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Single-cell morphological and topological
atlas reveals the ecosystem diversity of
human breast cancer

Shen Zhao1,7, De-Pin Chen 2,7, Tong Fu1,7, Jing-Cheng Yang1,3,7, Ding Ma 1,
Xiu-Zhi Zhu1, Xiang-Xue Wang2, Yi-Ping Jiao2, Xi Jin1, Yi Xiao1, Wen-Xuan Xiao1,
Hu-Yunlong Zhang1, Hong Lv4, Anant Madabhushi 5,6, Wen-Tao Yang 4 ,
Yi-Zhou Jiang1 , Jun Xu 2 & Zhi-Ming Shao 1

Digital pathology allows computerized analysis of tumor ecosystem using
whole slide images (WSIs). Here, we present single-cell morphological and
topological profiling (sc-MTOP) to characterize tumor ecosystem by extract-
ing the features of nuclear morphology and intercellular spatial relationship
for individual cells.We construct a single-cell atlas comprising 410million cells
from 637 breast cancer WSIs and dissect the phenotypic diversity within
tumor, inflammatory and stroma cells respectively. Spatially-resolved analysis
identifies recurrent micro-ecological modules representing locoregional
multicellular structures and reveals four breast cancer ecotypes correlating
with distinct molecular features and patient prognosis. Further analysis with
multiomics data uncovers clinically relevant ecosystem features. High abun-
dance of locally-aggregated inflammatory cells indicates immune-activated
tumor microenvironment and favorable immunotherapy response in triple-
negative breast cancers. Morphological intratumor heterogeneity of tumor
nuclei correlates with cell cycle pathway activation and CDK inhibitors
responsiveness in hormone receptor-positive cases. sc-MTOP enables using
WSIs to characterize tumor ecosystems at the single-cell level.

Tumors are increasingly recognized as an “ecosystem” composed of
tumor, immune and stroma cells together with the complex cell-to-
cell interactions1. The cancer biological behavior, prognosis and
treatment response depend not only on the traits of tumor cells but
also on other cell components and their interplay with the tumor
cells2,3. For instance, tumor-infiltrating lymphocytes (TILs) play a key
role in anti-tumor immune response and is associated with the
prognosis of breast cancer patients and the tumor response to

chemotherapy and immunotherapy4,5. Cancer-associated fibroblasts,
which are the main cell type in cancer stroma, can regulate cancer
progression via heterotypic interactions with the nearby tumor cells
and contribute to immunosuppressive microenvironment and
drug resistance6,7. Dissecting the tumor ecosystem composition and
the relationship between different cell types is of great significance
for understanding the cancer biology and improving the cancer
management.
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Nowadays, histopathology remains the “gold standard” for cancer
diagnosis. In addition to diagnostic information, the hematoxylin and
eosin (H&E)-stained pathological slides provide a wealth of informa-
tion on tumor ecosystem including cell composition, morphology and
spatial organization. The advent of digital pathology and computer-
ized image analysis allows high-throughput characterization of tumor
ecosystem from pathological whole slide images (WSIs). Previous
studies developed prognostic or predictive models based on the cell
morphology or spatial arrangement features in several cancer
types8–14. These studies identified certain features that were associated
with specific clinical outcomes (usually the prognosis or therapy
response) for model development, but lacked the comprehensive
depiction of the tumor ecosystemby integrating themultidimensional
features. Wang et al. and Yoo et al. performed unsupervised clustering
based on the image features and classified the hepatocellular carci-
noma and colorectal cancers into “imaging subtypes”15,16. However,
both studies focused solely on the features of tumor cells and

lymphocytes and ignored those of stroma cells, which are important
components in the tumor ecosystem. In addition, the above studies
generally integrated the cell-level features into patient-level for mod-
eling or clustering. A comprehensive atlas characterizing the pheno-
typic diversity within each cell type in the tumor ecosystem on the
single-cell level remains lacking.

In this work, we present a single-cell morphological and topologi-
cal profiling (sc-MTOP) framework to characterize the tumor ecosystem
at the single-cell resolution and use this approach to investigate the
phenotypic diversity of human breast cancer ecosystem and its clinical
relevance (Fig. 1a). The framework first employs Hover-Net to segment
the nuclei on WSIs and predict their cell types17. Then, for individual
cells, nuclear morphological and texture features are extracted based
on the nuclear contour. A graph-based method is devised to model the
intercellular spatial relationship and a series of topological features are
extracted (Fig. 1b). We apply the sc-MTOP framework to 637 breast
cancer WSIs covering all immunohistochemistry (IHC) subtypes and
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Fig. 1 | Single-cell morphological and topological profiling and the generated
dataset. a Schematic diagram of single-cell morphological and topological profil-
ing (sc-MTOP). It first employs Hover-Net to implement nuclear segmentation and
classification on WSIs. Then, for individual cells, nuclear morphological, texture
and topological features are extracted based on the nuclear contour and the
intercellular spatial relationship. Created with BioRender.com. b Schematic dia-
gram ofmultilevel pairwise graphmethod to model the spatial relationship of cells
within the same and across cell types (taking a tumor cell as an example). T, I and S
denote tumor, inflammatory and stroma cell respectively. Created with BioR-
ender.com. c Cohort information about the cell composition of whole slide images
and patients’ clinical andmultiomics data. Each column represents a patient. d Cell
composition of the entire sc-MTOP dataset. e Cell composition according to the

breast cancer IHC subtypes (HR+HER2-: n = 405; HR+HER2+: n = 85; HR-HER2+:
n = 66; TNBC: n = 81). P value is calculated using the chi-square test. f Boxplots of
the percentage of tumor, inflammatory, stroma and normal cells ofWSIs according
to the breast cancer IHC subtypes (HR+HER2-: n = 405; HR+HER2+: n = 85; HR-
HER2+: n = 66; TNBC: n = 81). The center lines of boxplots indicate the median
values; box limits show upper and lower quartiles; whiskers extend from box limits
to the farthest data point within 1.5 × interquartile range; points beyond whiskers
are outliers. P values are calculated using the two-sided Mann-Whitney U test with
false discovery rate-correction for multiple testing. sc-MTOP single-cell morpho-
logical and topological profiling; IHC immunohistochemistry; WES whole-exome
sequencing; CNA copy number alteration.
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establish a spatially resolved single-cell dataset containing 410 million
cells. Based on the dataset, we depict a single-cell morphological and
topological landscape dissecting the phenotypic diversity of breast
cancer ecosystem and uncover ecosystem features with clinical rele-
vance. Finally, to facilitate data sharing and the use of sc-MTOP fra-
mework by other researchers, an online platform is developed which
provides access to our dataset and can realize real-time analysis of user-
uploaded WSIs.

Results
sc-MTOP and the generated dataset
We propose the sc-MTOP framework to characterize the tumor eco-
system on the single-cell level based on digital pathology. The frame-
work takes a H&E-stained pathological WSI at ×40 magnification as
input. It first employs Hover-Net for simultaneous nuclear segmenta-
tion and classification. Then, feature profiling is performed for indivi-
dual tumor, inflammatory and stroma cells, which are themain cellular
components of tumor ecosystem18. The features include three cate-
gories: a) morphological features describing the nuclear shape and
contour; b) texture features characterizing the local pixel distribution
patterns within the nuclear contour; c) topological features char-
acterizing the intercellular relationships based on graph algorithm. In
topological feature extraction, to comprehensively characterize the
spatial relationships across different cell types, we propose a multi-
level pairwise method for graph construction. In brief, for each pair of
cell types, a graph is constructed to model the cellular relationship.
Thus, each tumor, inflammatory and stroma cell appears in three types
of graph (e.g. each tumor cell appears in tumor-tumor, tumor-
inflammatory and tumor-stroma graphs). For each cell, the topologi-
cal features are computed separately based on each graph that it
appears and are concatenated to constitute its comprehensive topo-
logical features (Fig. 1a, b andMethods). Our framework highlights the
feature profiling of individual cells, which allows analysis of the phe-
notypic diversity among cells and its potential clinical relevance. The
multilevel pairwise graph method enables comprehensive dissection
of the spatial relationships between different cell types.

To depict a panoramic landscape of human breast cancer ecosys-
temand explore the clinical relevance of ecosystem features, we applied
sc-MTOP to 637 WSIs of a retrospectively collected cohort with mul-
tiomics profiling data. This cohort included 637 consecutive breast
cancer patients who received standard treatment at Fudan University
Shanghai Cancer Center (FUSCC) from January 1, 2013 to December 31,
2014 (Methods). The samples covered all breast cancer IHC subtypes
including405hormone receptor-positiveHER2negative (HR+HER2-), 85
HR+HER2+, 66 HR-HER2+ and 81 triple-negative breast cancers (TNBCs)
(Fig. 1c andSupplementaryTable S1). A total of 410,575,052non-necrotic
cells were identified, including 193,216,681 (47.1%) tumor cells,
66,853,146 (16.3%) inflammatory cells, 141,896,644 stroma cells (34.6%)
and 8,608,581 normal breast gland cells (2.1 %) (Fig. 1d). The average cell
number (±standard variation) per sample were 303,322 ± 207,555 for
tumor cells, 104,950± 104,107 for inflammatory cells, 222,758 ± 124,843
for stoma cells and 13514 ± 14786 for normal breast gland cells.

The cell classification results were validated through the com-
parison with co-detection by indexing (CODEX), correlation analysis
and gene set enrichment analysis (GSEA). We performed successive
CODEX and H&E-staining for two cases (Methods, Supplementary
Fig. S1a) and analyzed the consistency between the CODEX andHover-
Net cell classification results. We marked 25 matched regions
(100 × 100μm) on the CODEX images and WSIs and quantified
the number of tumor, inflammatory and stroma cells based on the
CODEX images and Hover-Net cell classification respectively. It was
found that the estimated cell number of tumor, stroma and inflam-
matory cells showed high correlation between the CODEX images and
Hover-Net cell classification (Spearman correlation coefficient: 0.99
for tumor cells, 0.96 for inflammatory cells and 0.95 for stroma cells)

(Supplementary Fig. S1b–d). Second, we calculated the cell percen-
tages of tumor, inflammatory and stroma cells and correlated them
with the estimated cell abundance based on the multiomics data
(Methods). Tumor cell percentage was positively associated with
tumor purity estimated by the ASCAT algorithm19. Inflammatory cell
percentage showed positive correlation with TILs, CD3E mRNA
expression, immune signature scores and the estimated abundance of
CD8+ T cells, while the stroma cell percentagewaspositively correlated
with the stroma signature scores and the estimated abundance of
fibroblasts, endothelial cells and adipocytes (Supplementary Fig. S2a).
Third, we performedGSEA according to the samples’ cell composition.
Immune-related gene sets were enriched in samples with high
inflammatory cell percentage, while gene sets of extracellular matrix
and cell-matrix adhesions were enriched in samples with high stroma
cell percentage (Supplementary Fig. S2b, c). These results supported
the validity ofHover-Net-based cell classification inbreast cancerWSIs.

