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Fetal biometry and amniotic fluid volume
assessment end-to-end automation using
Deep Learning
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Fetal biometry and amniotic fluid volume assessments are two essential yet
repetitive tasks in fetal ultrasound screening scans, aiding in the detection of
potentially life-threatening conditions. However, these assessment methods
can occasionally yield unreliable results. Advances in deep learning have
opened up new avenues for automated measurements in fetal ultrasound,
demonstrating human-level performance in various fetal ultrasound tasks.
Nevertheless, the majority of these studies are retrospective in silico studies,
with a limited number including African patients in their datasets. In this study
we developed and prospectively assessed the performance of deep learning
models for end-to-end automation of fetal biometry and amnioticfluid volume
measurements. These models were trained using a newly constructed data-
base of 172,293 de-identified Moroccan fetal ultrasound images, supple-
mented with publicly available datasets. the models were then tested on
prospectively acquired video clips from 172 pregnant people forming a con-
secutive series gathered at four healthcare centers in Morocco. Our results
demonstrate that the 95% limits of agreement between the models and prac-
titioners for the studiedmeasurements were narrower than the reported intra-
and inter-observer variability among expert human sonographers for all the
parameters under study. This means that these models could be deployed in
clinical conditions, to alleviate time-consuming, repetitive tasks, and make
fetal ultrasound more accessible in limited-resource environments.

Ultrasound (US) is a low-cost, non-invasive imaging modality that has
been shown to independently reduce fetalmortality byup to 20%1. Yet,
99% of preventable fetal and maternal deaths occur in developing
countries where access to fetal ultrasound is scarce and more than a
third of operators have no training at all2,3. The WHO recommends at
least one US examination for each pregnancy4; however, there is a
shortage of physicians and sonographers able to perform this exam-
ination primarily in countries of the Global South5. These countries are

not the only ones suffering from excessive and increasing fetal and
maternal mortality. The USA ranks last amongst industrialized coun-
tries in terms of maternal mortality with notable ethnic differences:
African-American women are three times more likely to die during
pregnancy compared to non-Hispanic White women6. Thus, demo-
cratizing access to healthcare resources dedicated to fetal and
maternal health, regardless of ethnicity, socioeconomic status, or
geographic location, is a global healthcare priority.
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Two vital and systematic assessments of all routine screening
scans are fetal biometry (FB) and amniotic fluid volume (AFV). FB and
AFV help detect and manage potential life-threatening conditions. FB
is used to determine gestational age (GA), which is essential to guide
therapeutic interventions in the case of pre-term labor or pre-
eclampsia and detect pregnancy-related complications, such as fetal
growth restriction (FGR). FGR, sometimes defined as the “failure of the
fetus to meet its growth potential due to a pathological factor”7, is
responsible for 30% of all stillbirths and poor neonatal outcomes. Its
diagnosis can rely solely on US FB assessment when abdominal cir-
cumference (AC) or estimated fetal weight (EFW) falls below the 3rd

percentile8,9. AFV abnormalities are strongly associated with increased
mortality in the case of low AFV (oligohydramnios)10. The single dee-
pest pocket (SDP) method has been proven to be as reliable as the
amniotic fluid index method (AFI) for AFV assessment but to cause
fewer false positive diagnoses for oligohydramnios and, therefore,
fewer unnecessary labor inductions.

FB coupled with AFV assessments are time-consuming, repetitive,
and error-prone tasks, and several studies have stressed the need for
quality audits to ensure measurement reproducibility and lower inter
and intra-observer variability11–13.

Advances in deep learning (DL) applied to medical imaging have
sparked interest in its application to measurement automation in fetal
ultrasound, with studies showcasing human-level performances of DL
models in standard plane classification and segmentation14–17. Most of
them are retrospective “in silico” studies conducted on Caucasian
populations on fixed images, except for a few exceptions18. To the best
of our knowledge, no African team has ever led a study on African
patients to automate fetal ultrasound tasks using DL. We believe it to
be of the utmost importance that the Global South should not simply
import Artificial Intelligence (AI) breakthroughs in medicine from the
Global North, but rather developed mindfully, and responsibly by
researchers aware of the local constraints and characteristics19.

Furthermore, no previous work has tried to develop an under-
standable approach to the automation of both tasks respecting the
quality guidelines set forth by the International Society of Ultrasound
in Obstetrics and Gynecology (ISUOG) for the FB workflow or allowing
an end-to-end automation of the AFV assessment workflow, (see
Related Methods below for extensive comparison with existing
methods). Recent approaches using “blind” cine-loops represent a
paradigm shift as they do seem to allow for the democratization of
gestational age estimation and their use by minimally trained sono-
graphers but fail to promote both the autonomy and education of the
operators18,20.

An end-to-end, understandable, FB and AFV assessment workflow
automation could not only potentially alleviate practitioners’ burden,
increase ultrasound sensitivity and specificity, and even enable mini-
mally trained healthcare workers to perform these measurements in
resource-stranded environments but also empower them to learn how
to perform these tasks in the absence of such a tool.

Here we train and test DL models, in clinical conditions, to
effectively automate these two tasks from standardized free-hand
videos.

Results
Data
To train and test DL models meant to fully automate FB and AFV
assessment, the models were trained on a newly built database of
172,293 de-identified fetal ultrasound images from 12,356 US exams
done in six health centers in two different cities in Morocco between
2015 and 2021. In addition, publicly available datasets were used with
the following ultrasound machines: General Electric’s Voluson E6, E8,
E10, S8, and S10, and Aloka17.

