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Nodal band-off-diagonal superconductivity
in twisted graphene superlattices

Maine Christos1, Subir Sachdev 1 & Mathias S. Scheurer 2,3

The superconducting state and mechanism are among the least understood
phenomena in twisted graphene systems. Recent tunneling experiments
indicate a transition between nodal and gapped pairing with electron filling,
which is not naturally understood within current theory. We demonstrate that
the coexistence of superconductivity and flavor polarization leads to pairing
channels that are guaranteed by symmetry to be entirely band-off-diagonal,
with a variety of consequences: most notably, the pairing invariant under all
symmetries can have Bogoliubov Fermi surfaces in the superconducting state
with protected nodal lines, or may be fully gapped, depending on parameters,
and the band-off-diagonal chiral p-wave state exhibits transitions between
gapped and nodal regions upon varying the doping. We demonstrate that
band-off-diagonal pairing can be the leading state when only phonons are
considered, and is also uniquely favored by fluctuations of a time-reversal-
symmetric intervalley coherent order motivated by recent experiments.
Consequently, band-off-diagonal superconductivity allows for the reconcilia-
tion of several key experimental observations in graphene moiré systems.

The fascinating physics1,2 of correlated graphene moiré superlattices,
such as twisted-bilayer (TBG) and twisted-trilayer graphene (TTG), has
generated extensive efforts to uncover the mysteries of their phase
diagrams. Much progress has beenmade towards understanding their
normal-state physics, including the correlated insulatingphases3–18 and
the reset behavior19,20; the latter, which is believed to be associated
with the onset of flavor polarization, appears in the samedensity range
and can coexist with superconductivity13,19–34. However, the form and
symmetry of the superconducting order parameter and the pairing
glue are still unknown, despite significant theoretical efforts27–30,33,35–47.

Tunneling conductance measurements taken within the super-
conducting state reveal a V-shaped density of states (DOS)48,49 which
canbecomeU-shaped at other electron concentrations49. Setting aside
the possibility of thermal fluctuations as origin50, this is most naturally
interpreted as a transition from nodal to fully gapped super-
conductivity. For a consistent microscopic theoretical understanding,
this provides the following challenges: (i) electron–phonon coupling—
a widely discussed33,35–40 pairing mechanism in TBG and TTG—will
typically mediate an entirely attractive interaction in the Cooper

channel, with the leading pairing state that transforms trivially under
all symmetries and is thus fully gapped51,52. (ii) Even when the low-
energy interactions favor an irreducible presentation (IR), e.g., E of C3,
with nodal basis functions (p- or d-wave), the generically fully gapped
chiral configuration wins over the nodal nematic one within mean-
field. (iii) Even if we assume that the nodal state is energetically
favored, e.g., due to significant corrections beyond mean-field27,53–55,
one is still left to explain why there is a transition to another, fully
gapped superconductor upon changing the filling.

In this work, we show that the combination of flavor polarization
and the representations of the symmetries in the flat bands of TBG and
TTG allow for pairing channels that are completely off-diagonal in the
flat bands and that such band-off-diagonal states can naturally recon-
cile all three key challenges (i–iii). More specifically, we find two dis-
tinct band-off-diagonal states: one of them transforms under the trivial
representation A of the system’s point group C6 (or one of A1,2 of D6 if
we set the displacement field to zero) but can nonetheless have
symmetry-protected nodal lines, akin to Bogoliubov Fermi surfaces
discussed in refs. 56,57, see Fig. 1a–c for an intuitive visual explanation.
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The surprising possibility of the existence of such Bogliubov Fermi
surfaces without an external magnetic field is unique to twisted gra-
phene systems in that it follows as a direct consequence of both the
symmetry and relative flatness of their normal-state bands. The second
off-diagonal state transforms under a two-dimensional IR (E2 of C6). Its
associated chiral state, E2(1, i), which is favored in the mean-field over
the nematic one, has the unique property of exhibiting nodal lines or
being fully gapped depending on the filling fraction, even when the
order parameter is kept fixed. We supplement our general symmetry
arguments and phenomenological models with Hartree-Fock (HF)
calculations on the continuum model, studying a variety of different
pairing mechanisms. We find that nodal band-off-diagonal pairing is
favored by the opticalA1 andB1 phononmodes and by fluctuations of a
time-reversal symmetric intervalley coherent (T-IVC) state (the T-IVC
state has Kekulé order on the graphene scale58–60). Evidence for the
former has been provided by a recent photoemission study61 while
evidence for the latter comes from recent STM experiments7. Fur-
thermore, also fluctuations of a time-reversal-symmetric sublattice
polarized state (SLP+) are attractive in the band-off-diagonal channel
(see Table 2 for a formal definition of the order parameters). We also
show that fluctuations of both T-IVC and of a nematic, time-reversal
symmetric IVC order62 favor either the band-off-diagonal A or an E1
state with band-diagonal components, which may also be nodal; the

winner is determined by the relative amount of nematic IVC and T-IVC
fluctuations.

Results
Possible pairing states
Let us begin by classifying the superconducting instabilities in gra-
phenemoiré systems in the limit where the low-energy bands are spin-
polarized but allow for multiple bands. We denote the spinless low-
energy fermionic creation operators by cyk,α,η with momentum k in
valley η = ± , and of band index α labeling the upper (α = + ) and lower
(α = − ) quasi-flat bands. As a result of two-fold rotational symmetry,
C2z, along the out-of-plane (z) direction or effective spinless time-
reversal symmetry, Θ, the non-interacting band structure ξk,α,η obeys
ξk,α,η = ξ−k,α,−η ≡ ξη⋅k,α and intervalley pairing is expected to dominate. A
general pairing order parameter in the inter-valley channel couples as

Hp =
X

k,η= ± ,α,α0
cyk,α,η Δk,η

� �
α,α0

cy�k,α0 ,�η + H.c. , ð1Þ

where the order parameter Δk,η = � ΔT
�k,�η is a matrix in band space.

