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Uncertainty-inspired open set learning for
retinal anomaly identification

Meng Wang 1,14, Tian Lin 2,14, Lianyu Wang3,4,14, Aidi Lin2, Ke Zou5,
Xinxing Xu 1, Yi Zhou6, Yuanyuan Peng7, Qingquan Meng6, Yiming Qian 1,
Guoyao Deng5, Zhiqun Wu8, Junhong Chen9, Jianhong Lin10, Mingzhi Zhang 2,
Weifang Zhu6, Changqing Zhang11, Daoqiang Zhang 3,4, Rick Siow Mong Goh1,
Yong Liu1, Chi Pui Pang2,12, Xinjian Chen 6,13,15 , Haoyu Chen 2,15 &
Huazhu Fu 1,15

Failure to recognize samples from the classes unseen during training is amajor
limitation of artificial intelligence in the real-world implementation for
recognition and classification of retinal anomalies. We establish an
uncertainty-inspired open set (UIOS) model, which is trained with fundus
images of 9 retinal conditions. Besides assessing the probability of each
category, UIOS also calculates an uncertainty score to express its confidence.
Our UIOS model with thresholding strategy achieves an F1 score of 99.55%,
97.01% and 91.91% for the internal testing set, external target categories (TC)-
JSIECdataset andTC-unseen testing set, respectively, compared to the F1 score
of 92.20%, 80.69% and 64.74% by the standard AI model. Furthermore, UIOS
correctly predicts high uncertainty scores, which would prompt the need for a
manual check in the datasets of non-target categories retinal diseases, low-
quality fundus images, and non-fundus images. UIOS provides a robust
method for real-world screening of retinal anomalies.

Retina is part of the central nervous system responsible for pho-
totransduction. Retinal diseases are the leading cause of irrever-
sible blindness and visual impairment worldwide. Treatment at the
early stage of disease is important to reduce serious and permanent
damages. Therefore, timely diagnosis and appropriate treatment
are important for preventing threatened vision and even

irreversible blindness. Diagnosis of retinal diseases requires
expertise of trained ophthalmologists, while there is always heavy
demand for large number of patients with retinal diseases to limited
number of specialists. A solution to this service gap is image-based
screening that alleviates workload of ophthalmologists. Fundus
photography-based screening has been shown to be successful to
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prevent irreversible vision impairment and blindness caused by
diabetic retinopathy1.

In recent years, deep learning, as an established but still rapidly
evolving technology, has remarkably enhanced disease screening from
medical imaging2–4, including fundus photography screening for ret-
inal diseases. The applications of deep learning in diabetic retinopathy
(DR)5–8, glaucoma9–11, and age-related macular degeneration (AMD)12–14

screening have achieved comparable performance with human
experts. There are also some successful applications of deep learning
in classifying multiple retinal diseases15.

However, a major drawback of the standard artificial intelligence
(AI) models in real-world implementation is the problem of open set
recognition. AI models are trained in a close set, i.e., a limited number
of categories and limited characters of samples. But the realworld is an
open set environment, where some samples may be out of the cate-
gories in the training set or with untypical features. Previous studies
have demonstrated that the performance of deep learning models
declines when applied to data out of distribution (OOD), such as low-
quality images and untypical cases16–18. Furthermore, if the testing

image is a retinal disease not included in the training set, even if it is a
non-fundus image, the standard AI model will still give a diagnosis of
the disease category in the training data. This would lead to mis-
diagnosis. Meanwhile, in practice, it is impossible to collect data that
covers all fundus abnormalities with sufficient sample size to train the
model. Therefore, it is highly necessary todevelopanopen set learning
model that can accurately classify retinal diseases included in the
training set, as well as for the screening of other OOD samples without
the need to collect and label additional data.

In this study, we developed a fundamental AI model of
uncertainty-inspired open set (UIOS) based on the evidential uncer-
tainty deep neural network. As shown in Fig. 1, if the test data is a
fundus disease included in the training set with distinct features, our
proposed UIOS model will give a diagnosis decision with a low
uncertainty score, which indicates that the decision is reliable. On the
contrary, if the test data is in the category outside the training data set,
low-quality images, and non-fundus data, UIOS will give a prediction
result with a high uncertainty score, which suggests that the diagnosis
result given by the AI model is unreliable. If so, a manual check by an

