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Intelligent surgical workflow recognition for
endoscopic submucosal dissection with real-
time animal study

Jianfeng Cao 1, Hon-Chi Yip2 , Yueyao Chen 1, Markus Scheppach3,
Xiaobei Luo4, Hongzheng Yang1, Ming Kit Cheng5, Yonghao Long 1,
Yueming Jin6, Philip Wai-Yan Chiu 7 , Yeung Yam 5,7,8 ,
Helen Mei-Ling Meng 8 & Qi Dou1

Recent advancements in artificial intelligence have witnessed human-level
performance; however, AI-enabled cognitive assistance for therapeutic pro-
cedures has not been fully explored nor pre-clinically validated. Here we
propose AI-Endo, an intelligent surgical workflow recognition suit, for endo-
scopic submucosal dissection (ESD). Our AI-Endo is trained on high-quality
ESD cases from an expert endoscopist, covering a decade time expansion and
consisting of 201,026 labeled frames. The learned model demonstrates out-
standing performance on validation data, including cases from relatively
junior endoscopists with various skill levels, procedures conducted with dif-
ferent endoscopy systems and therapeutic skills, and cohorts from interna-
tional multi-centers. Furthermore, we integrate our AI-Endo with the Olympus
endoscopic system and validate the AI-enabled cognitive assistance system
with animal studies in live ESD training sessions. Dedicated data analysis from
surgical phase recognition results is summarized in an automatically gener-
ated report for skill assessment.

AI-enabled video data analytics is promising to provide cognitive
assistance for various clinical needs in minimally invasive surgery1.
Analyzing the progress of surgical workflow, i.e., recognizing which
surgical step/phase is ongoing at each second, is important for the
standardization and support of surgical care2,3. For example, in endo-
scopic submucosal dissection (ESD), a therapeutic approach to resect
early-stage gastrointestinal (GI) cancer4,5, the smoothness and profi-
ciencyof its dissectionphase can exhibit a surgeon’s skill6–8. UsingAI to
accomplish such analytical assessment has the potential to promote

more efficient and standardized surgical operations9; however, a
relevant study is still in its infancy.

With advances in computer-assisted surgery in clinical practice10–12,
intelligent surgical workflow analysis has attracted increasing attention
from computer scientists and surgeons. Despite promising progress has
been made13, the way to automated surgical data analysis is still
encumbered by technical challenges. A core unsolved dilemma is to
balance the accuracy and efficiency of AI predictionmodels. On the one
hand, accurate surgical workflow recognition relies on the consideration
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of rich temporal information in the video, because temporal context
awareness is critical for understanding sequential actions. This requires
AI models to extract long-range features from a sequence of frames14.
Existing methods, such as 3D CNNs15,16 and temporal convolution
network17,18, still strugglewith how toeffectively capture global temporal
information given the expansive surgical duration. On the other hand,
recognized surgical phases need to be predicted in real-time, in order to
fulfill intraoperative deployment in surgery. It is challenging to achieve
such a high efficiency without compressing model parameters and
sacrificing model performance. Although some representative works,
such as TMRNet19 and Trans-SVNet20, achieved promising results with
versatile models, their dependence on the considerable computational
resources constrains their potential for clinical application. Todate, how
to effectively address this dilemma for successfully deploying AImodels
in the operating room is still an open question.

As a pivotal role in maintaining high accuracy of phase recogni-
tion, dataset quality drives the learning process of AI models with
representative samples and universal features. Different from the
principles in traditional video-based action recognition21–23, expert
knowledge could impact on the modeling of operational patterns in
ESD surgery24, thus determining the applicability of the AI model to
various cases in the stage of clinical deployment. Therefore, develop-
ing surgical AI models has a greater need for establishing an expert
dataset that covers the changes in anatomic targets, surgical tools, and
howa tool ismanipulatedby surgeons25. Standardization and expertise
of the dataset can not only provide typical samples that commonly
occur in ESD therapeutic procedures26 but also facilitate future
downstream analysis based on the recognition results27. The con-
struction of such a dataset, however, still remains to be completed due
to the scarcity of experts as well as annotation protocols28.

Despite that surgical data science has been studied for a while29,
experimental validationof deep learningmodels in real-world complex
scenarios and/or real-time pre-clinical settings is still extremely lim-
ited. Existing literature still lacks systematic experiments on how the
developed AI models are validated given various surgeon expertise
(e.g., from novices to experienced ones), long-time data expansion
(i.e., surgical instruments change over time) and across surgical sites
(from retrospective human data to ex vivo/in vivo animal trials). All
these factors would introduce data distribution shifts and are impor-
tant to be experimentally considered because they may degrade the
generalizability of data-drivenmodels. In addition, how to incorporate
such automated data analysis in a way that fits into clinical workflow
and fulfills clinical needs is non-trivial and unclear. In these regards,
systematic experiments, even live animal studies, are necessary to
experimentally verify the effectiveness of AI models for real-world
clinical applications. Some works have explored possibilities to
incorporate intelligent functions in applications of procedural skill
assessment30,31 and future frame prediction32 through in-silico experi-
ments, however, these works were limited to using surgical data ana-
lytics in an offline mode, rarely considering the efficiency of
burdensome models in practice. For the advancement of the clinical
value of AI models, experimental results in real-world settings are
frequently suggested in smart healthcare-related guidelines. To date,
there is no reported work on validating AI models in live animal pre-
clinical settings for ESD.

In this study, we proposed a deep learning-basedmethod (named
AI-Endo) for intelligent surgical workflow recognition in ESD. To
achieve accurate phase recognition and real-time clinical deployment,
we introduced a cascade of feature extraction and fusionmoduleswith
the ability of spatial-temporal reasoning. As the endoscopy video
streams into the framework, it could not only extract representative
frame-wise features but also distill temporal relations to describe
complicated surgical scenes. Furthermore, we designed the frame-
work with a light yet compelling feature backbone and dynamic fea-
ture fusion to accommodate the trade-off regarding test efficiency.

Importantly, our model learned from high-quality data collected from
an expert endoscopist (with ESD experience of over 15 years),
accompanied by clearly defined surgical phase definition and
exhaustive frame-wise annotation. To experimentally evaluate the
performance of AI-Endo in the wild, we have extensively tested its
performance on external datasets including different endoscopists,
various surgical tools and skills, different endoscopy systems, and
multi-center datasets. Moreover, we studied the potential usage of
surgical phase recognition, by integrating AI-Endo into surgical skill
training sessions at CUHK Jockey Club Minimally Invasive Surgical
Skills Centre. To evaluate the computational efficiency and compat-
ibility of AI-Endo in real-time applications, we conducted a cost-
effective ex vivo animal trial using video streamed from an endoscopy
system to our AI workstation. Thereafter, we designed an in vivo ani-
mal study to showcase the potential of AI-Endo in standard clinical
setup. A user-friendly interfacewasdeveloped that could visualize real-
time recognition of surgical workflow and automatically generate a
summary report for data analysis toward surgical skill assessment. This
study sheds light on automated surgical workflow recognition with
validation in real-time pre-clinical settings for ESD.

