent outcome measures
from these tests. This approach had the advantage of aligning the
current analyses with predominant practices in the literature and the
level of granularity supported by large-scale, public datasets, but
future work would benefit from alternative and/or model-based,
computational parameterizations of behavioral performance84,85. Fur-
thermore, the breadth of executive functions indexed by these tasks
was not exhaustive, and other domains of individual differences in
cognition were not explored. For example, by design, this study, and
manyof theoriginal datasets, didnot examine executive function tasks

in the context of affective stimuli. That is, the included measures
focused on what have been considered affectively neutral cognitive
measures. This allowed us to specifically isolate fundamental proper-
ties of executive function development as typically understood, but
future work with more diverse cognitive batteries should examine
whether affective manipulations likewise follow the canonical execu-
tive function trajectory established here. Another potential limitation
is that the current work did not try to disambiguate age-related
changes from pubertal development, given challenges in indepen-
dently estimating these effects in the presence of large cross-sectional
age effects (cf.,86). However, it will be important for future work, par-
ticularly when focusing on early periods of adolescence to likewise
seek large-scalemulti-assessment,multi-dataset reproducibility for the
specific role of pubertal status in driving executive function develop-
ment. A further potential limitation arises from our general focus on
the average executive function trajectory during adolescence. While
we determined that our results were generally robust to multiple
participant-level factors, the results of the current work should be
interpreted as a normative template and individual and dataset-level
variability is expected. Relatedly, while the aggregated datasets and
inferences drawn here appear to approximate population patterns
from the United States, further work with multinational and multi-
cultural samples is required to determine the generalizability of these
results to other countries and cultures. The tools and data developed
here can nevertheless provide resources for additional research on
deviations from this normative trajectory, promote improved esti-
mates of uncertainty, and ultimately support potential translational
efforts seeking to identify clinically relevant executive function-related
processes during adolescence.

Methods
Participants
Data for this project were provided from participants of four existing
projects (all with publicly available data). One internal dataset (Luna
Dataset) and three external datasets (National Consortium on Alcohol
& Neurodevelopment in Adolescence36 [NCANDA], Nathan Kline
Institute-Rockland Sample35 [NKI], Philadelphia Neurodevelopmental
Cohort37 [PNC]) were included based on (1) their inclusion of executive
function tasks performed in a developmental or lifespan dataset
spanning the entirety of the adolescent period and (2) to aggregate the
largest possible dataset to explore the aims of this project. Theprimary
focus of the current work was on the adolescent period. To explicitly
capture transitions into and out of adolescence as well as the entire
adolescent period33, we included participants ranging from late
childhood to adulthood (8–35 years old). Lower (8 years old) and
upper (35 years old) age ranges were selected to be as inclusive as
possible, given the overarching goal of capturing non-linear develop-
mental trajectories, while also ensuring that at least two separate
datasets had participants in each age range. This meant that only
participants from 8–35 years old from the NKI lifespan dataset were
included (Full NKI Rockland Sample Range: 6–85). No participants
were excluded based on age from the other datasets (Luna, NCANDA,
PNC), which were designed to assess childhood to adolescence/
adulthood and fully fell within this age range. In order to maximize
generalizability and representation within the datasets (see refs. 66,67
for relevant discussion concerning neurodevelopmental studies), no
other participant-level demographic exclusion criteria were applied to
the datasets. Instead, we thoroughly examined the potential impact of
such factors in a series of sensitivity analyses (see Supplementary
Figs. S2; S13-S17).

One dataset was drawn fromDr. Beatriz Luna’s longitudinal study
of neurocognitive development (Luna Dataset). From this dataset, the
current project included 196 participants (baseline age-range: 8–30
years old; 101 female participants, 92 male, 2 participants both sexes
were reported, 1 participant unknown/not reported) dataset in an
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accelerated longitudinal/cohort sequential design, with participants
completing a range of follow-up visits (total participant visits = 666,
median number of visits per-participant =3; range of visits per-
participant = 1–10; median months between visits = 13.3; range of
months between visits = 5.97–81.73; see Supplementary Fig. S1 for
graphical depiction of dataset by visit structure). Exclusion criteria for
this dataset were medical conditions or medications known to affect
eye movements and a history of psychiatric disorders, developmental
cognitive disorders, or learning disabilities, in either the participant or
a first-degree relative, and IQ scores at baseline below 80. Participants
were recruited from the community surrounding the University of
Pittsburgh Medical Center.