Fig. 1 | The overview of the uncertainty-inspired open set (UIOS) learning for
retinal anomaly classification. Standard artificial intelligence (AI) and our pro-
posed UIOS AI models were trained with the same dataset with 9 categories of
retinal photos. In testing, standard AImodel assigns a probability value (pi) to each
of the 9 categories, and the one with the highest probability is output as the
diagnosis. Even when the model is tested with a retinal image with disease outside
the training set, the model still outputs one from the 9 categories, which may lead
to misdiagnosis. In contrast, UIOS outputs an uncertainty score (μ) besides the

probability (pi) for the 9 categories. When the model is fed with an image with
obvious features of retinal disease in the 9 categories, the uncertainty-based clas-
sifier will output a prediction result with a low uncertainty score below the
threshold θ to indicate that the diagnosis result is reliable. Conversely, when the
input data contains ambiguous features or is an anomaly outside of training cate-
gories, themodelwill assign a high uncertainty score above thresholdθ to explicitly
indicate that the prediction result is unreliable and requires a double-check from
their ophthalmologist to avoid misdiagnosis.
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experienced grader or ophthalmologist is required. Therefore, with
the estimated uncertainty, our AI model is capable to give reliable
diagnosis for retinal diseases involved in training data and avoid con-
fusion from OOD samples.

Results
Performance in the internal testing dataset
In the internal testing set with 2010 images, our UIOS achieved an F1
score ranging from93.12% to 99.27% for the 9 categories, especially for
pathologic myopia (PM, 98.84%), glaucoma (GL, 98.53%), retinal
detachment (RD, 99.27%), and diabetic retinopathy (DR, 98.04%)
(Table 1). The average area under the curve (AUC) (Fig. 2), precision
(Supplementary Table 1), F1 score (Table 1), sensitivity (Supplementary
Table 2), and specificity (Supplementary Table 3) of the UIOS model
were 99.79%, 97.57%, 97.29%, 97.04%, and 99.75%, respectively, which
were better than the standard AI model, although the difference was
statistically significant for F1 (p = 0.029, Supplementary Table 7) but
not AUC (p = 0.371, Supplementary Table 8). Furthermore, UIOS also
outperformed the standard AI model in terms of confusion matrix
(Supplementary Fig. 1). It should be noted that when an image is
flagged as “uncertain” beyond the threshold by the UIOSmodel, those
images are suggested to seek double checking by ophthalmologists
and removed when calculating the eventual diagnostic performance
metrics.

The distribution of the uncertainty score in the primary testing set
was similar to the validation set, except that 9.75% of samples with
uncertainty scores were above the threshold (Fig. 3 and Supplemen-
tary Table 4). After thresholding these OOD samples, the performance
of UIOS was further improved. The average value of all indicators has
reachedmore than 99%, especially the average F1 score and AUC were
99.55% and 99.89%, respectively with the UIOS+thresholding (Table 1
and Fig. 2c).

In addition, we compared the performance of UIOS with other
commonly used uncertaintymethods, includingMonte Carlo drop-out
(MC-Drop), ensemble models (Ensemble), test time-augmentations
(TTA), and using entropy across the categorical class probabilities in
the standard AI model (Entropy). Our UIOS model consistently out-
performed these uncertainty approaches in terms of F1 score, both on
the original internal testing set (Supplementary Table 5) and dataset
where samples with uncertainty scores above their threshold have
been suggested to seek double-checking by ophthalmologists (Sup-
plementary Table 6). Statistical analyses showed that the difference
was significant except in the comparison of UIOS to Ensemble in the
internal testing set with thresholding (Supplementary Table 7). The

receiver operating characteristic (ROC) curves of different uncertainty
methods are shown in Supplementary Figs. 2 and 3, and the statistical
analyses are shown in Supplementary Table 8. The AUCs of UIOS are
higher or comparable in performance to other methods.

Performance in the external datasets
To further evaluate the generality of UIOS for screening fundus dis-
eases, we also conducted experiments on two external datasets of
target categories from JSIEC1000 (TC-JSIEC) and unseen target cate-
gories (TC-unseen), with 435 and 3,716 images, respectively. Both
external datasets had the same categories as the training set. The TC-
JSIEC set was from a different source, while the images in the TC-
unseen dataset have different features, such as early stage or ambig-
uous features. The performance of the standard AI model declined in
thesemodels and achieved an average F1 score of 80.69% and 64.74%,
respectively (Table 1). In comparison, UIOS achieved an average
F1 score of 87.19% and 77.15%, with a p value of 0.006 and 0.008,
respectively, for the comparison with standard AI model (Table 1 and
SupplementaryTable7). The improvementof the F1 scorewas found in
all categories (Table 1).

There were 23.22% and 47.55% samples with an uncertainty score
over the threshold, in the TC-JSIEC and TC-unseen sets, respectively
(Fig. 4 and Supplementary Tables 4 and 9), which indicated the need
for assessment byophthalmologists. After thresholding these samples,
the F1 of UIOS was further improved from 87.19% to 97.01% and from
77.15% to 91.91%, respectively (Table 1). The precision, sensitivity, and
specificitywere also best in theUIOSwith thresholding strategy among
the three models (Supplementary Tables 1–3).