Within the collected data, 30,249 2D standard biometry planes of
the abdomen, brain, and femurwerepreprocessed to extract pixelated
annotations. The preprocessing allows it to recognize the region of
interest, then to detect the pixelated colored calipers and circumfer-
ences to generate the ground truth masks for the abdomen and brain.
The femur was annotated directly by the annotators. Optical character
recognition (OCR) techniques were used to extract the information
and acronyms about the standard plan and the biometric measure-
ments as measured by the doctors during screening. In the end, the
annotators validated the extracted masks, standard plan, and mea-
surements (see supplementary information file for details).

In total,fifteen human annotators (ranging frommedical students
to Radiology andObstetrics professors) participated in the annotation
process using our bespoke annotation platform based on the open-
source tool Label Studio version 1.3.021 that we adapted to our needs.
Each annotation indicated the type of standardplane (abdomen, brain,
femur), a polygonal segmentation in the case of the femur, and some
of the quality criteria associated with it as described by the ISUOG
guidelines22 (Table 1). The annotators made a further distinction
between transthalamic, transcerebellar, and transventricular planes.
Quality criteria such as the zoom (head, abdomen, femur occupying
more than half of the image – caliper placement – the angle of the
femur to the horizontal <45°) were omitted in the annotation process.
Instead, their detection was automated through fetal structure seg-
mentation: calculating the surface ratio of the structure to the whole
image or the angle of the femur to the horizontal to determine con-
formity to the criteria described by Salomon et al.23 (Table 1). That step
was designed to ensure that the models select the best suitable plane
on a given video loop, detecting the presence or absence of the quality
criteria, and displaying them with the measurement, allowing an
insight into the model’s choice as well as a correction if necessary.

Images were also annotated according to the presence or absence
of anAFpocket, defined as an in-uterofluid pocket free of fetal parts or
the umbilical cord. In the case of the presence of the AF pocket,
annotators were asked to segment it manually.

Figure 1 shows a summaryof the amount of annotateddata for the
segmentation of the three biometric structures and their classification
basedon their ownquality criteria, alongwith the number of individual
measurements in the annotated data for the classification and seg-
mentation of AF pockets.

Segmentation and classification models
We assessed the performances of the segmentation and classification
models on the retrospective test sets, comparing them to the experts’

Table 1 | Criteria for score-based biometry plane assessment developed by Salomon et al.23

Cephalic Abdominal Femur

Symmetrical plane Symmetrical plane Both ends of bone clearly visible

Plane showing thalami Plane showing stomach bubble <45° to horizontal

Plane showing cavum septum pellucidi Plane showing portal sinus Femur occupying more than half of total image

Cerebellum not visible Kidneys not visible Calipers placed correctly

Head occupying more than half of total image Abdomen occupying more than half of total image

Calipers and dotted ellipse placed correctly Caliper and dotted ellipse placed correctly
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annotations for standard plane detection, quality criteria detection,
brain, abdomen, and femur structure segmentation, and AF pocket
detection and segmentation.

We used a set ofMask-R-CNN architectures for the standard plane
detection and anatomical regions (brain, abdomen, and femur)
segmentation24. Mask-R-CNN models are widely used in the state-of-
the-art literature. However, the datasets used for training and testing
the models were not sufficient to efficiently evaluate their perfor-
mance and they have been used only for one single task of fetal bio-
metry. For example, Al-Bander et al. and Moccia et al. adapted the
Mask-R-CNN architecture to assess HC measurement using the HC18
dataset25,26. Mask-R-CNN models are generally used, for instance, seg-
mentation. The idea is to train models that can detect two or more
instances of an object in the images, for example, two femurs, two
heads in the case of twins, or separable regions of the amniotic fluid
region. Mask-R-CNN has a backbone architecture with a certain num-
ber of network depth features that are taken from a certain number of
final convolutional layers on a certain training schedule. The notation
used to nominate the architectures used in the experiment is the same
used by detectron227. For example, R_50_C5_3x is a Mask-R-CNN
architecture with ResNet as a backbone. It has 50 depth features taken
from the convolutional layer of the fifth stage and a training schedule
of 3x, which means 1 iteration every 3 × 12 (36) epochs.

In our study, four Mask-R-CNN models were finetuned
(R_101_C4_3x, R_101_DC5_3x, R_50_C4_3x, R_50_DC5_3x) for the seg-
mentation of the brain, abdomen, and femur using 30249 annotated
images (10527 brains, 10227 abdomens, and 9495 femurs). The

R_50_DC5_3x model achieves the best performance with an average
DICE score of 0.89 and an Intersection over Union (IoU) score of 0.82
versus 0.96 and 0.90 respectively, reported with the FUVAI model14

(Fig. 2). The Segmentation of the brain region achieved the best per-
formance with a DICE score of 0.95 and an IoU of 0.91.

For each biometry plane, classification models for quality criteria
detection were assessed on the test set of the retrospective data
(Fig. 3). Assessment of the quality of the standard biometry plane
allows for better reproducibility of theACmeasurement, we assessed4
quality criteria (kidneys not visible (A_KN), plane showing portal sinus
(A_PS), plane showing stomach bubble (A_SB), symmetrical plane
(A_SYM)) leaving out the image zoom quality criteria that are the only
one that is not qualitative and can be inferred directly from the
abdomen segmentation. Based on three finetuned models (INCEP-
TIONV3, RESNET50V2, and VGG16), we obtained F1 scores of 0.81,
0.80, and 0.80, respectively, INCEPTIONV3 shows the best results for
all the criteria with an average area under the curve (AUC) of 0.86, and
an F1 score of 0.81. The results also show that the A_SB criterion is
detected better compared to other criteria with an AUC of INCEP-
TIONV3 of 0.93.

