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Automated temporalismuscle quantification
and growth charts for children through
adulthood
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Lean muscle mass (LMM) is an important aspect of human health. Temporalis
muscle thickness is a promising LMMmarker but has had limited utility due to
its unknown normal growth trajectory and reference ranges and lack of stan-
dardized measurement. Here, we develop an automated deep learning pipe-
line to accurately measure temporalis muscle thickness (iTMT) from routine
brain magnetic resonance imaging (MRI). We apply iTMT to 23,876 MRIs of
healthy subjects, ages 4 through 35, and generate sex-specific iTMT normal
growth charts with percentiles. We find that iTMTwas associated with specific
physiologic traits, including caloric intake, physical activity, sex hormone
levels, and presence of malignancy. We validate iTMT across multiple demo-
graphic groups and in children with brain tumors and demonstrate feasibility
for individualized longitudinal monitoring. The iTMT pipeline provides
unprecedented insights into temporalis muscle growth during human devel-
opment and enables the use of LMM tracking to inform clinical decision-
making.

Leanmusclemass, a primary component of humanbody composition,
is a key indicator of human health and has been linked to numerous
outcomes1,2. Sarcopenia, characterized by a loss of leanmusclemass, is
associated with malnutrition, aging, chronic disease, physiologic
frailty, and death in children and adults2–7. In children and adolescents,
the mechanisms underlying sarcopenia are not fully understood and

may involve genetic, epigenetic, and environmental factors such as a
sedentary lifestyle and poor nutrition8. In addition, sarcopenia in
children is more challenging to define and track than in adults due to
differences in physiologic development related to age and puberty,
which are variable9. In children with illnesses like cancer, sarcopenia,
and the associated phenomenon, cachexia, are associated with
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decreased functional status, quality of life, toxicity from chemother-
apy, shorter time of tumor control10,11 and survival9,12,13. Sarcopenia can
also alter the metabolism of cytotoxic and therapeutics for pediatric
and adult tumors, which may have implications for dosing and sche-
duling these medications14.

Currently, routine assessment of sarcopenia relies on monitoring
nutritional status, weight, and body mass index (BMI), which are sim-
ple to measure but do not directly measure body composition. The
limitations of BMI as a measure of body composition have been
highlighted by the American Medical Association15, which recently
adopted a policy clarifying that additional metrics outside of BMI
should be used in conjunction with other measures of body compo-
sition. Furthermore, BMI may underestimate body fat for those who
are overweight with decreased muscle mass, and such sarcopenic
obesity is a common, life-limiting problem in pediatric cancer
survivors16, patients with type 2 diabetes mellitus17, chronic liver
disease18 and dyslipidemia19.

Anthropometrics, such as triceps skinfold and mid-upper arm
muscle circumference, have been proposed but have not added sub-
stantial clinical value due to low precision and reproducibility20.
Quantitative methods of body composition measurement, such as
dual-energy x-ray absorptiometry (DXA), have shown validity at the
population level, but validity at the individual level is less certain11,21,22.
In addition, they require specialized centers and expertise, additional
study visits, resulting in increased costs23,24, as well as radiation expo-
sure. Diagnostic computed tomography (CT) andmagnetic resonance
imaging (MRI) have emerged as alternative methods to assess sarco-
penia using the cross-sectional area of a single vertebral slice25 or using
quantitative whole-body MRI26–28. However, radiation exposure (in the
case of CT) and excess time (in the case of whole-body MRI) impede
their use in children29. Furthermore, the clinical utility of muscle mass
quantification relies on the development of standardized normal
reference ranges, which are established using substantial data. How-
ever, obtaining such data for whole-body MRI is unlikely, which limits
the development of standardized reference ranges for MRI-based
muscle mass quantification. On the other hand, pediatric brain MRI is
done routinely30–32 in conditions such as cancers and neurodevelop-
mental disease.

The temporalis muscle, situated within the temporal fossa of the
skull, is an established indicator of lean muscle mass33,34 and is uni-
versally visible on routine brain MRI, presenting an attractive
opportunity to assess leanmusclemass in children at scale. Recently, a
semi-automated, deep learning(DL)-based approach for measuring
cross-sectional area (CSA) of the temporalismuscle onMRI was shown
feasible in a small cohort of adults35. However, there have been no
large-scale efforts to develop and validate tools to characterize the
temporalis muscle and establish normal reference ranges that would
be critical to informing health risks and clinical decision-making.