Results
Developmental dataset for model training
Forty-seven endoscopy videos with full-length ESD procedures (dura-
tion 71.28 ± 36.71min) recorded from the Endoscopy Centre of Prince
of Wales Hospital in Hong Kong were used as the training cohort. All
cases were performed by an expert who has over a decade of experi-
ence in ESD. Expert procedure videos were chosen as trainingmaterial
as AI models treated the dataset as a gold standard, and the demon-
strated endoscopic and device maneuvering skills should represent
expertise for operations in safety-critical situations. The dataset cov-
ered a long period from July 2008 to March 2020. The videos were
recorded using the endoscopy video processor (CV-260 and CV-290,
Olympus Medical Corporations, Tokyo, Japan), with a resolution of
352× 240 or 720 × 576 at 25 fps and a resolution of 1920 × 1080 at 50
fps (i.e., frames per second). This yielded up to 3GB file size for each
single case and millions of frames in total for the overall dataset. All
patients’ sensitive information including ID, sex, and age was de-
identified and patient consent formswerewaived for the retrospective
cohort. IRB has been approvedby the ethics committee of TheChinese
University of Hong Kong.

The included cases cover a wide variability of lesion sizes, loca-
tions (i.e., rectum, stomach and esophagus) and surgical tools (i.e.,
dual/isolation-tipped/triangle-tipped knife). More details about the
variability of the dataset are provided in Supplementary Table 1.
Although the dataset spans a long time of 12 years, for the whole
period the endoscopist has already achieved the level of expertise. At
the start point (year 2008) of the cohort duration, the endoscopist had
conducted more than 100 ESD cases on each organ of rectum, sto-
mach, and esophagus. According to the learning curve reported in
refs. 33–35, the endoscopist can be treated as an expert because the
number of conducted cases is higher than the suggested bar (80/30/
30 cases of rectum/stomach/esophagus, respectively). Annotationwas
performed on all of the retrospective datasets for surgical phase
recognition.

Annotation protocol of ESD workflow
To annotate the developmental dataset and external validation data-
set, we propose a standardized ESD annotation protocol (see Fig. 1a).
Four surgical phases have been defined: (1) Marking: the periphery of
the target lesion would be identified, then marking would be per-
formed by applying multiple electrocautery marks circumferentially
around 5mm away from the lesion at 2mm intervals; (2) Injection:
submucosal elevation would be achieved by injection of a mixture of
solutions containing normal saline, epinephrine, or hyaluronic acid
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using needle injector. Due to the difficulty in retrospective annotation
and often ultra-short duration of 1–2 s, transient saline injection
through the channel within the electrosurgical knives could not be
separately annotated and thus would be included in the Dissection
instead of Injection phase; (3) Dissection (mucosal incision and sub-
mucosal dissection): mucosa around the marking point is incised, and
then submucosal layer would be dissected from the underlying mus-
cularis propria until the target lesion is resected and removed.
Hemostasis with electrosurgical knives is included because of its short
duration; (4) Idle: the hold-on time spent by the endoscopists to
exchange the instruments or adjust the endoscope. Each single frame
is only labeled with one of the four phases, which is determined based
on identifying the start and end frame of each phase as well as its
temporal continuity36.

For all the cases, we excluded frames after the tumor was com-
pletely resected.We also downsample the video to 1 fps for annotation
efficiency. To ensure high-quality data, the annotation workflow con-
sisted of three stages. First, two well-trained medical annotators
independently annotated approximately 10% (5 cases, 20,446 frames)
of the expert dataset based on the dataflow in Supplementary Fig. 1.
The inter-rater agreementwasmeasured using the Pearson correlation
coefficient (PCC)37, which was 0.93. This showed a high consistency of
labeling between the two raters leveraging our provided annotation
protocol. Supplementary Fig. 3 provides an example of the annota-
tions from the two raters. Then, the two raters jointly labeled thewhole
dataset by dividing all the cohorts into approximately equal halves,
with each rater individually annotating one part. After they completed
all of their annotation tasks, the annotations underwent quality control
by another two experienced endoscopists. The annotation assessment
relied on not only visual cues but also practical experience to deter-
mine the surgical phase. Discussions happened in situations where the
surgical site was highly complex or key landmarks were not clearly
seen. Details on the dataflow, annotation schedule and annotation
results are provided in Supplementary Note 1. Three final annotation
examples (with different video durations) are shown in Fig. 1b. The
number of annotated frames in the expert dataset varies across each

phase, with the phase of Dissection occupying most of the surgical
time, which is also the most important and skill-demanding phase in
ESD. Detailed statistics of eachphaseare listed in Fig. 1c.Overall, a total
of 201,026 and 166,527 frames were labeled for the developmental
training and external validation (described below) datasets. All the
annotations in this study followed the same annotation protocol.

External datasets for model validation
Given the complexity of anatomical scenes and the variety of proce-
dures, it is critical to validate the applicability of the AI model to dif-
ferent endoscopists and operation skills. To this end, we first collected
15 cases of ESD performed in Prince of Wales Hospital in Hong Kong
from April 2021 to August 2022, and 122,114 frames in total were
annotated at 1 fps. These procedures were conducted by three
younger endoscopists with 6, 3 and 2 years of experience in ESD
respectively. Different from the developmental dataset that con-
centrates on data from an expert clinician with stable and proficient
surgical performance, the validationdata aims to reflect the variance in
surgical skills in order to evaluate the model’s generalizability and its
potential to support skill assessment in clinical practice such as
training sessions. The variation in the endoscopists’ experience in the
validation dataset helped to assess the AI model’s tolerance to human
factors that are commonly associatedwith different levels of expertise.
This is especially important for ESD which is a typical procedure
requiring a long learning curve38.

We also conducted further validation of our AI model in ESD
procedures with unseen operation techniques, i.e., the surgical skills
were not present in the developmental dataset. Three ESD cases with
the pocket creation method39 and one case with line-assisted traction
method40 were acquired from Prince of Wales Hospital for the pur-
pose. In particular, the pocket creation technique is used to improve
the visualization of the dissection plane by creating a pocket in the
submucosal layer after making a small mucosal incision for entry. The
traction method involves using additional instruments (such as a clip
with a line, snare or other commercially available traction devices) to
apply counter traction. This dataset overall has 19,254 annotated
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Phase Image Example Annotation Protocol

Marking

Surgical knives, including triangle-tipped knife, insulation-tipped knife and dual knife, get close to the tumor 
and place the knife onto the surface of mucosa;
Coagulation marks are labelled around 2mm apart and 5mm vertical to the tumor;
Start frame: Surgical knife is placed on the surface of mucosa;
End frame: Surgical knife is retrieved or not in contact with mucosa for more than 3 consecutive frames.

Injection

The injection needle is injected into the working channel, and the tip of tool is exposed and inserted into the 
submucosal layer;
After sufficient solutions, e.g., hyaluronic acid and dextrose water, are injected from the probe into the 
mucosa, the injection tool is retracted;
The tumor is lifted for better observation;
Start frame: Injection needle is inserted into the submucosal layer;
End frame: Injection needle is retrieved from the submucosal layer or not in contact with submucosal layer 
for more than 3 consecutive frames.