For the classification of the brain plane, five quality criteria were
assessed: cerebellum not visible (B_CB), plane showing cavum septum
pellucidity (B_CS), plane showing posterior horn of lateral ventricles
(B_PVV), symmetrical plane (B_SYM) and plane showing thalami
(B_TH). Similarly, the 3 classification models were finetuned for this
task. They show very similar results with an average AUC of 0.83. We
obtained F1 scores of 0.66, 0.62, and 0.62 for INCEPTIONV3,

Fig. 1 | Summary of the retrospective data used during the segmentation and
classification tasks alongwith the volumeof data used for training, validation,
and testing. ‘Doctors’ refer to physicians who prospectively and manually anno-
tated standard planes. ‘Semi-automatic’ refers to the process of the standard plane

and biometric measurement recognition using Optical Character Recognition,
validated by a trained research technician. Helena Pinheiro https://www.hpinheiro.
com/ created this illustration.
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RESNET50V2, and VGG16, respectively. The results also show that the
B_CB criterion is well detected compared to other criteria with an AUC
of INCEPTIONV3 of 0.95 (Fig. 3).

For the femoral plane, the performances of themodel designed to
detect if both ends of the femur are clearly visible were poor as inter-
observer variability was high in the training set; thus, it was not used
for image quality scoring. For the femoral plane on the prospective
part of the study, the size, subsequent femur to image sizes ratio, and
angle of the femur were directly obtained from the femur segmenta-
tion stage and kept as the only quality criteria.

For the AF pocket classification, we compared the finetuned
models (INCEPTIONV3, RESNET50V2, and VGG16) on the retro-
spective test set (Fig. 4). The results show almost equivalent AUC
scores of 0.89, and F1 scores of 0.81, 0.78, and 0.80, respectively.
Similarly, we compared seven finetuned Mask-R-CNN models
(‘R_101_C4_3x’, ‘R_101_DC5_3x’, ‘R_101_FPN_3x’, ‘R_50_C4_3x’,
‘R_50_DC5_3x’, ‘R_50_FPN_3x’, ‘X_101_32x8d_FPN_3x’) for the segmen-
tation of the AF pocket region (Fig. 4). These models were trained on
3773 images manually annotated with polygons by the experts out of
6199 ones that were annotated as containing AF pocket from the
total number of 11926 images.

The results show that ‘X_101_32x8d_FPN_3x’ achieved the best
performancewith a DICE score of 0.78 and an IoU of 0.71 versus a DICE
of 0.877 for the state-of-the-art model by Cho et al.28 who tested the
model on only 125 images.

In this retrospective study,we adopted thefinetunedR_50_DC5_3x
model for the segmentation of the brain, abdomen, and femur, the
finetuned INCEPTIONV3 models for the quality criteria and the AF
pocket detection, and thefinetunedX_101_32x8d_FPN_3xmodel for the
AF pocket segmentation. These models will then be evaluated based
on the prospectively acquired data.

Models performance on the prospective evaluation
From October 2021 to April 2022, 172 patients with singleton preg-
nancies were included in our prospective study, the average age of the

participants was 30.38 years (minimum: 18, maximum: 44, standard
deviation: 6.05), most of the included patients did not have any
comorbidity (87%), ten patients lived with diabetes mellitus (6%) and
three lived with a hypertensive disorder (2%). 34 patients (20%) were
nulliparous, 47 (27%) were primiparous, and 91 (53%) were multi-
parous. Multiple pregnancies were not an exclusion criterion, and
patients were included even in the case of partially complete exam-
inations. However, duplicates and patients without an image or cine-
loop available or no corresponding ground truth measurement
obtained were excluded (Fig. 5). In total, the study gathered: 142 dif-
ferent cine-loops containing a femoral plane; 144 containing an
abdominal plane; 123 containing a cephalic plane; and 90 containing
AF pockets. GA estimation from first-trimester ultrasound from crown-
rump length measurement (CRL) was unavailable in almost all cases
(see supplementary data 1).

Overall, themean GA estimated by the operators was of 30weeks
and 3.13 days ± 6 weeks and 3.1 days (range: 15 weeks and 2 days –

41 weeks and 2 days), the mean measured HC, BPD, AC, FL, EFW,
and SDP were respectively of 26.37 ± 5.88 cm (range: 11.29–34.71 cm),
7.41 ± 1.72 cm (range: 3.09–10.07 cm), 23.98 ± 6.58 cm (range:
8.95–38.18 cm), 5.28 ± 1.44 cm (range: 1.52–7.86 cm),
1606.78 ± 957.56 g (range: 108.81–3783.86 g) and 5.25 ± 2.22 cm
(range: 2.15–17.37 cm).

The US machines and healthcare centers from which the pro-
spective data differed from those of the retrospective data were
retained. Three of the four centers where the prospective part of the
study was conducted did not participate in the retrospective data
collection. Several US machines used in the prospective testing were
not present in the retrospective data as well: Mindray DC 40 and
Resona 6, Philips Medical Systems Affinity 50W, 70G, and GE
Voluson P8.

When possible, EFW and GA were computed from all measure-
ments using the recommended Hadlock and Intergrowth formulae29,30

and all necessary measurements performed by the doctors with the
corresponding available cine-loops.