We next investigated the difference in the cell composition
among the IHC subtypes of breast cancer. HR+HER2- breast cancers
comprised a higher percentage of tumor cells and a lower percentage
of inflammatory cells. Both HR-HER2+ and TNBCs had a higher per-
centage of inflammatory cells. TNBCs were characterized by a lower
percentage of stroma cells. In addition, the normal cell percentagewas
highest in HR+HER2- and was lowest in TNBCs (Fig. 1e, f). As for clin-
icopathological features, high tumor grade was associated with high
inflammatory cell percentage and low percentage of stroma, normal
and tumor cells. High T category samples comprised a low percentage
of normal cells. N category showed no significant correlation with the
samples’ cell composition (Supplementary Fig. S2d–f). No statistically
significant difference in recurrence-free survival (RFS) was observed
between the groups stratified by the percentage of the four cell types
(Supplementary Fig. S2g–j).

Single-cell atlas of inflammatory cells
Based on the sc-MTOP data, we aimed to dissect the diversity of breast
cancer ecosystem at multiple levels. First of all, at the single-cell level,
we aimed to characterize the phenotypic diversity of inflammatory,
tumor and stroma cells respectively through Leiden clustering based
on the nuclear features20.

Inflammatory cells were classified into 10 clusters (named INF0-
INF9) with distinct topological features (Fig. 2a). Four clusters were
locally aggregated inflammatory cells characterized by high I-I_Degrees,
positive I-I_ClusteringCoefficient, low I-I_MinEdgeLength and low
I-I_MeanEdgeLength. Among them, both INF1 and INF6 comprised
inflammatory cells with connections to tumor cells. INF1 cells were
further distinguished by their connections to stroma cells. INF0 and
INF7 comprised locally aggregated inflammatory cells without connec-
tion to tumor cells and their difference was that INF0 cells had con-
nections to stroma cells. The other six clusters comprised inflammatory
cells that were spatially scattered or only formed small I-I subgraphs
characterized by low I-I_Nsubgraph and no I-I_ClusteringCoefficient
(Fig. 2b, c).

We next analyzed the association between inflammatory cell
clusters with breast cancer IHC subtypes, clinicopathological char-
acteristics and patient prognosis. After adjusting for the total number
of inflammatory cells,five clusters of scattered inflammatory cells were
found to be enriched in HR+HER2- breast cancers. HER2+ breast can-
cers had higher proportion of INF0 cells, which indicated a large
number of inflammatory cells residing near the stroma cells without
infiltration into the tumor nest. By contrast, TNBCs were enriched for
INF6 and INF7 cells, which were locally aggregated inflammatory cells
without connection to stroma cells (Fig. 2d, e). These data suggested
that breast cancers of different IHC subtypes had distinct spatial
distribution patterns of inflammatory cells. Besides, breast cancers of
low T category hadmore INF7 cells. Grade I-II breast cancers hadmore
INF2, INF3, INF4, INF5 and INF9 cells, while those of grade > II were
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Fig. 2 | Single-cell atlas of inflammatory cells. a UMAP plot of unsupervised
clustering results of 329,572 inflammatory cells sampled from 637 breast cancer
whole slide images. The scaled values of selected features are shown on the right.
b Dotplot of topological features according to the inflammatory cell clusters. The
scaledmean values within each cluster (visualized by dot color) and the fraction of
cells with positive values in the cluster (visualized by dot size) are shown. Note: If a
cell is not connected to any other cells in a certain graph, the edge length-related
features (MinEdgeLength and MeanEdgeLength) are set to 100 (pixel) which is the
upper limit of distance between two connected cells. c Local nuclear graph visua-
lization of the inflammatory cells of different clusters. A representative cell of each
cluster is shown in the center of the images with a black bounding box. The edges
between inflammatory and inflammatory cells (I-I edges), between tumor and

inflammatory cells (T-I edges) and between inflammatory and stroma cells (I-S
edges) are shown. Scale bar: 100 μm. d Comparison of the abundance of inflam-
matory cell clusters among the breast cancer IHC subtypes. Heatmap shows the
scaledmeanpercentage of inflammatory cell clusters that are significantly different
among the IHCsubtypes. eBoxplots of the percentage of inflammatory cell clusters
according to the IHC subtypes (HR+HER2-: n = 405; HR+HER2+: n = 85; HR-HER2+:
n = 66; TNBC: n = 81). The center lines of boxplots indicate the median values; box
limits show upper and lower quartiles; whiskers extend from box limits to the
farthest data point within 1.5 × interquartile range; points beyond whiskers are
outliers. P values are calculated using the two-sidedMann-Whitney U test with false
discovery rate-correction for multiple testing.

Article https://doi.org/10.1038/s41467-023-42504-y

Nature Communications |         (2023) 14:6796 4



enriched for INF0, INF1 and INF6 cells, which indicated more locally
aggregated inflammatory cells (Supplementary Fig. S3a). As for prog-
nosis, high abundance of INF1 and INF7 was associated with favorable
prognosis (Supplementary Fig. S3b).

Abundance of locally aggregated inflammatory cells indicates
immunotherapy response
The immune cell infiltration pattern reflected the anti-tumor immunity
status andwas reported to correlatedwith immunotherapy response10.
Thus, we explored the association between the abundance of inflam-
matory cell clusters and anti-tumor immune response. We first corre-
lated the abundance of the inflammatory cell clusters with the
microenvironment cell abundance which was estimated using single
sample GSEA (ssGSEA) based on the RNA sequencing (RNA-seq) data
(Methods)21. It was found that the abundance of INF0, INF1, INF6 and
INF7 cells showed significant positive association with abundance of a
variety of immune cell subsets (Fig. 3a). Besides, the abundance of
these four clusters was positively correlated with the biomarkers or
gene signatures that were reported to predict favorable immu-
notherapy response (Fig. 3b, Methods). Interestingly, these four clus-
ters were all characterized by high I-I_Nsubgraph, I-I_Degrees and
positive I-I_ClusteringCoefficient, which indicated local aggregation of
inflammatory cells. These results suggested that high abundance of
locally aggregated inflammatory cells was associated with the overall
activation of tumor immune microenvironment and possibly with a
favorable response to immunotherapy in breast cancer.

We next validated this finding in an independent immunotherapy
cohort with available treatment response information (Supplementary
Table S2 and Methods). This validation cohort was from the
NCT04129996 clinical trial, where patients with advanced TNBC were
treated with a PD-1 inhibitor-based regimen as first-line treatment22.
Patients were classified as responders or non-responders according to
whether or not they achieved objective response. We included 24 cases
with biopsy specimen before the PD-1 inhibitor-based immunotherapy
and collected the paraffin-embedded H&E-stained WSIs of the pre-
treatment specimens. We applied the sc-MTOP pipeline and extra-
polated the inflammatory cell clustering from the FUSCC discovery
cohort to the WSIs of the validation cohort (Methods). All of the ten
inflammatory cell clusters were identified in this validation cohort with
comparable proportions and feature profiles (Supplementary Fig. S4).
We calculated an aggregated inflammatory cell abundance score (AIC
score) as the sum of the abundance of INF0, INF1, INF6 and INF7 cells
and examined its associationwith immunotherapy response (Fig. 3c, d).
We found that AIC score was significantly higher in responders than in
non-responders (P=0.045) (Fig. 3e). In receiver operating character-
istics (ROC) analysis, AIC score achieved an area under the curve (AUC)
of 0.83 for identifying the responders, comparable to that of PD-L1 IHC
scorewhichwas anestablishedbiomarker for immunotherapy response
in advanced TNBC23 (Fig. 3f). In addition, high AIC score indicated long
progression-free survival (PFS) (log-rank P=9.12e-4) andoverall survival
(OS) (log-rank P =0.026) (Fig. 3g, h, Supplementary Fig. S5). Therefore,
in this cohort of limited sample size, our data suggested that the high
abundance of locally aggregated inflammatory cells can indicate better
responsiveness to immunotherapy in patients with TNBC.

Single-cell atlas of tumor cells and stroma cells
Adopting the same analytic approach as for inflammatory cells, we
characterized the phenotypic diversity of tumor and stroma cells
respectively. Tumor cells were classified into twelve clusters (named
TUM0-TUM11) with different topological and morphological features
(Fig. 4a–c). Except TUM9 and TUM10, tumor cells of the other clusters
which accounted for 98.7% of all tumor cells were locally connected
characterized by the positive value of T-T_Degrees. TUM0, TUM5 and
TUM8 consisted of tumor cells with connections to stroma cells but no
connection to inflammatory cells, and TUM0 was further characterized

by larger T-T_Nsubgraph and T-S_Nsubgraph, which indicated a large
tumor cell nest with surrounding stroma cells. TUM1 and TUM7 com-
prised tumor cells with connections to both inflammatory and stroma
cells, while TUM1 was further characterized by larger T-T_Nsubgraph,
T-T_Degrees and T-S_Nsubgraph. TUM2, TUM3, TUM4 and TUM11
comprised tumor cells at the center of tumor nest with no connection
to either inflammatory or stroma cells. Both TUM2 and TUM11 cells had
relatively large nuclear size indicated by their large Area and AreaBbox.
TUM11 cells was further characterized by long T-T_MinEdgeLength and
no T-T_ClusteringCoefficient, which reflected a loose tumor cell dis-
tribution. By contrast, TUM3 cells had small nuclear size. TUM4 cells
were characterized by large CellEccentricity, Elongation and low
Circularity,which indicated spindle-shaped tumornuclei. TUM6was the
only cluster with connections to inflammatory cells but no connection
to stroma cells. We also examined the association of the tumor cell
clusters with breast cancer IHC subtypes, clinicopathological char-
acteristics and patient prognosis. The four clusters that comprised
tumor cells with connections to inflammatory cells (TUM1, TUM6,
TUM7 and TUM9) were enriched in HR-HER2+ and TNBCs, while TUM0
and TUM5 which were two clusters including tumor cells with connec-
tions to stroma cells were enriched inHR+HER2- breast cancers. Among
the four clusters that comprised tumor cells with only tumor-tumor
connections, TUM2 and TUM11 cells were enriched in HER2+ breast
cancers; TUM3 cells were enriched in HR+HER2- breast cancers; TUM4
cells showed a tendency of enrichment in TNBCs (Supplementary
Fig. S6a, b). Besides, elderly patients had more TUM8 and TUM10 cells.
TUM0, TUM3, TUM5 and TUM10 cells were enriched in the grade I-II
breast cancers, while TUM1, TUM4, TUM6, TUM7, TUM9 and
TUM11 cells were enriched in grade > II breast cancers (Supplementary
Fig. S6c). As for prognosis, high abundance of TUM0 and TUM5 was
correlated with poor prognosis (Supplementary Fig. S6d).

