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Individual level analysis of digital proximity
tracing for COVID-19 in Belgium highlights
major bottlenecks

Caspar Geenen 1,7 , Joren Raymenants 1,2,7, Sarah Gorissen1,
Jonathan Thibaut 1, Jodie McVernon 2,3, Natalie Lorent 4,5 &
Emmanuel André1,6

To complement labour-intensive conventional contact tracing, digital proxi-
mity tracing was implemented widely during the COVID-19 pandemic. How-
ever, the privacy-centred design of the dominant Google-Apple exposure
notification framework has hindered assessment of its effectiveness. Between
October 2021 and January 2022, we systematically collected app use and
notification receipt data within a test and trace programme targeting around
50,000 university students in Leuven, Belgium. Due to low success rates in
each studied step of the digital notification cascade, only 4.3% of exposed
contacts (CI: 2.8-6.1%) received such notifications, resulting in 10 times more
cases detected through conventional contact tracing. Moreover, the infection
risk of digitally traced contacts (5.0%; CI: 3.0–7.7%) was lower than that of
conventionally traced non-app users (9.8%; CI: 8.8-10.7%; p = 0.002). Contrary
to common perception as near instantaneous, there was a 1.2-day delay (CI:
0.6–2.2) between case PCR result anddigital contact notification. These results
highlight major limitations of a digital proximity tracing system based on the
dominant framework.

Contact tracing aims to slow the spread of an infectious disease. By
identifying and alerting contacts (persons exposed to an infectious
case or to the same potential source of infection), they can take steps
to prevent onward spread, for example by quarantining or testing.
Information gathered through contact tracing is also used to study and
monitor transmission1.

Throughout the COVID-19 pandemic, large-scale manual contact
tracing (MCT), which involves case interviews to identify contacts, has
successfully contributed to limiting disease spread2. However, it has
well-known weaknesses, such as recall decay and poor scalability.
Especially as incidence increased and contact restrictions were eased,

an overwhelmed workforce could result in slower and less compre-
hensive contact tracing, reducing effectiveness3,4. Additionally, central
collection of personal identifiable information has caused privacy and
security concerns5,6.

Attempting to mitigate some of these weaknesses, newly devel-
oped digital proximity tracing (DPT) through mobile phone apps was
implemented in parallel. Using these systems, speed could potentially
improve, as contacts are alerted through an automated exposure
notification (AEN)7. Comprehensiveness could improve, as casual
contacts can be alerted of their exposure, even if the index case (the
infected person whose contacts are being traced) has no recollection,

Received: 7 July 2023

Accepted: 12 October 2023

Check for updates

1KU Leuven, Dept of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Leuven, Belgium. 2Department of Infectious
Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia. 3Victorian Infectious Diseases
Laboratory Epidemiology Unit, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia. 4University
Hospitals Leuven, Respiratory Diseases, Leuven, Belgium. 5KU Leuven, Dept of CHROMETA, Laboratory of Thoracic Surgery and Respiratory Diseases
(BREATHE), Leuven, Belgium. 6UniversityHospitals Leuven, LaboratoryMedicine, Leuven, Belgium. 7These authors contributed equally: CasparGeenen, Joren
Raymenants. e-mail: caspar.geenen@kuleuven.be

Nature Communications |         (2023) 14:6717 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2778-6344
http://orcid.org/0000-0002-2778-6344
http://orcid.org/0000-0002-2778-6344
http://orcid.org/0000-0002-2778-6344
http://orcid.org/0000-0002-2778-6344
http://orcid.org/0000-0001-6441-1843
http://orcid.org/0000-0001-6441-1843
http://orcid.org/0000-0001-6441-1843
http://orcid.org/0000-0001-6441-1843
http://orcid.org/0000-0001-6441-1843
http://orcid.org/0000-0003-2239-5237
http://orcid.org/0000-0003-2239-5237
http://orcid.org/0000-0003-2239-5237
http://orcid.org/0000-0003-2239-5237
http://orcid.org/0000-0003-2239-5237
http://orcid.org/0000-0001-9774-1961
http://orcid.org/0000-0001-9774-1961
http://orcid.org/0000-0001-9774-1961
http://orcid.org/0000-0001-9774-1961
http://orcid.org/0000-0001-9774-1961
http://orcid.org/0000-0002-2653-5885
http://orcid.org/0000-0002-2653-5885
http://orcid.org/0000-0002-2653-5885
http://orcid.org/0000-0002-2653-5885
http://orcid.org/0000-0002-2653-5885
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42518-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42518-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42518-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42518-6&domain=pdf
mailto:caspar.geenen@kuleuven.be


personal knowledge or contact details of the exposed person. An
automated digital system could also be more scalable than manual
case interviews and notifications.

As in MCT, the DPT notification cascade involves a series of steps,
many influenced by factors outside the technical workings of the app.
When assessing effectiveness, it is useful to analyse each step of the
cascade, to identify bottlenecks in the system8. First, a proximity event
needs tobe recorded, requiringboth the case and their contact to have
installed the app and enabled proximity detection, as well as sufficient
technical sensitivity of the detection system (Fig. 1a). When the case
later becomes symptomatic (or is identified by other means), a series
of time-sensitive steps leads to case diagnosis, contact notification,
and eventually altered behaviour (Fig. 1b). The cascade completion
rate can be described as the product of the success rates of each step,
conditional on having completed the previous one. Therefore, failures
in multiple steps can combine to the detriment of DPT effectiveness9.

In this article, we define the technical sensitivity of a DPT app as
the probability that a contact receives an AEN, given that both the case
and the contact are active app users and the case triggers notifications.
An effective app requires a technical sensitivity sufficient to notify a
reasonable proportionof exposed contacts. For the app to be efficient,
the proportion of notified contacts who are infected should be high
enough to outweigh the societal cost of quarantine or testing. Here, we
describe this proportion as the contact’s “infection risk” rather than
the “secondary attack rate”, which seems to imply that the direction of
transmission is known10.

TheGoogle-Apple ExposureNotification framework (GAEN), which
directly integrates into the two dominant mobile operating systems
(Android and iOS), became the technical backbone of most DPT apps.
Despite their promise inmodelling studies3,7,11, doubts were raised from
the outset regarding the potential of DPT systems in general and GAEN
in particular. First, they require high app uptake, i.e., the proportion of
active users in a population. As their efficacy is dependent on both the
index case and their contacts being active users, it is proportional to the
square of app uptake7,12,13. Unfortunately, uptake turned out to be
modest at best inmost countries, influenced, amongst other factors, by
perceived effectiveness, risks to privacy, and trust in science and
government6,14–17. Second, the limitations of proximity estimation
through Bluetooth Low Energy (BLE) signal strength were well known.
The types of smartphones, how they are carried, their relative orienta-
tion, and the radioenvironment inwhich theproximity estimation takes
place have a large impact on the estimated exposure risk18–23.