The second dataset was drawn from the multi-site, National
Consortium on Alcohol & Neurodevelopment in Adolescence
(NCANDA) (see ref. 36 for detailed sampling strategy and recruitment
information). The current project used data from 831 participants
(baseline age-range:12–21 years old, 423 female participants, 408male)
in the first five visits of the accelerated longitudinal design (total par-
ticipant visits = 3412, median number of visits per-participant = 5;
range of visits per-participant = 1–5; median months between visits =
12.17; range of months between visits = 4.98–23.97; see Supplemen-
tary Fig. S1 for graphical depiction of dataset age by visit structure).
Exclusion criteria for NCANDA were Magnetic Resonance Imaging
(MRI) contraindications (e.g., claustrophobia, non-removable metal in
the body), head injury with a significant loss of consciousness, psy-
chiatric disorders that might influence study completion (e.g., psy-
chosis), and psychiatric medication (see36). A central goal of the
NCANDA study was to examine the transition to significant substance
use during adolescence and as a result, approximately 50% of the
dataset was recruited based on subclinical factors thought to increase
the likelihood of alcohol use disorder (AUD; see ref. 36). The inclusion
of participants with psychiatric conditions however was shown to not
substantively influence the current projects’ analyses through sensi-
tivity analyses (see Supplementary Fig. S17).

The third dataset was drawn from the lifespan Nathan Kline
Institute-Rockland Sample (NKI)(see ref. 35 for detailed sampling
strategy and recruitment information). The current project used data
from 588 participants (age range of participants within the included
dataset [see above for age rationale]: 8–35 years old; 284 female par-
ticipants, 304 male). The NKI-Rockland Sample includes longitudinal
follow-up data (up to two visits) on the included tasks here for a very
small number of participants (n = 10) within our specified age range.
However, given this represented such a small percentage of partici-
pants (<2% of dataset) and only included two visits, the current ana-
lyses only included the first visit from these participants and thus this
dataset was utilized as cross-sectional (see Supplementary Fig. S1 for
histogram of included ages). The NKI-Rockland Sample was recruited
tomatch the ethnic and economic demographics of Rockland County,
New York. Consistent with the community sampling approach, a
moderate number of participants in the NKI dataset used here
(n = 286) met criteria (DSM-IV TR) for at least one lifetime diagnosis of
a psychiatric disorder. These factors were shown to not substantively
influence the current projects’ analyses that focused on average and
aggregate developmental changes in executive function through sen-
sitivity analyses (see Supplementary Fig. S17).

The fourth dataset was drawn from the Philadelphia Neurodeve-
lopmental Cohort (PNC) (see ref. 37 for detailed sampling strategy and
recruitment information). The current project utilized data from 9151
participants in the cross-sectional, PNC dataset (age range: 8–22 years
old; 4753 female participants, 4365 male, 19 participants both sexes
were reported, 14 participants unknown/not reported; see Supple-
mentary Fig. S1 for histogram of ages). Exclusion criteria for PNC were
being non-ambulatory and not in stable health, non-proficiency in
English, physical and cognitive challenges in participation in interviews
and neurocognitive assessment, and the presence of a disorder that

impaired cognition or motility (see ref. 37 for detailed inclusion
information). Given the large community-based sampling procedure
of the PNC, this dataset included participants with psychiatric dis-
orders that may be associated with neurocognitive performance. The
current project followed previous work with this dataset87 regarding
data inclusion (see below) and sensitivity analyses examined the
influence of these participants on the current project’s analyses (see
Supplementary Fig. S17).

In all four datasets, research protocols were approved by the
relevant institutional review boards (Luna Dataset: University of
Pittsburgh; NCANDA: Duke University, Oregon Health and Sciences
University, SRI International, University of Pittsburgh, University of
California San Diego; NKI: Nathan Kline Institute; PNC: The University
of Pennsylvania and Children’s Hospital of Philadelphia) and partici-
pants over 18 provided informed consent, while participants younger
than 18 provided written assent and parental consent. To our knowl-
edge, no participant was involved inmore than one of the studies. For
the current analyses, no statistical method was used to predetermine
the included sample size. All four datasets were included in their
entirety, apart from analysis-specific exclusions detailed below (Data
Processing). As observational studies, the included experiments were
not randomized. Likewise, no blinding procedures were employed.