Fig. 2 | Overall DICE and IoU scores of four versions of four finetuned Mask-R-
CNN models for the segmentation of the biometric planes. These models
(R_101_C4_3x, R_101_DC5_3x, R_50_C4_3x, R_50_DC5_3x) were trained for the
segmentation of the abdominal, femoral, and brain planes on the retro-
spective test set. The bar plot shows the segmentation performances on the

three biometric structures, and the heatmap plots show the DICE (left) and
IoU (right) scores per structure. The R_50_DC5_3x model achieves the best
performance with a DICE score of 0.89 and an IoU score of 0.82. The seg-
mentation of the brain achieved the best performance with a DICE score of
0.95 and an IoU score of 0.91.
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Fig. 3 | Comparison of the receiver operating characteristics (ROC) curves
of three finetuned models (INCEPTIONV3, RESNET50V2, and VGG16) for
the brain and abdominal planes classification using their respective
quality criteria. Overall, the three models show similar results for the
cephalic plane quality criteria, and INCEPTIONV3 shows the best results for
the abdominal criteria with an average AUC of 0.86. Legends: (kidneys not

visible (A_KN), portal sinus visible (A_PS), stomach bubble visible (A_SB),
abdominal plane symmetry (A_SYM), brain plane symmetry (B_SYM), cere-
bellum not visible (B_CB), cavum septum visible (B_CS), posterior horn of
lateral ventricle visible (B_PVV) and thalami visible (B_TH)) on the retro-
spective test set. The top row shows the classification per model, and the
bottom row shows the results per quality criteria.
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Hadlock formula for EFW estimation29:

log10 EFW = 1:335�0:0034×AC × FL+0:0316×BPD

+0:0457×AC +0:1623 × FL

Intergrowth recommended formula for GA estimation
>14 weeks30:

loge GAð Þ=0:03243× ðlogeHCÞ2 +0:001644× FL× logeHC +3:1813

The models segmented each relevant anatomical region and
then extracted the planes with the highest composite score, includ-
ing the quality score according to the ISUOG subjective quality cri-
teria, the zooming of the image inferred from the anatomical

segmentation to total image ratio, and the confidence of the model’s
prediction (Fig. 6).

Themodels were able to extractmeasurements from all the videos
containing standard biometry planes. The 95% limits of agreement
expressed in percentage using the Bland-Altman method were ±0.54%
for HC, ±3.74% for BPD, ±0.14 % for AC, ±3.11% for FL, ±1.45% for GA,
±2.42% for EFW, and ±16.96 % for SDP. All percentages found are nar-
rower than reported inter and intra-observer limits of agreements
among sonographers (HC: ±3.0%, AC: ±5.3%, FL: ±6.6% for intra-
observer difference, and HC: ±4.9%, AC: ±8.8%, FL: ±11.1 for inter-
observer difference)31 (Fig. 7). Visual assessment of the Bland-Altman
plots shows random error for every parameter, the variability increas-
ing with the size of the parameter. However, our results also show
constant bias for SDP and FL, the predicted measurements for both
parameters being consistently greater than those of the physicians.

This over-expectation of the femur segmentation by the model
can be mitigated by reviewing the images manually. By selecting
images with abnormal results, we found that the model often selected
planes showcasing strictly horizontal femurs and that the predicted
calipers were placed to avoid the grand trochanter in accordance with
measurement guidelines. Participating physicians did not always fol-
low these guidelines (Fig. 8)30.

As for the SDP discrepancy, it appears as though the model
actually detected deeper pockets that were not selected or measured
by the clinician.However, themodel’s failure canalso be explainedbya
slight angulation of the probe from 90° results in a larger ante-
roposterior pocket diameter at the time of examination which will be
construed as the SDP by our approach (Fig. 8).

The ICC for each measurement was high (>0.9 for all parameters
apart from SDP), showing excellent reliability of the measurements:
AC =0.982, HC=0.987, BPD=0.975, FL = 0.945, GA = 0.978, EFW=
0.9713, SDP =0.692.

TheMAE for eachbiometric parameterwas 0.67 ± 0.69 cm forHC,
0.33 ± 0.22 cm for BPD, 0.27 ± 0.40 cm for FL, 0.91 ± 0.81 cm for AC,
9.85 ± 14.36 days for GA, 147.18 ± 177.97 g for the EFW and
1.46 ± 1.10 cm for SDP (Table 2).

AF pocket detection AF pocket segmentation

a) b) DICE and IoU scores of the AFP segmentation with Mask-R-CNN models
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Fig. 4 | ROC curves and bar plot of the Amniotic Fluid Pocket (AFP) classifica-
tion and segmentation performances on the retrospective test set. a AUC of
three finetunedmodels for the AFP classification. The results show equivalent AUC

scores of 0.89. b DICE and IoU scores of seven finetuned Mask-R-CNN models for
the AFP segmentation. The results show that ‘X_101_32x8d_FPN_3x’ achieved the
best performance with a DICE score of 0.78 and an IoU of 0.71.

Eligible patients enrolled from October 1st 2021
n=271

Analysed
n=172

Duplicates
n=1

No data recorded during exam
n=17

No cine-loops recorded or 
corrupted cine-loops
n=38

At least one cine-loop but no 
corresponding image with 
measurement 
n=43

Excluded
n=99

Fig. 5 | Study flow chart. 172 patients were analyzed and 99 were excluded mainly
because the measurements corresponding to cine-loops were not saved by the
operators (n = 43), followedby the absence of valid cine-loops recorded (n = 38), no
data recorded during the study (n = 17) and duplicates (n = 1).
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The FUVAI model is the closest one to our approach for end-to-
end automated biometric assessment from cine-loops and showed
similar performances to those of trained sonographers14 (see related
methods for more comparisons with existing methods).

We computed the MAE of each parameter using the open-source
FUVAImodel developed by Płotka et al.14 and compared themwith our
approach (Table 2).

It showed inferior MAE compared with our approach for every
biometric parameter except for BPD, wehypothesize that this is due to
the fact that HC and BPD are measured from the same mask with our
approach. However, it was often the case that operators took two
distinct images tomeasure each, hence the difference in performance.
We also note that our approach was able to correctly detect the
entirety of the corresponding biometry plane while FUVAI failed
to do so.