Dissection

The surgeon sets the electrosurgical unit (ESU) and make sure the cutting surface of the knife (e.g., 
surgical knives, including triangle-tipped knife, insulation-tipped knife and dual knife) is exposed; 
The surgeon controls the knife to cut around the circumference of the tumor, during which injection might be 
repeated to keep enough elevation;
After the dissection is completed, the lesion is removed with graspers;
Start frame: The knife is used to cut the circumference of the tumor;
End frame: The knife stops cutting or is not in contact with the soft tissue for more than 3 consecutive 
frames.

Idle

Phase Idle is defined as the hold-on time for the endoscopist to change the surgical tools, adjust the angle 
of scope and clean the field of view;
The time used by the surgeon for inspecting the status of procedure and making decisions on following 
procedures;
Start frame: When surgical tool has been retrieved or hovered the tool for more than 3 consecutive frames;
End frame: Any one of phases Marking, Injection, and Dissection begins.

8,000

b

Fig. 1 | Establishment of developmental and external datasets for ESD surgical
phase recognition. a Illustration and definition of the four surgical phases:
Marking, Injection, Dissection and Idle. Examples of start and end frames are pro-
vided in Supplementary Fig. 2. b Phase annotation examples of surgical videos.
c The statistical numbers of four annotated frames in our developmental training

data and external validation data, and the corresponding violin plot on the dis-
tribution of annotated frames. The box indicates themedian as a white point in the
box and excludes the upper and lower 25% (quartiles) of data, and the whiskers
extend to the extrema (Developmental data n = 47cases; External datan = 15 cases).
Source data are provided as a Source Data file.
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frames. Investigation into these techniques helps observe the perfor-
mance of the AI model when encountering novel styles of tool-tissue
interactions.

In addition, we designed ex vivo and in vivo animal trials for the
purpose of validating the integration of the AI model into the existing
endoscopic system. For initial feasibility validation, we conducted four
ex vivo animal trials to streamline the dataflowofAI assistance into the
standard ESD workflow. Afterward, we conducted in vivo experiments
for validation of the whole system in real time. A total of 12 ESD pro-
cedures were performed on two live pigs in a surgical training session.

Furthermore, we collected external multi-center datasets to vali-
date the generalizability of AI-Endo on different endoscopy systems
and demographics. The first cohort contained four ESD cases from
Nanfang Hospital, Southern Medical University, Guangzhou, China.
This dataset was collected from a Fujifilm endoscopic system, in order
to validate applicability for different imaging devices. The second
cohort contained four ESD cases from Internal Medicine III-Gastro-
enterology, University Hospital of Augsburg, Augsburg, Germany. This
dataset was collected from an Olympus endoscopic system which is
the same as our developmental data, while the purpose of this external
dataset is to validate the model’s generalizability on patients from a
different country. These two cohorts were labeled according to our
annotation protocol and yielded 25,159 frames in total.

Performance of AI-Endo model using 5-fold cross-validation on
developmental dataset
For automated ESD surgical phase recognition, we propose a deep
learning-based framework called AI-Endo, which inputs the video
stream and embeds each frame into high-dimensional feature space.
To sufficiently make use of temporal information for accurate model
performance, we incorporate a cascade of feature extraction with a
temporal convolution network and a global attention-based transfor-
mer to extract spatial-temporal features. Our AI-Endo is developed
based on the 47 training cases in 5 folds (with sizes of 10, 10, 9, 9, 9),
eachone ofwhich is used for performance evaluationwhile the other 4
folds are used for training the learning algorithm. Without loss of
generality, this cross-validation strategy enables the developed fra-
mework to be validated on the whole developmental dataset.

The phase prediction can be obtained by taking the maximum or
setting an optimal threshold on the output probabilities. Both overall
and phase-wise metrics can be derived from four collections, i.e., true

positive (TP), true negative (TN), false positive (FP) and false negative
(FN). For the overall performance, we adopt three commonly used
criteria, i.e., average accuracy, average precision and average recall.
The average accuracy ( TP +TN

TP +TN + FP + FN) captures the overall ratio of cor-
rectly classified frames. The average precision ( TP

TP + FP) and recall
( TP
TP + FN) deliver the fraction of relevant samples in all retrieved samples
and the completeness of the relevant collection. Moreover, to inspect
the performance of AI-Endo on each phase, we plot the receiver
operating characteristic curve (ROC) and evaluate the results of the AI
inferencewith the area under the ROC (AUROC)41. Meanwhile, we refer
to a summary measurement of the ROC curve, Youden Index42,43, to
apply the optimal threshold for phase prediction, yielding a set of T̂P,
T̂N, F̂P and F̂N for each phase, which are used to calculate the speci-
ficity T̂N

T̂N + F̂P
and sensitivity T̂P

T̂P + F̂N
of each phase to keep coincident with

the Youden Index and ROC curve. Moreover, we define the orderliness
metric ( T̂P + T̂N

T̂P + T̂N + F̂P + F̂N
) for phase-wise evaluation to measure the degree

of how the target frames are correctly ordered for each phase. Details
on this metric are provided in Supplementary Note 2.

For evaluation results of 5-fold cross-validation on developmental
dataset, our AI-Endomodel obtains an average accuracy of 91.04% (CI:
89.57%, 92.51%), average precision of 88.48% (CI: 85.98%, 90.97%) and
an average recall of 88.77% (CI: 85.99%, 91.54%). The high performance
is attributed to the representative features learned from expert sur-
gical videos. For the performance of AI-Endo for each phase, Fig. 2a
shows the ROC curves of the four ESD phases, with specific AUROC
scores as 97.69% (CI: 94.37%, 100.00%), 98.40% (CI: 96.48%, 100.00%),
97.85% (CI: 96.73%, 98.97%) and 96.69% (CI: 95.94%, 97.44%) for
Marking, Injection, Dissection and Idle, respectively. In general, for all
four phases, the specificity, sensitivity, and orderliness are all higher
than 90% (see detailed results in Fig. 2b). This demonstrates the
model’s promising performance in accurately predicting ongoing
surgical phases from a complex procedure. It is worth noting that the
ESD surgical scenes have significant intra-class variance while con-
siderable inter-class similarity. Figure 2c demonstrates some success-
fully recognized frames from each phase under such challenges. For
example, in phaseDissection, the trajectory of dissection as well as the
dissected surface of the submucosal layer often present variations,
making phase recognition difficult. Simultaneously, the tasks of phases
Marking and Injection show similarity in the interaction between the
surgical tool and the surrounding tissues, such as the insert on the
mucosa layer and the retraction away from the target point. Despite
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Phase-wise metric AUROC Specificity Sensitivity Orderliness

Marking 97.69 (94.37, 100.0) 97.57 (95.11, 100.0) 94.45 (88.39, 100.0) 97.56 (95.11, 100.0)

Injection 98.40 (96.48, 100.0) 95.98 (92.94, 99.02) 97.38 (96.63, 98.14) 96.16 (93.43, 98.89)

Dissection 97.85 (96.73, 98.97) 93.91 (92.94, 94.89) 95.10 (93.36, 96.85) 94.59 (93.47, 95.72)

Idle 96.69 (95.94, 97.44) 93.27 (92.09, 94.44) 91.31 (90.00, 92.62) 92.57 (91.58, 93.56)

Average 97.66 (95.88, 99.10) 95.18 (93.27, 97.09) 94.56 (92.10, 96.90) 95.22 (93.40, 97.04)

Fig. 2 | Analysis results of 5-fold cross-validation on the developmental data-
set. aThe receiveroperating characteristic (ROC) curve of fourphases;bStatistical
scores of AI-Endo on four phases based on the Youden Index (n = 47 cases). Data

are presented as 95% confidence interval; c Examples frames in four phases with
intra-class difference and inter-class similarity; d The confusion matrix across four
surgical phases. Source data are provided as a Source Data file.
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that these situations may lead to the misclassification of the AI model
on similar frames from different phases (see the confusion matrix in
Fig. 2d), the proposed AI-Endo model still retains a remarkable per-
formance to distinguish them.