Executive function measures
Data from Luna, NCANDA, NKI, and PNC datasets were used in the
current project based on their inclusion of executive function tasks
performed in a developmental or lifespan dataset that spanned the
adolescent period. Classification of executive function tasks was based
on prior theoretical5 and empirical work15,34,42,88, with a general oper-
ationalization of goal-directed cognitive behaviors that encompassed
processes of inhibition, attention, working memory, switching, or
planning. Where possible, prior work with the included tasks and
datasets and/or test authors34wasused todefinewhether specific tasks
indexed executive function. To avoid potential influences of verbal
skills potentially related to educational attainment, measures relying
heavily on reading and language skills were not included (e.g., DKEFS-
Twenty Questions, DKEFS-Proverb Test) as primary executive function
assessments, but the influence of culturally acquired knowledge was
shown to not influence primary results in a sensitivity analysis (Sup-
plementary Fig. S16). Wherever possible, both accuracy and latency
measures were selected, except when precedence from research or
clinical assessment was clear on a predominant use of accuracy (e.g.,
DKEFS Tower) or latency (e.g., DKEFS Trail Making Test) measures
owing to nearly universal ceiling/floor performance of the corre-
sponding accuracy/latency measure and/or the corresponding mea-
sure was not collected/available. See Supplementary Table S2 for the
conceptualized subdomains of the included executive function tasks
based on author consensus and original test descriptions. See Sup-
plementary Table S3 for reproducible variable names for public data-
sets (NCANDA, NKI, PNC).

Based on the above criteria, the Luna dataset included twelve
measures from six executive function tasks that were completed at
each visit: Antisaccade (ANTI), Memory Guided Saccade (MGS), a
mixed (MIX) Antisaccade/Visually Guided Saccade/Fixation task,
Cambridge Neuropsychological Test Automated Battery [CANTAB]
Delayed Matching to Sample (DMS), CANTAB Spatial Span (SSP),
CANTAB Stockings of Cambridge (SOC). Each of these tasks have been
described in detail elsewhere (see for example, refs. 15,44). Scoring
procedures and outcomemeasures were based on previouswork from
our group and general use in the literature. Briefly, the Antisaccade
task required participants to inhibit a proponent response (saccade) to
a peripheral stimulus (in four possible locations along the horizontal
meridian) and saccade towards the opposite hemifield. Both accuracy
(correct response rate across trials) and latency (median speed of
antisaccades on correct trials) of the Antisaccade task were examined.
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A second mixed version of the Antisaccade task was also performed,
where participants performed an antisaccade but trials with different
task demands were also interleaved. Specifically, in 1/3rd of trials,
participants were required to saccade towards the peripheral stimulus
(visually guided saccade) or in 1/3rd number of trials, simply maintain
fixation. Both accuracy and latency of this mixed version were exam-
ined, but only calculated for the antisaccade trials (with the same
scoring procedure as above), given the visually guided saccade is not
thought to rely on executive function (see ref. 15) and the number of
fixation errors was included in a different measure that captured this
performance in a goal-oriented context (see below). The Memory
Guided Saccade task required participants to saccade towards a per-
ipheral stimulus (in four possible locations along the horizontal mer-
idian), remember its location during a subsequent fixation period, and
then saccade towards the remembered location when no stimulus was
presented. Both accuracy (difference in degrees between initial sac-
cade and the most precise saccade the final phase85, when no stimulus
waspresented) and latency (median speed of the initial saccade during
thefinal phase across trials85) of theMemoryGuided Saccade taskwere
examined. We also calculated the number of fixation breaks (FIX)
during the middle phase of the memory guided saccade task as a
putative measure of inhibition. In addition to the three eye movement
tasks, the Luna dataset also included the DelayedMatching to Sample,
Spatial Span, and Stockings of Cambridge tasks from the CANTAB
Battery, each of which have been broadly used and whose stimuli can
be found online (see www.cambridgecognition.com/cantab/). Stan-
dard accuracy (Delayed Matching to Sample: Percent Correct; Spatial
Span: Span Length; Stockings of Cambridge: Problems Solved in
Minimum Moves) and latency (Delayed Matching to Sampe: Median
Correct Latency; Stockings of Cambridge: Mean Initial Thinking Time)
measures from each of the three CANTAB tasks were examined. For
interpretive consistency across measures in the Luna dataset, the
direction of the scoring of two accuracy measures (Memory Guided
Saccade inaccuracy [see above]; Number of Fixation Breaks) was
multiplied by −1 to ensure that higher scores indexed better perfor-
mance on all accuracy measures.

