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Real higher-order Weyl photonic crystal

Yuang Pan1,2,3,4,7, Chaoxi Cui5,6,7, Qiaolu Chen1,2,3,4,7, Fujia Chen1,2,3,4,
Li Zhang1,2,3,4, Yudong Ren1,2,3,4, Ning Han1,2,3,4, Wenhao Li1,2,3,4, Xinrui Li1,2,3,4,
Zhi-Ming Yu 5,6 , Hongsheng Chen 1,2,3,4 & Yihao Yang 1,2,3,4

Higher-order Weyl semimetals are a family of recently predicted topological
phases simultaneously showcasing unconventional properties derived from
Weyl points, such as chiral anomaly, and multidimensional topological phe-
nomena originating from higher-order topology. The higher-order Weyl
semimetal phases, with their higher-order topology arising from quantized
dipole or quadrupole bulk polarizations, have been demonstrated in pho-
nonics and circuits. Here, we experimentally discover a class of higher-order
Weyl semimetal phase in a three-dimensional photonic crystal (PhC), exhibit-
ing the concurrence of the surface and hinge Fermi arcs from the nonzero
Chern number and the nontrivial generalized real Chern number, respectively,
coined a real higher-order Weyl PhC. Notably, the projected two-dimensional
subsystem with kz =0 is a real Chern insulator, belonging to the Stiefel-
Whitney class with real Bloch wavefunctions, which is distinguished funda-
mentally from the Chern class with complex Bloch wavefunctions. Our work
offers an ideal photonic platform for exploring potential applications and
material properties associated with the higher-order Weyl points and the
Stiefel-Whitney class of topological phases.

Weyl semimetals and their classical analogues feature two-fold linear
band crossings in three-dimensional (3D) momentum space, known as
Weyl points1–5, analogous to the Dirac points in two-dimensional (2D)
momentum space. These Weyl points act as monopoles of Berry flux
and carry topological chiral charges defined by the Chern number.
Consequently, the 2D Fermi-arc surface states are formed, connecting
the projections of two oppositely charged Weyl points, according to
the celebrated bulk-boundary correspondence. On the other hand, the
recent discovery of higher-order topological phases has revolutio-
nized the study of topological matters6–16. The higher-order topologi-
cal phases give rise to unconventional bulk-boundary correspondence
as they host boundary states in at least two dimensions lower than the
bulk, in contrast to the previous first-order topological phases, where

the topological boundary states living in just onedimension lower than
the bulk.

Higher-order topology can also be incorporated into Weyl semi-
metals, resulting in higher-order Weyl semimetals that possess simul-
taneously chiral Fermi-arc surface states in two dimensions and Fermi-
arc hinge states in onedimension17–22. These states stem from the chiral
charge and the higher-order charge of Weyl points, respectively, and
bridge the projections of Weyl points in multiple dimensions, thereby
revealing the dimensional hierarchy of higher-order topological phy-
sics. In sharp contrast to the extensive study of higher-order topology
in insulators, their Weyl semimetal counterparts have been severely
lagged behind, with only a handful of experimental demonstrations in
phononics19,20,22 and circuits21, where the couplings can be engineered
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flexibly to implement discrete latticemodels. Nevertheless, the higher-
orderWeyl semimetal phases in photonics remain uncharted territory,
both theoretically and experimentally, due to the inherent challenge of
discretelymodelingmost photonic systems, particularly those in three
dimensions.

Our work reports on the experimental discovery of a higher-order
Weyl photonic crystal (PhC). It differs from the previously achieved
higher-order topological Weyl semimetal phases19–22 in following three
ways. First, the newly proposed higher-order Weyl points separate the
3D Brillouin zone (BZ) into the Chern insulator phase and the gen-
eralized real Chern insulator phase23,24, as opposed to the previously
discovered higher-order Weyl points that separate the BZ into the
Chern insulator phase and a higher-order topological phase with
quadrupole or dipole bulk polarizations19–22. Particularly, the
kz =0 slice can be viewed as a previously overlooked real Chern insu-
lator, belonging to the Stiefel-Whitney class with real Bloch wave-
functions, which is fundamentally different from the Chern class with
complex Bloch wavefunctions25. We thus coin the proposed Weyl
points “real higher-order Weyl points”. Second, the real higher-order
Weyl points are achieved through a symmetry-enforced topological
phase transition process, where a three-fold spin-1 Weyl point26 splits
into two real higher-order Weyl points. Though inspired by a tight-
binding model, our design principle is symmetry-guided, beyond the
conventional lattice models that unfavorable to many physical sys-
tems, as exemplified by the PhCs (see Supplementary Information
Note 3 and Fig. S4). Third, our work provides the first example of
higher-order photonic Weyl points, manifesting the dimensional
hierarchy of higher-order topological physics in a 3D PhC. All previous
photonic Weyl points were limited to the first-order27–33. Interestingly,
our Weyl points are isolated from other trivial bands, representing a
higher-order version of the ideal Weyl points31,33,34. The realization of
ideal higher-order photonicWeyl points paves away toward the robust
manipulation of the flow of light acrossmultiple dimensions, including
2D surfaces and 1D hinges, in a single integrable 3D platform.