Stromacells were classified into nine clusters (named STR0-STR8)
(Fig. 4d–f). STR1, STR2, STR4 and STR5 comprised stroma cells that
had connections to tumor cells. Among these four clusters, only STR1
cells had connections to inflammatory cells. Compared with STR5,
both STR2 and STR4 cells were locally connected stroma cells and
STR2 cells were further distinguished by large T-S_Nsubgraph and S-
S_Degrees, which indicated more stroma cells surrounding the tumor
cells. STR3, STR6 and STR7 consisted of stroma cells with no con-
nection to either tumor or inflammatory cells. STR7 comprised sepa-
rated stroma cells with no connection to any cells. Compared with
STR6, STR3 cells had larger S-S_Nsubgraph and S-S_Degrees, indicating
more locally aggregated stroma cells. STR0 and STR8 were locally
connected and separated stromacells respectivelywith connections to
inflammatory cells but no connection to tumor cells. These stroma cell
clusters also displayed distinct enrichment patterns among the IHC
subtypes. The clusters that comprised stromacellswith connections to
inflammatory cells (STR0, STR1 and STR8) were enriched in HR-HER2+
and TNBCs, while STR2, STR3, STR4, STR6 and STR7 cells were enri-
ched in HR+HER2- breast cancers (Supplementary Fig. S7a, b). Besides,
STR4, STR5, STR6, STR7 and STR8 cells were enriched in elderly
patients, while young patients had more STR1 cells. Tumor of low T
category had more STR7 and STR8 cells. STR0 and STR1 cells were
enriched in grade > II breast cancers, while grade I-II breast cancers had
more STR2, STR3, STR4, STR6 and STR7 cells, which were stroma cells
with few connections to inflammatory cells (Supplementary Fig. S7c).
As for prognosis, high abundance of STR2, STR4 and STR5 was asso-
ciated with poor prognosis (Supplementary Fig. S7d).

Morphological intratumor heterogeneity of tumor nuclei indi-
cates cell cycle pathway activity and CDK inhibitor response in
HR+ breast cancer models
We noticed that unsupervised clustering of tumor cells identified four
clusters with similar topological features but different morphological
and texture features (TUM2, TUM3, TUM4 and TUM11). This indicated
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high variation of nuclear morphology among tumor cells and inspired
us to investigate morphological heterogeneity of tumor nuclei in
depth. Based on our sc-MTOP data, we quantified morphological
intratumor heterogeneity (MITH) of tumor nuclei for each sample by
computing the mean value of the standard variation of morphological
and texture features among its tumor nuclei (Fig. 5a, b, Supplementary
Fig. S8a and Methods). A moderate correlation (Spearman correlation
coefficient: 0.20, P = 2.67e-6) was observed between MITH and

genetic intratumor heterogeneity measured by mutant-allele tumor
heterogeneity24,25 (Fig. 5c). High MITH was associated with aggressive
tumor characteristics including highT category, high tumor grade,HR-
negative and HER2-positive status (Fig. 5d). We also correlated MITH
with the tumor cell cluster abundance. The abundance of TUM4which
comprised the spindle-shaped tumor cells showed the highest positive
correlation with MITH (Spearman correlation coefficient: 0.40, false
discovery rate-corrected P = 2.24e-24) (Supplementary Fig. S8b).
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We next explored the molecular basis and clinical relevance of
MITH. GSEA showed significant enrichment of cell cycle-related gene
sets in high MITH samples. Interestingly, subgroup analysis revealed
that this enrichment was even more significant in the HR+ breast
cancers but was not observed in the HR- breast cancers (Fig. 5e and
Supplementary Fig. S8c, e). The Ki-67 index and multigene pro-
liferation score (MGPS)26 were also higher in high-MITH samples only
in HR+ but not in HR- breast cancers (Fig. 5f and Supplementary
Fig. S8d, f). These results suggested that high MITH was associated
with the activation of proliferation and cell cycle pathways in HR+
breast cancers. Based on this, we further investigated which part of
cell cycle pathway was upregulated in high-MITH HR+ breast cancers
(Fig. 5g). We first performed IHC staining of phosphorylated Rb
protein (phospho-Rb) and found that phospho-Rb was significantly
higher in high-MITH than in low-MITH HR+ breast cancers (Fig. 5h).
Furthermore, high MITH was associated with high mRNA expression
of CCNE1, CCNE2, CDK2, E2F1, E2F2, E2F3 and high E2F target sig-
nature score (Methods). By contrast, there is no difference in the
expression of CCND1, CCND2, CCND3, CDK4 or CDK6 between the
high- and low-MITH subgroups (Fig. 5i and Supplementary Fig. S8g).
Genomic analysis showed that high-MITH was associated with high
frequency of TP53 mutation, which has been reported to lead to the
upregulation of CDK227,28 (Supplementary Fig. S8h). These results
indicated that in HR+ breast cancers, high MITH was associated with
the Cyclin E/CDK2-dependent activation of cell cycle pathway. Since
the Cyclin E/CDK2 activation has been reported as an important
mechanism of CDK4/6 inhibitor resistance29, we hypothesized that
MITH may be a biomarker for CDK4/6 inhibitor resistance in HR+
breast cancers.

We attempted to validate our hypothesis using drug sensitivity
test of patient-derived organoids (PDOs). We established PDOs
using the tumor surgical specimens from HR+ breast cancers in our
center. Meanwhile, the H&E-stained tumor slides made from the
same specimen as the corresponding PDOs were collected and
scanned to generate WSIs. sc-MTOP was applied to these WSIs and
MITH was evaluated based on the sc-MTOP data. Both the genetic
alterations and MITH of the primary tumor were preserved in
the corresponding PDOs (Supplementary Fig. S9). The PDOs were
treated with CDK4/6 inhibitor Abemaciclib or CDK2/4/6 inhibitor
PF-06873600 and the relative viability was assessed after the treat-
ment. We investigated the association between MITH and drug
response (Fig. 5j). It was found that PDOs from high-MITH samples
were less sensitive to CDK4/6 inhibitor than those from low-MITH
samples (Comparison of relative viability, P = 7.36e-4). By contrast,
no significant difference in response to CDK2/4/6 inhibitor was
observed between the PDOs from the high- and low-MITH samples
(Comparison of relative viability, P = 0.859) (Fig. 5k). These results
supported our assumption that in HR+ breast cancers, high
MITH indicated CDK4/6 inhibitor resistance and CDK2/4/6 inhibitor
may be an effective therapeutic option for the high-MITH HR+ breast
cancers.

Recurrent micro-ecological modules characterize the spatial
diversity of breast cancer ecosystem
The above analysis characterized the phenotypic diversity of breast
cancer ecosystem on the single-cell level and established a cellular
taxonomy for tumor, inflammatory and stroma cells respectively.
Considering that tumor is a complex ecosystemwhere cells organize in
certain spatial patterns to performspecific functions,we next aimed to
identify recurrent patterns of locoregional cellular organization and
further decipher the spatial diversity of breast cancer ecosystem. We
first tessellated each WSI into square domains (referred to as spots)
and for each spot calculated the number of cells of each cell clusters.
Then, we revealed colocalization of cell clusters through spatial cor-
relation. Themicro-ecologicalmodules (MEMs)were defined based on
the hierarchical clustering of the spatial correlationmatrix (Fig. 6a and
Methods). Eight MEMswere identified (Fig. 6b): i) Module1 tumor core
(Module1_TC) which included TUM2, TUM3 and TUM4; ii) Module2
loosely distributed tumor cells (Module2_LT) including TUM10 and
TUM11; iii) Module3 discrete inflammatory cell infiltration (Mod-
ule3_DI) including INF8 and TUM6; iv) Module4 colocalization of
tumor cells and stroma cells (Module4_TS) including STR5, STR4,
TUM0, TUM8, STR2 and TUM5; v) Module5 low cellularity (Mod-
ule5_LC) including STR6, STR7, STR8 and INF9; vi) Module6 colocali-
zation of stroma and inflammatory cells (Module6_SI) including INF4,
INF5, STR0andSTR3; vii)Module7 colocalizationof tumor, stromaand
inflammatory cells (Module7_TSI) including INF2, INF3, STR1 and
TUM1; viii) Module8 local inflammatory cell aggregation (Module8_IA)
including INF0, INF1, INF6, INF7, TUM7 and TUM9. For each MEM, a
scorewas calculated for each spot as the percentage of cells belonging
to this module. To characterize the spatial patterns of the eight MEMs,
spatial auto-correlation was measured using Moran’s I index30. Except
for the Module2_LT and Module3_DI, all the other MEMs exhibited
organized spatial patterns with median Moran’s I index ranging from
0.39-0.54, which reflected the spatial variability of these modules
across the tumor ecosystem (Fig. 6c).

To gain further insights into the ecosystem spatial diversity, we
classified all spots into the eight MEMs according to their maximum
MEM score and those with all MEM scores of 0 were assigned to a new
module, Module0 no cell (Module0_NC) (Fig. 6d). Then, we first vali-
dated ourMEM-based ecosystem characterization by evaluating its the
consistency with the histological patterns. Histological regions of
tumor, stroma, immune cell aggregates and immune infiltrates in
tumor were manually annotated by a specialist breast pathologist. All
of the histological regions were enriched with appropriate MEMs
(Fig. 6e, f). Furthermore, regions of the same histological category can
be further classified according to the MEMs. For example, the histo-
logical tumor region 1 and tumor region 2, although both were tumor
regions, displayed different locoregional cellular composition and
organization. The tumor region 1wasmainly composedofModule1_TC
characterized by a tumor nest with few stroma cells, while the tumor
region 2 was a mixture of Module1_TC and Module4_TS with more
stroma cells and tumor-stroma interactions. Similarly, the diversity

Fig. 4 | Single-cell atlas of tumor cells and stroma cells. a UMAP plot of unsu-
pervised clustering results of 963,226 tumor cells sampled from 637 breast cancer
whole slide images. The scaled values of selected features are shown on the right.
b Dotplot of features according to the tumor cell clusters. The scaled mean values
within each cluster (visualized by dot color) and the fraction of cells with positive
values in the cluster (visualized by dot size) are shown. Note: If a cell is not con-
nected to any other cells in a certain graph, the edge length-related features
(MinEdgeLength and MeanEdgeLength) are set to 100 (pixel) which is the upper
limit of distance between two connected cells. c Local nuclear graph visualization
of the tumor cells ofdifferent clusters. A representative cell of each cluster is shown
in center of the images with a black bounding box. The edges between tumor and
tumor cells (T-T edges), between tumor and inflammatory cells (T-I edges), and

between tumor and stroma cells (T-S edges) are shown. Scale bar: 100μm. dUMAP
plot of unsupervised clustering results of 705,367 stroma cells sampled from 637
breast cancer whole slide images. The scaled values of selected features are shown
on the right. eDotplot of features according to the stroma cell clusters. The scaled
mean values within each cluster (visualized by dot color) and the fraction of cells
with positive values in the cluster (visualized by dot size) are shown. f Local nuclear
graph visualization of the stroma cells of different clusters. A representative cell of
each cluster is shown in center of the images with a black bounding box. The edges
between stroma and stroma cells (S-S edges), between tumor and stroma cells (T-S
edges) and between inflammatory and stroma cells (I-S edges) are shown. Scale
bar: 100 μm.
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of regions of stroma and immune infiltration can also be mapped
according to the MEMs (Fig. 6g).