Performance of AI-Endo model on validation datasets with dif-
ferent surgeons and skills
The advantages of a learning-based framework are substantially
attributed to its ability to recognize surgical actions and learn intrinsic
features from surgical video data. For AI-Endo, its modeled spatial
embedding and temporal relationships enable it to address various
situations. For evaluation on different surgeons, we have tested the AI-
Endo model on 15 external patients conducted by three endoscopists
with different levels of ESD experience. The model yields an average
accuracy of 90.93% (CI: 88.52%, 93.33%) for Surgeon A (6 years
experience), 92.93% (CI: 89.81%, 96.04%) for Surgeon B (3 years), and
92.28% (CI: 82.96%, 100.0%) for Surgeon C (2 years). Phase-wise
metrics on these 15 cases are provided in Supplementary Table 2.
Specific results for each case conducted by these three surgeons are
shown in Fig. 3a. These results on different endoscopists demon-
strated the generalization capability of the AI-Endo method to
accommodate the variation in skill levels of ESD procedures. Such
variation affects the proficiency and smoothness of the procedure,
which can be reflected by the duration of each surgical phase and the
transition frequency between them (see Fig. 3b). In addition, the ESD
instruments used in the external validation data arenot identical to the
expert developmental data, because the design and utility of ESD
instrumentswere evolving over time. As examples illustrated in Fig. 3c,
the ESD knives from the developmental dataset included dual knife,
insulated-tip (IT), and triangular tip (TT) (Olympus Medical Corpora-
tions, Tokyo, Japan), while the external validation dataset also used the
updated needle-type knife besides the dual knife and IT. The AI-Endo
model can overcome such variation with stable performance regard-
less of different instruments, showing that its discrimination capability
mainly relies on understanding dynamic surgical actions rather than
instrument appearances.

For validation on another four cases that involve operation skills
that are unseen in the developmental data, AI-Endo shows an average
accuracy of 93.07% (CI: 83.44%, 100.0%) on cases with pocket creation
method. AI-Endo retains the ability to recognize surgical phases in the
pocket creation process, even though the pocket creation is relatively
new and not included in our developmental dataset. This advantage is
largely attributed to its potential to capture features of tissue back-
ground and tissue-tool interactions, which are shared between con-
ventional operations and pocket creation. The accuracy on ESD with
line-assisted traction was lower at 75.22% (CI is not calculated for one
case). The limitation in accuracy was caused by the emergence of new
functional tools (Fig. 3d) during traction application, which coincides
with our expectation because it is challenging to be applicable to a
specialized tool that looks very different from others. Our model
predicts phase Idle for the frames involving this tool while predicting
correctly for other frames in general.

Ex vivo animal study for validation of AI-Endo model
Existing works on surgical phase recognition have not yet clearly
investigated the incorporation of the AI-Endo model into clinical
workflow, therefore, we designed an ex vivo animal study to optimize
and validate the proposed framework in our work, ranging from the
layout of third-party monitors to the design of the graphical user
interface. Compared to conducting an in vivo animal study directly,
adopting a preliminary ex vivo study first is more cost-effective to
ensure the AI assistance could deliver useful data analytic results and
alleviate interruptions caused by add-on AI functionality. To confirm
how to seamlessly integrate the AI-Endo computational tool into the
Endoscopy System, we implemented the whole system in a training
laboratory at CUHK Jockey Club Minimally Invasive Surgical Skills
Centre. Specifically, after the ex vivo porcine colon was cleaned by
water lavage, it was fixed within a plastic tray, then an overtube was
attached to the colon to simulate the environment inside the colon.
Figure 4a shows the entire system pipeline and data flow, i.e., the
surgical operation on the animal model was imaged by an endoscope
and streamed by an endoscope processor; the video is imported to the

Fig. 3 | Experimental results on validation dataset with different surgeons and
skills. a Phase recognition accuracy of AI-Endo on n = 15 validation ESD cases
conducted by different surgeons. Each bar represents one case; b Proportion of
phase duration and frequency of phase transition (orange-colored timestep) for

surgeons A, B, and C; c Illustration of different dissection tools used in develop-
mental data and external data from different surgeons and skills; d Line-assisted
traction tool used in external data of ESD traction technique. Source data are
provided as a Source Data file.
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AI-Endo model and the automatic analytical results are displayed to
surgeons in real-time.

We put a third-party monitor (aside from the existing displaying
screen of the endoscopic view) for surgeons to visualize the AI-
predicted surgical phase on the screen, inwhich the surgical phasewas
overlaid to each frame in top left corner without occluding the main
surgical scene (see Fig. 4b). We measured the computation overhead
for I/O data flow, which totally took 4 ms for data flow input (i.e.,
importing video stream from existing surgical system to AI-Endo) and
output (i.e., displaying the AI-Endo prediction phase to screen for
surgeons to visualize). The AI-Endo model inference took 17 ms, con-
sisting of 6 ms for the ResNet50 module, 3 ms for the Fusion module,
and 8 ms for the Transformer module (cf. details of the AI model
architecture in “Methods”). Note that the transformermodule uses the
most time because it needs to aggregate crucial spatial-temporal
information for maintaining recognition accuracy. Overall, the effi-
ciency of the entire AI-Endo recognition system reached 47 fps, which
can satisfy the requirement for real-time use, without feeling of visual
latency. Two stations were set up using the above-described ex vivo
setting, with each serving two novices in the training session. For the
four trainees, our AI-Endo yielded an average accuracy of 88.88% (CI:
79.95%, 97.82%) over a total of four cases, showing potential to apply
the AI model in a streamed ex vivo setting as a holistic system. Phase-
wise metrics indicate high sensitivity and specificity regarding the key
phases of Injection and Dissection (Supplementary Table 3).

In vivo animal study on live pigs for validation of AI-Endomodel
in pre-clinical setting
Quantities of works have been proposed for automated surgical phase
recognition, however, none of them incorporated in vivo animal trials
to demonstrate the clinical application of system in real-world surgery.
Based on the success of ex vivo animal experiments, we further con-
ducted an ESD surgical training session with in vivo live animal trials,
aiming to showcase the clinical applicability of an intelligent phase
recognition system with online score analysis and automatic perfor-
mance report generation. The real-time system integration and data
flow of the in vivo experiment were the same as that of the ex vivo
experiment.