Experimental field studies of BLE-based exposure notifications—with
and without GAEN—registered technical sensitivities under 10% in a
healthcare and public transport setting19,22,24. Methodological improve-
ments in analytical processing of individual signal strength measure-
ments were deemed, however, to greatly improve accuracy25,26. Third,
the willingness of anonymously, digitally alerted contacts to follow
recommendationsmaybe lower than formanually traced individuals, as
has been suggested in several survey studies27–30 andone cohort study31.
Fourth, by only recording proximity events rather than location, and
storing these locally rather than centralising individual level data, the
GAEN system—while safeguarding privacy—limits the study of trans-
mission chains and tracking of certain performance indicators such as
the sensitivity, specificity, and timeliness of AENs32–35.

As a result, empirical evidence on the effectiveness of DPT for
COVID-19 is lacking. Someobservational studies have used aggregated
data gathered byDPT systems to estimate their impact in real life13,36–38.
Notably, a study on the NHS COVID-19 app in the United Kingdom
estimated that it reduced the total number of cases by 5–33% in its first
3months, with regular useby 28%of thepopulation39,40. Although such
studies can give an idea of the overall impact of DPT in specific con-
texts, they cannot compare DPT directly toMCT in terms of overlap in
detected cases or timeliness. They have also been unable to quantify
technical sensitivity.

These aspects require individual level DPT data, which, as of
September 2023, only two previous studies have collected within a
real-life contact tracing programme. Vogt et al. evaluated a BLE-based
system in New South Wales, Australia41. This system, not based on the
GAEN framework, stored digitally detected proximity events in a
centralised database. During the conventional case interview, contact
tracers queried the database for recent digitally registered contacts
and determined, along with the index case, the circumstances of their
exposure. The proportion of digitally registered contacts fitting the
close contact definition for manual contact tracing, i.e., the positive
predictive value of DPT for detecting a close contact, was 39%. App-
registered contacts who did not fit the criteria were often persons
present in the samebuilding, but not the same room. The Zurich SARS-
CoV-2 Cohort Study, which evaluated the GAEN-based SwissCovid app
by surveying participating cases and contacts, estimated the technical
sensitivity at 58%32. This study highlighted that only a minority of
contactswhowere tracedbothdigitally andmanually received theAEN
before the manual notification31. However, it also suggested that non-
household contacts who received an AEN quarantined significantly

Fig. 1 | Steps involved in digital proximity tracing (DPT). a Illustrates three key
requirements for DPT to record a proximity event. Both the index case (red) and
the contact must have the app installed and use it correctly, implying access to a
smartphone, digital and health literacy, and willingness to participate in contact
tracing. In this example, one of two casual close contacts on public transport uses
the app (yellow), whereas the other (grey) does not. In addition to use of the app,
adequate technical sensitivity of the system is required to detect the proximity

event.b Shows five subsequent time-sensitive steps in the notification cascade: the
index case develops a symptomatic infection after the encounter, tests positive,
and triggers contact notifications within the app, leading to detected close con-
tacts being alerted (notification receipt) and altered behaviour such as quarantine
or testing. Delays or failures in any of these stepswould reduce the effect ofDPTon
epidemic control.
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faster than those who did not. An important limitation is that, due to
low participation rates, selection bias resulted in substantially higher
proportions of app uptake and infected app users triggering notifica-
tions, compared to both the national and local population36.

Thus, crucial aspects of the real-life effectiveness of DPT—espe-
cially with the GAEN framework—remain understudied, such as the
technical sensitivity, the number of cases detected in addition to
manual tracing, and the steps in the notification cascade responsible
for delays.

In this study, we combined digital and manual contact tracing
data on an individual level, to investigate the effectiveness of the
Belgian GAEN-based contact tracing app (Coronalert) in a population
of higher education students in Leuven. Between October 2021 and
January 2022, we systematically questioned cases and their manually
traced contacts on their use of the Coronalert app, triggering of
notifications, and receipt of an AEN.

Our first aim, relating to the efficiency of DPT, was to quantify the
infection risk of students booking an appointment at the university
test centre after receiving an AEN. We compared this to a control
group of students who attended the test centre solely based on MCT
and who denied using the app.

Second, to quantify comprehensiveness and speed of DPT, we
sought to determine the proportion of cases and contacts progressing
through each step of the notification cascade, and the delays involved
in each step.

We combined these results to model the impact of DPT and MCT
on the effective reproduction number (Reff) in our setting.

Results
Infection risk by test indication
Between 18 October 2021 and 9 January 2022, 21,655 PCR test
bookings were recorded at the university test centre (exclusion
chart: Supplementary Fig. 1). To determine whether these persons
were infected, we combined the results of all their tests in the
subsequent 14 days. Therefore, any test bookings within 14 days
after a previous test (5187; 24.0%) or test booking (1262; 7.7%)
were not included as additional observations. In other words, for
contacts booking multiple successive tests, only the first reported
test indication was considered. Persons were excluded if they
already had a positive test in the preceding 60 days (79; 0.5%).
From the remaining tests bookings, we excluded another 4219
(27.9%) because the main test indication was not any of the fol-
lowing: suggestive symptoms, an AEN or a manually traced close

contact (see Supplementary Table 1 for accepted test indications).
Finally, thirty persons were excluded because of conflicting
answers to questions on AEN receipt.

The proportion of these students reporting recent use of the
Coronalert app was 41.3% (CI: 40.4–42.2%). The 10,878 included test
bookings were divided into three groups according to the main test
indication: manually traced close contact (67.0%), suggestive symp-
toms (29.1%) or an AEN (3.9%). The manual tracing and symptomatic
groups were further subdivided according to app use and AEN receipt.
The proportion of app users was similar in the manual tracing (38.8%)
and symptomatic (39.2%) groups.

In the manually traced group, the overall infection risk was 9.6%
(CI: 8.9–10.4%) and not significantly affected by app use or receipt of
an AEN (Fig. 2). In the group with suggestive symptoms, the infection
risk was significantly lower for app users without an AEN (10.8%; CI:
8.9–12.8%; p =0.025), but not significantly different for app users with
an AEN (16.7%; CI: 9.2–26.8%; p = 0.467), compared to those not using
the app (13.8%; CI: 12.1–15.5%).

The infection risk was 5.0% (CI: 3.0–7.7%) in the group attending
only for an AEN, which was significantly lower than for non-app users
with a manually traced close contact (9.8%; p =0.002). Similar results
were obtained when including all digital and manual notifications: the
infection risks differed significantly at 6.4% (CI: 4.7–8.4%) and 9.6% (CI:
8.9–10.4%), respectively (p = 0.004).