The physical spin texture of the superconductor is entirely determined
by the form of the underlying normal-state’s polarization: if the spins
are aligned in the two valleys, the superconductor is a non-unitary

Fig. 1 | Spectral properties of interband pairing.While for band-diagonal pairing
a small superconducting order parameter can immediately open up a gap as time-
reversal symmetry guarantees that the associated avoided crossings [gray regions
in a] in the Bogoliubov spectrum are at the Fermi level, this is not the case for band-
off-diagonal pairing (b). Here, a sufficiently strong order-parameter value is
required to establish a full gap, see c. Its kdependence according to Eq. (3) is shown
in d, where the red line indicates nodal points. If the band structure has Dirac
points, there will be a point on the horizontal axis (blue cross). Consequently, if
there is another momentum point located above the red line (blue circle),

continuity of theHamiltonian implies a nodal point on any path connecting the two
momenta. e Gap of the isotropic A2 state and δk, ϵk (zeros indicated in red) for the
normal-state toy model defined in the text. BEC/BI refers to the Bose-Einstein
condensate/band insulator limit. f Complex phase φk = argðXk + iY k Þ for leading
basis function with small subleading corrections. g Shows the gap of the chiral p-
wave E2(1, i) state with Δ0 = 1.5t and the value of Dkj

:= jδk j
j � jϵk j

� μj for kj at the
three symmetry-in-equivalent vortices in f as a function of μ. We took
t0 = � 2:2t,t >0, in b, d.
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triplet, while anti-alignment24,28 leads to a singlet-triplet admixed
state13,27,28. In both cases, all of the following states are well defined,
with the aforementioned spin structures and symmetries given by
appropriate combinations of spinless operations and spin rotations
(see Supplementary Appendix A1).

We will classify the pairing states according to the irreducible
representations (IRs) of the system’s point group D6, which is gener-
ated by six-fold rotations (C6z) along the z axis and two-fold rotation
symmetry (C2x) along the in-plane x axis. Note a displacement field
(D0 ≠0) breaks the in-plane rotations leading to the point group C6.
Importantly, all IRs of D6 and C6 are either even or odd under C2z.
Choosing the phases of the Bloch states such that C2z acts as
ck,α,η→ c−k,α,−η, it holds

C2z : Δk,η �! Δ�k,�η = � ΔT
k,η: ð2Þ

This immediately implies that the pairing states in all IRs even
under C2z (A1,A2, E2 of D6) must be anti-symmetric in band space and,
thus, entirely band-off-diagonal, whereas the order parameters of the
other IRs (B1, B2, E1) are symmetric and can contain both band-diagonal
and band-off-diagonal components. While superconducting order
parameters with finite band-off-diagonal components are rather
common inmulti-band systems, the existence of pairing states that are
constrained to be entirely band-off-diagonal is rather unique and fol-
lows from the combination of C2z symmetry and the spin polarization
in the normal state. Importantly, this is unaffected by strain or nematic
order breaking C3z as long as C2z remains, which guarantees that there
are IRs with entirely band-off-diagonal order parameters.

Choosing the phase conventions of the Bloch states such that C2x

and C3z act as ck,α,η ! ðσzÞααcðkx ,�kyÞ,α,η and ck,α,η ! cC3zk,α,η
, respec-

tively, the resulting candidate order parameters are summarized in
Table 1. Note that a momentum-independent representation of C2x

must be σz due to the bands’ eigenvalues at the Γ-M line, which in turn
are connected to the topological obstruction of the flat bands63. The
reality (Hermiticity) constraint in Table 1 on χ, X, and Y (χ̂, X̂ , and Ŷ )
comes from the residual spinless time-reversal symmetry Θ of the
normal state64,65. The two two-dimensional IRs E1,2 are each associated
with three pairing states—two nematic phases E1,2(1, 0), E1,2(0, 1) and
one chiral state E1,2(1, i).

Spectral properties
We here have the rather unique situation that there are pairing chan-
nels, associated with the IRs A1,2 and E2, where the pairing is

constrained by C2z to be entirely band-off-diagonal. One immediate
very unusual consequence is that the superconducting order-
parameter transforming under the trivial representation (A1) has
a symmetry-imposed line of zeros along the Γ-M line, and hence
a nodal point in the spectrum. This is related to the topology-induced
non-trivial representation of C2x in band space. We refer to ref. 39
for the discussion of other topological nodal points for pairing
in obstructed TBG bands. As we will show next, band-off-
diagonal pairing leads to additional unusual spectral properties
with far-reaching consequences for graphene moiré systems. To
this end, consider the following effective Hamiltonian,
Hσy

=
P

kc
y
k,α,ηck,α,ηξη�k,α +

P
k ½Δk c

y
k, + σyc

y
�k,� + H.c. �, where the scalar

functionΔk describes the form of pairing. Wewill here study two cases
that are conventionally considered to be fully gapped, (i) a
momentum-independent “s-wave state” (A2 or A pairing in Table 1)
where Δk =Δ0 and (ii) a “chiral p-wave” state, or more precisely an
E2(1, i) state, where Δk =Δ0(Xk + iYk) with (Xk, Yk) being smooth, MBZ-
periodic functions transforming as (x, y) under C3z. Furthermore, we
parameterize the dispersion, ξη⋅k,α, of the two flat bands (α = ± ) in
valley η = ± as ξk,α = ϵk − μ + α δk, where ϵk and δk are C3z (and, for
D0 = 0,C2x) symmetric functions.