We explored using the patch-based deep learning method to
identify the recurrent patterns of locoregional cellular structures and
compared it with our sc-MTOP-based method. We examined two deep
learning models: self-supervised learning model by Ciga et al.31 and
KimiaNet by Riasatian et al.32. We extracted deep features of the same
image “spots” as used in the aforementionedMEM analysis and defined
self-supervised learning model-based MEM (sslMEM) classification and
KimiaNet-based MEM (KimiaMEM) classification through clustering on
the corresponding features (Supplementary Fig. S10a, Methods). Both

sslMEM and KimiaMEM classifications showed higher inter-MEM varia-
tions and lower intra-MEM variations compared to random classifica-
tion, suggesting that they can indicate the locoregional cellular
composition to some extent, but their performance did not attain that
of our sc-MTOP-based MEM classification (Supplementary Fig. S10b).
Besides, the sslMEMs and KimiaMEMs showed less congruency with
histological patterns than our sc-MTOP-based MEMs (Supplementary
Fig. S10c, refer to Fig. 6e, f for comparison). Furthermore, in sc-MTOP-
based MEMs, high percentage of Module8_IA was associated
with favorable prognosis, while high percentage of Module4_TS was
correlated with poor prognosis. By comparison, no sslMEMs or
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KimiaMEMs showed significant association with patient prognosis
(Supplementary Fig. S10d). These data indicated that compared with
the deep learning method, MEMs identified by our sc-MTOP-based
method can better represent the patterns of local multicellular struc-
tures in tumor ecosystem and provide prognostic relevant information.

Micro-ecological module-based breast cancer ecotypes asso-
ciated with molecular features and patient prognosis
Based on the decomposition of tumor ecosystem by MEMs, we aimed
to establish a draft taxonomy of breast cancer ecosystem based on
digital pathology (Methods). Hierarchical clustering of the tumorMEM
composition identified four ecotypes. Tumors of Ecotype 1 (n = 163,
25.6%) were enriched for Module4_TS; Ecotype 2 (n = 158, 24.8%) for
Module7_TSI and Module8_IA; Ecotype 3 (n= 149, 23.3%) for Mod-
ule6_SI and Module5_LC; and Ecotype 4 (n = 167, 26.2%) for Mod-
ule1_TC (Fig. 7a and Supplementary Fig. S11a, b). The cell clusters
enriched in each ecotype coincide with the MEMs enriched in that
ecotype (Supplementary Fig. S11c).

The molecular alterations can influence the biological behavior of
tumor cells and leave footprint in the phenotype of tumor
ecosystem33,34. Therefore, we explored the molecular features asso-
ciated with these four ecotypes using the multiomics data. On the
transcriptional level, GSEA was performed to reveal the enriched gene
sets in each ecotype. It was found that Ecotype 1 showed enrichment of
estrogen-related and cell cilium-related gene sets. Ecotype 2 was enri-
ched for immune-related gene sets, which indicated an immune-
activated tumormicroenvironment. Ecotype 3 displayed enrichment of
gene sets associated with focal adhesion and extracellular matrix. Eco-
type 4 was enriched for pathways of electron transport chain and oxi-
dative phosphorylation (Fig. 7b). On the genomic level, difference in
oncogenicpathwayalterations andcopynumber alterations (CNAs)was
compared across the four ecotypes. Among the known oncogenic sig-
naling pathways, TP53 pathway alteration was significantly enriched in
Ecotype 2 (Supplementary Fig. S12a). As for CNAs, Ecotype 2 had the
highest frequency of ERBB2 (17q12, 50.4%) amplification, which was in
line with the high proportion of HER2+ breast cancers of this ecotype.
Ecotype 3was enrichedwith the amplificationofKLF8 (Xp11.21, 45.8%), a
transcription factor playing a regulatory role in epithelial-mesenchymal
transition. Ecotype 4 displayed the highest frequency of ATP6V0B
(1p34.2, 23.4%) and COX18 (4q13.3, 19.3%) amplification, which were
involved in oxidative phosphorylation (Supplementary Fig. S12b).

We next compared the difference in tumor clinicopathological
characteristics among the four ecotypes. Ecotype 1 and Ecotype 3
comprised more lymph node-positive breast cancers and no sig-
nificant difference was observed in T category among the four eco-
types. Ecotype 2was characterized by high tumor grade. Ecotype 1 had
a high proportion of HR+HER2- breast cancers, while Ecotype 2 com-
prisedmoreHR- breast cancers. (Fig. 7c). Subgroup analysis according

to IHC subtypes showed that only in the HR-HER2+ subgroup, Ecotype
1 and Ecotype 3 breast cancers were significantly associated with
higher rates of lymph node metastasis. The higher tumor grade of
Ecotype 2 and Ecotype 4 breast cancers was most pronounced in
HR+HER2- and TNBC subgroups (Supplementary Fig. S12c). As for
prognosis, patients with Ecotype 2 breast cancer had the best RFS,
while those with Ecotype 1 breast cancer had the worst RFS (log-rank
P =0.025) (Fig. 7d). Subgroup analysis showed that patients with
Ecotype 1 breast cancer represented a subpopulation with poorer
prognosis among the HR+ cases, while those with Ecotype 2 breast
cancer constituted a subpopulation with better prognosis among the
HR- cases (Supplementary Fig. S12d). The poor prognosis of Ecotype 1
patients may be explained by their enrichment of Module4_TS and the
corresponding TUM0, TUM5, STR5, STR4 and STR2 cells, which cor-
related with poor prognosis. The better prognosis of Ecotype 2
patients may be attributed to their enrichment of Module8_IA and the
corresponding INF0 and INF7 cells, which were associated with
favorable prognosis. Multivariate Cox analysis demonstrated that the
ecotype classification was an independent prognostic factor (Fig. 7e
and Supplementary Table S3).

To facilitate the potential application of our ecosystem classifi-
cation to new cases, we developed a classifier to distinguish samples’
tumor ecotypes using their MEM composition as input. We trained a
support vector machine (SVM) model using 80% cases from the
FUSCC cohort and tested its performance in the remaining 20% cases
(Methods, Supplementary Fig. S13a). It achieved a weighted F1 score
of 0.98 in the test set (Supplementary Fig. S13b). In summary, based
on the MEM composition, we characterized the inter-patient eco-
system diversity and identified four distinct breast cancer ecotypes.
These four ecotypes were associated with different tumor molecular
features and patient prognosis. An SVM classifier was developed to
realize the ecotype identification of samples based on its MEM
composition.

Reproducibility evaluation of sc-MTOP algorithm on a second
slide of the same patient
To evaluate the reproducibility of our sc-MTOP algorithm on a second
slide of the same patient, we a) randomly selected 50patients from the
FUSCC cohort, b) collected and scanned a second slide from each, c)
applied sc-MTOP and subsequent analytic pipeline including the cell
clustering extrapolation, MEM identification and ecotype classifica-
tion, and d) assessed the consistency of themajormetrics andmarkers
of potential clinical relevance between these second slides and the
original used ones. The cell type and cell cluster percentage showed
high correlation between the second slides and the original used
slides, with most correlation coefficient values higher than 0.60
(Spearman correlation test, all false discovery rate-corrected P <0.01,
median correlation coefficient=0.81) (Supplementary Fig. 14a). The

Fig. 5 | Morphological intratumor heterogeneity of tumor nuclei indicates cell
cycle pathway activity and CDK inhibitor response in HR+breast cancer.
a Calculation ofMITH. Created with BioRender.com.b Representative local images
of high- and low-MITH tumors. Scale bar: 200μm. cCorrelation betweenMITH and
genetic intratumor heterogeneity. Fitted linear regression line is shown. Two-sided
Spearman correlation analysis is performed. d Association between MITH and
clinicopathological features. P values are calculated using the two-sided Mann-
Whitney U test. e Gene sets enriched in high-MITH samples in HR+ breast cancers
revealed by GSEA. Cell cycle-related gene sets are marked in red. The NES and FDR
output by GSEA are presented. f Comparison of Ki-67 index and MGPS between
high- and low-MITH samples in HR+ breast cancers. P values are calculated using
the two-sidedMann-WhitneyU test.gDiagramdepicting howCyclin D/CDK4/6and
Cyclin E/CDK2 regulate G1/S phase progression and activate transcription of E2F
target genes. h Comparison of phospho-Rb (S807/811) IHC score between high-
(n = 164) and low-MITH (n = 163) samples in HR+ breast cancers. Representative
images of IHC staining are presented. Scale bar: 100μm. P value is calculated using

the two-sided Mann-Whitney U test. i Heatmap of the mRNA expression of CCND1,
CCND2, CCND3, CDK4, CDK6, CCNE1, CCNE2, CDK2, E2F1, E2F2, E2F3 and E2F
target signature score in HR+ breast cancers. Their correlation with MITH is indi-
cated by bar plot on the right through two-sided Spearman correlation analysis.
***P <0.001; *P <0.05; ns, not significant. j Experiment design to evaluate CDK
inhibitor response of PDOs stratified by MITH. Created with BioRender.com.
k Relative viability of PDOs treated with 1μM CDK4/6 inhibitor Abemaciclib and
0.4μM CDK2/4/6 inhibitor PF-06873600 (High-MITH: n = 12; low-MITH: n = 9). P
values are calculated using two-sided Mann–Whitney U test. For Fig. 5d, f, h and k,
the center lines of boxplots indicate median values; box limits show upper and
lower quartiles; whiskers extend from box limits to the farthest data point within
1.5 × interquartile range; points beyond whiskers are outliers. In Fig. 5e, f, h and k,
high- and low-MITH subgroups are defined using the median MITH value (0.8798)
of HR+ breast cancers. MITH morphological intratumor heterogeneity, CC corre-
lation coefficient, NES normalized enrichment score, FDR false discovery rate,
MGPS multigene proliferation score, IHC immunohistochemistry.
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ecotype classification results showed high consistency between the
second slide and the original used (accuracy: 88.0%, F1 score: 0.87)
(Supplementary Fig. S14b). As for the clinically-relevant features, both
AIC score (Spearman correlation coefficient: 0.91 (0.84-0.95),
P = 7.24e-20) and MITH (Spearman correlation coefficient: 0.76
(0.61–0.86), P = 2.02e-10) were significantly correlated between the
two groups of slides (Supplementary Fig. S14c, d). These results

demonstrated high reproducibility of the results of our algorithm on
different slides from the same patient.