Using only this data from the test booking forms,we calculated an
initial estimate of digital notification cascade completion, from case
diagnosis to contact AEN receipt: the proportion of AEN receipt
amongst persons attending after being manually traced as a close
contact (irrespective of app use or outcome) was 5.5% (CI: 5.0–6.1%). In
thenext section,weprovide amoredetailed analysis of thenotification
cascade and validate this initial estimate.

Similar results were obtained when including all data from the
same test centre between 1 February 2021 and 21 March 2022 (Sup-
plementary Figs. 2 and 3). For symptomatic persons tested in this
extended study period, we additionally found an increased infection
risk in caseof a concurrentAEN (risk ratio: 1.34;CI: 1.07–1.67;p =0.013).

Individual level analysis of the DPT notification cascade
To investigate the comprehensiveness and timeliness of each step in
the DPT notification cascade on an individual level, we started from all
cases with a positive test in the main study period. We aimed to
determine how many of their manually traced close contacts received
an AEN, and to identify bottlenecks in the cascade. From the target

Test indication / app use p-value

Manually traced contact
Not using app 374 / 3456 631 (14.1) 9.8 (8.8 - 10.7) 1
App user, AEN received 28 / 326 50 (12.4) 7.9 (5.3 - 11.2) 0.81 (0.56 - 1.17) 0.257
App user, but no AEN 214 / 1994 217 (8.9) 9.7 (8.5 - 11.0) 0.99 (0.84 - 1.16) 0.927

AEN only
App user, AEN received 19 / 360 42 (10.0) 5.0 (3.0 - 7.7) 0.51 (0.33 - 0.80) * 0.002 *

Suggestive symptoms
Not using app 217 / 1361 348 (18.1) 13.8 (12.1 - 15.5)
App user, AEN received 13 / 65 7 (8.2) 16.7 (9.2 - 26.8) 0.467
App user, but no AEN 111 / 919 126 (10.9) 10.8 (8.9 - 12.8)

1
1.21 (0.72 - 2.01)
0.78 (0.63 - 0.97) * 0.025 *

Infection risk [%] (95% CI) Risk ratio (95% CI)Infected / not infected Lost to follow-up (%)
0 2000 4000 6000

Infected Not infected

0 2000

Lost to follow-up

0% 10% 20%

Fig. 2 | Number of tests, infection risk and risk ratio by self-reported test
indication, for persons undergoing a test at the university test centre in the
main study period (18 October 2021—9 January 2022). Persons (n = 10,878 invi-
didual test bookings)were groupedaccording to self-reportedmain test indication:
manually traced close contact, receipt of an automated exposure notification
(AEN), or symptoms suggestive for COVID-19. These groups were further sub-
divided according to app use and AEN receipt. For each subgroup, the number of

infected and uninfected persons, the number of persons lost to follow-up, and the
infection risk (the proportion subsequently diagnosed with COVID-19) are listed.
Error bars indicate the observed infection risks with 95% confidence intervals. In
addition, the risk ratio is shown relative to non-appuserswhoweremanually traced
or had suggestive symptoms. Dashed lines indicate the infection risk in these
control groups. Asterisks indicate significant differences using a two-sided Pear-
son’s chi-squared test, not adjusted for multiple comparisons.
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population, 2,076 cases were reported to the contact tracing team.
Nine were excluded because their test result was interpreted as a
previous infection or false positive (Fig. 3a).

The proportion of female cases was 54.1% (missing data: 6.4%),
while the mean age was 21.6 years (standard deviation: 3.2 years;
missing data: 8.1%).

Of the included cases, 46% indicated that they had used the DPT
app regularly in the previous week (883 cases; CI: 44%–48%; excluding
missing data: 7.0%). App users and non-users had a similar mean age
(21.4 and 21.7, respectively) and proportion of female cases (54.9% and
54.5%, respectively). For cases withmissing data on sex or age, app use
was lower (25% and 26%, respectively).

The university contact tracing team attempted telephone inter-
views with each of the 883 cases who were app users. The phone call
was successful for 818 cases (92.6%), but 135 were excluded because
the interview took place before the PCR test result was known (often
because of a positive self-administered antigen test, see Methods).
Data onwhetherAENswere triggeredwasmissing for another 28 cases.
Of the remaining 655 cases, 48% (317 cases; CI: 45–52%) indicated
during their interview that they had authorised the upload of their
identifier in the app, triggering contact notifications.

To determine delays in this step, we plotted this proportion by
time from PCR test result to case interview, which is when we asked
whether notifications had been triggered (Fig. 3b). LOESS regression
(locally estimated scatterplot smoothing) suggested that many cases

triggered notifications almost instantly after reporting of the test
result. The proportion of cases having triggered notifications then
increased, until a plateau was reached <1 day after the PCR result
became available. The fitted cumulative log-normal curve indicated a
mean delay from case PCR result to triggering of notifications of
0.2 days (CI: 0.0–0.8). By only including cases interviewed after the
90th percentile delay of 0.4 days, the proportion of infected app users
eventually triggering notifications was 49% (CI: 45–53%).

Manual forward contact tracing for the 317 cases who confirmed
triggering AENs, resulted in 851 case-contact pairs (2.7 contacts per
index case), of which 78 were excluded because the contact had
already been diagnosed with COVID-19 in the previous 60 days. Out of
the resulting pairs, 332 contacts (43%) booked a test at the university
test centre, which means they were also students at the same institu-
tion. We excluded 60 of these contacts, because their only test
booking was before the case PCR result, and 8 because they were
already included in a previously identified case-contact pair (they were
exposed to multiple cases). Of the remaining 264 contacts, 45% (118
contacts; CI: 39–51%) indicated having used theCoronalert app, similar
to the proportion of app users amongst cases.