The ROC curves of the three models in detecting retinal diseases
in TC-JSIEC and TC-unseen datasets are shown in Fig. 2d–i. The AUC of
the standard AImodel was 97.67% and 91.84% for the TC-JSIEC and TC-
unseen datasets, respectively. They improved to 99.07% and 93.87%
with the UIOS model (p =0.002 and 0.196, respectively) and further
achieved 99.77% and 97.34% with the UIOS+thresholding. And, our
UIOS also achieved better confusion matrices than the standard AI
models on two external test sets (Supplementary Fig. 1). Furthermore,
when applying our thresholding strategy (UIOS+thresholding) to
indicate samples with uncertainty scores above the threshold that
required manual check by ophthalmologists, we observed a further
significant improvement in the confusion matrix and a significant
reduction in misclassified samples (Supplementary Fig. 1).

Figure 4 shows four samples of fundus images detected with the
standardAImodel andourUIOSmodel. The standardAImodel directly
took the fundus category that obtained the maximum probability

Table 1 | F1 score of different models on three testing sets

Category Internal testing dataset TC-JSIEC TC-unseen

Standard
AI model

UIOS
model

UIOS+
thresholding

Standard
AI model

UIOS
model

UIOS+
thresholding

Standard
AI model

UIOS
model

UIOS+
thresholding

Normal 97.48 99.18 99.88 72.50 84.34 90.00 75.39 83.17 92.86

TF 93.05 93.12 98.68 75.86 78.79 94.74 59.36 78.43 89.14

PM 95.98 98.84 99.39 99.08 100.00 100.00 79.90 80.00 94.69

GL 97.26 98.53 100.00 60.87 72.73 93.33 77.69 78.33 95.08

RVO 95.72 97.36 99.60 86.21 95.24 100.00 65.48 84.96 97.03

RD 93.43 99.27 100.00 97.35 94.44 98.85 48.95 72.19 92.59

AMD 87.97 97.24 99.41 83.53 93.67 99.31 42.78 50.17 76.63

DR 93.25 98.04 99.62 82.54 87.76 96.83 53.43 83.21 96.04

CSCR 75.65 94.05 99.33 68.29 77.78 100.00 79.65 83.84 93.12

Average 92.20 97.29 99.55 80.69 87.19 97.01 64.74 77.15 91.91

TF tigroid fundus, PM pathological myopia,GL glaucoma, RVO retinal vein occlusion, RD retinal detachment, AMD age-relatedmacular degeneration, DR diabetic retinopathy,CSCR central serous
chorioretinopathy.
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value as the final diagnosis. UIOS could give the final prediction result
while providing an uncertainty score to explicitly illustrate the relia-
bility of the diagnosis. The images with lower uncertainty scores indi-
catedhigher confidence in thefinaldecisionof themodel (Fig. 4a, b). In
some images with incorrect final diagnosis (Fig. 4c, d), the standard AI
model not only gave wrong prediction results, but also provided a
higher probability valuewhich led tomis-/under-diagnosis. In contrast,
althoughUIOS couldalso gavewrongdiagnostic results, theprediction
results were indicated to be unreliable by assigning a high uncertainty
score to the diagnostic results. The high uncertainty score suggested
the need to seek an ophthalmologist to read the images again to pre-
vent mis-/under-diagnosis.

We further compared the performance of our proposed UIOS to
other uncertainty approaches in these two external testing sets. The
results showed that our UIOS model achieved higher F1 scores (Sup-
plementary Tables 10–13) and AUC (Supplementary Figs. 2 and 3) in
both original datasets and the datasets after thresholding. The differ-
ence was statistically significant in most comparisons (Supplementary
Tables 7 and 8).

Open set anomaly detection
In three fundus photo datasets with abnormal samples outside the
training category, UIOS detected 86.67%, 82.27% and 89.40% of samples
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Fig. 2 | The receiver operating characteristic (ROC) curves of the standard AI model, our UIOS, and UIOS+thresholding in internal and two external testing
datasets. Source data are provided as a Source data file.