Online platform for data management and real-time sc-MTOP
analysis
To facilitate data sharing and the use of sc-MTOP by other researchers,
we developed an online platform for data management and real-time
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Fig. 6 | Recurrent micro-ecological modules characterize the spatial diversity
of breast cancer ecosystem. a Diagram for the identification of micro-ecological
modules (MEMs). b Hierarchical clustering of spatial correlation matrix of tumor,
inflammatory and stroma cell clusters identifies eight micro-ecological modules: i)
Module1_TC, Module1 tumor core; ii) Module2_LT, Module2 loosely distributed
tumor cells; iii) Module3_DI, Module3 discrete inflammatory cell infiltration; iv)
Module4_TS, Module4 colocalization of tumor cells and stroma cells; v) Mod-
ule5_LC, Module5 low cellularity; vi)Module6_SI, Module6 colocalization of stroma
and inflammatory cells; vii) Module7_TSI, Module7 colocalization of tumor, stroma
and inflammatory cells; viii) Module8_IA, Module8 local inflammatory cell aggre-
gation. Rows and columns are ordered by hierarchical clustering. c Spatial patterns

of MEMs based onMoran’s I statistics. dHeatmap of MEM scores of all spots. Spots
(columns) are classified into the eightMEMs according to itsmaximumMEMscore.
Spots where all module scores are zero are classified as Module0_NC. e Thumbnail
of a whole slide image with manually histological annotation (left) and with MEM
mapping (right). In histological annotation, a pathologist manually delineated the
regions of different histological patterns including two types of tumor regions (red
andpurple), stroma (blue), immune cell aggregation in stroma (green) and immune
infiltration in tumor (yellow). Scale bar: 4mm. f Composition of MEMs of different
histological regions. g Mapping the spatial diversity of histological regions of
immune infiltration, tumor and stroma based on MEMs. Scale bar: 200μm. MEM
micro-ecological module, ROI regions of interest.
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Fig. 7 | Micro-ecological module-based breast cancer ecotypes associated with
molecular features and patient prognosis. a Hierarchical clustering of micro-
ecological module composition identifies four breast cancer ecotypes. b Gene sets
enriched in the samples of each ecotype revealed by gene sets enrichment analysis.
The NES and P value output by GSEA are presented. c Association between breast
cancer ecotypes and tumor T category, N category, grade and IHC subtypes.

P values are calculated using the chi-square test. d Kaplan-Meier curves of
recurrence-free survival according to the breast cancer ecotypes. e Multivariate
Cox regression analysis reveals breast cancer ecotype as an independent prog-
nostic factor of recurrence-free survival (n = 537). Squares and whiskers represent
point estimates and the 95% confidence interval of hazard ratios. RFS recurrence-
free survival, IHC immunohistochemistry, NES normalized enrichment score.
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analysis (http://sc-mtop.biosolver.cn/). The platform comprises two
modules. The first is a data management and sharing module. All WSIs
of the FUSCC cohort have been uploaded and can be viewed using an
online digital pathology viewer. The sc-MTOP data together with the
clinical andmultiomics information arepresented in companywith the
WSI of the corresponding patient. The second module is an online
analysis module, which supports real-time analysis for user-uploaded
WSIs.Wehavemodularized anddeployed the sc-MTOP framework and
the subsequent analytic pipeline including the cell clustering extra-
polation, MEM identification and ecotype classifier as an online tool.
For each uploadedWSI, sc-MTOP is executed on a cloud server and the
raw output data are allowed for download. In addition, an ecosystem
portrait is automatically generated which presents the clinically rele-
vant ecosystem features of this sample including the cellular compo-
sition, AIC score, MITH and the tumor ecotype. This portrait may
provide valuable information for prognostic evaluation and ther-
apeutic decision-making. We have provided a test account for users to
access our platform and have made a video to illustrate its functions
(Supplementary Movie 1).

Discussion
In this study, we presented sc-MTOP framework to characterize indi-
vidual cells on WSIs by extracting the nuclear morphological and
topological features. By applying it to a large breast cancer cohort, we
depicted an extensive single-cell atlas including 410 million cells and
characterized the phenotypic diversity of breast cancer ecosystem on
multiple levels. Furthermore, integrative analysis with clinical and
multiomics data identified ecosystem features that may serve as bio-
markers informing treatment responses (Fig. 8).

Over the last few years, there has been growing interest in ana-
lyzing the tumor ecosystem using different technologies. Based on the
bulk RNA-seq, computational methods have been developed to pro-
vide rough estimates of cell types within the tumor ecosystem35,36.
Single-cell RNA-seq, on the other hand, provides transcriptional pro-
files of individual cells, enabling the characterization of the tumor
ecosystem in terms of the composition, transcriptional patterns and
functional states of microenvironmental cells. However, a major lim-
itation of this technology is the loss of cellular spatial information to
understand cellular organizations and interactions within the tissue
context37. More recently, several technologies have been developed
for the gene expression measurement in a spatially-resolved manner.
Multiplex immunohistochemistry technologies such as image mass
cytometry and CODEX allowed targeted detection of specific proteins
in individual cells in situ38,39. Nanostring GeoMx/CosMx technology

permitted simultaneous RNA and protein expression detection and
increased the number of markers that can be detected40. These
methods can provide important insight into how individual cells of
specific types and functional properties organized in space to form the
tumor ecosystem41,42. However, the high cost, material requirements
and technological complexity limited their use in large cohort and
clinical implementation. By comparison, our sc-MTOP framework are
unable to classify cells into specific functional subsets with molecular
annotations, but it provides a different perspective for characterizing
the tumor ecosystem,which focuses on the nuclearmorphological and
spatial topological features. It can be easily applied to the entire WSIs
to realize panoramic characterization of tumor ecosystem at a single-
cell resolution with the cell spatial information preserved. In addition,
sc-MTOP only requires broadly available H&E-stained tumor slides as
rawmaterials, which facilitated its validation and optimization in large
clinical cohorts and the potential implementation in clinical practice at
a much lower cost.

In this study, we applied the sc-MTOP algorithm to 637 WSIs and
obtained raw feature data over 410 million cells. To comprehensively
dissect the phenotypic diversity of breast cancer ecosystem, we
adopted an analytic workflow mainly based on clustering analyses.
From the raw, abstract and massive feature data, clustering analyses
generated visualizable and biologically interpretable data including
cell clusters, MEMs and ecotypes, which enabled the characterization
of the phenotypic diversity of breast cancer ecosystem on multiple
levels. First, at the single cell level, the cell clusters generated by fea-
ture clustering dissected the morphological and topological feature
diversity of individual tumor, inflammatory and stroma cells respec-
tively. Second, theMEMs identified through cell cluster co-localization
analysis achieved intuitive representations of distinct local multi-
cellular structures and were used tomap the spatial diversity of tumor
ecosystem. Third, on the patient level, the ecotypes identified through
the clustering of samples’MEMcomposition reflected the inter-patient
diversity of breast cancer ecosystem (Fig. 8).

Immune infiltration in the tumor microenvironment is an impor-
tant biomarker of the host anti-tumor immunity. The density of TILs
has been reported in a variety of solid tumors as a prognostic bio-
marker and apredictive biomarker for immunotherapy response4,5,43,44.
Recently, Wang et al. developed a model based on quantitative fea-
tures of TILs density and spatial arrangement to predict treatment
response to immunotherapy in patients with non–small cell lung
cancer and gynecological cancer10. The study leveraged a supervised
machine-learningworkflowof feature extraction, feature selection and
model development. By comparison, in our study, based on data from

…
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Fig. 8 | Summary of the present study. Left panel: The analytic workflow of
generating and using sc-MTOP data to dissect the ecosystem diversity of human
breast cancer at multiple levels. Right panel: The ecosystem features with ther-
apeutic andprognostic implications. Createdwith BioRender.com. sc-MTOP single-

cell morphological and topological profiling, MEM micro-ecological module, AIC
score aggregated inflammatory cell abundance score, MITH morphological intra-
tumor heterogeneity.
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nuclear segmentation and feature extraction, we adopted a data-
driven analytic pipeline. We first revealed the topological feature
diversity of inflammatory cells through unsupervised clustering and
characterized the samples’ immune infiltration patterns using the
abundance of different inflammatory cell clusters. Then, integrated
analysis with multiomics data revealed the association between the
cluster abundance and the immune activation status of tumor micro-
environment andmolecular biomarkers for immunotherapy response.
Basedon the results, webuilt anAIC scoremeasuring the abundanceof
locally aggregated inflammatory cells and validated its association
with immunotherapy response in an external clinical cohort. Our
unsupervised clustering-based analytic approach maximized the use
of our sc-MTOP dataset and the corresponding multiomics data45.
Further studies are required to compare these two approaches for
treatment response prediction and investigate whether an integrated
method can lead to a better result.

Intratumor heterogeneity refers to the diversity of cancer cell
populations in their genetic, phenotypic or behavioral characteristics
within the same tumor46. Genetic ITH has been extensively studied and
reported to play an important role in driving cancer progression and
drug resistance, but the tumor nuclear morphological heterogeneity
has rarely been investigated47. Andor et al. used the CellProfiler soft-
ware to quantify histologic ITH in several cancer types based on H&E-
stained pathological images and observed moderate correlation
between histologic and genetic ITH. However, they did not analyze
histologic ITH in breast cancer and did not associate the histologic ITH
with biological processes48. In our study,wepresented amethodbased
on sc-MTOP data to quantify tumor nuclear MITH, which had the fol-
lowing advantages over Andor et al.’s method: a) nuclear type classi-
fication allowed MITH evaluation on only tumor nuclei which avoided
computational bias due to the mixing of other cell types; b) more
morphological and texture descriptors were included for the com-
prehensive characterization of MITH; c) calculated based on the entire
WSI rather than a limited local image. More importantly, we revealed
that high MITH indicated cell cycle pathway activation in HR+ breast
cancers and such activation was mainly due to the upregulation of
Cyclin E/CDK2, which was an important mechanism of CDK4/6 inhi-
bitor resistance49. The drug response test using PDOs further validated
that highMITHwas an indicator for CDK4/6 inhibitor resistance inHR+
breast cancers and CDK2/4/6 inhibitor may be an effective option for
the patients with high-MITH HR+ breast cancer.

The sc-MTOPdata canbe used not only for the characterization of
single-cell features, but also for mapping the spatial diversity of tumor
ecosystem.Here, following a spatially resolved analytical approach, we
identified nine recurrent MEMs based on the spatial relationship of
different cell clusters. These MEMs represented distinct local multi-
cellular structures and showed good congruency with histological
patterns. We also tried to use the pre-trained deep learning models to
extract features of local imagepatches and identify deep feature-based
MEMs through unsupervised clustering. Although the models were
developed under weakly supervised or unsupervised settings, their
generated feature-based MEMs can also indicate the cellular compo-
sition of patches and showed partial congruency with the histological
patterns. This reflected the good robustness and generalizability of
these deep learning models. However, without specific labels for
supervised learning, convolutional neural network models tend to
focus more on image texture features rather than the shape or topo-
logical features50. This may explain why they underperformed our sc-
MTOP-based method in characterizing the local multicellular struc-
tures. Moreover, further studies could be planned by integrating our
data with spatial omics data for the multimodal characterization of
tumor ecosystem and the discovery of biologically meaningful tissue
structures51.