While temporalis muscle thickness (TMT) presents an attractive
means to assess body composition, use in young, developing people
requires knowledge of normal growth trajectory and distribution,
which is currently unknown. To address this problem and enable the
utility of TMT in guiding clinical management, we developed iTMT, a
deep learning-based pipeline for standardized and reproducible tem-
poralis muscle auto-segmentation and TMT calculation.We used iTMT
to generate normal, age- and sex-adjusted TMT growth charts, lever-
aging an aggregated cohort of 23,876 MRI scans from 13 international
sources that provide unprecedented insights into muscle growth
through young adulthood. Following rigorous validation and accept-
ability testing, we evaluated use cases of iTMT in predicting nutritional
and metabolic deficiencies in healthy children and those with brain
tumors. Wemade our pipeline publicly available for further evaluation
and release anonline calculator tool foruseby the research and clinical
communities.

Results
Automated temporalis muscle segmentation and thickness
calculation (iTMT)
The iTMT pipeline performs three tasks sequentially: 1) axial slice
selection at the superior orbital roof, 2) temporalis muscle segmen-
tation, and 3) TMT calculation. The iTMT pipeline was comparable to
human experts for the first stage task of superior orbital roof locali-
zation compared to ground truth in terms of superior-inferior varia-
bility (healthy cohort pipeline median absolute error (MAE): 2.5mm
[IQR: 1–4.75mm] vs expert MAE: 2.0mm [IQR: 1.0–2mm]; cancer
cohort pipeline MAE = 3.0mm [IQR = 2–5mm]) vs expert MAE: 1.0
[IQR =0–3mm] (Fig. 1B).We furtherfind that craniocaudal localization
impact on iTMT measurement is negligible within the expected error
margin of the pipeline (±4mm= 2.73%, see Table S3).

iTMT pipeline segmentation performance in the healthy cohort
was excellent with median DSC: 0.84, (95%CI: 0.83–0.85) vs median
inter-expert DSC 0.81 (95%CI: 0.79–0.83); and in the brain tumor
cohortwithmedian iTMTDSC0.81 (95%CI: 0.73–0.88) vsmedian inter-
expert DSC 0.81 (95%CI: 0.76–0.85). Results suggest negligible per-
formance degradation in the presence of brain tumors and/or surgical
manipulation characteristics of the scans in the brain tumor cohort.
iTMT measurement accuracy was comparable to an inter-expert
agreement in healthy children (iTMT MAE 0.96mm (95%CI:
0.74–1.17) vs inter-expertMAE 1.20mm(95%CI: 0.91–1.49) and in those
with brain tumors (iTMT MAE 1.23mm, (95%CI: 0.79–1.67) vs inter-
expert MAE 0.92mm, (95%CI: 0.52–1.31). For more details, refer to
Supplementary Methods A4.

We performed acceptability testing by two validators on 2,950
TMs from randomly selected MRI scans stratified by age and sex to
ensure accurate predictions (Fig. 2A). A 3rd tie-breaker validator
reviewed disagreements to designate acceptability. Overall pipeline
segmentation acceptability after tie-breaking was 98.3% with a high
agreement (Gwet AC1 =0.98)36. We qualitatively investigated the low
number of unacceptable cases after tie-breaking (n = 111) and those
with disagreement between reviewers (Fig. 2C). We identified that
causes of such discrepancies were: low image resolution or corrupted
MRI (35%), motion artifacts (<1%), and very small TM (<1%), with other
cases having no clear cause (53%). For a detailed analysis of the MRI
image quality and expected model sensitivity, see Supplementary
Methods A5.

Given the existing literature supporting TMT as a biomarker for
lean muscle mass and that iTMT derived from temporalis segmenta-
tion showed minimal inter-operator variability compared to cross-
sectional area, we decided to focus on iTMT for further correlative
analyses37.