To support the clinical usage of AI-Endo, we packaged theAI-Endo
as a desktop software that seamlessly operates with prevalent surgical
settings. The accessibility of AI-Endo becomes much reachable for
endoscopists who are more likely to demand a ready-made imple-
mentation with a user-friendly graphical interface. In the animal trial,
multiple 2-cm-sized lesions were marked for simulated ESD on three
different locations in the digestive tract, i.e., rectum, stomach, and
esophagus. Twelve ESD procedures were performed on two live pigs,
i.e., including five (1/2/2 for rectum/stomach/esophagus) and seven (2/
3/2 for rectum/stomach/esophagus) were conducted by an experi-
enced and a novice endoscopist, respectively. The AI-Endo delivered
an average accuracy of 83.53% (CI, 81.48–85.58%) over all the in vivo
procedures. The relative performance degradation was postulated to
be due to anatomical differences between pig and human tissue, as
well as the experimental setting of fake lesions. Fortunately, for the
Dissectionphasewhich is themost important step for ESD, theAI-Endo
achieved a specificity of 91.57% (89.89%, 93.24%) and sensitivity of
86.68% (CI, 83.22%, 90.14%) (Supplementary Table 4). Additionally, AI-
Endo achieved accuracy rates of 83.29% (CI: 77.43%, 89.15%), 83.05%
(CI: 78.11%, 87.99%) and 84.31% (CI: 78.77%, 89.85%) on rectum, sto-
mach and esophagus, respectively, showing slight differences among
different GI organs.

The in vivo animal experiment aimed to serve as a promising pilot
study to explore the applicability and capability of AI-Endo for cogni-
tive assistance in real-time complex surgery. In this regard, we tried to
derive meaningful skill assessment scores from AI-based workflow
recognition results, to automatically analyze the operational skills of
novices during the training session. As shown in previous works44, the
surgeon with a higher level of surgical skill tends to operate the sur-
gical tools more smoothly, which benefits from their clear plan on the
trajectory of surgical tools and the resection surface. To some extent,
the smoothness of the operation can be reflected by the frequency of
hesitation and the exchangeof surgical tools45, whichcanbequantified
by the frequency of the surgeon changing across phases. In ESD
training session, it is useful to monitor their operational skill in real
time, which could reflect their learning curve. In this regard, the AI-
Endo system dynamically counted the number of transitions among
surgical phases, e.g., the transition from Dissection to Idle when the
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knife retracts. As the size of the lesion could affect the total duration of
procedure46, we divided the total transition frequency by the length of
the tumor to remove its bias on the number of phase transitions. The
proposed online surgical score Normalized Transition index (NT-
index) is defined as the division of transition number over time and the
size of the lesion, which yields an NT-index curve to describe the
dynamic changes of transition frequency as the operation proceeds.
The lower this curve is, the higher the endoscopist’s skill level would
be. In Fig. 5a, we present the index curves of four in vivo surgical cases,
two of which are respectively conducted by the experienced and the
novice endoscopist. The analytic results show that theNT-index curves
of the senior are generally lower than those of the novice. At the end of
the procedures, the senior and the novice get normalized transition
index scores on the rectum, stomach and esophagus as (13.94 vs 21.71),
(4.39 vs 10.72) and (10.23 vs 16.85). The proposed online score NT-
index shows a statistical difference (p =0.048) in the level of ESD skills,
which is consistent with our expectations according to the animal trial
settings. Based on the index curve, expert endoscopists, e.g., the
trainer in surgical training, could provide advice and supervision on
specific surgical steps.

In addition, we propose to automatically generate an intelligent
report, which summarizes and presents the surgical workflow analy-
tical results to the endoscopists. As shown in Fig. 5b, the summary
report intuitively visualized the duration and ratio of each phase. Dif-
ferent from the manual annotation or repeated derivation in previous
works9,36, the AI-Endo instantly provides the endoscopist with an
overview of the surgical process and also details the factors thatmight
reflect the surgical skill, such as the duration ofphase periods and their
corresponding ratios in each endoscopist. The proposed online score
of the Normalized Transition index, together with several straightfor-
ward offline scores added in the summary report, is supposed to serve
as an essential reference for the investigationof procedural knowledge
and decision-making skills, taking a leap forward to the potential
clinical applicability of AI-Endo.

Multi-center validation on data from different endoscopic sys-
tems and country
To broaden the application of AI-Endo, it is interesting to observe its
generalizability to different endoscopic systems and multi-centers. We
assessed the performance of AI-Endo using four cases from Nanfang
Hospital, SouthernMedical University in Guangzhou, China. These cases

were conducted using the Fujifilm endoscopic system, which differs
from the Olympus endoscopic system utilized in our developmental
dataset. To evaluate the potential of AI-Endo in an international cohort,
we further tested AI-Endo on an additional four cases from Internal
Medicine III-Gastroenterology, University Hospital of Augsburg, Augs-
burg,Germany.These caseswere recordedwith theOlympus systembut
yielded geographical variations across different countries.

We utilized AI-Endo to process the four cases from Nanfang
Hospital, Southern Medical University in Guangzhou, China. All cases
were annotated and processed in the same manner as the develop-
mental dataset. AI-Endo finally yielded an average accuracy of 90.75%
(CI: 88.50%, 93.01%) and exceptional ROC curves for each phase
(Fig. 6a). All phase-wise performance metrics were higher than 88%
(Fig. 6d). This investigation shows that AI-Endo’s performance is
robust and generalizable across different endoscopy systems, which
aligns with our expectations regarding ESD surgical settings. During
endoscopic procedures, conventional white light images are used and
these images remain largely consistent across different brands of
endoscopes. Additionally, the design and implementation of intelli-
gent algorithms in the development of AI-Endo did not depend on
assumptions about the type of instrument being used. AI-Endo can
accept the video stream and process data in a relatively independent
manner, which means the inference speed should not be heavily
dependent on the endoscopy system.

Then, four cases from Internal Medicine III-Gastroenterology,
University Hospital of Augsburg, Augsburg, Germany were used to
showcase the robustness of AI-Endo under geographical variations.
Although the cases were conducted at an international center, AI-Endo
maintained its high performance and achieved an average accuracy of
87.34% (CI: 84.43%, 90.25%), specificity of 86.01% (CI: 71.48%, CI:
96.27%), and average sensitivity of 86.60% (CI: 74.21%, 96.36%). AI-
Endo delivers promising ROC curves on four phases with AUROC
values exceeding 90.67% (Fig. 6b, d). Based on themulti-center dataset
from Guangzhou (China) and Augsburg (Germany), we further statis-
tically analyzed the performance of AI-Endo on different organs,
including esophagus, colorectum, and stomach, on which AI-Endo
keeps a large average accuracy higher than 86.68% (Fig. 6c). These
findings suggest that AI-Endo can robustly handle multi-center cases
regardless of differences in their geographical or tumor locations,
indicating the potential of AI-Endo for wide applications across inter-
national medical centers.
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Discussion
This work aims to investigate intelligent surgical phase recognition
from bench to bedside. We established a high-quality ESD dataset of
expert operations, together with a well-defined annotation protocol
for surgical phase recognition. Based on it, we developed the AI-Endo
model to recognize surgical phases with representative spatial-
temporal features, achieving high performances on both develop-
mental and external validation datasets. This demonstrates that the AI-
Endo model trained on expert data is applicable to junior surgeons
with different skill levels, various cases with different ESD techniques
and endoscopic systems. More importantly, the AI-Endo was seam-
lessly integrated into pre-clinical settings, and validated with ex vivo
and in vivo animal trials in real-time. The system showed stable per-
formance, and analytical results were delivered to surgeons through a
user-friendly interface for intraoperative cognitive assistance and
postoperative training assessment.