Fig. 3 | Uncertainty density distribution for different datasets.Different colored
solid lines indicate different test datasets for target categories of retinal diseases,
while different colored dashed lines indicate different out of distribution datasets.
θ threshold theta. Source data are provided as a Source data file.
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with high uncertainty on non-target categories (NTC) dataset
(1380 samples), NTC-JSIEC (502 samples) and low-quality image dataset
(1066 samples), respectively. UIOS also performed well in detecting
OOD samples from three non-fundus data. Specifically, UIOS achieved
abnormality detection rates of 99.81%, 99.01% and 96.18% on the three
non-fundus datasets RETOUCH [6396 optical coherence tomography
(OCT) images of training set], OCTA [304 optical coherence tomo-
graphy angiography (OCTA) images) and VOC 2012 (17,125 natural
images of training and validation sets including 21 categories), respec-
tively. Meanwhile, Fig. 3 shows the uncertainty density distribution of
different datasets outside the training set category. Compared to the
uncertainty score distribution of the validation set, UIOS assigned a
higher uncertainty score for the samples in different OOD datasets. In
addition, Fig. 5 represents some examples of OOD images that were not

included in the training category. The standard AI model provided
incorrect diagnosis results and assigned a high probability to the
wrongly diagnosed fundus disease. Conversely, although our UIOS
model gave incorrect predictions for OOD samples, it also assigned a
higher uncertainty score to indicate that thefinal decisionwas unreliable
and needed assessment by an ophthalmologist.

The abnormal detection rates of different uncertaintymethods on
different datasets are shown in Supplementary Table 14. Overall, UIOS
achieved the highest anomalydetection rates onmost datasets, except
in the NTC-JSIEC and OCTA datasets, where UIOS was slightly lower
than Entropy and Ensemble respectively. Furthermore, our UIOS
model only required a single forward pass of the model to obtain
uncertainty estimates, resulting in the highest execution efficiency.
Particularlywhencompared toMC-Drop, Ensemble, andTTAmethods,
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Fig. 4 | Four samples of fundus images detected with the standard AI model
and our UIOSmodel. a, b Two samples with correct diagnostic results from both
the standard AI model and our UIOS model. c, d Two samples with incorrect
diagnostic results from the standard AI model and our UIOS model. Unlike the
standard AI model, which directly takes the fundus disease category with the
highest probability score as the final diagnosis result, our UIOS will not only give
the probability scores but also provide the corresponding uncertainty score to

reflect the reliability of the prediction result. If the uncertainty score is less than the
threshold theta, indicating the model prediction is reliable; Conversely, if the
uncertainty score is greater than the threshold theta, which represents that the
result is unreliable, and manual double-checking is required to avoid possible
misdiagnosis problems. US uncertainty score, θ threshold theta. Source data are
provided as a Source data file.
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UIOS showed a significant improvement in execution efficiency, with
only 0.34ms/per image (Supplementary Table 14).

Discussion
In the past few years, deep learning-based methods for the detection of
retinal diseases have shown a rapid growing trend13–15. But less works
have been reported to address the confidence and reliability of results.
Besides, AI models would inevitably give wrong prediction results for
rare retinal diseases or other OOD data that are not included in the
training set. While we can also retrain the model to detect more
abnormal classes by collecting and labeling more categories of data, it

incursmore time and labor that are costly. In addition, due to limitations
ofmedical resources and large number of patients with different fundus
diseases, it is almost impossible to collect and label all the data on retinal
abnormalities. This is a major reason that limits the deployment of AI
models in clinical practice. To address these issues, we provide a
uncertainty-based open set AI model for retinal disease detection. We
introduce an algorithm that divides the diagnostic results of the AI
model into low and high confidence levels by uncertainty thresholding,
which can significantly improve the accuracy of screening for target-
categories fundus diseases in training set with obvious features, while
also avoiding misdiagnosis due to ambiguous features. Our uncertainty
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Fig. 5 | Testing results of OOD samples that were not included in the training
category. Besides assigning a probability to OOD samples as the standard AI
model, our UIOS model also assigns a high uncertainty score to indicate that the
final decision is unreliable and needs a double-check. US uncertainty score, θ

threshold theta. Source data are provided as a Source data file. a fromNTCdataset,
b also from NTC dataset, c from low-quality dataset, d an OCT image from
RETOUCH dataset, and e an OCTA image from OCTA dataset.
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thresholding approach can detect abnormal samples to avoid incorrect
diagnosis and subsequent incidences when deploying AI models in
clinical practice due to samples outside the training distribution. In
addition, our proposed uncertainty paradigm is highly scalable and can
be combined with and enhance the performance of current commonly
used baseline models for retinal diseases screening.

Recently, numerous methods have been developed to detect
abnormalities in fundus images using various deep neural
networks19–22. They trained the models with normal images only and
detected abnormal images in the testing set. Although they have
achieved an AUC of 0.8–0.9, these methods can only differentiate
abnormal from normal images, but cannot classify abnormal images
into different categories. Our UIOS model was developed based on
multiple categories classification, including normal conditions, 8 ret-
inal diseases, and other abnormalities. Therefore, UIOS should be
adequate and ready for clinical implementation.