The Bogoliubov spectrum of Hσy
has four bands, given by

± δk ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵk � μÞ2 + jΔk j2

q
. Consequently, the excitation gap at

momentum k reads as

ΔEk =
���jδk j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵk � μÞ2 + jΔk j2

q ���, ð3Þ

which is shown in Fig. 1d, and therefore exhibits nodes where

jδk j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵk � μÞ2 + jΔk j2

q
. As long as the band structure has Dirac

points, there are points kD in the Brillouin zonewith δkD
=0, associated

with the blue cross in Fig. 1d. Furthermore, for a metallic normal state,
μmust bewithin the bandwidth and, hence, theremust be a regionR in
momentum space where ∣δk∣ > ∣ϵk − μ∣. For the momentum-
independent A2 state, Δk =Δ0, this implies that there exists Δc

0>0 such
that there is k*∈R with parameters (such as the blue circle) above the
red solid line in Fig. 1d as long as jΔ0j<Δc

0. By continuity, this means
that there must be a nodal point on any line connecting kD and k*.
Consequently, for μwithin the bandwidth and δkD

=0 for some kD, the
A2 will always have a nodal line if ∣Δ0∣ is sufficiently small, consistent
with the intuitive picture based on the Bogoliubov spectrum in
Fig. 1a–c.

We illustrate this further in Fig. 1e using a toy model with
δk = t 1 + e

ia1 �k + e�ia2 �k
�� �� and ϵk = t

0 P3
j = 1 cosaj � k,aj = ½C3z � j�1ð

ffiffiffi
3

p
,0ÞT .

This leads to the second unexpected conclusion that, for any pairing
mechanism, including conventional electron–phonon coupling, the
leading instability either has nodal lines in a finite region below Tc or
transforms non-trivially under the symmetries of the normal state. For
electron–phonon pairing (or pairing mediated by the fluctuations of
any time-reversal-symmetric order parameter52, such as the T-IVC
state) this is particularly unexpected since it is generally believed to
always lead to a fully gapped state that transforms trivially under all
symmetries. In fact, this can be proven in general terms51,52, even for
spin-orbit-split Fermi surfaces and beyond mean-field theory52. The
crucial difference to these works, however, is that spinfull time-
reversal is broken in our case such that the Fermi-Dirac constraint is
inconsistent with a non-sign-changing, band-diagonal pairing state.
This leads to the unique situation that although electron–phonon
coupling will lead to entirely attractive interactions in the Cooper
channel, the superconducting energetics is frustrated: the dominant
pairing state is determined by whether the energetic loss due to non-
resonant band-off-diagonal Cooper pairs (A2 pairing) or the costs from
sign changes of the order parameter (such as B1) are less harmful. We

Table 1 | Summary of pairing states in spin-polarized
flat bands

IR of D6 Δk,η = � ΔT
�k,�η nodes IR of C6

A1 σyχη�k ,χC2xk
= � χk ln/pt or ln A

A2 σyχη�k ,χC2xk
= χk ln/n A

E2(1, 0) σyYη⋅k ln/ln or pt E2(1, 0)

E2(0, 1) σyXη⋅k ln/ln or pt E2(1, 0)

E2(1, i) σyðXη�k + i Yη�kÞ ln/ln or n E2(1, i)

B1 ηχ̂η�k ,σz χ̂C2xk
σz = χ̂k n B

B2 ηχ̂η�k ,σz χ̂C2xk
σz = � χ̂k pt B

E1(1, 0) ηX̂η�k pt E1(1, 0)

E1(0, 1) ηŶη�k pt E1(1, 0)

E1(1, i) ηðX̂η�k + iŶη�k Þ n E1(1, i)

Here χk (χ̂k ) is a real-valued (real and symmetric 2 × 2 matrix-valued) MBZ-periodic function
invariant underC3z. Furthermore, Xk and Yk (X̂k and Ŷk ) transform as x and y underD3, generated
by C3z and C2x, while also being real (and symmetric). The third column indicates the type of
nodes—line (ln), point (pt), or none (n)—on a generic Fermi surface for sufficiently small/large
order-parameter magnitudes; options separated by “or” indicates that this depends on the
normal-state band splitting, see main text. The last column shows which states merge when
D0 ≠0, reducing the point group from D6 to C6.
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will demonstrate this explicitly by a model calculation in sec.
“electron–phonon coupling below, where either A2 or B1 is dominant,
depending on the form of the electron–phonon coupling”.

Let us first, however, discuss the general spectral properties of the
“chiralp-wave” statewhich is canonically expected to be fully gapped as
long as the Fermi surfaces do not cross the zeros of Xk + iYk. Three of
these zeros have to be at the Γ,K, and K 0 points as a consequence of C3z

symmetry. In the absence of fine-tuning, Xk + iYk will have vortices at
these points with vorticity v = + 1. As can be seen in Fig. 1f, where we
show the phase of Xk + iYk using an admixture of the two lowest-order
terms, the net vorticity of + 3 at these high-symmetry points has to be
compensated by anti-vortices at generic momenta. The lowest possible
number is three C3z-related vortices, which appear near the M points in
Fig. 1f. If it holds ∣δk∣ > ∣ϵk − μ∣ at any of these zeros k = kj, we obtain a
point above the red line in Fig. 1d and, thus, a nodal point along any
contour between that kj and kD; as opposed to the A2 state, this holds
irrespective of the value of Δ0 and therefore all the way to zero tem-
perature. In summary, we find that also the E2(1, i) “chiral p-wave” state
is not generically fully gapped but instead will exhibit a nodal line
encircling any zero kj of Xk + iYk with jδk j

j>jϵk j
� μj. This leads to an

interesting filling dependence of the superconducting gap, as we
illustrate in our toy model in Fig. 1g along with the criterion Dk j

:

= jδk j
j � jϵk j

� μj>0 evaluated at the vortices at Γ, K/K’, and near M.
Depending on μ,Dk is positive only near the Γ point or only in a region
surrounding the vortices close to the M points, leading to nodal lines
encircling Γ and near theMpoints, respectively, as shown in the inset of
Fig. 1g. These regimes are separated by a fully gapped region where
Dk <0 for all k, which could explain the fully gapped to nodal transition
seen in tunneling experiments49 when the filling fraction is changed.
Note that Dk j

= � jϵk j
� μj≤0 for kj at the K and K’ points. In Fig. 1g,

DK =DK 0 vanishes close to the top of the band, which simplymeans that
the Fermi surfaces cross the K, K’ points and the superconductor has
nodal points for this fine-tuned value of the chemical potential.