Results
Design of the real higher-order Weyl PhC
The 3D cubic unit cell of the PhC with lattice constant a = 15mm is
displayed in Fig. 1a. Each unit cell contains four junctions, at (x, y, z),
(−x +0.5a, −y, z + 0.5a), (−x, y +0.5a, −z + 0.5a), (x +0.5a, −y +0.5a, −z),
respectively, where x = y =0.3a, z = 0.2a. Each junction connects to
four neighboring junctions via square perfect electric conductor (PEC)
rods with two different widths w1 = 3.5mm (green rods), w2 = 4.5mm
(red rods); the rest of the volume is filled with free space. The resulting
3D PhC has the non-centrosymmetric space group P212121 (No. 19) with
three two-fold screw symmetries, S2x:= (x, y, z) → (x +0.5a, −y +0.5a,
−z), S2y:= (x, y, z)→ (−x, y + 0.5a, −z +0.5a), and S2z:= (x, y, z)→ (−x +0.5a,
−y, z + 0.5a).

The band structure of the 3D PhC has been numerically calcu-
lated, as depicted in Fig. 1b, c, d, e, g. The analysis reveals two ideal real
higher-order two-fold Weyl points at k = (0, 0, ±kwp) (illustrated as
yellow dots), and an ideal charge-2 four-fold 3D Dirac point at R
(indicated by red dots), which are isolated from the other trivial
bands31,33. Note that, the pair ofWeyl points canmove along the kz axis,
by tuning the geometric parameters but preserving the lattice sym-
metry; for the convenience of measurement, kwp =0.5 π/a in our
experiments. Besides, the resulting 3D Dirac point carries a chiral
charge +226, which is a direct sum of two identicalWeyl points, in stark
contrast to the conventional 3D Dirac points, which is a sum of two
oppositely charged Weyl points35,36. Interestingly, there exist three
nodal surfaces on the kx =π/a, ky =π/a, and kz =π/a planes, carrying a
vanishing chiral charge, in contrast to the previously demonstrated
nodal surface with a chiral charge 237,38.

The two real higher-order Weyl points divide the 3D BZ into
three sections parametrized by kz. As depicted in Fig. 1f, each section

can be viewed as a kz-dependent 2D phase characterized by the
Chern number

Cn =
1
2π

Z
BZ
Ωn,xyd

2k ð1Þ

where Ωn,xy is Berry curvature and k is the wavevector. Via the first-
principle calculation as well as the symmetry indicator analysis shown
in Fig. 1g, we can prove that the |kz| < kwp planes possess a vanishing
Chern number 0, while the kz > kwp (kz < −kwp) planes have a Chern
number +1 (−1) (see Supplementary Information Note 8 and Fig. S9).
The higher-order Weyl points as the transition point, thus, carry a
chiral charge +1. Consequently, within the |kz| > kwp region, the chiral
edge states emerge in the 2D subsystems, corresponding to the chiral
surface Fermi arcs connecting the projections of thehigher-orderWeyl
points and the Dirac point in the 3D system.

Though the 2D subsystems between two Weyl points are topolo-
gically trivial in termsof theChern number, it is topologically nontrivial
in terms of the generalized real Chern number (vR) that characterizes
the higher-order topology. This generalized real Chern number is well
defined in the C2z-invariant systemwith a vanishing Chern number and
calculated from the C2z eigenvalues at C2z-invariant momenta