Assuming that all these contacts were truly exposed to the case,
we plotted the answers to the question on whether they had received
anAEN, by timeelapsed since the casePCR result was confirmedby the
laboratory (Fig. 3c). The fitted cumulative log-normal curve showed
a mean delay from case PCR result to contact AEN receipt of 1.2 days

Fig. 3 | Individual level analysis of the DPT notification cascade. a Shows the
exclusion chart, starting from all cases diagnosed during the main study period (18
October 2021–9 January 2022), and the comprehensiveness of four studied steps in
the DPT notification cascade. b Shows the proportion of infected app users
claiming to have triggered notifications, by time since their PCR result became
available (n = 550 cases with data for both timepoints). c Shows the proportion of
contacts indicating that they had receivedanAEN,by time sinceconfirmationof the
PCR result of the index case who triggered notifications. Dots indicate individual
data points, with a value of one for success and zero for failure. The red and blue

lines show estimates obtained using LOESS and cumulative log-normal regression
curves, respectively, with 95% confidence intervals indicated by the shaded areas.
For clarity, x-axis values over 7 days are not shown, but they are still included for
curve fitting.We derive from the cumulative log-normal curves amean delay of 0.2
(CI: 0.0–0.8) and 1.2 (CI: 0.6–2.2) days, respectively, from case PCR result to their
triggering notifications and contact AEN receipt. The time required to reach 90%of
the final success rate, and the value of that success rate are indicated with solid
black lines.
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(CI: 0.6–2.2 days), with a 90th percentile of 2.2 days. To calculate the
technical sensitivity of the Coronalert app, we only included the 40
contacts who answered the question on AEN receipt after the 90th

percentile delay.
The technical sensitivity of the app, defined as the proportion of

these close contacts who received a notification—given that the case
shared the result in the app, both were active users and sufficient time
had elapsed—was 43% (17 out of 40 included contacts; CI: 27–59%).

Finally, we combined the success rates obtained for each step of
the notification cascade, to estimate the probability that the entire
notification cascade (from case diagnosis to contact AEN receipt) was
completed for any case-contact pair in our population. Using a simple
stochastic model, we estimated this probability at 4.3% (CI: 2.8–6.1%).
Basically, this is the result of multiplying the success rate of each step:
app use by the case (46%), identifier upload by the case (49%), app use
by the contact (45%), and AEN receipt by the contact (43%).

Estimating the epidemiological impact of manual and digital
contact tracing
To estimate the success rate of MCT and combined MCT and DPT in
our population, we compared the number of infected contacts who
would have been identified by each contact tracing strategy. Based on
self-reported test indications, we detected 616 cases throughMCT and
341 through symptomatic screening, of which 28 and 13, respectively,
also indicated having received an AEN (Fig. 2). In addition, 19 cases
were found through DPT alone, without concurrent symptoms or an
MCT notification. Thus, a maximum of 60 cases could be identified by
DPT, compared to 616 by MCT and 648 by a combined strategy.

If we assume that each notification was triggered by the actual
infector, this implies an MCT success rate over 10 times that of DPT.
Using the DPT notification success rate of 4.3% determined above, we
thus estimated the success rate of the MCT programme at 44%
(29–63%), and that of the combined MCT and DPT strategy at
47% (30–66%).

By inputting our estimates of comprehensiveness and speed
(Table 1, Supplementary Fig. 4) in a previously publishedmodel42,43, we
estimated the effect of different case isolation and contact tracing
strategies on the effective reproduction number (Reff) in our setting.
The effect of each contact tracing strategy on Reff increased almost
linearly with the proportion of cases detected through symptomatic
screening (Supplementary Fig. 5). Compared to case isolation only,
MCT with case isolation achieved the largest reduction in Reff (mean:
1.58 times the effect of case isolation only), while the impact of DPT
was minimal in comparison (mean: 1.06 times the effect of case iso-
lation only). Model parameters are listed in Supplementary Table 2.
The relative effectiveness of each strategy was robust to variations in
input parameters (see Supplementary Table 3).

Changes in effectiveness over time
Next, we included additional data from the longer period between 1
February 2021 and 21 March 2022, aiming to reveal associations
between incidence, engagement with contact tracing, a change in app
configuration on 26 April 2021 and the timeliness and comprehen-
siveness of DPT and MCT (Fig. 4, Supplementary Fig. 6)44. There was a
downward trend over this period in both app uptake and participation
in manual contact tracing. While the number of tests largely followed

epidemic waves, DPT contributed only a small minority of test indi-
cations throughout, and the fraction of tests performed for symptoms
gradually increased with the easing of national test and trace guide-
lines. The contribution of DPT to test indications did not seem to
change substantiallywith an update to the transmission risk estimation
algorithm (aimed at increasing notification thresholds) on 26th April
2021. We saw longer delays in MCTwhen incidence peaked, indicating
a limitation in scalability, but the proportion ofDPT as a test indication
did not seem to risewith incidence.While the positive predictive value
of DPT was usually lower compared to MCT, it rose during high inci-
denceperiods, especially thewave attributed to theOmicron variant of
concern (VOC) from January 2022.

Discussion
This study provides unique empirical individual level data on the
comprehensiveness and speed of digital proximity tracing for COVID-
19. By overlaying the manual and digital contact tracing cascades, we
determine bottlenecks in each step of the notification cascade and
compare the epidemiological impact of both strategies. As of Sep-
tember 2023, this is the first study to determine the technical sensi-
tivity of a DPT system by consistently querying app use, triggering of
notifications and AEN receipt within a manual contact tracing pro-
gramme. It is also the first to evaluate a DPT system in this later phase
of the COVID-19 pandemic, characterised locally by dominance of the
Delta and Omicron VOCs, relaxed social contact restrictions, and high
vaccination rates.

Previous studies have associated digital notifications with an
increased infection risk compared to the general population29,40.
Additionally in our setting, for app users who were symptomatic, the
absence of a concurrent AEN reduced the risk of infection (Fig. 2). In
other words, the DPT system provided some information on whether
COVID-19 was the cause of any symptoms. For contacts whose expo-
sure had already been established throughmanual tracing, an AEN did
not provide any additional predictive value.

Crucially, for contacts traced only digitally, the infection risk was
significantly lower (risk ratio: 0.51, CI: 0.33-0.80) compared to manu-
ally traced non-app users, indicating a lower positive predictive value
of DPT in the context of this study (Fig. 2). This is consistent with a
previous study, which estimated the fraction of digitally notified con-
tacts who fit the close contact definition at only 39% in a centralised
BLE-based app41. We conclude that the infection risk of digitally traced
contacts, although non-negligible (5.0%; CI: 3.0–7.7%), was lower than
that of manually traced contacts, indicating less efficient allocation of
testing and quarantine.

App uptake was similar amongst cases and contacts at 46% (CI:
44–48%) and 45% (CI: 39–51%), respectively, corresponding with the
48.7% of respondents intending to use the app in a Belgian study prior
to its launch and the 46% of Belgian smartphone owners who down-
loaded the app by October 202245,46. This was a high proportion com-
pared to other countries which had well-established DPT apps13,17,37,40,41.

The proportion of infected app users who triggered notifications
(49%; CI: 45–53%) was lower than in early studies on the GAEN-based
SwissCovid app (88%) and theNHSCOVID-19 app (72%)31,39. However, it
was similar to later estimates for both apps (37.3–46.3% and 40–55%,
respectively)36,40. Lower proportions were observed in a study in Cali-
fornia (15%) and on a national scale in Belgium (36%)37,45.