Fluctuation-induced pairing
Having discussed the unique energetics of pairing and spectral prop-
erties of the resulting superconductors in spin-polarized quasi-flat-
bands with Dirac cones on a general level, we next study these aspects
more explicitly by solving the superconducting self-consistency
equations in the flat bands common to alternating-twist graphene
systems. We will start with pairing induced by fluctuations of a nearby
symmetry-broken phase. To this end, we will couple the low-energy
electrons introduced in Eq. (1) to a collective bosonic field
ϕjðqÞ=ϕy

j ð�qÞ via

Hϕ =
X
k,q,j

cyk +q,α,ηλ
j
α,η;α0 ,η0ck,α0 ,η0ϕjðqÞ, ð4Þ

where the Hermitian matrices λj capture the nature of the correlated
insulating phase; we here choose and normalize λj such that ðλjÞ2 =1.
Both for twisted bi-9 and trilayer graphene14,15,29, the stable phases
emerging out of theU(4) ×U(4)9manifold in the chiral-flat (decoupled)
limit are natural candidates. Integrating out the bosonic modes, we
obtain an effective electronic interaction which in the for super-
conductivity relevant intervalley Cooper channel reads as

Hϕ
int = �

X
k,k 0

χk�k 0Vðη,α,βÞ,ðη0 ,α0 ,β0 Þ

× cy�k,β,�ηc
y
k,α,ηck 0 ,α0 ,η0c�k 0 ,β0 ,�η0 ,

ð5Þ

with vertex

Vðη,α,βÞ,ðη0 ,α0 ,β0 Þ = tϕ
X
j

λj
β,η;β0 ,η0

h i*
λjα,η;α0 ,η0 , ð6Þ

tϕ = ± 1 encoding whether the order parameter is even or odd under
time-reversal, Θϕj(q)Θ† = tϕϕj(q), and χq >0 denoting the (static) sus-
ceptibility of ϕj.

Before discussing numerical results for the full model, we first
focus on perfectly flat bands. In this limit, the leading superconducting
instabilitywithinmean-field theory is given by the largest eigenvalue of
V in Eq. (6) viewed as amatrix in themulti-index (η, α, β). Furthermore,
if there is an anti-symmetric, valley-off-diagonal matrix D obeying (see
Methods)

½Dηx ,λ
j��tϕ

� Dηxλ
j � tϕλ

jDηx =0, ð7Þ

the associated leading superconducting order parameter in Eq. (1) is
given by ðΔk,ηÞα,α0 = δk ðDηxÞα,η;α0η with δk > 0; here ηj denotes Pauli
matrices in valley space and the precise form of δk is determined
by χ(q).

T-IVC fluctuations
Motivated by recent experiments7 providing direct evidence for T-IVC
order, we start with T-IVC fluctuations as a pairing glue. In the
U(4) ×U(4) symmetric limit, the T-IVC state is associated with
λj = σ0ηj, j = x, y, within our conventions. Since tϕ = + 1, we are looking
for Dηx that commutes with λj. Interestingly, there is a unique anti-
symmetric, valley-off-diagonal matrix D∝ σyηx with that property,
implying that the leading pairing state has the form Δk,η = σyδk, δk >0.
This is exactly the A2 state in Table 1, which, as discussed above, will
have nodal lines at least in the vicinity of Tc when a finite band dis-
persion is taken into account. Intuitively, the fact that A2 pairing is
favored can be understood by noticing that the valley-off-diagonal
form of λj leads to an attractive interaction across the valleys, which
penalizes the B1 state with its sign change between the two valleys. In
fact, it holds Vðη,α,βÞ,ðη0 ,α0 ,β0 Þ = ð1� η η0ÞP3

μ=0 ðσ*
μÞα,βðσμÞα0 ,β0 showing

explicitly that it is repulsive (attractive) in the B1 (A2) channel.
To go beyond the flat-band limit, we solve the superconducting

mean-field equations numerically.We take the flat TBG bands from the
continuummodel66 as the starting point. To capture the spin-polarized
normal state, we supplement it with Coulomb repulsion and perform
HF calculation (see Supplementary Appendix A for details). As can be
seen in the resulting band structure shown in Fig. 2a with interaction
renormalization assuming filling fraction ν = 2, this not only pushes
one spin flavor below the Fermi level but also induces significant band
renormalizations. For our subsequent study of superconducticity, we
project onto the two bands at the Fermi level and associate them with
the creation operators ck,α in the interactions in Eqs. (4) and (5). In our
numerical computations, we choose χðqÞ= 1

Am

V
α2 + jqj2=k2

θ

where Am is the

real space area of a moiré unit cell, and take α =0.05 for concreteness,
although we checked our main conclusion do not crucially depend on
this form. In all of our numerics, we work at doping ν = 2.5.

As expected, we indeed find that the A2 state dominates, both
right at the critical temperature Tc, obtained from the linearized gap
equation, and at T = 0 as we show by iteratively solving the full self-
consistency equation (see Supplementary Appendix C). One crucial
effect of the finite dispersion and splitting between the bands is that a
finite interaction strength, V > Vc,1, is required to stabilize the super-
conducting phase, as can be seen in the plot of Tc in Fig. 2b. Super-
conductivity ceases to be a weak-coupling instability as the Bloch
states (k, α, η) and ð�k,α0,� ηÞ are not degenerate for α ≠α0, cutting
off the logarithmic divergence known from BCS theory. The quasi-
particle spectrum and order parameter of superconductivity from
T = 0 numerics are shown in Fig. 2c, d. In accordance with our general
discussion above, we observe that the order parameter only has finite
components proportional to σy, which do not mix with the band-even
contributions∝ σ0,x,z as a result of C2z symmetry. Furthermore, it does
not change sign as a function of k and, for sufficiently small V but still
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with V >Vc,1, the nodal lines in the superconducting spectrum persist
all the way to T =0, while the nodal line is gapped out at low T < Tc
if V >Vc,2.