ð�1ÞνR =
Y4
i= 1

ð�1Þ½N�
occðΓ iÞ=2� ð2Þ

where Γi denotes the four C2z-invariantmomenta at Γ, X, Y and S, and
N�

occðΓ iÞ is the number of occupied bands with negative inversion
eigenvalues at Γi, with the bracket denoting the greatest integer
function. The C2z eigenvalues are calculated from the TB models
(see Supplementary Information Note 1 and Table. S1). The C2z

eigenvalues of the lowest four bands at Γ, X, Y and S are displayed in
Fig. 1g, from which a nontrivial vR can be obtained for the |kz| < kwp

plane. Particularly, the kz = 0 slice has the C2zT symmetry (the
combination of two-fold rotation and time-reversal symmetry) that
enforces the bands to be real23–25, as opposite to the complex bands
in the previous higher-order topological insulator phases6,7,11,13–16.
Such a higher-order topological phase is known as the real Chern
insulator23,24, belonging to the previously overlooked Stiefel-
Whitney class25. Though at the kz ≠ 0 planes, the bands are not
real, the higher-order topology is still determined by the general-
ized real Chern number, we thus term all the |kz| < kwp planes as the
generalized real Chern insulator (see Supplementary Information
Note 8 and Fig. S9). The nontrivial generalized real Cheren number
in the |kz| < kwp region gives rise to the corner states in the 2D
subsystems, corresponding to the 1D hinge Fermi arcs protected by
the C2z symmetry in the 3D system. Interestingly, the |kz| > kwp

planes also host first-order topological index, i.e., nontrivial Zak
phase, resulting in the floating surface states at the (100) and (010)
surfaces (see Supplementary Information Note 9 and Fig. S10).

Note that the current structure is transformed from the PhC with
the space group No. 198 that has three C2 screw symmetry along the x,
y, z axis, and aC3 rotational symmetry along the <111> axis. The original
PhC hosts the symmetry-enforced spin-1 Weyl point and the charge-2
Dirac point. Interestingly, the C3,111 symmetry is crucial for the spin-1
Weyl point, but it is not necessary for the existence of the charge-2
Dirac point. By breaking the C3,111 symmetry, the spin-1 Weyl point
splits into two real higher-order Weyl points, while the charge-2 Dirac
point persists; the corresponding space group is reduced toNo. 19 (see
Supplementary Information Note 3 and Fig. S4).

Experimental demonstration of the real higher-order Weyl
points
As depicted in Fig. 2a, b, the 3Dmetallic PhC can be fabricated directly
fromAlSi10Mg (acting approximately as PEC atmicrowave frequencies,
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see Supplementary Information Note 10 and Fig. S11) via additive
manufacturing techniques, owing to its self-supporting structure.
The holes on the vertical surfaces of the sample allow us to insert
the probe into the sample to measure the field distributions. To
determine the bulk band structure, we conduct microwave pump-
probemeasurements on the sample. As illustrated in Fig. 2c, the source
is vertically inserted into the middle of the sample to excite the bulk
modes, and the probe is horizontally inserted into the sample to
measure the complex field distribution along a vertical plane situated
15mmaway fromthe source. After performing 2DFourier transformto
the measured real-space field distribution, we obtain the bulk band
structure projected onto the ky-kz plane, as indicated in Fig. 2d. The
results, presented in Fig. 2e, reveal that the real higher-order Weyl
point is projected onto the middle of the Γ � Z path at 10.9 GHz, and
the charge-2 Dirac point is projected onto M at 11.3 GHz. The mea-
surement results are in good agreement with the simulated projected
bulk dispersion shown in Fig. 2f.

Next, we perform experiments to measure the topological
surface Fermi arcs from the real higher-order Weyl points on the
(100) surface. The experimental setup configuration is depicted in