On univariate regression analysis within the ABCD cohort (age
8–13), Latino, Black, or Mixed race/ethnicity, if the family could not
afford food in the past 12 months, if the family was born in the USA,
lower household income, not having insurance, and lower levels of
parent education were associated with increased iTMT. On multi-
variate regression analysis on the same cohort, statistically significant
variables included Latino, Black, or Mixed race/ethnicity, if the family
was born in the USA, and parent education (Supplementary Meth-
ods A11).

Temporalis muscle normal reference growth charts
Given the high acceptance rate in the subsample, we applied iTMT to
collected scans in the healthy cohort (n = 23,876) and plotted sex-
specific iTMT by age from 4 to 30 (Fig. 3A). There was a median of
135 scans per age (IQR:81–299), with at least 60 scans for each year of
age in the range of 4–30. For the 10,444 (43.8%) scans with docu-
mented race and ethnicity information, the distribution was compar-
able to that of the United States population nationally (Supplementary
Table S7).
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We calculated sex-specific Generalized Additive Models for Loca-
tion, Scale, and Shape (GAMLSS)38 curves that explicitly estimate age-
related variance, considering the known differences in development
betweenmales and females. (SeeMethods; SupplementaryMaterialsA6)

The curves reveal distinct and, heretofore, undescribed phases of
TM development among developing humans. For both sexes, there is
steady TM growth through childhood, followed by a plateau, the
timing of which is sex-specific (Fig. 3B).

On average, one iTMT centile point change translated to
0.296mm. Given the MAE of 1.06mm, we estimated that iTMT had
precision within 6.0 centiles [95%CI: 5.3–7] for males and 7.1 centiles
[95%CI: 6.1–8.5] for females (See Supplementary Methods A4).

Data used to produce the centiles charts is provided as a Source
Data file. We provide an online centile calculator tool for community
use at https://itmt-icsa.streamlit.app/. Sex-specific growth chart
templates were generated for individual use (Supplementary
Figs. S23–S24).

iTMT and physiologic biomarkers
We investigated how iTMT centile was associated with other clinical-
physiologic health parameters in children aged 8–13 via the ABCD
dataset30. Given the widespread use of height, weight, and BMI as a
surrogate for body composition in children, we investigated their
associations with iTMT. We found moderate correlations between

Fig. 1 | Dataset summary and method overview. A Aggregated dataset from 13
primary studies (total N = 23876 T1w MRI, see Supplementary Methods A7) with
violin plot age distributions with annotated dataset size. Violin plots show the
kernel density estimation of the distribution, with a boxplot overlay, with the
median marked by a white dot, the interquartile range marked by the thick black
bar, and the range by the thin black line. The darker color corresponds to the
bigger dataset size. B iTMT performance compared to interobserver variability of
Human Expert. The top panel: healthy, and the bottom: the Brain tumor cohort.
Panel B1-Slice Selection MAE in mm (Human Expert for Healthy cohort (n = 46)
MAE= 2.0mm [IQR= 1.−2mm], iTMT MAE= 2.5mm [IQR= 1–4.75mm]; Human
Expert for Brain tumor cohort (n = 25) Slice Selection MAE= 1.0mm
[IQR =0–3mm], iTMT MAE= 3.0mm [IQR = 2–5mm]). Panel B2-Dice (Human
Expert for Healthy cohort Dice = 0.81 [IQR =0.76–0.84], iTMT Dice = 0.84
[IQR =0.81–0.87]; Human Expert for Brain tumor cohort Dice = 0.81 [IQR =0.75-
0.83], iTMT Dice = 0.81[IQR=0.73–0.86]). Panel B3-iTMT MAE in mm (Human