Several techniques have been explored to evaluate uncertainty
from AI models. Bayesian neural network (BNNs)18,23–25 is a common
uncertainty quantification approach, which can evaluate the uncer-
tainties in their prediction. Within BNNS, MC-Drop26 is a more scalable
and commonly used method that is achieved by randomly removing a
portion of nodes from the model structure when generating predic-
tions, which also leads to higher computational costs. Deep ensemble
is another uncertaintymethod27,28 which generatesmultiple prediction
distributions by training several independent deep learningmodels on
the same input samples and calculates the mean and variance of these
distributions, wheremean and variance are used as the final prediction
and uncertainty. Besides, some studies explored the uncertainty eva-
luation based on the test time augmentation approach29, where an
input sample undergoes a series of different augmentation operations,
and then the uncertainty is estimated based on the variance of pre-
diction results from the augmented images. While there have been
works exploring the applicationof uncertainty tomedical imagingwith
promising performance, most of these works are based on Bayesian
uncertainty and few of them are for multi-target detection of fundus
images. Furthermore, there are previous works to evaluate the relia-
bility of classification results by using entropy across the categorical
class probabilities30,31. While entropy is effective in capturing uncer-
tainty within the observed classes, it may not performwell when faced
with out-of-distribution examples. OOD samples can have low entropy
values, leading to high confidence predictions that are incorrect.
Consequently, relying solely on entropy may not provide robust
detection or handling of out-of-distribution data. Evidential-based
subjective logistic uncertainty to calculate the uncertainty score is
directly based on the evidence collected from the feature extractor
network32–34. The potential capacity of subjective logistic to estimate
the reliability of classification has been explored by Han et al.33, who
introduced Dirichlet distribution into subjective logical (SL) to derive
probabilities of different classes and the overall uncertainty score.
However, they have not explored how to detect OOD samples based
on uncertainty in a quantitative approach. Our previous studies have
introduced evidential uncertainty to investigate uncertainty estima-
tion for lesion segmentation in medical images35,36. Recently, two
groups reported that estimating uncertainty improved the prediction
of cancer by digital histopathology37,38. However, the uncertainty was
estimated for the binary classification. In this study, we have improved
the evidential uncertainty and formalized uncertainty thresholding
based on the internal validation dataset to conduct confidence eva-
luation on the testing datasets to detect the fundus anomaly.

In general, compared to these uncertainty approaches, there are
advantages of our evidential learning-based uncertainty method: (1)
Our UIOS method directly calculates the belief masses of different
categories and corresponding uncertainty score by mapping the
learned features from the backbone network to the space of Dirichlet
parameter distribution. Therefore, our UIOS is trainable end-to-end,

making it easy to implement and deploy; (2) The Dirichlet-based evi-
dential uncertainty method provides well-calibrated uncertainty esti-
mates. It offers reliable uncertainty measurements that align with the
true confidence level of themodel’s predictions, which is supportedby
the results of this study. This is crucial for applications where accurate
assessment of uncertainty is essential, especially for medical diagnosis
or critical decision-making scenarios39,40. (3) Compared to other
uncertainty methods like MC-Drop, ensemble, and TTA, our proposed
UIOS can be computationally more efficient. It requires a single for-
ward pass through the model to obtain uncertainty estimates, elim-
inating the need for multiple model runs or ensemble averaging, thus
reducing the computational cost.

In ophthalmology training, junior ophthalmologists usually first
learn some common retinal diseases. When they see patients in clinics,
they can make diagnosis based on typical manifestations of these
common retinal diseases. However, when the disease presentation is
not what they have learned, the junior ophthalmologist will feel
unconfident in diagnosing the patient and need to consult a senior
ophthalmologist. This is a practice to avoid misdiagnosis in clinical
practice. Our proposed paradigm inUIOSof uncertainty-inspired open
set paradigm mimics the process of reading fundus images by junior
ophthalmologists in clinical practice. The proposed uncertainty
thresholding strategy enables the model to demand assessment by a
human grader, i.e., a senior ophthalmologist, when the model detects
high uncertainty in testing OOD samples. It can avoid potential mis-/
under-diagnosis incidents in clinical practice and improve the relia-
bility of AI models deployed in clinical practice.