Fig. 3a. All vertical surfaces of the sample are covered with a
0.75 mm thick metallic layer, acting as PEC boundaries. A source is
positioned at the center of the surface to excite the surface modes.
Upon Fourier-transforming the measured field distributions from
real space to reciprocal space, we acquire the surface dispersion
depicted in Fig. 3b, c, e. The insert in Fig. 3b displays themomentum
space distribution corresponding to the filed pattern shown in
Fig. 3a. The two open arcs are the photonic Fermi arcs connecting
the projections of the charge-2 3D Dirac point and the real higher-
order Weyl points. The measured surface dispersion along the high
symmetry line Γ � Z�M� Y� Γ is shown in Fig. 3c, demonstrating
excellent consistence with the simulated surface dispersion (red
lines) depicted in Fig. 3d. In addition, we present the measured two-
dimensional surface isofrequency contours at frequencies ranging
from 10.9 to 11.9 GHz in Fig. 3e, corroborating the outstanding
concurrence with the simulated outcomes in Fig. 3f. Apart from the
Fermi arc surface states, the topological floating surface states
protected by nontrivial Zak phase in the |kz| < kwp plane also exist on
the surface, as shown in Fig. 3c, d, along Y� Γ and Γ � Z. These
floating surface states coexist with the Fermi arc surface states.
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Finally, we experimentally characterize the topological hinge
Fermi arc originating from the real higher-order Weyl points. A hinge
between (100) and (110) surfaces is selected, by analyzing theWannier
centers (see Supplementary Information Note 1 and Fig. S3). To excite
the hinge modes, a source is placed at the middle of the hinge. Sub-
sequently, we employ a probe to scan the field distributions along the
hinge. The experimental setup and themeasured field distributions on
the two surfaces adjacent to the hinge is shown in Fig. 4a. The field is
predominantly localizedon the sample’s hinge, signifying thepresence
of topological hinge states. The measured hinge dispersion along the
kz direction is obtained through Fourier transformation, as presented
in Fig. 4b, which shows excellent agreement with the simulated pre-
dictions depicted in Fig. 4d (red line). To thoroughly and clearly
illustrate the characteristics of our sample, in which the real higher-
orderWeyl points separate the BZzone into the generalized real Chern
insulator and theChern insulator in the kzdirection,we further plot the
measured energy intensity for varying kz in a small area around the
hinge of the sample, as shown in Fig. 4c. By exciting both the hinge and
surface modes, it is evident that the hinge Fermi arcs manifest them-
selves well for |kz| < 0.5 π/a, connecting the projection of the twoWeyl
points.

Discussion
We have thus accomplished successfully the experimental realiza-
tion of an ideal real higher-order Weyl PhC exhibiting simulta-
neously one-dimensional (1D) hinge Fermi arcs, 2D surface Fermi
arcs, and 2D floating surface states, originating from the nontrivial
generalized real Chern number, Chern number, and Zak phase,
respectively. The distinct topological origins of the boundary states
pave a way toward the robust manipulation of the flow of light and
creation of photonic devices across multiple dimensions, including
the 2D surfaces and the 1D hinges, in a single integrable 3D PhC.
Besides, our work provides the experimental evidences of the

charge-2 3D Dirac point and the 2D nodal surface with the vanishing
chiral charge, neither of which has been realized previously in
photonics. Finally, our findings broaden our understanding of the
higher-order Weyl semimetals and the Stiefel-Whitney class of
topological phases, and establish an ideal photonic platform to
explore exotic physical phenomena related to higher-order Weyl
points, such as chiral anomaly, pseudo-gauge fields, and fractional
charges.

Methods
Numerical simulations
All simulations are performed using the COMSOL Multiphysics soft-
ware package. The metallic material of the 3D PhC is considered as
PEC, and the rest volume is air. To calculate the bulk dispersion of the
unit cell, periodic boundary conditions are applied in all three spatial
directions. To calculate the surfacedispersion,we consider a super cell
composed of 15 unit cells; Periodic boundary conditions are imposed
in the y and z directions, and PEC boundary conditions in the x
direction. For the hinge dispersion, the supercell has 11 by 11 unit cells;
Periodic boundary conditions are imposed in the z direction, and PEC
boundary conditions in the x and y directions. In simulation, the size of
the system has been varied to confirm convergence (see Supplemen-
tary Information Note 11, Figs. S12 and S13).

Experiment
The sample is fabricated via 3D metal printing. The material is
AlSi10Mg, with high conductivity at microwave frequencies. Nota-
bly, AlSi10Mg at microwave frequencies has a negligible metallic
loss, which can be regarded approximately as PEC (see Supple-
mentary Information Note 10 and Fig. S11). In the measurements,
the amplitude and phase of the fields are collected by a vector
network analyzer (VNA). The VNA is connected to two electric
dipole antennas, serving as the source and the probe, respectively.
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To excite the bulk states, the source is vertically inserted into the
middle of the sample, and the probe is horizontally inserted into the
sample to measure the field distribution along a vertical plane
15 mm away from the source. To excite the surface states, A source
is placed at the center of the surface; the distance between the
source and themeasured plane is about 11 mm. For the hinge states,

the source is placed at the middle of the hinge, and the probe is
moved along the hinge to scan the field.

Data availability
The data that support the findings of this study are available at https://
doi.org/10.5281/zenodo.8375373.
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Code availability
The codes that support the findings of this study are available at
https://doi.org/10.5281/zenodo.8375373.
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