ESD is a novel endoscopic surgical procedure for complete
tumor resection to cure early gastrointestinal (GI) cancer, which is
the most common cancer worldwide. Although ESD has good peri-
operative outcomes regarding high-rate of en-bloc resection and
low rate of local recurrence, the surgery is still challenging with a
long learning curve for novices. It is clinically desired to use AI
techniques that can learn from expert experiences and data for
understanding surgical contexts and further identifying, preventing,
and mitigating safety-critical events in operation. To begin with,
surgical phase recognition is the fundamental task, i.e., only after the
ongoing surgical step is automatically recognized can the smart
system conduct subsequent functionalities. Existing works have not
systematically investigated this key task due to the lack of expert
data, algorithmic limitations, and insufficient pre-clinical validation.
This study plays a pioneering role to raise attention and inspire
solutions for AI-assisted ESD.

As observed from experimental results, our AI-Endo model suc-
cessfully addressed the dilemma between accuracy and efficiency for
surgical workflow prediction in ESD. Using an inference computer
equipped with an Intel Xeon(R) 3.7 GHz CPU with one NVIDIA GeForce
RTX 3090 GPU, the model is able to yield a good online deployment
accuracy at 47 fps. Noting that such an efficiency includes time spent
throughout data analytics in the integrated system, rather than the AI
model computation itself. Given that the raw data streaming in the

existing Olympus system is maximum at 50 fps, from our human
feedback, we did not feel visual latency when using the provided user
interface. This demonstrated that the AI model can fulfill real-time
requirements given the hardware support of a standard workstation-
level configuration. It could suggest the potential of applying
advanced surgical AI tools in low-income countries.

Regarding how to properly incorporate the AI-Endo model into
the existing clinical workflow, we in fact had multiple rounds of
discussion and optimization among engineering and clinical team
members. Existing literature on computer-assisted surgery in gen-
eral has not yet clearly investigated this important issue. Basically,
we think that at least two points should be considered for the inte-
grated system design. The first is to ensure that the system delivers
useful data analytic results that are otherwise not obtainable without
AI assistance. The second is to avoid the add-on AI functionality
changing the surgeon’s operation habit in the current routine. In
these regards, we propose to display the AI predictions on a third-
party screen putting it side-by-side to the existing Olympus screen.
The ongoing surgical phase is monitored by the AI-Endo behind the
curtain, which presents steady progress of the procedure. More
importantly, we derive an online score based on the surgical phase
recognition for skill assessment and apply it to the ESD training
session. This score is automatically calculated to reflect the profi-
ciency and smoothness of ESD. Despite it is not yet thoroughly
validated from clinical usage, we regard this as an inspiring initial
step for driving AI’s role in facilitating novice surgeons. In our future
work, we target integrating the AI-Endo into the endoscopy system
as off-the-shelf software, displaying the analytic results on the
embedded monitor in a straightforward manner.

Limitations of our work lie in two aspects. First is the relatively
small number of cases in developmental dataset, which is actually a
common drawback of most existing works on surgical AI. The cur-
rent largest public dataset, i.e., Cholec80 on laparoscopic
cholecystectomy47, has 80 full-length surgical videos at a high frame
rate. The small-scale training data is still not comparable to the big
data as used in other deep learning applications such as face
recognition and autonomous driving. Fortunately, our collected
data was of high quality in terms of expert skill level, long-time
expansion, various dissection locations, and diverse surgical scenes,
which helped to compensate for the shortage. The clearly defined

Fig. 6 | Experimental results on multi-center validation datasets from
Guangzhou (China) and Augsburg (Germany). a The ROC curve of AI-Endo on
cases from Guangzhou, China (n = 4 cases); b The ROC curve of AI-Endo on cases
from Augsburg, Germany (n = 4 cases); c Average accuracy on cases of esophagus,
colorectum, and stomach in the multi-center datasets; d Phase-wise performance

metrics of AI-Endo on multi-center datasets. Data are presented as 95% confidence
interval (CI) when applicable. CI is not calculated for the Marking phase in cases
from the center in Guangzhou, China, because only one case involves marking.
Source data are provided as a Source Data file.
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annotation protocol was also important to ensure the labeled 0.2
million training frames were consistent as ground truths for model
learning. The second limitation of this work concerns the model
generalizability, which was noticeable from the performance drop
observed in ex/in vivo animal experiments (Supplementary Tables 3
and 4). Despite this being explained by the appearance difference
between animal tissue and human tissue, similar degradation is
anticipated to be encountered under the emergence of new tools
(Fig. 3d) that were not covered by the developmental data. A rela-
tively small dataset limits the model’s robustness to identify effec-
tive tool features or surgical scenes when an unseen ESD technique
is involved. Our currently developed method has not particularly
addressed this problem, while can be extendable with domain
generalization48 and test-time adaptation49 strategies. Promisingly,
the proposed model has shown a noteworthy degree of adaptability
to the variations encountered in surgical settings, such as differ-
ences in geographical locations and endoscopy systems. This
matters in its wider application and multi-center deployment in
the future.

Last but not least, future works of this studywill continue to focus
on AI assistance for ESD. The benefits of automatic phase recognition
go beyond the generation of statistical reports and the calculation of
online NT-index, which provide only a limited view of surgical skill
evaluation. We encourage community researchers to utilize the open-
source code and data we provide to explore the statistical significance
of surgical phases and promote progress in surgical training and
related areas, such as establishing large-scale structured and seg-
mented surgical phase databases50. Besides, based on the high-
performance surgical phase recognition, we will extend the video
analysis to semantic segmentation of surgical scenes such as the sub-
mucosal layer, muscle layer, and vessels in our future work. We
implemented a preliminary segmentation model in this study’s in vivo
animal experiment, which also fulfilled real-time prediction speed. We
will further improve its accuracy and accordingly investigate how to
use it to help surgeons reduce adverse events on safety-critical tissues.
Moreover, AI-enabled data analytics would provide cognitive assis-
tance and support decision-making for surgery, which has a large
potential to enhance surgical safety. As artificial intelligence is
increasingly investigated for surgical applications, its way of integra-
tion in the operating room and clinical role for benefiting surgeons are
to be emphasized along the way.We aim to include clinical trials in our
future work after the entire system is extensively validated with more
surgeons and clinical centers, ensuring participant safety in invasive
procedures.