The NCANDA, PNC, and NKI datasets used versions of the Uni-
versity of Pennsylvania Computerized Neurocognitive Battery (CNB;
https://webcnp.med.upenn.edu/). The current project utilized data
from three CNB tasks that met our operationalization of executive
function and have been classified as executive by the CNB authors34,
thePennConditional ExclusionTest (PCET), a PennN-BackTest (PNBK;
NCANDA: Penn Short Fractal N-back Test [PNB-F]; PNC & NKI: Penn
Letter N-Back Test [PNB-L]), and the Penn Continuous Performance
Test: Number and Letter version (PCPT). Standard outcomemeasures
for each task were included for accuracy (PCET: calculated accuracy
measure [PCET ACC2]; PNB-F: true positive [correct] responses for
1-back and 2-back trials; PNB-L: true positive [correct] responses for
1-back and 2-back trials; PCPT: sum of true positives for number and
letter trials) and latency (PCET: median response time for correct
responses; PNB-F:mean ofmedian response time for 1-back and 2-back
trials; PNB-L: mean of median responses for 1-back and 2-back trials,
PCPT:median response time for correct response to number trials and
letter trials). The NCANDA dataset also included a standard Stroop
Test (STRP), where the primary measure of average latency over all
correct trials was included. The NKI dataset also included four
executive function tasks from the Delis-Kaplan Executive Function
System43 (D-KEFS) that were included in the current study: color-word
interference (CWI), design fluency (DFL), tower (TOW), and the trail-
making test (TMT). Again, standard outcome measures were used for
these tasks (CWI latency: average of inhibition and inhibition/switch-
ing conditions; correlation amongst these measures: r = 0.806; DFL
Accuracy88,89: switching total correct; TOW: Total Achievement Score
Total Raw; TMT: Number-Letter Switching). The DKEFS Sort Task was
also available for a small percentage of participant visits within our

analytic age range (8–35) for the NKI dataset but was not used because
over two-thirds of the visits did not have this measure (66.82%),
whereas all other NKI measures included had at maximum <4%
missingness.

Data processing
All data processing and statistical analyses were performed in R ver-
sion 4.1.2 (2021)90. Luna dataset eye-tracking data was scored with the
same automatic scoring algorithms fromour previous work85,91. Scores
for all other tasks were generated through released software from the
instrument (e.g., Lunadataset CANTAB) and/or included inofficial data
releases (NCANDA, NKI, PNC datasets).

Aggregated data, either from distributed data releases
(NCANDA, NKI, PNC) or our in-house database (Luna dataset) were
first screened to ensure each visit (participant at testing session) had
a valid age, anonymous id variable, and if longitudinal data, visit (i.e.,
these variables were notmissing and were within the expected range,
based on the study design) and included expected data. Data that did
not meet these minimum criteria were removed from all analyses. As
in our prior work, eye-tracking tasks in the Luna dataset (specific task
at specific visit) with more than 30% of trials dropped due to poor
eye-tracking or missing (i.e., early session termination; cf.,91) were
also removed from all analyses. Next, data inclusion criteria were
used to maximize the included dataset sizes and result general-
izability, while also ensuring no considerable outlier (i.e., 4 standard
deviations and more extreme than 99.9% of the distribution) biased
results. Within these procedures, individual executive function
measures were first screened for potential univariate leverage points
in the association between age and each specific measure within
general additive models (GAM: see below) or general additive mixed
models (GAMM: see below). Leverage points were defined as those
observations (measure for participant at testing session) with a
residual from this model that was four standard deviations above the
mean and removed from all subsequent analyses. Second, data were
examined for potential multivariate outliers among all included
executive function measures within each dataset using Mahalanobis
distance within the psych package in R92. Sessions (all executive
function measures for participant at testing session [i.e., study visit])
with a Mahalanobis distance four standard deviations above the
mean were removed from all subsequent analyses.