The interaction-strength-dependence of the superconducting gap
canbemore clearly seen in Fig. 2e, wherewe show theDOS for the self-
consistent solution at T = 0. For large V, the superconductor becomes
fully gapped at T = 0, leading to a U-shaped DOS. With smaller V, the
magnitude of the order-parameter decreases and the superconductor
eventually exhibits nodal lines, as explained above. In the regime just
before these nodal lines appear, there is an increase in the DOS near
the Fermi level, roughly when the order parameter and the maximal
band splitting are comparable, leading to a V-shaped DOS (green line).
The lifetime parameter used to compute the DOS is 0.3 meV; this
choicewasbasedonour k-grid spacing.While it is not necessarily small
with respect to the tunneling gap (which vanishes at Vc,2), it is small
with respect to Δ(k), which is of order 5meV just as the state is
becoming fully gapped for our choice of normal state. This behavior of
the DOS with interaction strength may offer a natural explanation for
the U-shaped tunneling conductance measurements near ν = 2 and
V-shaped tunneling conductancemeasurements near ν = 3 observed in
TTG49; if we are considering T-IVC fluctuations of the insulator at ν = 2,
then it may be reasonable to expect the coupling to these fluctuations
could grow weaker as we dope towards ν = 3, in line with the experi-
mentally observed ν dependence.

Note that the regime we call V-shaped here is strictly speaking
fully gapped. However, the crucial difference to the BCS state is that
the gap is much smaller than the order-parameter magnitude as a
result of the different Bogoliubov spectrum in Eq. (3). This is why,
depending not only on the magnitude of the pairing but also on the
precise form of the normal state, the resulting tunneling spectra can
resemble those observed experimentally48,49, such as the green curve
in Fig. 2e, making the A2 state an attractive candidate. The regime of
small V where stable superconductivity with true Bogoliubov Fermi
surfaces is observed can further exhibit a peak atω = 0 which is due to
a Van Hove singularity crossing the Fermi level, see blue curve in
Fig. 2e; while this peak has not been observed experimentally, its
presence crucially depends on details of the normal-state band struc-
ture and is only found to be energetically favored in a very small
regime of V in our model.

Electron–phonon coupling
To illustrate that the off-diagonal A2 state is more generally favored
beyond just T-IVC fluctuations, we next discuss electron–phonon
coupling, which is frequently considered a plausible pairing mechan-
ism for twisted moiré systems33,35–39. Similar to ref. 35, we use that the
optical A1, B1, and E2 phonon modes are known67 to dominate the
electron–phonon coupling in single-layer graphene. As these are
optical phonons, we further assume that the impact of the interlayer
coupling on the phonons can be neglected and arrive at

HEP =
Z

dr ψy
‘,sðrÞ gA1

ΛA1
uA1 ,μ

ðrÞ
h

+ gB1
ΛB1

uB1 ,μ
ðrÞ+ gE2

ΛE2
� uE2,μ

ðrÞ
i
ðvμÞ‘ψ‘,sðrÞ

ð8Þ

for the electron–phononcoupling,where vμ encode the layer structure
of themodes (seeMethods). Symmetrydictates that the verticesΛg are
given by ΛA1

=ηxρx ,ΛB1
=ηyρx , and ΛE2

= ðηzρy,� ρxÞ where ρ acts on
the microscopic sublattice basis. Integrating out the phonons and
projecting to the flat bands, we obtain an effective electron-electron
interaction (see Methods)

HC
int = �

X
k,k 0

Vg λg,j,μk,β,η;k 0 ,β0 ,η0

h i*
λg,j,μk,α,η;k 0 ,α0 ,η0

× cy�k,β,�ηc
y
k,α,ηck 0 ,α0 ,η0c�k 0 ,β0 ,�η0 ,

ð9Þ

where the coupling constants Vg of the three different phonon modes
g =A1, B1, E2 are estimated to obeyVA1

=VB1
’ 1:33VE2

for parallel spins
in the two valleys, while VA1

=VB1
= 0 for anti-parallel spins. From Eq.

(9), it is clear that the induced interaction would be always completely
attractive if we focused on intra-band pairing, α =α0 =β=β0, which in
spinful systems generically favors the trivial pairing channel51,52. In our
case, the combination of two energetically close bands and the trivial
pairing being purely band-off-diagonal leads to competition between
different superconductors, even with electron–phonon
coupling alone.

To demonstrate this, we study intra-valley pairing within the
mean-field approximation and parametrize the relative strength of
the different phonon modes with an angle variable θph according to

a

b d

c e

Fig. 2 | Pairing mediated by T-IVC fluctuations.We show a the band structure of
the normal state with spin polarization (K, K', and Γ label the high-symmetry points
of the moiré scale Brillouin zone) and b the critical temperature Tc (in units of the
maximum band splitting W0≃ 9.4meV) as a function of coupling strength V mea-
sured in units of the critical coupling Vc,1 = 105meV ⋅ nm2 obtained from the line-
arized gap equation. The band structure (with color indicating the band-projected

value of the anomalous correlator) of the A2 state and its order parameter are
shown in c and d. The DOS of the T =0 superconductor for several different values
of coupling strength V is plotted in e. The DOS was computed as

P
kδ Ek � ω

� �
,

replacing theδ functionwith Lorentzianswith halfwidth athalfmax0.3meV (much
smaller than the typical superconducting order parameter). The critical coupling
Vc,2 where the nodal lines disappear is Vc,2≃ 1.4Vc,1.