Expert for Healthy cohort MAE = 1.20mm [IQR=0.66–1.96mm], iTMT MAE =
0.96mm [IQR=0.4–1.53mm]; Human Expert for Brain tumor cohort MAE =0.92
mm [IQR =0.5–1.4mm], iTMT MAE = 1.23mm [IQR =0.55–1.9mm]). TMT tempor-
alis muscle thickness, MAE median absolute error, GAMLSS Generalized Additive
Models for Location Scale and Shape. P-values were tested using the
Mann–Whitney two-sidedU test. Violin plots show the kernel density estimation of
the distribution, with a boxplot overlay, with themedianmarkedby awhite dot, the
interquartile range marked by the thick black bar, and the range by the thin black
line. C Method overview. Step 1: Registration to age-specific MNI (Montreal Neu-
rological Institute) template and manual check. Step 2: MRI T1w preprocessing:
rescaling, z-normalization. Step 3: Slice selection via Dense Net model. Step 4:
Segmentation via UNet prediction. Step 5: iTMT calculation using GAMLSS growth
charts(error bands CI 2.5–97.5%). For more details on each step, please refer to the
Methodology section. Source data are provided as a Source Data file.
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iTMT and subjects’ BMI and weight (Spearman’s ρ: 0.63 and 0.63,
respectively) and a low correlation between iTMT and subjects’ height
(Spearman’s ρ: 0.379), suggesting that leanmusclemassmeasurement
and sarcopenia cannot be directly estimated by BMI alone. In addition,
we identified subgroups of patients with discordant iTMT and BMI,
including a substantial number of patients with low iTMT and normal
to high BMI (N = 4304, per CDC39 defined reference ranges, see Sup-
plementary Figs. S4–S5). These patients might be at high risk for the
negative health effects of occult sarcopenia or sarcopenic obesity and
benefit from therapeutic interventions, but more investigation is
needed. Dehydroepiandrosterone (DHEA) has been positively asso-
ciated with obesity40,41, and its high levels in children can cause early
puberty. Here, we found that higher iTMT was associated with
increased levels of DHEA (N= 13,256, 52% Male, mean age 10 years,
IQR = [9–11], Fig. 4A) along with higher caloric intake (N = 2935, 53%
Male, mean age 11.4 years, IQR = [11–12]). Low testosterone levels were
previously associatedwith increased fatmass and reduced leanmass in
males42. Here, we found that iTMT was associated with increased tes-
tosterone levels (N = 13256, 52% Male, mean age 10 years, IQR = [9–11],
Fig. 4A). Reduced levels of HDL-cholesterol is one of the risk factors for
metabolic syndrome in adults43, andwe foundout that itwas positively
associated with higher iTMT (N = 626, 55% Male, mean age 11.4,
IQR = [11–12]).

iTMT in pediatric patients with brain tumors
Sarcopenia and cancer cachexia44 are components of physiologic
frailty that have been linked to morbidity and early mortality and are

prevalent in pediatric cancer survivors, particularly pediatric brain
tumor survivors12,45. Pediatric gliomas, which include low-grade (LGG)
andhigh-grade (DMG), are themost common solid primaryCNS tumor
in the pediatric age group46. In two cohorts of pediatric brain tumor
patients, we found that the median iTMT centile was lower than in the
healthy population (LGG: 33.3 centile [IQR = 6.6–52.9] and DMG: 36.19
centile [IQR = 10.3–62.1]) (Fig. 5; See Supplementary Methods A10
“Pediatric low-grade glioma (pLGG) and diffuse midline
glioma (DMG)”).

Feasibility of longitudinal intra-patient iTMT tracking
The ability to reliably track iTMT longitudinally across an individual
patient’s growth and development, akin to classical height and weight
growth charts, would be clinically useful. To assess the feasibility of
intra-subject longitudinal measurements, we computed iTMT and the
corresponding centile scores for a 23-year-old womanwho underwent
30 days of consecutive MRI scans in two studies, each one year apart47

(Fig. 6A). The standard deviation for iTMT was ±0.71mm (Table S2,
±4.18 centiles) over all 30 consecutive days for year one and ±0.42mm
(Table S2, ±2.5 centiles) for days with motion artifact minimization;
and ±0.38mm (±2.23 centiles) for year two, indicating high precision
and repeatability of intra-patient, longitudinal iTMTwithin 2-5 centiles,
with a small dependence on scan quality.

In addition, we assessed longitudinal iTMT measurement feasi-
bility in the ABCD cohort. We calculated iTMT for the 14,642 patient
visits for childrenwith twoMRI scans takenwithin two years.We found
that <2% of patients experienced dramatic iTMT centile change

Fig. 2 | Acceptability testingpipeline. AOverviewof the data flowwithGwet AC136

for interobserver agreement.B Likert-type scores distribution among 3 annotators.
Rater 1 and Rater 2 were two primary annotators, Rater 3 was the tiebreaker.C Two

exampleswhereprimary annotatorsdisagreedon the acceptability and a tiebreaker
(Rater3) reviewed the cases. TM temporalis muscle. Source data are provided as a
Source Data file.
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(Δ > 50%)—which would be biologically implausible, and 15.8% experi-
enced minor iTMT change (Δ > 25%), see Supplementary Fig. S4.