Table 1 | Estimated effectiveness measures of manual and digital contact tracing in our setting

Case isolation with MCT Case isolation with DPT Case isolation with MCT and DPT

Notification cascade success rate 44% (29–63%) 4.3% (2.8–6.1%) 47% (30–66%)

Mean delay from PCR result to contact notification 2.3days (2.1–2.4) 1.2 days (0.6–2.2) 2.1 days (2.0–2.4)

Mean Reff reduction relative to case isolation only 158% 106% 163%

Where applicable, 95% confidence intervals are shown between brackets.
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We observed a technical sensitivity of 43% (CI: 27–59%) for the
Coronalert app, similar to a previous report of 58.5% for the Swiss-
Covid app32. Thismeans that, when both the case and the contact used
the app and the case triggered notifications, the probability that the
contact received a notification was 43%.

Overall, we estimated the probability that the entire DPT notifi-
cation cascade (from case diagnosis to contact AEN receipt) was
completed for any case-contact pair in our population at only 4.3% (CI:
2.8–6.1%), a result of these compounding failure rates throughout the
notification cascade (Fig. 5a). This is consistent with the 5.5% (CI:
5.0–6.1%) who had received an AEN, out of all manually traced close
contacts attending the test centre, supporting the validity of this latter
measure to track DPT comprehensiveness.

Previously reported estimates of app uptake and the proportion
of cases triggering notifications are shown in Fig. 5b13,31,36,37,39–41,47,48. It is
clear that, even in settings with high app uptake, only limited digital
cascade completion rates can be achieved, in the absence of efforts to
tackle notification sharing and technical sensitivity. Unfortunately,
simply changing appparameters to increase technical sensitivity could
come at a cost of lowering DPT’s positive predictive value, which was
already disappointing compared to MCT in this study. If lowering the
thresholds for DPT results in a higher quarantine burden per detected
case compared to MCT, expanding MCT criteria may be the more
efficient intervention.

In terms of timeliness, we observed no significant lag between
reporting of a positive PCR result and triggering of AENs by the case,
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Fig. 4 | Evolution of test indications and contact tracing performance over
time. a, b Show the number of cases identified and the infection risk (the pro-
portion subsequently diagnosedwith COVID-19), respectively, at the university test
centre by test indication (n = 14,907 MCT/DPT test bookings in b). c, d Show,
respectively, the evolution over time of DPT (digital proximity tracing) app uptake
(n = 24,671 non-DPT test bookings) and the proportion of cases with at least one
contact traced throughMCT (manual contact tracing,n = 6856 confirmed cases). In
(e) we show the ratio between persons attending the test centre after a digital and a
manual notification (n = 14,907 MCT/DPT test bookings). f Shows the mean delay

from case PCR sampling to case interview (n = 4383 interviewed cases). Dots show
weekly observed proportions and ratios, and error bars the 95% confidence inter-
val, except in (f) where grey dots are individual data points. Coloured lines show
estimates obtained using local polynomial regression curves, and the shaded areas
their 95% confidence intervals. Vertical black lines show the beginning and end of
the main study period, with the latter corresponding to the end of government-
mandated testing for close contacts. A change in app configuration, intended to
reduce the number of notified contacts, is indicated with a blue vertical line.
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indicating that results were reported rapidly in the app, and index
cases consented to DPT promptly, if they intended to do so (Fig. 3b).
However, ameandelayof 1.2 days (CI: 0.6–2.2)wasobserved fromcase
PCR result to contact AEN receipt (Fig. 3c), compared to 2.3 days (CI:
2.1–2.4) for MCT. Possible sources of this delay could lie in the pub-
lication of the case identifier on the server, the retrieval and analysis of
this information by the contact’s device, or the display of an AEN on
this device. It is also possible that our questions on DPT as part of this
study encouraged cases to trigger notifications after the case inter-
view, leading to delayed notifications. Another explanation might be
notifications triggered by a combination of low-risk exposures to

multiple cases. This wouldmean that an AEN is received only after the
last of these cases trigger notifications. Multiple exposures could be
especially relevant with regards to superspreading events, or when
there is widespread community transmission. Interestingly, Rodriguez
et al. observed similar delays in a controlled population experiment on
the Spanish Canary Islands, where 98% of index cases who opted to
share their code did so within 24h, while the average delay between a
simulated index case introducing the code and the alerted close con-
tact following up with the call centre was 2.35 days48. Ballouz et al. also
showed that, of contacts who were both manually and digitally noti-
fied, only a minority received the AEN before being notified
through MCT31.

In our specific setting, MCT detected over 10 times the number of
infected contacts found through DPT alone, although in a combined
strategy,DPT could identify 5.2%of additional cases not found through
MCT. The resulting modelled effect of MCT on Reff was also nearly 10
times that of DPT alone (58% additional Reff reduction relative to case
isolation only, compared to 6%). This was despite a rather low number
(mean: 2.7) of manually traced contacts per index case. The model
results were robust to variations in input parameters (Supplementary
Table 3). As in previous modelling research, the effect of both strate-
gies correlated with the comprehensiveness of detection through
diagnostic screening for indications other than contact tracing43. This
is consistent with the notion of fast, comprehensive detection of
(symptomatic) cases as a requirement for effective contact tracing3.

These results contrast starkly with several early modelling studies
estimating DPT effectiveness3,4,7,12. While many considered the impor-
tance of app uptake, assumptions were likely more optimistic
regarding the fraction of index cases triggering notifications, the app’s
technical sensitivity and the willingness of AEN recipients to follow
recommendations to quarantine and undergo diagnostic testing3,4,7.
Also, they assumed notifications to be instantaneous, which was not
true in this study and in several other DPT implementations31,32,48. More
recent modelling studies highlighted that all exposed contacts,
including super spreaders—from whichmost transmission occurs—are
in principle discoverable through manual contact tracing49. In con-
trast, digital proximity tracing can only sample from a limited network
of app users, resulting in lower comprehensiveness, which may be
more important than speed.

Our effectiveness estimate compared to MCT may appear to
contrast with the generally positive assessment in two analyses using
aggregated empirical data from the NHS COVID-19 app in the United
Kingdom39,40. However, based on the estimates of app uptake
(23–30%) and the fraction of index cases triggering notifications
(40–55%), we would expect a notification cascade success rate similar
to our setting (Fig. 5b). Importantly, these studies focused on the
absolute epidemiological impact of DPT. They could notmake a direct
comparison between cases identified by MCT, DPT, symptomatic
screening, or a combination, without assumptions regarding the
speed, comprehensiveness, and efficiency of different case detection
strategies.