We recognize limitations and the need for improvements in the
current study. First, As indicated in Supplementary Table 9, 8.06%,
15.40%, and 30.09%of the samples in the internal testing set and the two
external testing sets (TC-JSIEC and TC-unseen) exhibited correct pre-
dictions with higher uncertainty than the threshold, resulting in addi-
tional labor requirements. Therefore, additional efforts are necessary to
enhance the UIOS’s ability to learn ambiguous features to further
improve its reliability in predicting fundus diseases while reducing the
need for manual reconfirmation. Second, we focused solely on classi-
fying fundus images into one main disease category. In the next phase,
we will collect more data with multi-label classifications and explore
uncertainty evaluation methods for reliable multi-label diseases detec-
tion. Third, themodel will be tested inmore datasets. Samples with high
uncertainty scores will be further assessed. Retrainingwill be performed
with the expended dataset. Fourth, our proposed UIOS with the
thresholding strategy will be applied to other imagemodalities (such as
OCT, CT, MRI, and histopathology) and combined with artificial intelli-
gence techniques for diagnosing specific diseases.

In conclusion,UIOSmodel combinedwith thresholding strategy is
capable to accurately classify 9 retinal conditions in the training set
and to detect non-target-categories retinal diseases and other OOD
samples not seen during training. Our proposedUIOSmodel can avoid
misdiagnoses and provide a robust method for screening retinal
anomalies in the real world.

Methods
Target categories fundus photo datasets
This study was approved by the Joint Shantou International Eye
Center Institutional Review Board and adhered to the principles of
the Declaration of Helsinki. The data has been de-identified. In
accordance with IRB regulations, if the data does not contain any
identifiable patient information, informed consent is not required. As
a result, this study has been granted approval to waive the need for
informed consent. The clinical assessment and labeling procedure
are shown in Supplementary Fig. 4. Fundus images from 5 eye clinics
with different models of fundus cameras were collected. Two trained
graders performed the annotation independently. If their results
were inconsistent, a retinal sub-specialist with more than 10 years
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experience would make the final decision. The numbers of images in
each category within each dataset are listed in Supplementary
Table 15.

We collected 10,034 fundus images of 8 different fundus diseases
or normal condition. They were named the primary target-categories
(TC) dataset. These images were randomly divided into training
(6016), validation (2008) and test sets (2010) in the ratio of 6:2:2. The
TC included normal, tigroid fundus (TF), pathological myopia (PM),
glaucoma (GL), retinal vein occlusion (RVO), retinal detachment (RD),
age-related macular degeneration (AMD), diabetic retinopathy (DR),
and central serous chorioretinopathy (CSCR). The inclusion criteria for
these diseases are listed in Supplementary Table 16.

Theremay be several different features in a disease, and different
patientsmay have different features. In human learning, junior doctors
usually first learn a few features to begin with and other features later.
To investigate the performance of themodel in classifying imageswith
different features from the training images, we collected 3,716 fundus
images with ambiguous features of the 8 fundus diseases or normal
condition as an external testing set (named as unseen target cate-
gories, TC-unseen). The including criteria are also listed in Supple-
mentary Table 16.

To further validate the capacity of our proposed UIOS to screen
retinal diseases, we also conducted experiments on the public dataset of
JSIEC15, which contained 1000 fundus images from different subjects
with 39 types of diseases and conditions. Among them, 435 fundus
imageswerewith the target categories and set as the dataset of TC-JSIEC.

Non-target categories fundus photo datasets
Two non-target categories retinal diseases datasets and one low-
quality imagedatasetwere used to investigate the capability ofUIOS to
detect fundus abnormalities outside the categories of the training set.
The first was 1380 fundus images collected from the five clinics with
retinal diseases outside the training set as non-target categories (NTC)
dataset. The second was 502 images with fundus disease outside the
training dataset in the public dataset of JSIEC and set as the dataset of
non-target categories from JSIEC1000 (NTC-JSIEC). We removed the
images in the categories of massive hard exudate, cotton-wool spots,
preretinal hemorrhage, fibrosis and laser spots to avoid confusions
caused by multiple morphologic abnormalities. The low-quality data-
set was collected from the 5 clinics and consisted of 1066 clinically
unusable fundus images due to severe optical opacity, mishandling, or
overexposure. The detailed diagnosis of NTC andNTC-JSIEC is listed in
Supplementary Table 17.

Non-fundus photo datasets
Three non-fundus photo public datasets were used to evaluate the per-
formance of AI models in detecting OOD samples. The first was the
VOC2012 dataset, with 17,125 natural images of 21 categories41. The sec-
ond was RETOUCH dataset which consisted of 6936 2D retinal optical
coherence tomography images42. The third was our OCTA dataset col-
lected from our eye clinic, consisting of 304 2D retinal OCTA images.