Article https://doi.org/10.1038/s41467-023-42471-4

Nature Communications |         (2023) 14:7134 5



VA1
=VB1

=V0 cos θph,VE2
=V0 sinθph. The results of the mean-field

calculation are summarized in Fig. 3. We see that the A2 pairing state
is favored by the intervalley phonons (θph = 0) inspite of its band-
off-diagonal nature leading to a suppressed gap [see Fig. 3a]. This is
natural as these phonons mediate an attractive interaction between
the two valleys which disfavors the B1 state, similar to T-IVC fluc-
tuations. In fact, focusing on the leading, momentum-independent
term, λg, +k,k 0 ! λg, + ,g =A1,B1, symmetry dictates λA1 , + / σ0η1 and
λB1 , + / σ0η2 in the chiral limit (see Supplementary Appendix D3).
This maps the problem exactly to that of T-IVC fluctuations,
immediately explaining why the order parameter has a fixed sign in
Fig. 3b. As θph is increased, the B1 state is favored (roughly for
θph > π/4) as can be seen in Fig. 3c. This is expected since the intra-
valley E2 phonon mediates an attractive interaction within each
valley such that the energy gain due to the enhanced gap [Fig. 3d],
associated with the band-diagonal matrix elements of the B1 state,
will overcompensate the energetic loss due to the sign change of
B1’s order-parameter between the two valleys. This picture is con-
sistent with the dominant and non-sign-changing nature of the
band-diagonal components of the B1 state, see Fig. 3e–g. Finally, this
behavior can also be understood by applying the commutator cri-
terion in Eq. (7) in the microscopic sublattice basis, see Supple-
mentary Appendix D1.

This shows that, as opposed to the conventional scenario51,52,
there are two possible leading superconducting states and the super-
conducting pairing state does not transform trivially under the sym-
metries of the system even when phonons alone provide the pairing
glue. We have checked in our T = 0 numerics that a 60–70meV ⋅ (nm)2

coupling toA1 andB1 phonons (basedon ref. 67) is roughly of the order
needed to stabilize the A2 pairing, assuming the normal state is the flat
bands of the un-renormalized continuummodel, which in our case has
a bandwidth of 2 meV. However, we note that if the interaction-
renormalized band splitting is much larger than the continuum-model
bandwidth, or if the normal state has anti-parallel spins in either valley,
additional particle-hole fluctuations, such as those of T-IVC order, will
also be required for pairing. An interesting scenario arises for anti-
parallel spins in the two valleys as a magnetic field will cant the spins
and, hence, increase the projection of the intervalley phonon matrix
elements to the flat bands. At least in TTG, with the suppressed orbital
coupling, this could give rise to re-entrant superconductivity at high
fields25.

Other particle-hole fluctuations
Finally, we discuss pairing induced by fluctuations of other particle-
hole instabilities. In Table 2, we list the resulting leading super-
conductors taking λj in Eq. (4) to be any of the different strong-
coupling candidate order parameters9,13–15,29. In particular, in addition
to the T-IVC, we will consider the time-reversal-odd Kramers inter-
valley coherent state (K-IVC), and time-reversal-odd and -even sub-
lattice polarized states (SLP− and SLP+). To analyze how sensitive our
conclusions are to the precise form of the coupling of the strong-
coupling fluctuating orders to the electrons,we also performnumerics
by projecting momentum-independent coupling vertices in the
microscopic basis with the correct symmetries (see, e.g., Table II in

ref. 13), listed as �λ
j
in Table 2, to the flat bands. In the band basis, this

leads to momentum-dependent coupling vertices, cf. Eq. (9). Moti-
vated by recent experiments7, we will also consider fluctuations of an
additional nematic, time-reversal symmetric, layer-odd, intervalley
coherent state (N-IVC)62 which is not a candidate ground state in the
strong-coupling limit; unlike the other strong-coupling ground states,
the N-IVC has no momentum-independent representation in the flat-
band basis but does have a momentum-independent matrix order
parameter in the sublattice basis which takes the form

λðj,j
0 Þ = ðηx ,ηyÞjðρ0,ρz Þj0 . The results for fluctuations of the projected

strong-coupling orders �λ
j
in Table 2 and of the projected N-IVC state

are shown in Fig. 4, where we use the angle θfluc. to tune the relative
strength between T-IVC and any of the other type of fluctuation-
induced interactions by multiplying the T-IVC interaction potential

a

b

c d

e

f

g

Fig. 3 | Pairing from electron–phonon coupling. We show a the band structure
andb the self-consistent order parameter of theA2 pairing for θph = 0 andT =0. The
eigenvalues corresponding to the A2 and B1 pairings in the linearized gap equation
at T = 5 K, which is close to their Tc, are shown in c as a function of θph. We show an
example of the band structure (d) of the B1 pairing and its order parameter (e, f, g).
In accordance with symmetry, the A2 (B1) state only has order-parameter
components∝ σy (∝ σ0,x,z). We took ν = 2.5 and V0 = 250 meV ⋅ (nm)2 with a

continuum-model bandwidth≃ 2meV. We point out that if A1 phonons are domi-
nant, as suggested by recent experimental work61 and past theoretical study in
mono-layer graphene68, we would expect our A2 pairing to dominate assuming the
pairing potential is sufficiently large. We also emphasize that although the pairing
functions for A2 pairing (b) when θ =0 and B1 pairing when θ =π/2 (e, f, g) are
roughly equal, the excitation spectra show the B1 state with a band gapon the order
of the pairing strength (d) while the A1 state’s band gap is nearly zero, see a.