Discussion
Leveraging the largest aggregated pediatric and young adult brainMRI
dataset to-date, we developed and validated a multistage deep learn-
ing pipeline for accurate and reliable, automated temporalis muscle

thickness calculation (iTMT) and generated practical, normal refer-
ence growth charts to track lean muscle mass in children through
adulthood. Our study provides an unprecedented look into how the
temporalis muscle changes during human development and defines
sex-specific normal reference ranges that provide complementary
information to BMI and anthropomorphics. Furthermore, the iTMT
pipeline can be employed on routine T1-weighted MRI brain with or
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without contrast and does not require specialized machinery and
expertise nor radiation exposure. For the many people who receive
routineMRI for symptoms or chronic illness, such as brain cancers and
neurodevelopmental or degenerative disorders, iTMT may have
immediate clinical utility without requiring extra resources, cost, or
radiation exposure. Future applications of iTMT could be to track and
predict morbidity through treatment and survivorship for people with
serious illnesses. iTMT monitoring may reveal important physiologic
states that merit intervention and have clinical utility in triaging
patients for escalated care.

The iTMT pipeline utilizes a transparent and reproducible,
stepwise approach to TMT calculation and demonstrates a high
degree of accuracy, comparable to agreement between trained
human experts. Furthermore, iTMT is accurate on a wide range of
patients and T1-weighted scans with heterogeneous age, demo-
graphics, scanner parameters, image quality, contrast enhancement,
and presence of brain pathology. It is notable that given the relatively
small size of the temporalis muscle, small absolute variations in
thickness measurement can translate into large changes in centile.

One centile point change translates on average to 0.08mm, which
requires precise iTMT quantification. Based on our investigations,
iTMT likely has precision within ~6–7 centiles at baseline, with ~2–5
centiles for intra-patient longitudinal monitoring. We plan in the
future to improve model performance by training on more challen-
ging and variable cases, e.g., post-surgical MRI scans and those with
ipsilaterally removed TM. In comparison to the single study of deep
learning TM segmentation in adults35, our pipeline achieved higher
accuracy and better generalization across a range of brain patholo-
gies and, critically, advances the approach to automated, scan-to-
TMT calculation, which will lower the barrier to clinical adoption. We
quantified TMT using the Feret diameter48,49 (see Methods), a widely
accepted method for measuring projections of a 3D object into 2D
space in microscopy, obviating the need for manual measurement,
which can be prone to interobserver error. Another advantage of
using the Feret diameter is that it is not affected by muscle orienta-
tion and is robust, unlike a human subjective definition based on the
marker location, which can be a concern with other methods of
measurement.

Fig. 3 | TemporalisMuscleNormalReferenceGrowthCharts.A Sex-specific iTMT
by age for the healthy cohort N = 23,876. Top panel: count plot demonstrates the
geographical location of primary studies (scaled log Y-axis). Bottom panel: violin
plot, raw predicted iTMT ranges split by biological sex. Violin plots show the kernel
density estimation of the distribution, with a boxplot overlay, with the median
marked by a white dot, the interquartile range marked by the thick black bar, and
the range by the thin black line. The age group 30–35 was collapsed into one
category 30+, due to the sparsity of the data available. The correlation between
data size and the frequency of outliers (>3 standard deviations) is positive, indi-
cating that larger datasets tend to have a greater number of outliers (The biggest

open source dataset ABCD30 (N = 18,949 T1w MRIs) for the age group 8–13). See
Supplementary Information A7 for details on demographics data. The mixed ori-
gins dataset was labeled as EU/USA. B iTMT normal reference growth charts with
percentile lines for females (bottom) and males (top). We developed these charts
by applying iTMT to 23,876 T1w MRI scans for patients aged 4–35 and creating
growth centile curves estimated using GAMLSS. The age group 30–35 was col-
lapsed into one category 30+ for curve stability. See Supplementary Figs. S23–S24
for CSA and iTMT Growth charts. GAMLSS Generalized Additive Models for Loca-
tion Scale and Shape. Source data are provided as a Source Data file.