Four breast cancer ecotypes were identified through the unsu-
pervised clustering ofMEM composition of WSIs. These four ecotypes

shared remarkable similarity with the conserved pan-cancer micro-
environment subtypes based on transcriptomic analysis proposed by
Bagaev et al.52. Their fibrotic subtype corresponded to our Ecotype 1
which was enriched with Module4 colocalization of tumor cells and
stroma cells; immune-enriched non-fibrotic subtype to our Ecotype 2
enriched with Module8 local inflammatory cell aggregation; immune-
enriched fibrotic subtype to our Ecotype 3 enriched with Module6
colocalization of stroma and inflammatory cells; and desert subtype to
our Ecotype 4 enriched with Module1 tumor core. More interestingly,
the prognostic features of their four subtypes were also consistent
with the corresponding ecotypes with immune-enriched non-fibrotic
subtype showing the best prognosis and the fibrotic subtype having
the worst. This similarity further demonstrated the robustness and
validity of the breast cancer ecosystem that we proposed based on
digital pathology. Besides, while the transcriptomics data were not
always accessible in clinical practice, our digital pathology-based
classification may serve as a clinically applicable method for
ecosystem-based patient stratifications.

Our study has some limitations. First, given the inherent limitation
of H&E-stained WSIs, the current nuclear classification algorithms for
digital pathology can only classify nuclei into the main cell types
usually including tumor, stroma, inflammatory and normal nuclei, and
are unable to further classify them into different functional
subgroups12,17,53,54. This limited more in-depth characterization of the
tumor ecosystem at higher biological granularity. Second, our study
found that AIC score and MITH can indicate response to immu-
notherapy and CDK4/6 inhibitors, respectively. These findings were
mainly based on the multiomics data analysis and were only validated
in cohorts with limited samples. More experimental and prospectively
collected evidence from large clinical cohorts should be added before
their clinical translation. Third, The WSIs analyzed in our study were
scanned using the NanoZoomer scanner. Limited by equipment con-
straints, we have not yet optimized and adapted the algorithm for
slides from different scanners. Further study is needed to verify or
optimize the reproducibility of sc-MTOP across the slides from dif-
ferent scanners, before applying it and the relevant conclusions to
WSIs from other scanners.

In conclusion, our study presented sc-MTOP, an analysis frame-
work for the characterization of tumor ecosystem based only on the
routine pathological WSIs. We depicted a single-cell morphological
and topological atlas, systematically characterizing the phenotypic
diversity of breast cancer ecosystem. We also identified ecosystem
features including AIC score, MITH and ecotypes that were associated
with the response to certain treatment and patient prognosis in breast
cancer. These features could potentially serve as broadly applicable
markers to inform treatment decision-making and aid prognostic
evaluation. The sc-MTOP framework and the large single-cell dataset
with matched clinical and multiomics data may serve as a valuable
resource for further investigation.

Methods
Ethics approval
This study was approved by the Fudan University Shanghai Cancer
Center (FUSCC) Ethics Committee and complied with all relevant
ethical regulations. All patients provided written informed consent.

Data source
Our study used two cohorts. The discovery cohort is a retrospective
cohort that included consecutive breast cancer patients who received
standard treatment at the Department of Breast Surgery, FUSCC from
January 1, 2013 to December 31, 2014 according to the following cri-
teria: a) female patients diagnosed with unilateral invasive carcinoma
of no special type; b) no evidence of distant metastasis at diagnosis;
and c) treated by surgical resection without prior anti-tumor
treatment. The paraffin-embedded H&E-stained tumor slides were
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collected and scanned at 40× to generate digital WSIs using Nano-
Zoomer digital pathology scanner (Hamamatsu Photonics, Japan). All
of the slides,WSIs and the correspondingpathological reportswere re-
reviewedbypathologists fromFUSCCand the caseswith slides orWSIs
of poor quality (large areas of debris, folds, pen marks or blurred
regions) were excluded. The final discovery cohort encompassed 637
WSIs from 637 patients. The ER, PR, and HER2 status were indepen-
dently confirmed by two pathologists at FUSCC based on immuno-
chemical analysis and in situ hybridization and ≥1% positively stained
cells was used as the cutoff for ER and PR positivity55. Patient clin-
icopathological characteristics were outlined in Supplementary
Table S1. The median length of follow-up was 83.1 months (inter-
quartile range, 70.9–90.6months). RFS was defined as the time from
diagnosis to the first relapse, a contralateral breast cancer or death
due to any cause. Besides the clinical and prognostic information,
next-generation DNA and RNA sequencing were performed on the
tumor samples which derived from the same specimen as the tumor
slides. The whole-exome sequencing (WES) data were available for
546 patients, CNA data for 555 patients and RNA-seq data for 612
patients.

Another cohort was used for the validation of our findings con-
cerning the association between the abundance of locally aggregated
inflammatory cells and immunotherapy response. This cohort derived
from the NCT04129996 trial, in which patients with locally advanced or
metastatic immunomodulatory TNBC (defined as CD8 IHC staining
≥10%) were enrolled and treated with a PD-1 inhibitor (camrelizumab)-
based regimen as first-line treatment22. The primary endpoint was
objective response rate assessed by investigators according to RECIST
v1.156. Patients who received treatment and achieved objective response
(including complete response andpartial response)were categorized as
responders and those who did not achieve objective response (includ-
ing stable disease and progressive disease) were categorized as non-
responders. The secondary endpointswerePFS andOS. PFSwasdefined
as the time from the date of the first study dose to the first recording of
tumor progression or to the date of death due to any reason. OS was
defined as the time from the date of the first study dose to the date of
death due to any reason. 24 cases with available pretreatment biopsy
specimen before the PD-1 inhibitor-based treatment were included
(Supplementary Table S2). The paraffin-embedded H&E-stained WSIs
were collected and reviewedby pathologists following the same criteria
as the FUSCC discovery cohort.

Single-cell morphological and topological profiling (sc-MTOP)
sc-MTOP consisted of two steps:
a. Nuclear segmentation and classification:

Hover-Netwasused to locate nuclei onWSIs andpredict their cell
types17. Hover-Net is a deep convolutional neural network for
simultaneous nuclear segmentation and classification on WSIs.
The model pre-trained on the public PanNuke dataset was used,
which can identifyfive nuclear types including tumor (specifically
refers to breast cancer cells in this study), inflammatory, stromal,
normal (non-neoplastic epithelial) and dead (necrotic) nuclei57.
For each WSI, Hover-Net output the information on centroid,
contour and nuclear type of detected nuclei for the following
feature extraction.

b. Feature extraction:

We focused on tumor, inflammatory and stroma cells which were
the major and functional cellular components of breast cancer eco-
system and can be accurately identified by Hover-Net17,18. Three cate-
gories of features were extracted for individual nuclei.
i. Morphological features were computed to describe the nuclear

shape and the characteristics of contour. The coordinate of
nuclear contour was used to generate a mask. Based on this
mask, the following 14 morphological features were extracted:

Area, AreaBbox, CellEccentricities, Circularity, Elongation, Extent,
MajorAxisLength, MinorAxisLength, Perimeter, Solidity, Curv-
Mean, CurvMax, CurvMin, CurvStd.

ii. Texture features were calculated to characterize the local pixel
distribution patterns within the nuclear contour. By converting
the color image to grayscale and extracting the nuclear
patch according to the bounding box, gray-level co-occurrence
matrix (GLCM) was calculated for each nucleus and the
following five features were extracted from the GLCM: ASM,
Contrast, Correlation, Entropy, Homogeneity. Besides, four
statistics of pixel intensity within the nuclear contour were
calculated including IntensityMean, IntensityStd, IntensityMax
and IntensityMin.

iii. Topological features were extracted to characterize the inter-
cellular relationship at the single-cell resolution through a graph-
based method. The nuclei detected by Hover-Net were denoted
by vertices and the potential cellular interactions were repre-
sented by edges. In order to comprehensively study the spatial
relationship between different cell types, we proposed a multi-
level pairwisemethod for graph construction based on the igraph
package. In detail, for each pair of cell types, a graph was
constructed denoted as Graph_C1-C2, where C1 and C2 denoted
the cell types. We focused on tumor, inflammatory and stroma
cells and six graphs were constructed: Graph_Tumor-Tumor
(Graph_T-T), Graph_Inflammatory-Inflammatory (Graph_I-I),
Graph_Stroma-Stroma (Graph_S-S), Graph_Tumor-Inflammatory
(Graph_T-I), Graph_Tumor-Stroma (Graph_T-S) and Graph_
Inflammatory-Stroma (Graph_I-S). For the construction of each
graph, based on the hypothesis that spatially close cells aremore
likely to interact with each other58, k-nearest neighbor algorithm
was used for edge configuration. Each cell is connected to its
five nearest cell according to the Euclidean distance and
the edges longer than a threshold of 100 pixel (25μm) were
deleted59,60. Formally, the edge set of Graph_C1-C2 canbewritten
as follow:

E = Vi,Vj

� ����CVi
=C1,CVj

=C2,Vj 2 KNN Vi

� �
,D Vi,Vj

� �
<T

n o
ð1Þ

where the CVi
and CVj

denoted the types of nucleus Vi and Vj

respectively,DðVi,VjÞ denoted the Euclideandistance betweenVi

and Vj , and T denoted the threshold for edge configuration and
was set to 100 pixel (25μm) in our study.
After the construction of multilevel pairwise graphs, each tumor,
inflammatory and stroma cell appeared in three types of graphs
(e.g. each tumor cell appeared in Graph_T-T, Graph_T-I and
Graph_T-S). For each cell, the topological features were com-
puted separately for each graph it appeared and were con-
catenated to constitute its final comprehensive topological
features.
For each type of graph, topological features included the fol-
lowing four categories: i) Nsubgraph, the cell number of the
subgraph where the cell was located; ii) Edge length-related
features: MinEdgeLength and MeanEdgeLength, the minimum
and average edge lengths of a cell. If a cell was not connected to
any other cells, the edge length-related features were set to 100
(pixel) which was the upper limit of distance between two
connected cells. iii) Features characterizing the position of a cell
in the subgraph where it was located including Degrees,
Coreness, Eccentricity, Eccentricity_normed, Harmonic Central-
ity, Closeness, Betweenness, Betweenness_normed and Cluster-
ingCoefficient. In all heterotypic graphs (Graph_T-I, Graph_T-S
andGraph_I-S), ClusteringCoefficient for all cellswere zeroor not
available and were therefore excluded from analysis. For cells
with no edges to any other cells, Closeness and ClusteringCoeffi-
cient were set as zero. iv) For inflammatory cells, a specific
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feature, StromaBlocker, was calculated to measure the barrier
between the inflammatory cells and tumor cells constituted by
the stroma cells.

Detailed descriptions of all morphological, texture and topologi-
cal features were presented in Supplementary Table S4. An example of
sc-MTOP results for one sample was provided in Supplementary
Materials.