The MAE between the predicted SDP and the measured SDP was
also lower than the one reported by Cho et al.28 with their state-of-the-
art model for AF pocket segmentation: AF-net (1.46 cm with our
approach vs. 2.666 cm for Cho et al.28 on a retrospectively annotated
dataset).

There were no cases of oligohydramnios in the prospective set
and 7 cases (7.07%) of polyhydramnios. The sensitivity and specificity
of the models at detecting polyhydramnios were 86.6%, and 85.7%,
respectively, when comparing them to the experts’ estimation.

The models’ estimated biometric parameters were computed
during theprospective phaseof the study at the earliest time after each
examination was complete. No adverse effect was reported during the
entirety of this study. Participants were not compensated for their
participation in the study.

Discussion
In this study, wewere able to create a successful end-to-endmethod to
automatically estimate FB and AFV from ultrasound cine-loops using
the ISUOG quality criteria for standard biometry planes, with results
that were similar to those of expert operators. These two tasks are part
of the six fundamental items listed by the ISUOG in the recently
updated practice guideline for the routine mid-trimester scan31. They

allow early detection of life-threatening conditions such as FGR, oli-
gohydramnios, and polyhydramnios that are associated with increases
in the risk of fetal mortality by respectively 19, 5, and 3 fold32–34.

At present, sonographers must navigate through a series of steps
to capture the correct anatomical plane. This involves adjusting the
probe angle and position to meet the appropriate quality standards,
freezing the image, and accurately positioning the calipers. This entire
procedure, excluding the assessment of amniotic fluid volume, typi-
cally involves an average of 12 steps. The assessment of amniotic fluid
volume adds additional steps, as it requires identifying the largest AF
pocket, freezing the screen, and then positioning the calipers31. The
method we have developed simplifies this process significantly,
enabling reliable biometric tasks to be performed bymerely recording
the relevant structures. This reduces the process to just three steps:
initiating the recording, sweeping through the desired anatomical
structure, and concluding the recording. If incorporated into the
clinical workflow, this approach has the potential to decrease scanning
time, alleviate the workload of sonographers, and ensure the optimal
reliability of the measurements taken.

In addition to streamlining the fetal ultrasound, our approach has
the potential to serve as an aid to the sonographer in training in the
recognition of the quality criteria of each standard biometry plane and
gaining independence in their practice.

If deployed in conditions where healthcare workers receive
minimal ultrasound training, as is often the case in countries of the
Global South, this approach has the potential to help patients receive
accurate fetal biometry assessment, gestational age estimation, fetal
weight estimation, as well as amniotic fluid volume assessment which
in turn are key to diagnosing fetal growth and amniotic fluid volume
abnormalities.

Indeed, the 95% limits of agreement expressed in percentage
between the models’ measurements and the doctors’ measurements
for AC, HC, FL, and SDP were narrower than both reported intra- and
inter-observer variability for human expert sonographers13,35. The dif-
ferences between the US machines, the operators, and the healthcare
facilities in the retrospective and the prospective data indicate that the
developed models are generalizable. Furthermore, our deterministic

Fig. 6 | Flow chart of the end-to-end automated extraction of biometric para-
meters from ultrasound cine-loops. In every cine-loop, all standard biometry
planes are detected, the relevant anatomical structures are segmented, then the

quality criteria of each plane are assessed and the highest-scoring plane is selected.
There is no quality assessment in the case of the AF volume assessment, the AF
pocket with the larger depth is selected from the cine-loop.
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Fig. 8 | Examples of larger predicted (left) thanmeasured (right) femur lengths
(FL) and single deepest pockets (SDP) in the same study participants. The
femur selected by the model (left) was strictly horizontal, abiding by the quality

criteria, as opposed to the femur the physician selected (right). The AF pocket,
correctly measured by the model (left), is larger than the one measured by the
physician due to an error in caliper placement by the human operator.
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Fig. 7 | Bland-Altmanplots showing the variability between themodels and the
doctors HC, FL, EGA, AC, AF (single deepest pocket), BPD, and EFW. The plots
are derived from n = 172 biologically independent samples. The three hor-
izontal lines in each plot represent the mean difference (middle line) and the

limits of agreement (upper and lower lines), which are defined as the mean
difference plus and minus 1.96 times the standard deviation of the differ-
ences. The error bars represent standard deviation (SD). Source data are
provided as a Source Data file.
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method has the advantage of always giving the same output given the
same cine-loop, which is not the case for humanoperators. Thismeans
that AI can reliably assess fetal growth status and potentially detect
AFV abnormalities on fetal US cine-loops automating the third of the
six items showcased in the ISUOG guidelines; and having the potential
to address the shortage of sonographers in countries of the
Global South.

HC, BPD, AC, and FL have been shown to be more reliable and
reproducible amongst expert operators than SDP measurement with
intra and inter CC>0.990 amongst expert sonographers and clinically
acceptable 95% limits of agreement35,36. Our models showed intra CC
superior to 0.94 for all the biometry metrics (AC = 0.982, HC =0.987,
BPD=0.975, FL = 0.945) and reached narrower 95% limits of agree-
ment than those reported in studies assessing their reliability and
reproducibility between human sonographers.

The models we developed were specifically designed to extract
the best biometric planes according to the ISUOG criteria. Although
other models have been developed to automate quality control of 2D
fetal ultrasound images through anatomical structure recognition, our
study is the first to explicitly use the ISUOG quality criteria specifically
for biometry plane classification37,38. Such an approach, if integrated
into the clinical workflow, could be used to automate the biometry
plane’s quality control. It could allow fast and inexpensive quality
audits, accelerate the workflow of trained sonographers, and be a
pedagogical tool to the sonographer in training. This could prove
particularly useful in resource-stranded regions such as Africa, where
only 38.3% of fetal US operators have received formal training, and
only 40.4% of them have received a short theoretical course3.