Fig. 4 | The association between iTMT centile scores and patients’ BMI 77, height/
weight77, activity levels78, nutrition79, dehydroepiandrosterone(DHEA)80,
cholesterol81, and testosterone82 for patients aged 8–13 (Source: ABCD30). Violin
plots show the kernel density estimation of the distribution, with a boxplot overlay,
with themedianmarked by awhite dot, the interquartile rangemarked by the thick

black bar, and the range by the thin black line. Statistically significant groups
(*P <0.05, **P <0.01, ***P <0.001) that are labeled with an asterisk (*) were tested
with two-sided Mann–Whitney U-test. For age- and sex-specific definitions of nor-
mal/high/low ranges for physical biomarkers, refer to Supplementary Methods A8.
Source data are provided as a Source Data file.
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By providing age- and sex-normalized metrics, centile scores
enable trans-diagnostic comparisons between disorders that emerge
at different stages of the lifespan. Future work will evaluate how
combiningCSAmeasurementswith iTMTcould further refine imaging-
based sarcopenia assessment.

We demonstrated that iTMT was directionally related but not
collinear to BMI. BMI is currently the most widely used method of
identifying children and adolescents with excess adiposity and risk for
the development of metabolic disease23,50, but is a suboptimal
screening tool for identifying individual patients at risk for physiologic
frailty and mortality. In this work and others51,52, TMT was associated
withmalnutrition, muscle wasting, and, in the case of pediatric cancer,
survival, supporting its use as a health biomarker.We found thatmales
had significantly higher TMT levels than females, which aligns with a
study on lumbar abdominal muscle CSA and previous findings35,53.
Around the onset of puberty, male TMT growth accelerates compared
to female TMT and then plateaus in the early 20s (Fig. 3), perhaps due
to a differential increase in testosterone and the effect on muscle
mass54.

For patients with brain tumors, a strong correlation was pre-
viously shown between the temporal muscle thickness (TMT)55 and
the skeletal muscle mass measured on cross-sectional abdominal
CT, demonstrating the use of TMT as a surrogate marker for
sarcopenia37. TMT has also been used for evaluating muscle mass
and function among stroke patients56 and for prognosis of patients
with primary glioblastoma33,35,57. Future work will be required to
tease out the incremental information gained by using iTMT in
addition to BMI in terms of prognostication and identification of
physiologic states.

This study has several important limitations. Firstly, our derived
iTMTpercentiles are largely composedof aUnited States-based cohort
due to the lack of the open-source data and further study will be
needed to determine the validity of iTMT percentile charts in inter-
national cohorts and under-represented minority populations. Race,
ethnicity, and clinical data were lacking in most datasets, and our
preliminary subgroup findings suggested that there may be small
baseline differences in normal iTMT ranges across different datasets
(Supplementary Fig. S29). For data with known demographic infor-
mation, the sample distribution was roughly equivalent to the national
census. The population-based iTMT thresholds used for associative
analyses to represent the risk of sarcopenia and sarcopenic obesity are
only hypothesis-generating and require validation with clinical out-
comes.Which specific iTMT threshold dictates clinical sarcopeniamay
vary by the individual, based on their growth trajectory history, and
requires further investigation.

Furthermore, TM segmentation of infant brain MRI is con-
siderably more challenging than adult brain MRI due to the reduced
tissue contrast, and TM is underdeveloped for children under 4.
Therefore, iTMT is only applicable for children aged four and above.

Our study necessarily relies on cross-sectional imaging to develop
reference curves, as there are no large longitudinal MRI datasets
available for healthy children followed through young adulthood.
While our study demonstrates the feasibility of applying iTMT to
longitudinal patient data, further investigation is needed to validate
iTMT as a longitudinal biomarker of growth and its associated clinical
outcomes.