Methods
Data collection
In this study, developmental dataset was collected from Prince of
Wales Hospital in Hong Kong and validation datasets were gathered
from Prince of Wales Hospital; Nanfang Hospital, Southern Medical
University in Guangzhou, China; and Internal Medicine III-Gastro-
enterology, University Hospital of Augsburg in Augsburg, Germany.
All patient information in these retrospective cohorts was de-iden-
tified, and only the imaging system and surgeon’s name were kept
for data analysis. Ex vivo and in vivo animal cases were conducted
during the animal trial sessions at CUHK Jockey Club Minimally
Invasive Surgical Skills Centre. Ethical approvals were obtained from
the Ethics Committee of The Chinese University of Hong Kong (No.
22-145-MIS).

Problem formulation and network learning
Given an ESD video stream, thiswork formulates the phase recognition
task as an online classification task based on our previous work20.
Given a video streamV = fxt 2 RH ×W × 3gTt = 1 with T frames,wemake the
phase recognition model as a function F θ which classifies each frame
xt into one of four surgical phases according to probability prediction
pt =F θðx1, x2, . . . , xtÞ, where each element represents the probability
of frame xt being phase in {Marking, Injection, Dissection, Idle}. Due to
the complexity of recognizing surgical phases with large intra-class
variation and inter-class similarity, we decompose F θ into two stages
F θ =Gω �Hϕ, with Gω as the feature extractor to encode discriminative
representation for each single frame, and Hϕ as the follow-up spatial-
temporal feature aggregator for yielding the final phase prediction
incorporating video dynamics. An overview of our AI-Endo network is
illustrated in Fig. 7.

In ESD surgery, the differences in anatomical structures and
lesion locations introduce considerable intra-class variances on xt,
imposing challenges on Gω to learn discriminative frame-wise
representations, which are the basis for spatial-temporal feature
learning. We propose to rely on self-supervised learning with con-
trastive loss in the training process, by formulating Lcon (see Eq.1)
which enhances the similarity of embeddings from intra-class
frames (a.k.a., positive pairs) while enlarging the distance between
inter-class frames (a.k.a., negative pairs). The embedding ei for each
frame xi is extracted using a pretrained ResNet5051 as backbone.
Meanwhile, in order to enhance the discrimination capability of
learned features toward the phase recognition task, we also add
cross-entropy loss with respect to phase labels annotated for each
frame. In these regards, the overall loss function training Gω is as

Fig. 7 | The architecture of AI-Endo deep learning model for real-time recog-
nition of surgical phases. Each frame of video stream is sequentially encoded by
ResNet50, followed by a temporal convolution network to fuse spatial-temporal

information. Thereafter, spatial embedding at t is used as the query in the
transformer-based module for predicting the frame-wise surgical phase. Different
colors represent different feature embeddings or output values.
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follows:

ω* = argmin
ω
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where i denotes the index of frames in the mini-batch I. A(i) and N(i)
respectively represent the frames that have the same and different
phase annotations with xi, and τ 2 R+ denotes the scalar temperature
parameter52. The 1fyi = = kg is the label indicator for the negative log-
likelihood function and equals 1 when yi = k otherwise 0. In addition, to
facilitate real-time deployment, the pretrained feature backbone was
pruned by removing the two linear projection heads. The contrastive
learning strategy enables the remained modules to still provide
meaningful embeddingwithout increasing the computation overhead.
The final embedding for each frame was sequentially used as the input
for the subsequent spatial-temporal feature learning.

Temporal reasoning is essential for AI-Endo to capture dynamic
information in the procedure, such as the trajectory of surgical tool
and its interactionwith the targeting tissues. In this regard,we leverage
a fusion module to extract long-range temporal information with a
temporal convolution network (TCN). In order to aggregate the spatial
and temporal information and boost the capability of representation,
we further incorporate a global attention-based transformer module
to capture supportive relationship based on spatial and temporal
embeddings.

For the fusion module, we use TCN to perform hierarchical
refinement on temporal embedding. Given the spatial embedding
sequence fei =GωðxiÞ 2 Rdgti= 1, the TCN targets generating temporal
embedding by exploring inter-frame relationship. The TCN is com-
posed of multi-level temporal convolution layers, each level of which
includes consecutive dilated residual layers. Taking the lth layer as an
example, the outputDl+1 is calculated byDl+1 =Dl +W2,l * {ReLU(W1,l *Dl

−1 + b1,l)} + b2,l, where W1,l and W2,l are the weights of dilated convolu-
tion and 1 × 1 convolution, whose biases are denoted as b1,l, b2,l,
respectively. The first layer accepts D0 = feigti = 1 as the initial input. To
get a larger inception field of temporal convolution, we gradually
increase the dilation factor by 2, which yields an increased size of the
inception field. The output Dl is shifted along the temporal dimension
so that the output DL+1, i.e., the temporal embedding mi 2 Rd0, only
relies on current and previous frames.

Although the fused spatial-temporal embedding at t integrates the
temporal information at neighboring frames, a fixed-size embedding
representation is insufficient to deliver complicated information in
both dimensions of time and space. Therefore, we rely on the trans-
former module to obtain the phase prediction by further aggregating
spatial and temporal informationwith global attention. Specifically, we
take the spatial embedding et as the query and the temporal embed-
dingsMt, i.e., concatenation of fmigti = t�n+ 1, as the key and value, where
n denotes the range of selected temporal embeddings before time
point t. The spatial embedding et is first reduced to êt with the same
dimension as that of mi through linear projection. Then êt and Mt are
processed by transformer as:

Transðêt ,MtÞ= sof tmax
Wqêt × ðWkMtÞTffiffiffiffiffi

d0
p

 !
WvMt , ð2Þ

where W are the linear projection mapping metrics and
pt = sof tmaxðTransðêt ,MtÞÞ yields the final phase prediction. The
fusion module and transformer module can be trained end-to-end to
derive the optimized model Hϕ* . The trained model is capable of
extracting long-range spatial-temporal information.

High-throughput online prediction
The application of this framework requires efficient deployment cou-
pled with intraoperative video streaming. To achieve this goal, we
reduce the computation complexity by analyzing how the feature
embeddings at each frame are updated according to the inception
field of the AI model. For the fusion module, rather than continuously
storing all the spatial embeddings feigti = 1 for the temporal reasoning of
TCN, we only selectively keep the embeddings within its inception
field. Concretely, given the inception field of TCN is 512, the spatial
embedding et+1 only interacts with 511 previous frames, i.e., accounting
for over 10 s under our inference speed of 47 fps. We build a first-in-
first-out (FIFO) queue to dynamically store feigt + 1i = t�510. When the spatial
embedding ei is out of the inception field, it graduates from the queue.
Notably, this framework keeps high inference efficiency and also fully
preserves its accuracy.