Table 2 | Leading superconducting states in the flat-band
limit, following from Eq. (7), for pairing mediated by fluctua-
tions of the indicated orders, defined by using λj in Eq. (4)

Fluctuating order Leading superconductor

type λj --
λ
j

Δk,η IR

T-IVC σ0ηx,y ρxηx,y σyδk A2

K-IVC σyηx,y ρyηx,y σ0ηδk B1

SLP + σyηz ρzη0 σyδk,σ0ηδk A2,B1

SLP − σyη0 ρzηz σxηδk,σzηδk B2,B1

Here, δk > 0 and states separated by commas are degenerate. The couplings in the microscopic
basis, used in Fig. 4 for the respective orders, are listed under �λ

j
. Except for SLP−, the leading

superconducting states for λj and �λ
j
are the same (cf. Fig. 4 and Supplementary Appendix D1).
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with cosðθfluc:Þ and the other fluctuation potential with sinðθfluc:Þ. In our
microscopic numerics, we have taken a potential form
χðqÞ= 1

Am

V
α2 + jqj2=k2

θ

again with α = 0.2 and with V = 4200meV ⋅ (nm)2. We

chose the value of V such that the transitions between the different
pairing states are clearly visible in Fig. 4 when varying θfluc.. In accor-

dance with the prediction for �λ
j
in Table 2, SLP + fluctuations further

stabilize theA2 superconductor, see Fig. 4a. As such, the band-diagonal
B1 superconducting channel, where SLP + fluctuations are also attrac-
tive, can become the leading channel (favored over A2 as a result of the
finite bandwidth) only very close to θfluc. =π/2. K-IVC fluctuations,
however, are repulsive for A2 pairing and favor the B1 state more
strongly.

So far, the strong-coupling (λj) and sublattice (�λ
j
) form of the

couplings in Table 2 lead to the same conclusions. This is different for
SLP− fluctuations (Fig. 4d), where the projection-induced momentum
dependence in the band basis can stabilize the E1 superconductor. This
can be understood by applying Eq. (7) in a sublattice basis (see Sup-
plementary Appendix D1). We also find the E1 state when fluctuations
of the N-IVC state of ref. 62 dominate. Examples of the E1 nematic and
B2 order parameters that emerge for SLP− fluctuations or N-IVC fluc-
tuations are shown in Supplementary Appendix F. We point out that
the nematic E1 pairing is also an interesting candidate given that
despite havingnonzeropairing in theσ0, σx, σz channels, itwill be nodal
as long as the σx components do not gap out the nodes in the band-
diagonal parts.

Discussion
Taken together, we see that the proposed band-off-diagonal A2

superconductor is an especially attractive candidate for TBG and TTG:

first, it can lead to both V-shaped or U-shaped DOS, depending on
lifetime parameters, the normal state, and the coupling strength V, see
Fig. 2e. As these parameters might vary from sample to sample and
within a sample (e.g., V is expected to decrease upon doping further
away from the insulator), this can naturally explain the tunneling data
of48,49. We emphasize however that at least at the level of our mean-
field numerics, we only expect a V-shape in the regime where the
superconducting pairing is of the order of the bandwidth; this is the
regime, where although the pairing is finite and can be quite large, the
gap in the superconducting spectrum is either just closing or very
small relative to the pairing. Increasing the pairing further will lead to
an evolution from V to U-shaped while decreasing the pairing will
eventually lead to a nodal Fermi surface and presumably a peak at zero
energy in the DOS. Second, despite its interband nature, A2 is the
unique pairing state that is favored by fluctuations of two out of the
four strong-coupling candidates we consider for the correlated insu-
lator, see Fig. 4a–c. What is more, this includes the T-IVC state, sig-
natures of which are observed in recent experiments7. Finally, it is also
favored by the likely dominant61,68 optical intervalley phonon modes.
We emphasize that, both in the case of fluctuating correlated insula-
tors and phonons, the minimum attractive coupling needed to stabi-
lize a purely band-off-diagonal state depends on the energy splitting
between the two flat bands in the normal state; if the bands of our
normal state are closer to degenerate, irrespective of the total band-
width, the needed coupling to stabilize the A2 pairing inmean-field will
decrease.

The other band-off-diagonal superconductor we identify trans-
forms under the IR E2, i.e., can be thought of as a p-wave state. Its
spectral properties also agree well with the experiment as the chiral
configurations, E2(1, i), which is favoredwithinmean-field theoryover a

a b

c d

Fig. 4 | Pairing for different particle-hole fluctuations. These are defined by the
coupling matrices �λ

j
listed in Table 2. Similar to Fig. 3c, we show Tc of the leading

pairing states, where θfluc. tunes the relative strength between T-IVC-induced

interactions (/ cos θfluc:) and interactions (/ sin θfluc:) coming from fluctuations of
a SLP+, b K-IVC, c SLP−, and d N-IVC fluctuations.
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nematic E2 state, can also have nodal regions, depending on filling. As
canbe seen in Fig. 1g, this can lead to a transition fromgapped to nodal
when increasing the electron filling starting at ν≃ 2. However, as
opposed to the A2 state, E2 does not naturally appear as leading
instability when considering optical phonons or fluctuations of any of
the strong-coupling order parameters of the correlated insulator.
While this makes it energetically less natural than A2, we cannot
exclude it since its phenomenology agrees well with the experiment
and since the precise form of the coupling of the dominant low-energy
collective excitations are not known—significant momentum depen-
dencies beyond λj and �λ

j
in Table 2 could stabilize E2 pairing aswell.We

also find in our numerics a nematic E1 state which may be preferred
over its chiral version in the presence of sufficient strain or due to
fluctuation corrections27,53–55. We find the E1 state is the leading
instability of nematic IVC fluctuations and SLP − fluctuations, and is a
subleading instability of T-IVCfluctuations. The E1 state is interesting in
its own right, as it can also be nodal.

As superconductivity might further coexist with T-IVC order7, we
have checked (see Supplementary Appendix E) that this does not alter
our main observation: the preserved C2z symmetry still allows for
entirely band-off-diagonal states, with transitions from nodal to full
gapped, which are stabilized (among other fluctuations) by intervalley
phonons.