A similar study toours compared the performances of amulti-task
deep neural network (DNN) on FB assessment, testing it on 50 free-
hand ultrasound videos with results comparable to those of trained
sonographers. Our models outperformed the one described in the
study (FUVAI)14 when comparing the proximity of the results show-
cased by the model versus the sonographers expressed in MAE
(Table 2) even if the DICE score coefficients and IoUwere lower for the
same tasks, potentially indicating greater generalizability of our
models. FUVAI’s choice of standard biometry planes didn’t rely on the
quality of the plane but rather on the confidence of the model when
selecting it; in other words, on how closely it resembled images from
the training set, which are not necessarily the best standard planes
according to the ISUOG guidelines.

Another vast prospective study by Pokaprakarn et al.18 took an
original approach and assessed the performance of a DNN to estimate
GA from blind loops taken by non-trained operators. The DNN proved
to be more accurate than expert sonographers at estimating GA with
anMAE of 3.9 ± 0.12 days vs 9.85 ± 14.36 dayswith our approach, which
could be a game changer in resource-stranded environments. A recent
study using the samedataset from the Fetal Age andMachine Learning
Initiative (FAMLI) developed aDL tool to assess fetal biometry and fetal
presentation on mobile devices showing non-inferiority to trained
sonographers performing the measurements (−1.4 ± 4.5 days)20. These
two studies manifest the potential of AI to be used in the clinical
workflow to democratize access to quality fetal ultrasound worldwide.
However, due to the nature of DNNs and the choice of blind sweeps, it
is challenging to get a sense of how themodel came upwith its output,
and impossible to extract AC or EFW for FGR risk assessment. Instead,
our models mimic trained sonographers thanks to the separation of
the FB workflow into classification, quality scoring, and segmentation
tasks. They are thus understandable, with errors in themodels’outputs
easily detectable by sonographers.

SDP estimation has the widest variability with reported inter-
observer limits of agreement of −51% to +52% and an ICC of 0.4213,39.
Our approach for AFV assessment is vastly more reliable, with limits of
agreement of only ±16.96 % and an ICC of 0.692 for SDPmeasurement.
This high variability amongst human operators might be explained byTa
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the “subjective” choice of the SDP. We brought the subjective choice
closer to an objective one by segmenting and measuring every single
AF pocket in a given cine-loop. In contrast, several studies present
automated techniques to segment AF pockets and measure the
pocket’s depth. Cho et al.33, for example, developed a CNN showcasing
results similar to those of sonographers in segmenting AF pockets
(DICE similarity coefficient: 0.877 ± 0.086) and with an MAE of
2.666 ± 2.986 cm in the measurement of the pocket’s depth versus a
DICE score of 0.783 in our study but an MAE of 1.46 ± 1.10 cm on
prospectively acquired video loops. A second study by Sun et al.40

complemented the work of Cho et al.28 and developed a dual-path
network approach to AF pocket segmentation to better account for
reverberation artifacts inAFpockets, achieving ahigherDICE similarity
coefficient of 0.8599 ± 0.1074 on their dataset. However, both of these
studies use 2D fixed images, only automating the segmentation part of
the clinical workflow of AFV assessment. Ours proved to be clinically
more precise and useful as they detected polyhydramnios with a
sensitivity and specificity of 86.6%, and 85.7%, respectively.

As far aswe are aware, our research ispioneering in its prospective
evaluation of a model designed for estimating Amniotic Fluid Volume
(AFV) using ultrasound videos. In practical application, healthcare
professionals could verify the image chosen by the model, possibly
rectifying any mistakes made either by themselves or the model, or
they could browse through the selected pockets until they locate one
that meets their satisfaction. Interestingly, this method could also be
adapted for AFV evaluation from blind repeated craniocaudal per-
pendicular sweeps, thereby enabling even healthcare workers with
minimal training to execute it.

A potential constraint of our methodology, stemming from the
substantial size and computational demands of the models, is the
requirement for an Internet connection for their deployment. This
restricts their application to regions with Internet availability. None-
theless, within the realm of telemedicine, Internet connectivity is
typically a prerequisite, occasionally depending on a satellite link. Via
telemedicineplatforms, aproficient sonographer instructs anoperator
using a video stream of the ultrasound scan. Even under these cir-
cumstances, our automated technique can be employed to simplify
the capture of ideal measurements and reduce the scan duration,
thereby broadening access to quality imaging for prenatal care.

Methods
In their comprehensive analysis of deep learning algorithms applied to
fetal ultrasound-image examination, Fiorentino et al.41 highlighted
recent advancements in the use of these algorithms for identifying 2D
fetal standard planes. Predominantly, the research focused on Con-
volutional Neural Networks (CNNs) for single-task operations, while
some explored multi-task standard plane detection by identifying
crucial anatomical structures. For instance, Baumgartner et al.42

adapted the VGG16 architecture to detect 13 fetal standard planes,
achieving a mean F1 score of 0.80 with their model, SonoNet. A few
authors proposed multi-task models incorporating attention
mechanisms for the detection of abdomen, head, and femur standard
planes. Cai et al.43, for example, trained a multi-task neural network
with a temporal attentionmodule and achieved F1 scores of 0.84, 0.89,
and 0.81, respectively, on a test set of 280 videos lasting 3–7 s.