For the model training, all cases of the developmental dataset
were first arranged in chronological order, and then we sampled them
at five equal intervals. This procedure resulted in 5 folds, with four
folds used for training and the remaining one for testing in a cross-
validation manner. The framework was optimized in two separate
stages, i.e., training feature embedding Gω and spatial-temporal
information aggregation Hϕ. At the first stage, Gω was trained for
8000 iterations with batch size 128. The learning rate started from 5e−4

and was reduced by 10 after 6000 iterations. When the first stage of
training was finished, we fixed and utilized the trained model G*

ω to
generate the spatial embeddings of all frames for training Hϕ. At the
second stage, the model Hϕ was trained for 4000 iterations by
selecting all consecutive frames in a video as the input in each itera-
tion. By adopting temporal convolution53, the model was empowered
to process all feature embeddings of the video in a causalmanner, thus
preserving the characteristics necessary for online prediction. We set
the learning rate as 5e−3 at the beginning and multiplied it with 0.1 at
iterations 1500 and 2500. The parameters of modules Gω andHϕ were
both optimized by SGD with momentum. Supplementary Fig. 5 shows
the curves of training loss, where the loss curves becameflat at the end
of the training process. Therefore, models at the final iteration were
used for phase prediction. After optimizing and fixing the network
structure and hyper-parameters, we proceeded to retrain the model
using the entire developmental dataset. Thiswasdone tomaximize the
amount of available training data and improve the model’s general-
ization performance54. For any future applications of AI-Endo on other
datasets, such as external, ex vivo, and in vivo animal studies, we used
the model that was trained on the entire developmental dataset.

Description of the animal studies
Study design of live animal experiments. Two healthy female pigs of
~30kg were used as the in vivo porcine models for ESD experiments
under general anesthesia at CUHK Jockey Club Minimally Invasive
Surgical Skills Centre (CUHKMISSC). The procedures were performed
with a high-definition endoscope (GIF-H190 with straight transparent
hood, Olympus Medical Corporation, Tokyo, Japan) and ESD knife
(Dual knife J, Olympus Medical Corporation, Tokyo, Japan). The VIO3
(Erbe Elektromedizin GmbH, Germany) was used as the electrosurgical
power platform. During the ESD procedures, circular lesions were pre-
marked in the porcine esophagus, stomach and rectum with 2 cm in
diameter for subsequent ESD simulation in aminal experiments. Due to
the increasing difficulty in performing ESD in the stomach, esophagus
and rectum, the time required for each procedure also increased
accordingly, especially for novice endoscopist. As a result, the number
of procedure performed by each endoscopist were different. Specifi-
cally, the experienced endoscopist performed seven procedures,
including 3 stomach, 2 esophagus and 2 rectum, while the novice
endoscopist performed five procedures, 2 stomach, 2 esophagus and 1
rectum. Such a design of animal experiments can cover diverse sce-
narios, therefore allowing us to observe the AI model’s efficacy in
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general. Consent was obtained from the endoscopists to publish
identifiable information as shown in Fig. 4b.

To integrate AI-Endo into real-time surgical workflow, we pack-
aged the algorithms as a ready-to-use software providing automatic
data analytics and an interactive user interface (illustrated in Fig. 8). It
was deployed on a standardized workstation with an Intel Xeon(R) 3.7
GHzCPU andoneGPUofNVIDIAGeForceRTX3090. The video stream
from the Olympus endoscopy system was exported from the SDI port
and converted through the SDI to a USB converter (U3SDH, ACASIS,
China), then imported to the AI-Endo software. This data was used as
input to the network for intelligent workflow recognition, and the
predicted outputs were visualized through the user interface. Our AI-
Endo adopted a third-party monitor thus not changing the operation
style of an existing clinical setting. The user interface was mainly
composed of three parts, including procedure basic information,
phase recognition result and intelligent skill summary. Specifically,
using the AI-Endo software in practice, we can mark clinical basic
information, e.g., patient ID, surgeon name, lesion location and size,
operation date, etc. As the procedure starts, the AI-Endo would auto-
matically recognize the ongoing surgical phase at each time point, and
overlay the results onto video frames dynamically. The computation
speed can achieve 47 fps using the standard workstation, which suffi-
ciently satisfies the requirements for real-time application. In live
experiments, the AI software could monitor the progress of the ESD
procedure, and timely reflect the smoothness of dissection, which was
useful for the mentor to easily track the practicing status of trainees.
We noticed that the AI-Endo was sensitive to the actions of surgical
instruments and their interaction with target tissues, which was
reflected in online predictions showing frequent transitions between
dissection and idle. Upon finishing the entire procedure, our AI-Endo
software can automatically generate a structural report to statistically
summarize the surgical workflow, and give an objective assessment of
the training session. All the developed functions are easy to use for
surgeons without the need for coding experience. Both the mentor

and trainee were satisfiedwith the AI-Endo software design and its way
of incorporation into the existing operation system.

The AI-Endo could generate an intelligent report that presents
statistical information and a structural summary of training perfor-
mance (Fig. 5b). Taking advantage of automatic data analysis, the
performance of the surgeon could be assessed immediately in an
objective way. The specific content of the report includes basic infor-
mation, phase statistics and skill assessment. First, the basic informa-
tion shows the date, hospital, case name, endoscopist name, training
session and settings. Second, the phase statistics section visualizes the
entire procedure using a color bar, where the frames of each phase are
marked in different colors over time, based on automatic recognition
results. Meanwhile, the training status was shown aside, indicating the
degree of guidance that the trainee received from the mentor, i.e.,
independent, with help, or take over. As a quantitative analysis, we
calculated the duration distribution across four phases, which is useful
for the overall understanding of the surgical skills for ESD9,36. We got
the percentage of each phase by counting the number of corre-
sponding frames from AI predictions, with the calculated ratio visua-
lized in an intuitive pie chart. Third, our AI-Endo software further
analyzed the skill-aspect performance of endoscopists based on phase
recognition results. Online score of NT-index and offline scores of
transition metrics and phase periods (which can be straightforwardly
derived from the above statistics) were reported. The curve of NT-
index was plotted along time in an overview format. The transition
matrix was added to show the inter-changing frequency among pha-
ses, which reflects the proficiency and smoothness of the operator.
Phase periods listed time duration of each phase, which was further
used for calculating the Idle period/Tumor size, Idle period/Dissection
period, and Procedure duration/Tumor size. Based on these skill
assessments, we could compare and rank the performance of endos-
copists for the training session. Our experiment demonstrated that
this relative comparison matched the mentor’s subjective impression
of the skill levels of different trainees. The design of the report

Fig. 8 | The desktop software of AI-Endo. The user interface includes basic information, phase prediction, AI result display and summary report generation button. The
software is integrated into real-time clinical settings.
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template was a result of insights and rounds of discussions from both
engineers and clinicians.

Statistical analysis
All statistical analyses were performed with Python (v3.6). For the
quantitative results of the performance on the development and
external datasets, we adapted Student’s t-distribution with 95% con-
fidence interval (CI: lower%, upper%). To compare the analytical results
from different groups, we used a two-sided pairwise T-test to inspect
their statistical difference. A P-value of <0.05 was considered as sta-
tistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the in vivo and ex vivo animal trial studies are
publicly available in the Figshare database https://doi.org/10.6084/
m9.figshare.23506866.v5. Due to ethical regulations on con-
fidentiality and privacy, access to the human cases used for training
and validatingmodels is limited to authorized researchers approved
by the ethics committee. The timeframe for the ethics application
would be about two months. These data are available from the
corresponding authors upon request with justification of specific
usage of the data and non-commercial purposes. Source data are
provided with this paper.

Code availability
AI-Endo was implemented with Python 3.6.13 and PyTorch 1.10.2. The
source code for this project is available at the GitHub repository
https://github.com/med-air/AI-Endo55.
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