In an exploratory analysis, we report additional data from the
period of February 2021 to March 2022, aiming to reveal associations
between incidence, engagement with contact tracing, a change in app
configuration on 26 April 2021 and the timeliness and comprehen-
siveness of DPT and MCT44. The absolute number of individuals
undergoing testing after an AEN increased with incidence, as pre-
viously reported36,40. As an illustration of DPT’s scalability advantage,
we expected to see an increase in the proportion of traced contacts
throughDPT relative toMCTduring incidence surges. However,wedid
not observe this sign of scalability, even though the entire DPT cascade
could be completed without manual input from a healthcare profes-
sional. This could be explained by the equal scalability of the university
MCT workforce, consisting mainly of student workers employed on
flexible contracts. The change in app configuration on 26 April 2021,

Fig. 5 | Illustrations of observed success rates in the DPT (digital proximity
tracing) notification cascade. The total probability of completing the notification
cascade was estimated at 4.3% (CI: 2.8–6.1). a Shows how each step contributed to
cascade failures. In a hypothetical scenario of 4 diagnosed cases (left) with 4 con-
tacts each (right), the entire cascade would have been completed for only one out
of 16 case-contact pairs (black arrow).Observed success rates are indicated for each
step, with 95% confidence intervals between brackets. b Compares our results to
previous reports of app uptake and the proportion of infected app users triggering
notifications, and indicates the expected cascade completion rate when combined
with the technical sensitivity we observed for the Coronalert app. Here, we assume
that app uptake is equal amongst contacts and cases and that mixing patterns
remain as in the studied population. Est.: estimate.
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aimed at increasing the threshold for digital notifications, did not
noticeably change the fraction of contacts attending the university test
centre citing an AEN, relative to manually traced contacts44. It is pos-
sible that the change did have some effect which was not observed
here, due to the small number of observations resulting in broad
confidence intervals. Throughout the extended study period, we
observed a gradual decline in both app uptake and engagement with
MCT (quantified as the fraction of cases reporting at least one contact).

As described above, each of the limitations we observed for the
Coronalert app has also been reported for other DPT systems. Thus,
the limited evidence suggests common points of failure across dif-
ferent implementations for COVID-19. This does not necessarily
indicate intrinsic limitations of DPT. However, some pitfalls might
have been avoided if such systems had been developed and refined
before the public health emergency, with a view to pandemic
preparedness.

For future implementations of DPT, many countries would not
resort to mandatory app use to improve uptake, considering the
impact on individual rights. More limited mandatory use however,
such as the requirement to register attendance at certain high-risk
venues,may increase overall uptake, as it did in the United Kingdom40.
Small financial rewards for using the app may also be considered6, as
well as increasing the general usefulness of the app16. To avoid index
cases deciding not to share their notification in the app, (monetary)
incentives can again be considered. An a priori, once-off consent
procedure for exposure notifications in case of a positive test might
outweigh any resulting reduction in app uptake or testing16. The app’s
technical sensitivity may benefit from more advanced proximity sen-
sing technologies, such as ultra-wide band (UWB). Extending the
contact elicitation window backward in time may help to identify
source and sibling cases50,51. Finally, the integration of proximity sen-
sing with an estimate of transmission risk in the immediate environ-
ment, e.g., through interaction with climate sensors, may further
improve the transmission risk estimation algorithm52.

This study has several limitations. First, our population consisted
of highly educated young adults, with near-universal smartphone
coverage, which may have resulted in higher-than-average willingness
and ability to engage in digital contact tracing41. Our young, highly
educated population possibly also differed from the general popula-
tion in other ways, such as the type and number of social interactions,
the prior probability of being infected, and the proportion of symp-
tomatic individuals53,54.Wedonot expect these factors to influence our
estimates of technical sensitivity which should be independent of app
uptake and the proportion consenting to contact tracing.Whereas our
observed infection risks could be particularly biased, the significant
difference in infection risk between manually and digitally traced
contacts suggests a trend generalisable to the broader population.

Second, we could only determine cascade success rates up the
point where a contact receives an AEN. Thus, we could not assess
whether digitally alerted contacts were less likely to follow quarantine
and testing advice. However, our estimate of the epidemiological
impact is based on all persons undergoing a test citing a manual or
digital notification, thus taking into account any difference in com-
pliance with testing advice. On the other hand, we did not evaluate
behavioural changes of digitally alerted app users who did not attend
the test centre, which may have contributed to lower onward
transmission.

Third, we used interviews and digital questionnaires to obtain
information on each step in the digital notification cascade, possibly
leading to self-reporting bias55. Notably, the number of cases triggering
notifications could be overestimated due to social desirability bias.

Fourth, despite a low number of manually traced contacts per
case, the majority of cases was detected through MCT, rather than
symptomatic screening. This could indicate an unusually effective
MCT systemor reporting bias, resulting in a distorted comparisonwith

the epidemiological impact ofDPT.However, this should not affect the
observed absolute success rate of DPT.

Finally, we could not assess the number of exposures leading to
each digital notification. It is possible that many notifications were
triggered by a combination of low-risk exposures to multiple cases,
rather than a single high-risk exposure. If so, it is possible that DPT
could detectmore cases than suggested by its ability to notify high-risk
contacts. However, our estimate of the epidemiological impact already
takes this into account, as it is based on actual numbers of cases
detected.

In conclusion, our results confirm that, similar to other DPT apps,
the Belgian systemwas not a replacement for comprehensiveMCT.We
show that, in a supportive role to MCT, the impact was real but rela-
tively limited. Our individual level analysis of the digital notification
cascade highlights limitations in each step, which should be con-
sidered in future implementations.

Methods
Study type
This observational study complied with the STROBE guidelines.

The study protocol was approved by the Ethics Committee
Research UZ/KU Leuven (reference number: S64919). Informed con-
sent was waived by the Ethics Committee, as the data gathered did not
exceed what was required for the purpose of safeguarding public
health.

Context
The study was performed in the context of a COVID-19 test and trace
programme targeting around 50,000 higher education students at the
KU Leuven Association in Leuven, Belgium. This programme was pre-
viously described in detail51,56. Smartphone coverage was nearly uni-
versal, as both internet access and a phone number were required for
test booking (in Dutch or English), and we received only a handful of
requests for an alternative during the 1.5-year programme. Vaccination
rates increased from 2.8% in February 2021 to 10% in May 2021 and
over 90% in September 202151.

Themain studyperiod ran from 18October 2021—whenwe started
systematically asking cases whether they triggered AENs—to 9 January
2022, when government-mandated testing for all close contacts was
abandoned. The Delta and Omicron BA.1 VOCs were dominant57.
Moderate contact restrictions were in place, with theweighted average
Oxford COVID-19 government stringency index for vaccinated and
non-vaccinated individuals ranging between 32 and 3458.