Data analysis
General additive models. General additive models (cross-sectional
data: PNC dataset) and general additive mixed models (longitudinal
data: Luna, NCANDA, NKI datasets) with penalized smooth plate
regression splines via the mgcv package41 were used to quantify non-
linear associations between age and executive function measures.
Primary cross-sectional analyses (NKI, PNC) utilized a simple bivariate
model examining the smoothed association between age (the inde-
pendent variable) and executive function (the outcome measure).
Primary longitudinal analyses (Luna, NCANDA) additionally included a
smoothed term for visit number to account for potential non-
developmental visit effects (e.g., practice: see Supplementary S9)
andper-participant random intercepts and age slopes viamgcvGAMM.
MGCV defaults were used for all parametrization with the exception
that the maximum basis dimension for visit number in the NCANDA
dataset was adjusted from 10 (the default) to 5 (given there were
maximally five visits in this analysis dataset). Age-related fits from
these primary GAM/GAMM models are presented in Fig. 1. Pointwise
confidence intervals (displayed in Fig. 5) were generated by multi-
plying standard error estimates from the mgcv GAM/GAMM predict
function by 2 and summing this with the predicted fit estimate. Sen-
sitivity analyses (Supplementary S13–S17) examining socio-
demographic and cognitive covariates followed the same procedures,
with continuous variables (e.g., parental education) modeled as
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smooth terms and categorical variables (e.g., biological sex) modeled
as parametric terms.

Periods of growth and maturational timing. As in previous develop-
mental research in different domains49,50,87, periods of significant age-
related change (age ranges) were defined by estimating the first deri-
vative (finite differences method) in 1/10th of a year intervals of GAM
fits and performing a posterior simulation based on the GAM/GAMM
model coefficients. Simultaneous (used given the multiple testing)
confidence intervals (CI) were generatedwith the gratiapackage51 with
10,000 simulations. Age ranges in which the simultaneous 95% CI did
not include zero (p <0.05) were classified as significant. Using this
method, raster plots in Fig. 2 display color (red or blue) when the
derivative is significant andwhitewhen the derivative is not significant.
An aggregate analysis, pointwise three-level meta-analysis, incorpor-
ating all measures from all datasets was performed using the metafor
package93 with effects nested in measure and study. A cross-dataset
label was used to nest measures from the same tasks (e.g., Penn CNB)
across datasets. As in prior methodological work on point-wise meta-
analysis with GAMs94, meta-analytic estimates were computed across a
common span of the independent variable: here, 1/10th year age bins,
following linear interpolation of GAM/GAMM first derivatives. The
same pointwise, three-level meta-analytic approach was used in
aggregate analysis of GAM/GAMM fits in Fig. 5 and Supplementary
Fig. S5. Secondary analyses that used an effect size threshold to define
maturation scaled the GAM/GAMM fits from 0 (min) to 1 (max) to
determine the percentage of total age-related that had occurred for
each age (see Supplementary Fig. S5).

Interdependence of performance across executive function tasks.
Cross-sectional and longitudinal correlations (linear, bivariate) were
computed among executive function measures in each dataset
(Fig. 3A). For longitudinal datasets (Luna, NCANDA), baseline refers to
the first visit, longitudinal refers to the pooled within-person correla-
tion via disaggregation with the statsBy function in the psych package
in R. This approach was chosen to balance interpretability with model
complexity for the accelerated longitudinal designs of Luna and
NCANDA datasets. Aggregate analysis (“all measures”) in Fig. 3A uti-
lized a three-level meta-analysis via metafor with correlation pairs
nested in task pairs and datasets. Exploratory factor analysis (Fig. 3B)
via maximum likelihood method and a bifactor rotation was per-
formedwith the psych package in R frombetween- (Luna andNCANDA
baseline and NKI, PNC datasets) and within-person correlation matri-
ces (Luna and NCANDA longitudinal). Multiple data-driven thresholds
for the number of extracted factors (Fig. 3C) were examined via par-
allel analysis and the nScree function in the nFactors R package95 (95%
CI from parallel analysis, factor analytic Kaiser rule, optimal coordi-
nate, acceleration factor).