Framework of the standard AI model
As shown in Fig. 1, the standard AI model consisted of a backbone
network for extracting the feature in formation in fundus images,while
a Softmax classifier layer was adopted to produce the prediction
results based on the features from the backbone network. For deep
learning based disease detections, pre-trained ResNet-5043 has been
widely used as a backbone network to extract the rich feature infor-
mation contained in medical images and have achieved excellent
performance44–47. Therefore, in this study, we employed pre-trained
ResNet-50 as our backbone network to conduct experiments. As
shown in Fig. 1, standard AImodel assigned a probability value to each
category of fundus diseases that were included in the training set. The

category with the highest probability value was output as the final
diagnosis result, without any information reflecting the reliability of
the final decision. However, when the standard AI model was given a
fundus image of an anomaly out of the fundus diseases in the training
set or non-fundus data, the model still output a category of fundus
disease from the training set as the final diagnosis result, which could
lead to serious mis-/under-diagnosis.

Framework of UIOS
As shown in Fig. 1, our proposed UIOS architecture was simple and
mainly consisted of a backbone network to capture feature infor-
mation. An uncertainty-based classifier was used to generate the
final diagnosis result with an uncertainty score that led to more
reliable decision making without losing accuracy. To ensure
experimental objectivity, we adopted pre-trained ResNet-50 as our
backbone to capture the feature information contained in fundus
images. Meanwhile, with fundus images through ResNet-50, the
final decision and corresponding overall uncertainty score were
obtained by our uncertainty-based classifier, which was mainly
composed of three steps. Specifically, this was a K-class retinal
fundus disease detection.

Step (1): Obtaining the evidence feature E = e1, . . . ,eK
� �

for dif-
ferent fundus diseases by applying Softplus activation function to
ensure the feature values are larger than 0:

E = Sof tplus FOut

� �
, ð1Þ

where FOut was the feature information obtained from the ResNet-50
backbone.

Step (2): Parameterizing E to Dirichlet distribution, as:

α = E + 1,i:e:,αk = ek + 1, ð2Þ

whereαk and ek are the k-th category Dirichlet distribution parameters
and evidence, respectively.

Step (3): Calculating the belief masses and corresponding
uncertainty score as:

bk =
ek
S

=
αk � 1

S
,u=

K
S
, ð3Þ

where S=
PK

k = 1 ek + 1
� �

=
PK

k = 1αk is the Dirichlet intensities. It can be
seen from Eq. 3 the probability assigned to category k is proportional
to the observed evidence for category k. Conversely, if less total evi-
dence was obtained, the greater the total uncertainty. The belief
assignment can be considered as a subjective opinion. The probability
of k-th retinal fundus disease was computed as pk =

αk
S based on the

Dirichlet distribution48 (The definition of Dirichlet distribution is
detailed in the below section). In addition, to further improve the
performance of ourUIOS,we also designed a loss function to guide the
optimization of our UIOS, the details are shown in section “Loss
function.”

Definition of Dirichlet distribution
The Dirichlet distribution was parameterized by its concentration K
parametersα = α1, . . . ,αK

� �
. Therefore, theprobability density function

of the Dirichlet distribution was computed as:

D Pjαð Þ=
1

B αð Þ
QK

k = 1p
αk�1
k f or P 2 SK

0 Otherwise
,

(
ð4Þ
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where SK was the K-dimensional unit simplex:

SK = Pj
XK
k = 1

pi = 1

( )
,0≤pi ≤ 1, ð5Þ

and B αð Þ represented the K-dimensional multinomial beta function.

Loss function
Cross entropy loss function has been widely employed in most pre-
vious disease detection studies,

LCE = �
XK
k = 1

yk log pk

� �
: ð6Þ

In this study, subjective logical (SL) associated the Dirichlet dis-
tributionwith the belief distribution under the framework of evidential
uncertainty theory to obtain the probabilities of different fundus dis-
eases and the corresponding overall uncertainty score based on the
evidence collected from the backbone network. Therefore, we could
work out the Dirichlet distribution parameter of α = α1, . . . ,αK

� �
and

obtained the multinomial opinions D pijαi

� �
, where pi was the class

assignment probabilities on a simplex. Similar to TMC33, CE loss was
modified as:

LUN = LUN�CE + λ * LKL, ð7Þ

where LUN−CE was used to ensure that the correct prediction for each
sample yieldedmore evidence thanother classes,while LKLwasused to
ensure that incorrect predictions would yield less evidence, and λ was
the balance factor that was gradually increased so as to prevent the
model from paying too much attention to the KL divergence in the
initial stageof training,whichmight result in a lackof goodexploration
of the parameter space and cause the network to output a flat uniform
distribution.

LUN�CE =
Z XK

k = 1

�yk log pk

� �" #
1

B αi

� �YK
k = 1

pαk�1
k dpk

=
XK
k = 1

yk ψ Sk
� �� ψ αk

� �� �
,

ð8Þ

whereψ() was the digamma function, while B() is the multinomial beta
function for the concentration parameter α.