Fiorentino et al.41 also reported on numerous research papers
related to 2D fetal biometry estimation, withmost focusing on a single
structure, such as brain segmentation for HCmeasurement, abdomen
segmentation for AC measurement, and femur segmentation for FL
measurement. HC measurement has been the subject of intensive
research due to the availability of the publicly annotated dataset HC18,
despite the fact that the gold standard for GA and EFW formulae
includes other biometric parameters such as AC and FL. Zeng et al.15

proposed a modified version of V-Net that incorporates an attention
mechanism and achieved a Dice score of 0.98 and anMAE of 1.95mm.

Similarly, Moccia et al.26 adapted a Mask-R-CNN method and achieved
comparable results with a Dice score of 0.98 and an MAE of 1.95mm.
Notably, only one study reported in the review used videos for the
prospective evaluation of models for BPD and HC measurements44. In
contrast, very few papers have addressed abdomen and femur seg-
mentation for AC and LF measurements, respectively. Using small
datasets, Kim et al.16 proposed an abdomen segmentation model that
achieved a Dice score of 0.92, while Zhu et al.45 proposed a femur
segmentation model that achieved a Dice score of 0.92 and an MAE
of 0.46mm.

Most methods employed U-Net-based architectures, which are
known for their semantic segmentation performance. However, Mask-
R-CNN-based architectures were also utilized, as they allow for the
segmentation of individual objects and the assessment of classification
performance. Recently, some researchers have attempted a different
approach, directly extrapolating measurements using regression
models rather than running a segmentation model first and then
approximating the measurement. To our knowledge, this approach
has only been tested for HC estimation46.

Very few papers have focused on multiple biometry estimation.
To our knowledge, only one paper proposed amethod for segmenting
multiple anatomical structures for fetal biometry14. The authors pro-
posed the FUVAI model, which combined U-Net with ConvLSTM
architectures andwas trainedon a largeprivate dataset to estimateHC,
AC, and FL measurements using 274,275 2D ultrasound images. The
model was tested on 57,001 2D images and achieved a Dice score of
0.96 and an MAE of 2.5mm.

For 2D amniotic fluid volume (AFV) assessment, Fiorentino et al.
reported only three research papers28,40,47. Using just 310 2D images,
Cho et al. trained an adapted U-Net architecture called AF-Net and
evaluated it on a test set of 125 2D images, achieving a Dice score of
0.87 and an MAE of 2.6 cm28.

The use of different private datasets for evaluating these
approaches, combined with the lack of public datasets, makes com-
parison challenging. All of the best performances were achieved using
large, private datasets42,43,48,49, indicating that a data-centric approach
leads to better generalization. However, very few studies have focused
on multi-organ analysis and end-to-end pipelines, with a lack of inter-
pretation of results. Most are retrospective “in silico” studies con-
ducted on Caucasian populations. To our knowledge, no research has
proposed end-to-end pipelines for multiple fetal biometry structure
segmentation, standard plan classification, and quality criteria
assessments following ISUOG guidelines. Furthermore, our AFV
assessment outperforms state-of-the-art results and is the first to be
integrated and validated with a prospective study from cine-loops
designed for minimally trained healthcare workers. Additionally, no
prior prospective study has aimed to automate FB andAFV assessment
using a large dataset of 2D ultrasound images of African patients
examined in low-resource settings (see supplementary information file
for details).

Models and training
In the training of the sevenMask-R-CNNmodels, we adopted an image-
centric training procedure12. Images were resized such that their scale
(shorter edge) is 800 pixels27. PyTorch (version 1.10) framework was
used for model training, validation, and testing. The models were
trained with 80% of the data, validated with 10%, and tested with 10%.
We trained on the NVIDIA Tesla K80 GPU for 2000 iterations, with a
learning rate of 0.01 which was decreased by ten at the 500 iterations.
We used a weight decay of 0.0001 and a momentum of 0.9. The used
loss function is similar to the one described in Ref. 24. It combines the
classification loss, the bounding-box loss, and the average binary
cross-entropy loss of the mask.

In the training of the three classification models to infer the
quality criteria of the abdomen and brain plans and to classify 11926
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annotated images as containing AF pockets or not, the fully connected
top layers were first replaced by an average pooling layer, then fol-
lowed by a dense layer with a sigmoid activation function containing
four outputs for the abdomenmodel, five outputs for the brain model
and two outputs for the AF pocket model. TensorFlow (version 2.0)
was used for model training, validation, and testing. We used 60% of
the data for training, 20% for validation, and 20% for testing. The input
images were resized to 224 × 224 pixels for the VGG16 model and to
299 × 299 for INCEPTIONV3 and RESNET50V2. For the brain and
abdomen quality criteria classification, these images were first crop-
ped based on their correspondingmasks and then resized. Themodels
were trained on the NVIDIATesla K80GPU until convergence over 100
epochs using a batch size of 32 and an initial learning rate of 10−3 that is
reduced by a factor of 0.2 once learning stagnates. The training is
stopped early when there is no improvement in the validation loss for
the last 15 epochs, or when we reach 100 epochs. We use binary cross-
entropy loss and Adam as the optimizer of Keras (version 2.3.1). To
prevent overfitting, we apply, on the fly, various data augmentation
techniques using the following transformations: rotation between −15
and 15 degrees, zoomby 10%, brightness range between0.2 and 0.8, as
well as horizontal and vertical flipping.

From the training results of all these models, we adopted the
R_50_DC5_3x model for the segmentation of the brain, abdomen, and
femur, the INCEPTIONV3 models for the quality criteria classification
and the AF pocket detection, and X_101_32x8d_FPN_3x model for the
segmentation of AF pocket.