CODEX for the validation of cell classification accuracy
We validated the accuracy of the Hover-Net model for nuclear clas-
sification using the paired H&E-stained WSIs and images of co-
detection by indexing (CODEX)39. First, we retrieved the FFPE blocks
of tumor specimen and made tissue slides of two cases. Second,
CODEX experiment and imaging was performed on the PhenoCycler-
Fusion system (Akoya Biosciences, Menlo Park, CA) following the
standard protocol. An inventoried PhenoCycler antibody panel was
used (Supplementary Table 5). After this, we washed out the flow
cells on the slides and performedH&E staining. We scanned the H&E-
stained slides to generate WSIs and applied the Hover-Net model to
obtain the cell classification results. To examine the accuracy of
Hover-Net cell classification,wemarked a total of 25matched regions
(100 × 100 μm) on the WSIs and the corresponding CODEX
images, quantified the number of tumor, inflammatory and stroma
cells respectively and analyzed their consistency. For CODEX cell
quantification, we used pan-cytokeratin as the marker for tumor
cells, SMA for stroma cells and CD3e/CD20 for inflammatory cells.
CODEX related image analysis were performed using QuPath (ver-
sion 0.3.0)61.

Dataset management
For each WSI, sc-MTOP generated four dataframes. For each type of
tumor, inflammatory and stroma cells, one dataframe stored the fea-
tures for all cells belonging to this type and eachcell was identifiedbya
unique cell ID together with the centroid’s spatial coordinates. The
other one dataframe stored the edge information for this sample and
characterized each edge by the connected cell IDs.

Data processing, dimension reduction and cell clustering
The Scanpy toolkit was used for single-cell data analysis62. First, for
the analysis of each type of tumor, inflammatory and stroma cells,
0.5% cells were sampled from each WSI and were combined into an
AnnData object63. TheAnnData object comprised a datamatrix of cell
features together with the additional annotations including their
nuclear spatial coordinates and the information on their donor
patient. Second, the values of each feature were logarithmized and
scaled to unit variance using the scanpy.pp.log1p() and scan-
py.pp.scale() functions respectively. Third, dimensionality reduction
of the data was performed by running principle component analysis.
Finally, Leiden clustering implemented by the scanpy.tl.leiden()
function was performed to classify the cells based on their features20.
UMAP was used for the visualization of cell clusters in a two-
dimensional space64.

Cell clustering extrapolation
The inflammatory cell clustering from the FUSCCdiscovery cohortwas
extrapolated to the samples of the NCT04129996 cohort. First, for
each WSI of the NCT04129996 cohort, 10% inflammatory cells were
sampled and an AnnData object was generated and preprocessed as in
the FUSCC discovery cohort. Second, this newly-generated external
AnnData object was concatenated to the inflammatory cell AnnData
object of the FUSCC discovery cohort which had saved the cell clus-
tering results and this yielded an integrated AnnData object. Third,
Leiden clustering was performed on this integrated AnnData object. In
the initiation process of clustering, each cell from the FUSCCdiscovery

cohortwas assigned to an initial cluster the sameas itwas in the FUSCC
AnnData object, while each cell from the NCT04129996 cohort was
assigned to a random initial cluster. In the alteration process of clus-
tering, the clusters of the cells from the FUSCC discovery cohort were
fixed by using the is_membership_fixed parameter. Finally, each cell
from the NCT04129996 cohort would obtain a cluster result after the
clustering of the integrated AnnData object.

Sample processing for genomic DNA and total RNA extraction
The specimens used for DNA and RNA sequencing were macro-
dissected fresh frozen tumor tissues. For quality control, we filtered
out the samples with an excessively high proportion of stromal tis-
sue. Genomic DNA was extracted and purified from fresh frozen
samples and peripheral blood cells using TGuide M24 (Tiangen). The
DNA purity and concentration were evaluated by measuring the
absorbance at 260 nm (A260) and 280 nm (A280) on a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific). Only DNA
samples with A260/A280 ratios between 1.6–1.9 were considered
pure and used for subsequent experiments. Total RNA was extracted
and purified from tissues stored in RNAlater solution using the
miRNeasy Mini Kit (Qiagen #217004). RNA integrity was assessed on
the Agilent 4200 Bioanalyzer (Agilent Technologies). RNA con-
centrations were quantified by a NanoDrop ND-8000 spectro-
photometer (Thermo Fisher Scientific).

Generation of WES data
The exome sequencing reads were aligned with BWA-mem (version
202010.02). The resulting BAM files were processed using Sentieon
Genomics tools (version 202010.02)65. NGSCheckMate (version 1.0.0),
FastQ Screen (version 0.12.0), FastQC (version 0.11.8) and Qualimap
(version 2.0.0) were used to evaluate the quality of sequencing
data66–68. Somatic mutations were determined through the following
steps: First, mutations were called using three different callers, VarS-
can2 (version 2.4.2), TNseq (version 202010.02) and TNscope (version
202010.02)65,69,70. Then, spuriousmutation calls caused by sequencing
artifacts were filtered out. After that, only mutations consistently
called by at least two of the three callers were kept. Additional filtering
based on bam-readcount (https://github.com/genome/bam-
readcount) was performed to reduce false positive calls, requiring
mutations to meet: a) variant allele frequency ≥5%; b) sequencing
depth in the region ≥ 8; c) number of mutation-supporting reads ≥4.

Generation of CNA data
OncoScan CNA Assay (Affymetrix) was used to detect genome-wide
CNAs. Chromosome Analysis Suite (ChAS, version 4.1) software
(Thermo Fisher Scientific) was used for data analysis. Probe-level
output of ChAS was analyzed using ASCAT (version 2.4.3) to generate
segmented copy number calls and estimated tumor ploidy and
purity19. GISTIC2.0 (version 2.0.22) was used to generate the gene level
CNAs based on the ASCAT segments71.

Generation of RNA-seq data
RNA libraries were constructed through ribosomal RNA depletion
methods using Ribo-off rRNA Depletion Kit (Human/Mouse/Rat)
(Vazyme #N406) and VAHTS Universal V8 RNA-seq Library Prep Kit
for Illumina (Vazyme #NR605). The libraries were sequenced on
Illumina NovaSeq platforms with paired-end reads of 150 bp. The raw
sequence datawere demultiplexed and converted to FASTQ fileswith
adapter and low-quality sequences quantified. Sequencing reads
were aligned to the hg38 human reference genome. We obtained the
Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) using StringTie (version 1.3.4) and Ballgown (version
2.14.149). To focus on genes with robust expression values for sub-
sequent analysis, genes with FPKM of 0 in more than 30% samples
were filtered out.
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Gene set enrichment analysis (GSEA)
GSEAwasperformed using the GSEA software (v4.1.0)72. The Canonical
pathways gene sets (v7.5.1) were employed as the gene datasets. 1000
rounds of permutation were used.

Estimation of tumor microenvironment cell abundance with
RNA-seq data
Using the RNA-seq data, the ESTIMATE immune score and xCell
immune score were calculated to estimate the overall abundance of
immune cells. The ESTIMATE stromal score and xCell stromal score
were calculated to estimate the overall abundance of stroma cells73,74.
For the abundance estimation of more specific microenvironment cell
subsets, previously established microenvironment signatures were
retrieved75, which contained 22 immune cell signatures from CIBER-
SORT and one each for fibroblast and endothelial cell from MCP-
counter (Supplementary Table S6)36. The abundance of these 24
microenvironment cell subsetswas evaluated through ssGSEA (“GSVA”
function in R) based on the RNA-seq data21,75.

Evaluation of immunotherapy response biomarkers
Biomarkers or gene signatures that were predictive of immunotherapy
response were retrieved from two previous studies (Supplementary
Table S7)76,77. Integrated cytokine score, Chemokine12 score, Module5
TcellBcell score, STAT1 signature, dendritic cell signature and B cell
signature were retrieved and evaluated according to Wolf et al.76.
Based on the WES data, tumor mutation burden was calculated using
the R package “maftools” (version 2.6.05)78. The APOBEC mutational
signature was calculated using SigProfiler79. T cell inflamed gene
expression signature, cytolytic score and CD8 T effector signature
(from the POPLAR trial) were assessed based on the RNA-seq
data34,80,81. The expression value of individual genes including CD8A,
CXCL9, CD274, CD38 and CXCL13 were directly retrieved from the
RNA-seq data.

Evaluation of tumor infiltrating lymphocytes (TILs)
TILs were manually evaluated using the WSIs used in our study
according to the recommendations by the International TILs Working
Group82.

IHC staining and evaluation
In the NCT04129996 cohort, IHC staining of CD8 and PD-L1 was
performed on paraffin-embedded tissue slides that derived from the
same specimen as the analyzedWSIs. CD8 IHC scorewasmeasured as
the percentage of positive cells (positive cells divided by all nucle-
ated cells)83, while PD-L1 IHC score was measured as the proportion
of tumor area (area containing viable tumor cells, their associated
intratumor stroma and contiguous peritumoral stroma) occupied by
PD-L1-positive immune cells5,84. In the FUSCC cohort, IHC staining of
phospho-Rb (S807/811) was performed on paraffin-embedded tissue
slides and phospho-Rb IHC score was measured as the percentage of
positive tumor cells (positive tumor cells divided by all tumor cells).
For all three markers, the IHC staining results were independently
evaluated by two experienced pathologists who were blinded to the
patients’ clinical information. Discrepancies between them were
resolved by discussion and consensus. The following antibodieswere
used: anti-CD8 (clone SP57, Ventana, #790-4460, undiluted), anti-PD-
L1 (clone SP142, Abcam, #ab228462, 1:500 dilution) and anti-
phospho-Rb (Ser807/811) (clone D20B12, Cell Signaling Technol-
ogy, #8516, 1:200 dilution). All antibodies used were validated by
their manufactures.

Tumornuclearmorphological intratumor heterogeneity (MITH)
Based on the nuclear morphological and texture features, we mea-
sured the tumor nuclear MITH for each individual sample. First, values
of each morphological and texture feature were normalized across all

tumor nuclei from all samples. Then, for each individual sample, MITH
was calculated as the mean value of the features’ standard deviation
across the tumor nuclei that belong to this sample:

MITH =
1
N

XN
i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j = 1 xij � �xi
� �2
M

vuut ð2Þ

where N is the number of features, M is the number of tumor nuclei
belonging to the sample, xij is the normalized value of feature i of cell j
and �xi is the mean value of the normalized feature i of the sample.

Genetic intratumor heterogeneity
Genetic intratumor heterogeneity was measured by mutant-allele
tumor heterogeneity (MATH) calculated based on the WES data24,25.

Multigene proliferation score (MGPS)
MGPSwas evaluated using the RNA-seq data according to the previous
study26. It was calculated as the average expression of 772 cell cycle-
regulated genes identified by Whitfield et al.85.