One potential failure mode is the presence of artifacts or poor
image quality in the MRI images, which can affect the accuracy of the

Fig. 5 | iTMT in pediatric patients with brain tumors. A Aggregated dataset from two studies with brain cancers (total N = 229 T1w MRI) age distribution. B iTMT and
cancer cachexia for pLGG and DMG cohort. Source data are provided as a Source Data file.
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segmentation. In addition, amanual or automatedMRI quality check is
recommended prior to use of iTMT, which, in this study, was only
evaluated on MRIs for which the temporalis muscle was sufficiently
visible for a human to segment. The performance of ourmodelmay be
affected by the size and location of the tumor or surgical cavity within
the brain. There were notably two outliers in the brain tumor cohort
with low Dice scores (Fig. 1B). We investigated these cases and found
that the reason was an abnormal brain anatomy with high ventricular
volume (see Supplementary Fig. S10) and concluded that iTMT would
benefit from additional re-training on edge cases to improve reliability
further. Another potential pipeline limitation is the failure of the pre-
cise registration alignment to the age-specific template. Specifically,
brains with high anatomical deformities are at high risk due to struc-
tural differences in comparison to a normal brain. Lastly, during the
curation of the open-source datasets, multiple studies were excluded
due to specific MRI anonymization techniques that corrupted the
region of the temporalis muscle. This highlights the need to review
scans post-anonymization process prior to implementing the iTMT
pipeline.

In conclusion,we leveraged a large, aggregateddataset of pediatric
brain MRI and a multistage deep learning pipeline to develop a fully
automated TMT calculation and generate TMT growth charts for chil-
dren through young adulthood. The iTMT pipeline, coupled with these
growth charts, enables individualized tracking of patient lean muscle
mass status to inform clinical decision-making and interventions.

Methods
The overall pipeline is shown in Fig. 1C. In summary, we pre-processed
MRI scans by applying registration and image normalization methods.
Next, we trained a slice selectionmodel for automated top orbital roof
slice selection and a separate model for auto-segmentation of the TM.
To measure TMT and CSA, we use Python minimum Feret diameter
implementation48. Measurements were conducted at each side at the
level of the superior orbital roof (cranio–caudal landmark) perpendi-
cular to the long axis of the temporalmuscle.We followed theprevious
study by Steindl et al.58, measuring TMT values on both sides and
dividing them by two to calculate the mean TMT values for each
patient and reduce dental- or oral-related muscle changes.

Fig. 6 | Longitudinal intra-patient iTMT assessment. A The participant (Female,
23 y.o.) underwent daily testing for two studies of 30 consecutive days with one
year in between47. Left: iTMT and centile measurement computed for daily T1w
scans; right: CSA and centile scores with an overlay of predicted iTMT mask T1w
MRI takenon the 30thday. Themean iTMT for 1st session (durationof 30 days) was
16.3mm±0.71mm; the mean iTMT for both studies was 16.4mm±0.6mm. The
mean slice selection error is 2.7mm. B Feasibility of tracking intra-patient changes

(dataset: ABCD30). On the top right of each MRI, the age and biological sex is
displayed, and on the bottom left information about the predicted slice by the first
stage. (1) BMI stable, TMT stable; (2) BMI increased, TMT increased; (3) BMI
increased, TMT stable, (4) BMI increased, TMT decreased; (5) BMI decreased, TMT
stable. BMI body mass index, TMT temporalis muscle thickness. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-42501-1

Nature Communications |         (2023) 14:6863 8



Datasets
We curated 23,852 MRIs from 13 datasets (ABCD30, ABIDE59, AOMIC60,
Baby Connectome61, Calgary62, ICBM63, IXI64, NIMH31, PING65, Pixar32,
SALD66, NYU2(CoRR)67, Healthy Adults;68 90% United States; 52%male;
26% White, 6% Hispanic, 5% Black, 2% Asian, 4% Mixed, 1% Other, 56%
Unknown; see Supplementary Methods A7).

Image acquisition and registration
Scans that were downloaded in native DICOM format were converted
to NifTI via Python Pydicom package69. Next, scans were co-registered
to MRI age-dependent T1-weighted asymmetric brain atlases, gener-
ated from the NIH-funded MRI Study of Normal Brain Development
(hereafter, NIHPD, for NIH pediatric database70) with rigid registration
using SlicerElastix71 (Elastix generic rigid preset). For the training and
testing cohort, a manual quality check was conducted on each scan to
assess that the anterior and posterior commissures were co-planar and
that there was no significant lateral tilt prior to annotation70.