For an additional analysis of variations over time, we also investi-
gated a longer period spanning Alpha, Delta, and Omicron VOC dom-
inance, from 1 February 2021—when an AEN became an accepted test
indication at the university test centre—to 21 March 2022, when it
stopped accepting contact tracing as a test indication. Contact restric-
tions were high in the beginning of this period, peaking at an Oxford
COVID-19 government stringency indexof 76 inApril 2021, anddeclined
progressively thereafter, reaching 14 and the end of the period58.

Coronalert
The Coronalert mobile phone app was a Belgian government-
sponsored implementation of the GAEN framework.

For a notification to be triggered using the GAEN framework, a
case needs to undergo a diagnostic test and upload an identifier code
to a central database. This upload requires authorisation by the public
health authority and explicit permission from the user. The identifier
code is then published on a server, retrieved by the contact’s device,
and contributes to the contact’s risk estimation. Once a threshold is
reached, an automated notification is displayed to the contact, who
can subsequently decide whether to act on it.

Coronalert was released to the public on 30th September 2020. It
used a simple exposure risk estimator, based on binned Received
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Signal Strength Indicator (RSSI) values, timing, and duration of expo-
sure, to determine whether a proximity event with risk of transmission
took place. The contact elicitation window started 4 days before
symptom onset or positive PCR test of the case, whichever was earlier.
The app made a distinction, based on these parameters, between low-
risk contacts and high-risk contacts. In this study, we only consider
high-risk contacts, because only they received instructions to quar-
antine and get tested59.

Parameters used to determine whether a proximity event took
place have differed between countries and time periods26,44,60. A
change to the Coronalert app, intended to reduce the sensitivity of
proximity detection, took place on 26 April 2021. Both sets of config-
uration details can be accessed online44. The app was deactivated on 9
November 2022 as the epidemiological situation improved.

Apart from DPT, the Coronalert app provided automatic reports
of individual PCR test results and a dashboard with national statistics,
such as COVID-19 incidence and vaccination coverage.

Throughout its lifetime, the app was downloaded 4.2 million
times, corresponding to 46% of Belgian smartphone owners. No active
user numbers were collected on a national level. 1.76 million test
results, including 340,000 positive results, were received through the
app, which corresponds to 5.4% of the registered COVID-19 tests and
6.9% of the positive COVID-19 tests in the same period. 123,000 per-
sons receiving a positive test through the app proceeded to trigger
notifications (36%)45,61.

As part of the sampling process for COVID-19 tests, healthcare
providers in Belgium were instructed to ask app users for a pseu-
donym code generated by their app. This code was linked to the test
in a central database. The app could determine the result of the test
by querying a central server for the pseudonym code. App users
who had chosen not to input their pseudonym code into the data-
base at the time of sampling, could still do so after receiving their
test result, by using an online form or by calling the contact tracing
centre.

If the test result was positive, the app automatically prompted the
user to consent to notifying their close contacts. If accepted, the
identifier code was uploaded to the central database and close con-
tacts received an AEN.

The results of self-administered rapid antigen tests, which gra-
dually become more popular throughout the extended study period,
could not be linked to the Coronalert app. All persons with a positive
self-administered test were advised to undergo a confirmatory PCR or
rapid antigen test, performed by a healthcare professional.

For our analysis, we summarised the notification cascade to four
key steps: app use by the index case, identifier uploadby the index case,
app use by the contact, and receipt of an AEN. We could not determine
the proportion of all cases who were diagnosed, or the proportion of
notified contacts complying with quarantine or testing advice.

Data collection
Any student could book a PCR test at the university test centre by
filling out an online form, which included the following statements
requiring a yes or no answer: “The Coronalert app has been active on
my phone for more than a week” and “I received an alert through the
Coronalert app that I have had a high-risk contact”. They were also
asked to input one main test indication, with options including,
amongst others, suggestive symptoms, an AEN, and a manually traced
close contact. A full list of test indications implemented throughout
the study period is added in Supplementary Table 1.

As per national guidelines, Coronalert users attending for a PCR
test were consistently encouraged to register their test in the app at
the time of sampling, as observed by other researchers conducting in-
depth interviews in the same population16.

A contact tracing team attempted to phone each student with a
positive PCR test result for a case interview. They were systematically

asked for details of their close contacts andwhether they had triggered
notifications in the Coronalert app.

For data collection we used Go.Data (version: 2.37.0—build
2105111528), a contact tracing tool developed by the World Health
Organisation. Go.Data was integrated with custom-built appointment
management, contact listing, and laboratory result modules.

Study participants: infection risk analysis
In the first part of this study, we determined the infection risk of stu-
dents attending the test centre, grouped by their test indication and
whether they had received an AEN. This analysis compares the positive
predictive value of digital and manual notifications.

We included all students who filled out an online test booking
form and indicated a manually traced contact, suggestive symptoms,
or an AEN as the main test indication. Students were excluded if they
had already been identified as infected in the previous 60 days. To
avoid selection bias and ambiguous test indications, we also excluded
studentswho had already booked or undergone a test in the preceding
14 days. Finally, we excluded persons who indicated an AEN as the test
indication but answered “no” in the same questionnaire, when asked
whether an AEN was received.

Students with any positive test in the 14 days after test booking
were considered infected, while others with any negative test in the
same period were considered not infected. If no test was performed,
the student was marked as lost to follow-up.

Risk ratios were calculated relative to control groups of students
with the same main test indication who did not use the app.

For students indicating an AEN as the main test indication, we
used manually traced non-app users as the control group. As such, we
obtain a measure of the positive predictive value of AEN for detecting
infection relative to manual contact tracing.

Study participants: notification cascade
For a detailed analysis of the notification cascade, we started from all
infected students referred to the university contact tracing team for a
positive test in the study period. This includes students tested at the
test centre, but also elsewhere.

During the case interview, we asked whether they had triggered
notifications in the Coronalert app. Cases who had used the AEN app
were actively encouraged to consent to AEN in their app. They also
received basic assistance in case of technical difficulties. If the contact
tracer considered the positive test as likely due to a previous infection,
or if data on app use was missing, the case was excluded. When
determining success rates and delays in the AEN triggering step, we
also excluded cases who could not be reached for an interview, cases
interviewed only before their PCR test result, and cases with missing
information on whether they triggered notifications.

Manual contact tracing was performed for each case, using the
same definition for close contact as the national guidelines: either
direct physical contact, an interaction at <1.5mwithout facemasks, an
interaction at <1.5m for >15min, or an interaction without face masks
for >15min.We additionally labelled as close contacts co-attendants at
a “high-risk event” of up to 20 attendees, defined as fitting at least two
of the following three criteria: crowding (at least five individuals
belonging to at least two households), close contact (within 1.5m
withoutmasks) and closed environment (indoor)51. All manually traced
close contacts were encouraged to undergo PCR testing as soon as
possible and again 7 days after their last exposure, even when this
advice differed from national guidelines. After an initial negative PCR
test, quarantine until the second test was recommended for all con-
tacts, and a legal requirement for unvaccinated individuals.