Contributions from domain-general versus specific processes to
age-related differences in executive function were determined via
model comparison that is also presented with the same description as
well as additional visualization in Supplementary Fig. S8. To maximize
comparability across studies and to prevent bias from shared, non-
executive function visit effects (e.g., practice effects; see Sensitivity
Analyses and Supplementary S9) analyses here were performed with
cross-sectional data, although results are consistent with longitudinal
data (cf., within-person factor structure in Fig. 3B, D).

First, three GAM models were fit for each dataset for each
measure assessing the relationship between age and the specific
measure i from subdomain x (measurex_i): model A, a composite
metric created from all measures not in the same putative sub-
domain as measurex_i: composite metric M ∌ x, where M ∌ x represents
the set (M) of executive function measures that do not contain
measures from subdomain x: model B, and a model where age is
estimated from bothmeasurex_i and compositemetric M ∌ x: model C.

As in primary analyses, the relationship between age and each mea-
sure was modeled with penalized splines. For each model (A–C), the
percent of deviance explained in age was extracted (following stan-
dard estimation in mgcv GAM model). Next, the incremental
deviance of age explained by measurex_i over composite metric M ∌ x

was computed. Finally, the resulting measure specific age-related
deviance was scaled to the original deviance estimate for the specific
measure (model A) to create a percent of the original measure’s age
effect. The remaining percentage ofmodel A’s deviance was assigned
as the domain-general percentage. To ensure consistent interpret-
ability of the directionality of composite metric M ∌ x, measures from
the opposing response type were sign flipped (e.g., latency sign
flipped before creating equally weighted composite with accuracy
measures). Sensitivity analysis examined the influence of the com-
posite measure’s precision in the estimation of domain-general
accounts of age-related differences in executive function (see Sup-
plementary Fig. S10).

Normative maturational templates of age-related differences in
executive function. We used basis function regression with cross-
validation (“leave one dataset out”) to determine whether normative
maturational templates of executive function could improve devel-
opmental inferences in new datasets and measures. A diagram of this
procedure is likewise presented in Supplementary Fig. S11. In each
iteration of the procedure, three (out of four) datasets were used to
generate canonical executive function trajectories for accuracy and
latency measures (measures aggregated across datasets via a point-
wise three-level meta-analysis of GAM/GAMM age fits). The resulting
output was then smoothed (via a subsequent GAM model), inter-
polated to the ages of the test (“left out”) dataset, and fit as a single age
parameter to each accuracy and latencymeasureof the left out dataset
and compared to typical age models (age+age2, inverse age [1/age],
linear age [age]) as well as an intercept only (no age) model. Potential
age models were evaluated with multiple metrics of model fit and
complexity via the performance package in R96 (longitudinal models
[Luna, NCANDA]: R2, adjusted R2, Intraclass Correlation Coefficient
[ICC], Root Mean Square Error [RMSE], residual standard deviation
[Sigma], Akaike’s Information Criterion [AIC], Bayesian Information
Criterion [BIC]); cross-sectional models [NKI, PNC)]: R2, adjusted R2,
RMSE, Sigma, AIC, BIC). An additional sensitivity analysis explored the
influence of the exact developmental timing of the developmental
function with a similar procedure that offset in years (earlier or later)
the canonical executive function trajectory (see Supplementary
Fig. S12).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This project used publicly available data for all analyses. Deidentified
data for all datasets used in this project are available in public reposi-
tories pending appropriate data use agreements. Luna sample: nda.-
nih.gov/edit_collection.html?id=2831. NCANDA: ncanda.org (Release 4Y
V02). NKI: fcon_1000.projects.nitrc.org/indi/enhanced/. PNC: ncbi.nlm.-
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2. The
data supporting the individual figures are provided in the Source Data
Files. Summary data for the canonical executive function trajectory have
been made available at https://github.com/tervoclemmensb/Executive_
Function_Charting. Source data are provided with this paper.

Code availability
Analysis code for the current project is available at https://github.com/
tervoclemmensb/Executive_Function_Charting. Tervo-Clemmens, B., A
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