LKL = log
Γ

PK
k = 1α̂k

� �
Γ Kð Þ QK

k = 1
Γ

PK
k = 1α̂k

� �
0
BBB@

1
CCCA +

XK
k = 1

α̂k � 1
� �

ψ α̂k

� �� ψ
XK
k = 1

α̂k

" #
,

ð9Þ

where α̂ = y+ 1� yð Þ � α is the adjusted parameter of the Dirichlet
distribution which could avoid penalizing the evidence of the ground-
truth class to 0, and Γ() is the gamma function.

The uncertainty loss LUN could guide the model optimization
based on the feature distribution which was parameterized by
Dirichlet concentration. However, Dirichlet concentration also
changed the original feature distribution, which might cause a
decline in the classifier’s confidence in the parameterized features.
Therefore, to ensure confidence for the parameterized features
during training, we further introduced the temperature cross-
entropy loss (LTCE) to directly guide the model optimization based

on the parameterized features.

LTCE = �
XK
k = 1

yk log
bk

τ

� 	
, ð10Þ

where bkwas the beliefmass for k-th class, while τwas the temperature
coefficients to adjust the belief values distribution, the value is initi-
alized 0.01 was gradually increased to 1 to prevent the low confidence
for the belief mass distribution in the initial stage of training.

Therefore, the final loss function for optimizing our proposed
model was formalized as (the ablation experiments on the effective-
ness of the loss function were shown in Supplementary Table 18):

LTUN = LUN + LTCE : ð11Þ

Uncertainty thresholding strategy
In this study, the threshold θ was determined using the distribution
of uncertainty score in our validation dataset. As shown in Supple-
mentary Table 4, the prediction results below the threshold θ were
more likely to be correct, i.e., diagnostic result with high confidence.
Conversely, the decisions with an uncertainty score higher than θ
were consideredmore likely to be unreliable and needed assessment
from ophthalmologist. To obtain the optimal threshold value, we
calculated the ROC curve, all possible true positive rates (TPRs) and
false positive rates (FPRs) for the wrong prediction of validation
dataset based on wrong ground truth Û = û1, . . . ,ûK

� �
and uncertainty

scores U = u1, . . . ,uk

� �
for each sample in the validation dataset, n was

the total number of samples in the validation dataset, and Û was
obtained by:

ûi = 1� 1 Pi,Y i


 �
,where 1 Pi,Y i


 �
=

1 if Pi = Y i

0 otherwise

�
, ð12Þ

where Pi and Yiwere the final prediction result and ground truth of i-th
sample in validation dataset. Inspired by Youden’s index49, the objec-
tive function based on the TPRs, TPRs, and thresholds of validation
dataset was formalized as:

l θð Þ= 2 *TPRs θð Þ � FPRs θð Þ, ð13Þ

Therefore, the final optimal threshold value is calculated by
θ=argmaxθl θð Þ. Finally, weobtained the optimal thresholdθof0.1158
and the confidence level of a model prediction result:

C Pð Þ= u <θ, high� conf idence

u≥ θ, low� conf idence

�
: ð14Þ

Experimental deployment
We trained our UIOS and other comparison methods including
standard AI model, Monte-Carlo drop-out (MC-Drop), ensemble
models, time-augmentations (TTA), using entropy across the cate-
gorical class probabilities (Entropy), on the public platform Pytorch
and Nvidia Geforce RTX 3090 GPU (24G). Adam was adopted as the
optimizer to optimize the model. Its initial learning rate and weight
decay were set to 0.0001 and 0.0001, respectively. The batch size
was set to 64. To improve the computational efficiency of the model,
we resized the image to 256 × 256. Meanwhile, online random left-
right flipping was applied for data augmentation. In addition, to
reduce the time and effort in training multiple models for the
ensemble, we used snapshot ensembles50 to obtain multiple weights
for ResNet-50 by using different checkpoints in a single training run.
We also compared and analyzed the AUC and F1 scores of different
methods.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from JSIEC1000 are available at (https://www.kaggle.com/
datasets/linchundan/fundusimage1000). Data from RETOUCH is
available at (https://retouch.grand-challenge.org). Data from VOC2012
is available at (http://host.robots.ox.ac.uk/pascal/VOC/voc2012).
Additional data sets supporting the findings of this study are not
publicly available due to the confidentiality policy of the Chinese
National Health Council and institutional patient privacy regulations.
However, they are available from the corresponding authors upon
request. For replication of the findings and/or further academic andAI-
related research activities, datamay be requested from corresponding
author H.C. (drchenhaoyu@gmail.com), and any requests will be
responded to within 10 working days. Source data are provided with
this paper.

Code availability
All codes are available at https://github.com/LooKing9218/UIOS.
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