Contacts of cases who triggered AENs were included in the ana-
lysis if the contact filled out an online PCR test booking form for the
test centre, 0 to 14 days after the case PCR result was reported. Con-
tacts were excluded if they already had a positive test up to 60 days
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before the case. If a contact was exposed to several cases, only the first
reported case-contact pair was retained.

Analysis of notification cascade
We considered four main steps in the notification cascade: (1) app
use by the case, (2) triggering of AEN, (3) app use by the contact, and
(4) AEN receipt by the contact. The order of these steps was not
chronological but selected to facilitate the analysis.Wedetermined the
proportion of cases and contacts progressing through each step,
conditional on successful completion of all previous steps.

For the notification trigger step and the AEN receipt step, we
plotted the proportion of cases who indicated having triggered noti-
fications, or contacts having received an AEN, by time since PCR test
result. For both plots, we fitted the data to a cumulative log-normal
curve, assuming that the proportions of cases having triggered AENs
and contacts having received an AEN would reach a plateau after a
certain delay. The fitted curves were used to estimate the mean delay
in each step.We also determined the time required to reach90%of the
supremum, i.e., the time required to reach 90% of the final success
rate. Excluding any observations before this time, we determined the
proportion of cases and contacts progressing through these two steps
of the notification cascade.

To estimate the probability of completing the entire cascade, we
used a simple stochastic model. The probability of completing each
step, conditional on having completed the previous one,wasmodelled
as a Beta function with shape parameters a (the observed number of
successes plus one) and b (the observed number of failures plus one).
The probability of completing the entire cascade was modelled by
multiplying 100,000 random samples from the probability distribu-
tions of each step. A Beta distribution was then fitted to the results,
with the mean of the probability density function taken as the esti-
mated probability of completing the cascade. The 95% confidence
interval was determined by inputting the values 0.025 and 0.975 in the
quantile function of this Beta distribution.

Effect on epidemic growth
To compare the influence of different case isolation and contact tra-
cing strategies on epidemic growth in our setting, we modelled their
effect on the effective reproduction number (Reff),which is the average
number of secondary infections caused by one case.

The baseline Reff is the result of prevailing general contact
restrictions, barrier measures, virological factors (e.g., the dominant
VOC) and immunity (natural or vaccine induced) in the absence of case
isolation or contact tracing. As the national BelgianReff varied between
0.69 and 1.68 during the main study period (based on case numbers),
we used 1.5 as a baseline62,63. We note that, given the transmissibility of
Delta orOmicronvariants, these values for the baseline Reff canonly be
achieved with some combination of immunity, general contact
restrictions, and barrier measures64,65.

Wemodelled the effect of four strategies: case isolation only, case
isolation with DPT, case isolation with MCT, and case isolation with
DPT and MCT combined.

In the absence of unbiased community prevalence surveys, we
varied the comprehensiveness of detection through surveillance
(diagnostic screening for indications other than contact tracing) from
0.1 to 0.9 in this model.

To estimate the comprehensiveness of MCT, we first determined
the total number of infected contacts identified throughMCT and DPT.
We assumed that digital or manual exposure notifications were always
triggered by the actual infector. We also assumed that our estimate of
DPT cascade success rate applied to all contacts attending the test
centre, which is possibly incorrect, as this includes contacts exposed to
casesoutsideour targetpopulation.Wealsodidnot account forpersons
who did not undergo a test after being manually or digitally notified.

To estimate the speed of case isolation and manual contact
notification, we determined the mean delays from symptom onset to
test result of symptomatic cases and timing to contact quarantine for
their contacts. As we only queried symptoms at the time of the case
interview, rather than followupon symptomdevelopment throughout
the infection, we could not differentiate pre-symptomatic from
asymptomatic cases.

We then inputted these parameters into a previously published
compartmental model to determine the effect of different case isola-
tion and contact tracing strategies on Reff (Supplementary Tables 2
and 3)42,43.

Extended study period
In anexploratory analysis over anextended timeperiod,with variations
in case numbers, vaccination rate, app configuration (a single change
to reducesensitivity tookplaceonApril 26 2021), and engagementwith
MCT andDPT, we plotted the following parameters: confirmed COVID-
19 case numbers and infection rate by test indication, app uptake, the
percentageofmanually traced cases reporting at least one contact (as a
measure of active participation in MCT), the delay between PCR test
result andMCT (as ameasure of speed), and the proportion of contacts
identified through DPT relative to MCT.

Statistical methods
No power analysis was performed, because the study size was a direct
result of the number of cases and contacts during the study periods,
which were chosen as broadly as possible, as described above. The
obtained study size is reflected in the confidence intervals of the
results. No randomization or blinding was performed in this
observational study.

For continuous variables, t-based two-sided 95% confidence
intervals were calculated. For binomial variables, the Clopper-Pearson
method was used to determine two-sided 95% confidence intervals,
and small sample adjusted risk ratios were determined with two-sided
normal ~95% confidence intervals. We used a two-sided Pearson’s chi-
squared test to determinewhether therewas a difference between two
proportions.

For the mean delay of each notification cascade step, we calcu-
lated the mean of a (cumulative) log-normal curve fitted to the
observed data. The 95% confidence interval was determined as 1.96
times the standarderror, either sideof themeanon a logarithmic scale.
This valuewas then converted to the equivalentmean on a linear scale.
The confidence interval of the digital notification cascade completion
rate was determined using a fitted Beta curve, as described above.

When considering outcome data, cases and contacts lost to
follow-up were excluded from the analyses.

Data analysis was performed using R scripts specifically written
for this study in R version 4.2.2, using the followingpackages: tidyverse
(2.0.0), epitools (0.5-10.1), lubridate (1.9.2), patchwork (1.1.2), Desc-
Tools (0.99.48), tti (0.1.0), ggtext (0;1.2), gridExtra (2.3), readxl (1.4.2),
ggrepel (0.9.3), fitdistrplus (1.1–8), investr (1.4.2), and MASS (7.3-58.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level data underlying the analyses in this study are
provided in the Supplementary Data file. The rawagedata are available
under restricted access for privacy reasons. Access to age data can be
obtained by request to the corresponding author (C.G.), who will
respond within 4weeks. Theremust be a demonstrable affiliation with
an academic or health institution, a legitimate epidemiological ques-
tion, and a commitment not to attempt to de-anonymise.
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Code availability
Code to reproduce these results is available from: https://github.com/
c-geenen/DPT-leuven66.
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