For the future, it will be interesting to go beyond mean-field and
analyze the competition of our band-off-diagonal states with odd-
frequency pairing, which we study in a follow-up work69. It also seems
promising to study Andreev reflection48,49 for our interband pairing
scenario. On amoregeneral level, ourwork shows that the observation
of nodal pairing in twisted graphene systems does not immediately
exclude a chiral superconducting state nor anentire electron–phonon-
based pairing mechanism. It illustrates that a microscopic under-
standing of the superconducting states in graphene moiré systems
requires taking into account their intrinsically multi-band nature.

Note added. Just before posting our work, ref. 70 appeared online,
which discusses pairing induced by A1 phonons in spinful TBG bands.

Methods
Flat-band limit
To derive Eq. (7), we take the flat-band limit, ξk,±→0, in the linearized
gap equation. For the interaction defined in Eqs. (4)–(6)), we get (with
moiré cell area Am)

ðΔk,ηÞβ,β0 = tϕ
1

4AmT

X
k 0

χk�k 0

×
X
j

λj
β0 ,η;α0 ,η0

h i*
λjβ,η;α,η0 ðΔk 0 ,η0 Þ

α,α0 :

ð10Þ

We define ðΔ̂k Þα,η;α0 ,η0 : = ðΔk,ηÞα,α0δη,η0 and note that finding the
leading superconducting state according to Eq. (10) is equivalent to
determining Δ̂k that maximizes the functional

F ½Δ̂k � : =
P

k,k 0 ,j χk�k 0 tϕ tr ½λjΔ̂k 0 ðλjÞyΔ̂y
k �P

k tr ½Δ̂
y
k Δ̂k �

: ð11Þ

Since χk�k 0 >0, the maximum value will be reached if we can
maximize tϕ tr ½λjΔ̂k 0 ðλjÞyΔ̂y

k � for each k,k 0, j separately. As the Frobe-
nius inner product A,Bh iF = tr ½AyB� reaches itsmaximum(minimum) at
fixed A,Ah i and B,Bh i, if A = cB with c >0 (c <0), tϕ tr ½λjΔ̂k 0 ðλjÞyΔ̂y

k � is
maximized if Δ̂k = tϕck,k 0λjΔ̂k 0 ðλjÞy with ck,k 0 >0. For the ansatz
Δ̂k = δkDηx (and assuming for now that δk has a fixed sign for all k), this

is obeyed if

Dηx = tϕλ
jDηxðλjÞ

y
, 8j: ð12Þ

Westate Eq. (12) as the (anti)commutator condition (7) in themain
text [equivalent if ðλjÞ2 =1], not only because it highlights the simple
algebraic and basis independent nature of the condition but also since
it emphasizes the similarities to the generalized Anderson theorem
of71,72.

If we canfind a solution to Eq. (12), we know that themaximum (or
at least one of the possibly degeneratemaxima) ofF ½Δ̂k � is of the form
of Δ̂k = δkDηx where δk is obtained as the maximum of the reduced
functional

eF ½δk � : =
P

k,k 0 χk�k 0δ*
kδk 0P

k jδk j2
, ð13Þ

or equivalently as the largest eigenvector of χk�k 0 viewed as amatrix in
k and k 0. As χk�k 0>0 (due to stability), the Perron-Frobenium theorem
then immediately implies δk >0, in linewith out assumption above and
as stated in the main text.

Electron–phonon coupling
To present more details on the electron–phonon coupling, the asso-
ciated displacement operators in Eq. (8) can be expressed in terms of
canonical bosons, bg,α,μ,q,

ðug,μðrÞÞj =
X
q

bg,j,μ,qe
iq�r + H.c.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NMωg ðqÞ
q , ð14Þ

where j refers to the two components for the E2 phonon (is idle for
A1,B1), M is the carbon mass, and ωg(q) is the phonon dispersion,
characterizing the phononic part of the Hamilto-
nian, HP =

P
qωg ðqÞby

g,j,μ,qbg,j,μ,q.
As for ðvμÞ‘ in Eq. (8), ℓ = 1, 2 refers to the physical graphene layer

in the case of TBG. One can, in principle, choose any orthonormal
basis;wewillfind it convenient to use the layer-exchange even andodd
states, v± = ð1, ± 1ÞT=

ffiffiffi
2

p
. For TTG, the situation is more involved (see

Supplementary Appendix D2), but our arguments about which pho-
nons are attractive in which pairing channels will hold for both
systems.

We project HEP in Eq. (8) onto the two flat bands (α = ± ) in each
valley η of the spin-polarized continuum-model, leading to a coupling
term similar to Eq. (4) with momentum-dependent coupling matrices,
λj ! λg,j,μk,k 0 . Investigating the matrix elements λg,j,μk,k 0 , we notice that they
almost vanish for the layer-odd intervalley (A1,B1) phonons, which can
be understood as a consequence of chiral and particle-hole symmetry
(see Supplementary Appendix D3). The situation is the reverse for the
intra-valley (E2) phonons, where the layer-even matrix elements are
numerically small and the layer-odd matrix elements dominate. We
therefore focus on layer-even (odd) intervalley (intra-valley) phonon
couplings.

Neglecting the momentum dependence in the phonon fre-
quencies and retardation effects, the resulting electron-electron
interaction in the inter-valley Cooper channel obtained by integrat-
ing out the phonons is given by Eq. (9). Here, Vg = g

2
g=ð2Nω2

g Þ>0 and
VA1

=VB1
’ 1:33VE2

results from gA1
= gB1

’ gE2
and the phonon fre-

quencies estimated in ref. 67. Importantly, this only holds for parallel
spins in the two valleys. For anti-parallel spins, the projection of the
couplingmatrices to the flat bands vanishes for the intervalley phonon
modes A1 and B1 such that VA1

=VB1
= 0.
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