Temporalis muscle annotation
We recruited five annotators for ground-truth TM segmentation and
oneboard-certified radiologistwith eight years of expertise to perform
validation and/or correction of the annotations. Annotators received
dedicated training on the protocol for TM segmentation (Supple-
mentary Methods A1).

Image preprocessing
Following co-registration and annotation (if performed), MRI images
were rescaled to 1-mm isotropic voxel size using itk-elastix Python
package72. We then normalized MRI images using the Z-Score
method73, performed median filtering, removed background pixels
using Otsu filtering, and standardized the intensity scale. For more
details, please refer to the study code repository https://doi.org/10.
5281/zenodo.8428986.

Slice selection model
We trained the DenseNet74 regression model for the automated top
orbital roof slice selection from brain MRI. We generated maximum
intensity projection slices with 5mm thickness 256× 256 and the cor-
responding label that encoded the offset from the target slice. We
trained the model with N = 23,680/5920 images before pseudo-
labeling and 45,695/5920 after pseudo-labeling training/validation
images. We added data augmentations, including 10-degree rotations
and width/height shifts. We trained the model using Adam optimizer
for 30 epochs with batch size 64 and mean squared error (MSE) loss
with an initial learning rate 1e−4. We set up the learning rate scheduler
to reduce on a plateau with starting learning rate = 5e−4 and used a 1x
Nvidia A6000 for training with TensorFlow v.2.10, Python v.3.9.

Segmentation model
For the segmentation, we trained a 2D UNet for 30 epochs with batch
size 4 with an initial learning rate 5e−4 and the same strategy for the
learning rate decreased as described above. We upscaled images into
512 × 512 and used five downsampling/upsamplingmodules.We added
data augmentations, including 10 deg rotations, width and height
shifts, horizontal flips, and zooming. We use Focal Tversky Loss pro-
posed by Abraham et al.75. Since UNet tends to have bad predictions
around edge areas, we create a major voting post-processing step.
Each TM muscle was predicted four times, and tiles were overlapped
so that each pixel was voted at least three times (see Supplementary
Information A4 for a comparison of the model postprocessing
methods).

Temporalis muscle thickness
For automated TMT measurement, we used the implementation of
Feret diameter in Python48. Feret diameter is the distance between the

two parallel planes restricting the object perpendicular to that
direction49 (see Supplementary Methods A3).

Generalized additive models for location scale and shape
(GAMLSS)
The iTMT curve fitting and chart generation was performed using the
GAMLSS function in R (version 4.2.2, RStudio 2022.12.0), which has
been used inCDC andWHOgrowth charts anduses the data generated
from iTMT along with demographical variables such as age and sex
(Fig. 3B, Supplementary Methods A6). To test whether our model’s
reliability was skewed, we performed a leave-one-study-out (LOSO)
analysis (Supplementary Methods A9). In the context of the present
study, we used the Bayesian information criterion (BIC) to assess the
goodness-of-fit of GAMLSS models making different assumptions
about the form of the phenotypic distributions76.

Physiologic biomarkers
For the association of iTMT and patient characteristics, we used the
ABCD dataset (ages 8–13)30 under Data Use Agreement. We analyzed
the association between temporalis thickness and patients’ BMI,
height/weight levels, Dehydroepiandrosterone (DHEA), daily caloric
intake, activity, and testosterone using with two-sided Mann–Whitney
U-test (see Supplementary Methods A8 for the normal/low/healthy
range definitions and Supplementary Methods A2 for the head-
circumference iTMT adjustment). Statistical significance was set at a
two-tailed p-value of <0.05. All analyses were performed using Python
SciPy package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article, in the Supplementary Information, and from the
corresponding author upon request. Specifically, all public datasets
used for this study can be found via the description and links in Sup-
plementary Information A7. The BCH brain tumor dataset contains
private hospital data that is controlled due to privacy concerns. Access
to the derived dataset will be considered upon request to the corre-
sponding author (Benjamin H. Kann, M.D., email: Benja-
min_Kann@dfci.harvard.edu, timeframe for response 2 weeks). All
model parameters,weights, anddetails are provided inSupplementary
Information A7. Source data are provided with this paper.

Code availability
The model training and testing code is available at https://doi.org/10.
5281/zenodo.8428986. iTMT and iCSA centile calculator is available at
https://itmt-icsa.streamlit.app/.
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