E2F target signature score
E2F target signature score was calculated through ssGSEA using the
MSigDB Hallmark gene sets (HALLMARK_E2F_TARGETS) which inclu-
ded the genes encoding cell cycle-related targets of E2F transcription
factors21,86.

PDO collection and culture
PDOs were established from the breast tumor surgical specimens
according to the protocol in the previous study87. Breast cancer tissue
was cut into 1–3mm3 pieces and was digested in collagenase (Sigma).
The digested tissue suspension was sequentially sheared and strained
over 100μm filter. The strained suspension was centrifuged, sus-
pended and seeded in 24-well plates with breast cancer organoid
medium containing cold basement membrane extract (BME) (pre-
pared according to Sachs et al.87). Plates were incubated at 37 °C/5%
CO2 in ambient O2 conditions. Organoids in good condition were split,
strained over 70μm filter, and cultured for 5–7 days in the growth
medium before drug treatment. The consistency was examined
between the PDOs and the corresponding primary tumors inMITH and
genomic alterations (evaluated through targeted sequencing with a
well-established panel88).

Drug response testing of PDOs
For drug response testing, organoids were harvested and diluted to 75
organoids/μL in the medium. 384-well plates were coated with 10μL
BME per well using a multidrop dispenser. 30μL of the organoid sus-
pension was then added to each well. Abemaciclib (1μM final con-
centration, S5716, Selleck), PF-06873600 (0.4μM final concentration,
S8816, Selleck) andDMSOcontrolswere then added in duplicate. After
7 days of drug treatment, cell viability was measured by adding 40μL
of CellTiter-Glo 3D Reagent (G9683, Promega) per well and reading
luminescence after 5min of shaking and 25min of incubation in
darkness at room temperature.

Identification of micro-ecological modules (MEMs)
Based on our spatially-resolved single-cell atlas, we tried to identify
recurring spatial patterns of local multicellular organization. The fol-
lowing analytic workflow was adopted: First, the single-cell clustering
results for tumor, inflammatory and stroma cells were extrapolated to
all cells from each sample using the aforementioned cell clustering
extrapolation method. Second, the WSIs were tessellated into non-
overlapping squaredomainswith slide lengthof 200μm, referred to as
spots. All spots were characterized by the cell number of all tumor,
inflammatory and stroma cell clusters. This yielded a Ns × Nc matrix

Article https://doi.org/10.1038/s41467-023-42504-y

Nature Communications |         (2023) 14:6796 17



(Ns=number of spots andNc=number of cell clusters) for each sample.
Third, spatial correlation analysis was performed to reveal the colo-
calization of cell clusters in a sample-wise manner. Multivariate spatial
correlation algorithm developed based onMoran’s autocorrelation by
Wartenberg et al. was adopted and the spatial correlation between two
cell clusters x and y was calculated as89:

C =
Ns

W

PNs
i = 1

PNs
j = 1wij xi � �x

� �
yj � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs
i = 1 xi � �x
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs

i = 1 yi � �y
� �2q ð3Þ

where xi and yj are cell number of cluster x in spot i and cluster y in
spot j respectively, �x and �y denote the average cell number of these
two cell clusters across all spots of the sample, wij denotes the spatial
weight between spots i and j, Ns is the total number of spots of the
sample, andW is the sum ofwij . We assignwij = 1 if spot j is among the
nearest neighbors of spot i, and wij =0 otherwise90. This analysis was
performed for each pair of cell clusters and the resulting Nc × Nc × Np

correlation matrix (Nc= number of cell clusters and Np= number of
patients) was reduced by mean to a Nc ×Nc correlation matrix. Finally,
hierarchical clustering of the correlation matrix was performed using
the scipy.cluster.hierarchy.fcluster function with the Ward linkage
method. MEMs were identified based on the clustering results. After
the identification of MEMs, for each module, a module score was
assigned to each spot which was calculated as the percentage sum of
cell clusters belonging to thismodule. All spots were classified into the
MEMs according to their maximum module score.

Characterization of spatial patterns of MEMs using Moran’s
I index
To characterize the spatial variability of our defined MEMs, Moran’s I
index is used, which is a commonly used statistic to measure the
degree of spatial autocorrelation30. For eachmodule of each sample, it
is calculated as:

I =
Ns

W

PNs
i= 1
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j = 1wij xi � �x

� �
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� �
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where xi and xj are the module scores of spots i and j, wij is spatial
weight between spots i and j, �x is themean value of themodule score
across all spots of the sample, Ns is the total number of spots, and
WW is the sum of all weights wij . We assign wij = 1 if spot j is among
the four nearest neighbors of spot i, and wij = 0 otherwise90. The
Moran’s I index value ranges from –1 to 1. A value close to 1 indicates a
spatially aggregated pattern, a value close to 0 indicates a random
spatial pattern, and a value close to –1 indicates a chess board-like
pattern.

Comparison between the deep learning methods and our sc-
MTOP method in characterizing the tumor ecosystem
We examined two deep learning models: self-supervised learning
model by Ciga et al.31 and KimiaNet by Riasatian et al.32. First, we
extracted thedeep features from the same image “spots” as used inour
MEM analysis, keeping the size, coordinates and magnification con-
sistent. Then, we performed K-means clustering on the patches’ deep
features and set the cluster number to 9, matching the number of
categories of our sc-MTOP-based MEM classification. Finally, we
compared the yielded self-supervised learning model-based MEM
(sslMEM) classification and KimiaNet-based MEM (KimiaMEM) classi-
fication with our sc-MTOP-based MEM classification in terms of the
ability to characterize the locoregional cellular structures by calculat-
ing the inter-MEM and intra-MEM variations91. In detail, first, for each
spot we calculated the proportion of tumor, stroma and inflammatory
cells. Then, for each cell type, intra-MEMvariationwasmeasured as the

meanof the standard deviation of its proportion across all spotswithin
each MEM:
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where n is the number ofMEMs, r is the number of spots belonging to
MEM j, pi,j is the cell type proportion of spot i, STDr

i = 1ð�Þ is an operator
for calculating the standard deviation of cell type proportions across
the r spots belonging to theMEM j. Inter-MEMvariationwas calculated
as the standard deviation of themean proportion of the cell type of all
spots belonging to the same MEM:
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An ideal MEM classification should have both lower intra-MEM
variation, indicating they can identify and summarize the recurrent
patterns of local multicellular structures, and higher inter-MEM varia-
tion, indicating they can clearly distinguishdifferent localmulticellular
structures. A random nine-class classification was used as a negative
control for this analysis.

Tumor ecotypes based on the MEM composition
Tumor ecotypes were identified using hierarchical clustering of the
composition of MEMs. For each sample, the percentage of spots
belonging to eachMEMwas calculated, which generated a percentage
vector for the sample’s MEM composition. Then, hierarchical cluster-
ing was performed based on the samples’ MEM percentage vectors
using the scipy.cluster.hierarchy.fcluster with the Ward linkage
method. The optimal cluster number was determined according to
Calinski–Harabasz index and Silhouette coefficient92,93.

Somatic mutation and CNA associations with breast cancer
ecotypes
To investigate the association between somatic mutations and breast
cancer ecotypes, we compared the frequency of somatic alterations in
oncogenic pathways among the four ecotypes (R OncogenicPathways
frompackagemaftools)94. P valueswere calculated byChi-SquareTest.
As for CNA, each level of averaged event was converted into ordinal
scale. Ordinal regression model (R clm from package ordinal) with
proportional odds link functionwasfitted by using the tumor ecotypes
as a categorical independent variable and the ordinal scale as the
dependent variable52. Log odds ratiowas used tomeasure the effect of
ecotypes on CNA events.

Development of a breast cancer ecotype classifier
Our ecosystem classification was based on hierarchical clustering of
the 637 samples of the FUSCC cohort. To realize the identification of
tumor ecotypes of new samples,wedeveloped a breast cancer ecotype
classifier based on the MEM composition data. We first split the
637 samples into a training set (80%) and a test set (20%). Stratified
sampling was adopted to balance the proportions of the four ecotypes
between the training and test sets. Then,we trained anSVMclassifier in
the training set and evaluated its classification accuracy in the test set
using the weighted F1 score95.

Online platform for data management and real-time analysis
To facilitate data sharing and the use of sc-MTOP framework by other
researchers, an online platform was developed (http://sc-mtop.
biosolver.cn/). The platform comprises two modules. The first is a
data management module for digital pathology and multiomics data,
which is developed based on cbioportal96. The uploaded digital WSIs
of the FUSCC cohort are available for online view under up to
×40magnification using a digital pathology viewer developed with the
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OpenSeadragon v2.4.2 package. Besides the WSI data, the sc-MTOP
raw data together with the clinical and multiomics data are also cor-
related and shown aside. The mongodb and mysql databases are used
to store these comprehensive data and manage their relationships
for integrated online presentation. The second module of the plat-
form is an online analysis module for real-time analysis of newly-
uploadedWSIs. We have designed a plugin system tomake the entire
sc-MTOP framework and the subsequent analytic pipeline modular-
ized with Clojure language. After the upload of WSI, the sc-MTOP
framework will be executed on a cloud server and the output results
can be downloaded. In addition, an ecosystem portrait is generated
for the sample by evaluating the clinically relevant ecosystem fea-
tures including the cellular composition, AIC score, MITH and the
tumor ecotypes. A user-friendly interface is developed based on the
Vue.js framework and JavaScript language97. A detailed data policy
will be made and uploaded to the website when the platform fully
opens to the public.

Statistical analysis
Statistical analysis was performed using Python (version 3.8.12) andR
(version 3.6.3). Spearman correlation was used to investigate the
relationship between continuous variables. Continuous variables
were compared between groups using the Mann-Whitney U test with
false discovery rate (FDR)-correction for multiple testing98. All tests
were two-sided, and an FDR-corrected P < 0.05 was considered sta-
tistically significant. Predictive accuracy of biomarkers wasmeasured
by ROC analysis using AUC. Survival curves were plotted using the
Kaplan-Meier method and survival differences were compared
between groups using the log-rank test and Cox proportional
hazards models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
AllWSIs and sc-MTOPdata of the FUSCCcohort havebeenuploaded to
the sc-MTOP platform (http://sc-mtop.biosolver.cn/). Example data of
sc-MTOP results for one sample are provided in Supplementary Data 1.
Raw WES, CNA and RNA-seq data have been deposited on the GSA
database with GSA-Human accession number HRA005104. The data
are available under controlled access for research purposes only.
Access can be obtained by approval via the Data Access Committee of
the GSA-human database (for detailed instructions, please refer to:
https://ngdc.cncb.ac.cn/gsa-human/document/GSA-Human_Request_
Guide_for_Users_us.pdf). The approximate response time for accession
requests is four weeks. Once the access has been granted, the data will
be available for one week and should be used for research purposes
only. Source data are provided with this paper.

Code availability
The source codes of sc-MTOP are provided in Supplementary Software
and are available at Github (https://github.com/fuscc-deep-path/sc_
MTOP) and Zenodo (https://doi.org/10.5281/zenodo.8364420)99.
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