Approximations of the biometric measurements
The biometric measurements are extracted from the output masks of
the segmentation models. For the abdomen and brain, AC and HC are
computed from the circumferences of the ellipses approximated by
first, finding the contours and then direct least square fitting42,43. BPD is
the minor axis of the brain ellipse. For the femur, FL represents the
measure of themajor axis of the extremities bounding box, and for the
AF pocket, the SDP is the measure of the vertical axis of the bounding
box. After the measurements are approximated in pixels, they are
converted into centimeters using the DICOM’s pixel spacing tag (see
supplementary information file for details).

Study design
We validated the DL models on prospectively consecutively acquired
transabdominalUS videos frompregnant patients (>18 years, evolutive
pregnancy >14 weeks, non-emergency related scan indication,) gath-
ered at four healthcare centers in Morocco (Casablanca and Oujda)
from October 2021 to April 2022 by 7 different radiologists and
obstetricians (experience in fetal US > 10 years) and annotated during
the examination using the machine’s ellipse and caliper facilities. The
participating physicians were asked to measure HC, BPD, AC, and FL
following the ISUOG criteria as well as the single deepest AF pocket
(SDP) to assess AFV.

On top of their routine examination, the physicians had to take
four additional cine-loops: three additional cine-loops containing all
the standard biometry planes, and a cine-loop containing all AF
pockets: an axial cephalic loop going from the base of the skull to the
vertex, an axial abdominal loop going from the four-chamber view of
the heart to a cross-section of the kidneys, a sagittal femur loop, and an
amniotic loop sweeping perpendicularly through all the right, then the
left AF pockets (Fig. 1).

The physicians had no knowledge of the predicted values for all
biometric parameters until the end of the study, the team evaluating
the models’ performances was also tasked to gather the prospective
data and hence had access to the predicted and measured values for
each. Thebiometricparameterswere inferredby themodels at the end
of the study, seven months after its beginning. On the modeling side,

the best segmentation and classification models that were trained on
retrospective data were run on each video to extract HC, BPD, AC, or
FLmeasurements depending on the plane. All the detected AF pockets
on the “amniotic” cine-loops were segmented and their depth was
computed, retaining the deepest one as the predicted SDP. This
approach is directly inspired by the standard steps taken by expert-
trained sonographers to select the single deepest pocket. They consist
of the following tasks: (1) Sweep through all AF pockets, (2) Sub-
jectively select the SDP, and (3) Measure the SDP’s depth. Oligohy-
dramnios was defined as an SDP < 2 cm and polyhydramnios as an
SDP > 8 cm50.

The primary outcomes were the models performances in fetal
biometry and single deepest pocket measurements, expressed in
mean absolute error, limits of agreement with the sonographers, and
Intraclass correlation coefficients.

The secondary outcomes were the performances of themodels at
detecting AFV and fetal growth abnormalities (FGR) using sensitivity,
and specificity metrics.

This study follows the STARD 2015 guidelines51 as detailed in the
supplementary information STARD checklist.

Approval for this study was granted by the Institutional Review
Board of Oujda’s Faculty of Medicine (Comité d’Ethique pour la
Recherche Biomédicale d’Oujda). Study participants provided their
informed written consent and were not compensated for their parti-
cipation to this study.

The full protocol of this study can be found on clinicaltrials.gov
under the ID: NCT05059093.

Evaluation and statistical analysis
DICE score coefficients and Intersection of Union (IoU) were com-
puted for the Mask-RCNNs on the retrospective dataset. For the clas-
sification tasks, the receiving operating characteristics (ROC) curves
were computed.

The intended sample size was estimated at 122 patients with all
corresponding measurements and cine-loops correctly performed
(see supplementary information file: Sample Size Estimation, for more
details). We computed the mean absolute errors (MAE) between the
models’ measurements and the operators on the prospective cine-
loops using the R package ‘Metrics’ (version 0.1.4) of R software (R
version 4.2.1). Intraclass correlation coefficients (ICC) were calculated
using the Package ‘merTools’ (version0.5.2). ICC is a desirablemeasure
of reliability that reflects both the degree of correlation and agreement
between measurements. Wilcoxon rank sum test was calculated for
eachmeasurement using the ‘PairedData’ (version 1.1.1) R package. We
also compared the performance of our approach to the FUVAI14 model
using the percentage of correctly classifiedplanes andMAEusing theR
package ‘Metrics’ (version 0.1.4). Bland-Altman plots were used for the
visual assessment of the models’ reliability and the 95% limits of
agreement were calculated and expressed in percentage using the
‘blandr’ package (version 0.5.1) of the R software. Firstly, The mea-
surements from the operators and the model were passed to the
blandr.statistics function to generate Bland-Altman statistics. After
which, plots were generated using the package ggplot2 (version 3.3.6).
Assessment of the models’ performances was carried out alongside
prospective data collection.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are providedwith this paper. Part of the de-identified fetal
ultrasound data used in this study comes from a publicly available
dataset on Zenodo published by Burgos-Artizzu, X. P. et al.17 available
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at https://zenodo.org/record/3904280. The rest of the de-identified
fetal ultrasounddata collected for the purpose of this study is available
under restricted access due to privacy, ethical and legal considera-
tions, access can be obtained by contacting the corresponding author
at saadslimani@deepecho.io who will provide a response within
14 days and supply the data use agreement limiting its use to non-
commercial research purposes.

Code availability
The pre-trained models used in this study are available publicly:
Classification models codes are available here: https://github.com/
keras-team/keras/tree/v2.13.1/keras/applications. Segmentation mod-
els were developed using detectron2, available here: https://github.
com/facebookresearch/detectron2/. The corresponding author will
provide their finetuned weights of the models used in this study, for
research and reproducibility purposes upon request at saad.slima-
ni@deepecho.io within 14 days, subject to a data use agreement for
non-commercial use.
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