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Single cell spatial analysis reveals
inflammatory foci of immature neutrophil
and CD8 T cells in COVID-19 lungs

Praveen Weeratunga1,15, Laura Denney1,15, Joshua A. Bull 2,15,
Emmanouela Repapi3,15, Martin Sergeant 3, Rachel Etherington 1,
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David Sims3, SimonMcGowan 3, Yasemin-Xiomara Zurke 8, David J. Ahern 8,
Eddie C. Gamez9, Justin Whalley 9, Duncan Richards 10, Paul Klenerman11,
Claudia Monaco 8, Irina A. Udalova 8, Tao Dong1,12, Agne Antanaviciute 1,
Graham Ogg 1,12, Julian C. Knight 9,12, Helen M. Byrne 2,13,
Stephen Taylor 3,9 & Ling-Pei Ho 1,12,14

Single cell spatial interrogation of the immune-structural interactions in
COVID−19 lungs is challenging,mainly because of themarked cellular infiltrate
and architecturally distorted microstructure. To address this, we develop a
suite of mathematical tools to search for statistically significant co-locations
amongst immune and structural cells identified using 37-plex imaging mass
cytometry. This unbiased method reveals a cellular map interleaved with an
inflammatory network of immature neutrophils, cytotoxic CD8 T cells,
megakaryocytes and monocytes co-located with regenerating alveolar pro-
genitors and endothelium. Of note, a highly active cluster of immature neu-
trophils andCD8T cells, is found spatially linkedwith alveolar progenitor cells,
and temporally with the diffuse alveolar damage stage. These findings offer
further insights into how immune cells interact in the lungs of severeCOVID-19
disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and
visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource
for spatial analysis.

Since the first reports of COVID-19 cases in Dec 2019, the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more
than 6 million deaths worldwide1, mainly from respiratory failure.
Similarities between COVID-19 and other viral infections of the lungs
like SARS and influenza have been noted, but there are specific dif-
ferences which may be indicative of underlying disease mechanisms
unique to COVID-19. In particular, patients with COVID-19 have excess
incidence of thromboembolic disease, endothelial damage, and
greater acute and long-term impact on organs other than lungs2–5.
High-resolution immune studies in the blood have shed light on the

potential mechanisms for severe COVID-19 disease, with evidence
supporting myeloid cell overactivation and dysregulation, T cell
exhaustion and cytokine hyperactivation6–10. Our recent comprehen-
sive multi-modal study of circulating immune cells (COMBAT study)6

and several other major studies have also concluded that a key hall-
mark of severity was emergency myelopoiesis6,8,9,11,12, characterized by
raised circulating immature neutrophils, cyclingmonocytes, and raised
haematopoietic progenitors. However, it is not known how these
findings in blood relate to damaged lung structural cells and other
immune cells in the lungs, nor if they formed injurious immuneentities.
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Interrogation of the immune response in COVID −19 lungs have
lagged behind studies in peripheral blood. Our understanding of the
immune response in the lungs is derivedmostly from several single cell
and single nucleus RNA sequencing studies which have provided
valuable insights on a transcriptomic level13–18. However, these are
limited by a lack of high resolution (cell level) spatial context. Tran-
scriptomics studies are also restricted by a lower detection rate for
neutrophils as these cells possess relatively low RNA content and high
levels of RNases and other inhibitory compounds which confound
their identification. Notwithstanding these limitations, studies in intact
COVID-19 lung tissue are also challenging, due to the distorted lung
micro-architecture andmassive cellular infiltrate, making it difficult to
unravel cellular connectivity and organisation. An initial evaluation of
COVID-19 lung tissue using imagingmass cytometry by Rendeiro et al.
concluded that there was greater spatial proximity between macro-
phages, stromal cells and fibroblasts in lung samples obtained later in
infection but did not identify reveal further insight into the cause of
severe alveolar damage19.

In this study, we develop a bespoke mathematical package to
identify statistically significant co-location between different cells,
including structural cells, at the level of single cell resolution. We
identify a cluster of closely apposed immature neutrophils and CD8
T cells with high immune activity, which are spatio-temporally asso-
ciated with proliferating alveolar epithelium in tissue sections
demonstrating diffuse alveolar damage. These findings raise the pos-
sibility of an injurious entity generated by the interaction between
immature neutrophils and a specific subset of CD8 T cells in severe
COVID-19 pneumonitis.

Results
An integrated pipeline to uncover and quantify spatial associa-
tion amongst cells
Our first task was to establish a method to quantify statistically
significant spatial correlations between highly-resolved immune
and structural cell types in our lung tissue sections. To do this, we
developed an analytical pipeline which combined an immunology-
centric annotation approach with a 3-step spatial association ana-
lysis [quadrat correlation matrices (QCMs), cross-pair correlation
functions (cross- PCFs) and adjacency cell network (ACN)] to pro-
vide a set of statistically rigorous spatial analytical output (Fig. 1a
and Supplementary Fig. 1, and described in detail in Methods). In
brief, we first used theQCM to identify cell pairs that are statistically
significantly correlated in cell counts. Correlated cell pairs, of types
A and B say, were then examined for co-location above random
spatial association (using cross-PCF). If the cross-PCF, g(r), is
greater than 1, then cells of type B are observed more frequently at
distance r from cells of type A than would be expected under
complete spatial randomness (CSR). We considered g(r = 20), the
value of the cross-PCF at r = 20, as a means of quantifying howmany
more cells of type B are observed at distance 20 μm from an anchor
cell of type A than under CSR. We then examined whether the co-
locating cell pairs were physically in contact with each other using a
spatially embedded ‘adjacency cell network’ (ACN). Using the ACN,
we computed the proportion of cells of type A that were in contact
with at least one cell of type B, (full description found in Methods).

These work packages were integrated computationally into a
workflowof Python andRbased command line tools whichmaybe run
individually or as an automated pipeline (Spatial Omics Oxford pipe-
line; SpOOx) (Fig. 1a). The pipeline is supported by a visualisation
platform [Multi-Dimensional Viewer (MDV)] (Video V1). Both are
available as an open access online resource (see Methods for link). To
differentiate this lung-based from our blood-based study (COMBAT)6,
we have called this the COSMIC (COVID-19 Lung Single Cell Mass
Cytometry Imaging Consortium) study.

Histopathology states of inflammation, damage and repair are
found in lung sections at point of death
We started by examining formalin-fixed paraffin-embedded (FFPE)
lung sections from a cohort of patients who died from PCR-positive
COVID-19 pneumonitis from one hospital (University of Navarra,
Spain) (n = 12). Samples were obtained at the point of death and fixed
immediately, markedly reducing post-mortem tissue deterioration20.
All samples were collected during the first wave of the pandemic in
2020, before vaccination and repeat infection with SARS-CoV-2.
Healthy lung sections from patients undergoing lobectomy for early,
isolated lung cancer (HC) lungs (n = 2) were used as comparators
(Demographics in Supplementary Table 1); obtained from the Oxford
Radcliffe Biobank (Oxford University Hospitals NHS Foundation
Trust, UK).

Six of 12 patients were mechanically ventilated (range
6–23 days). All but three were receiving corticosteroids at the
point of death (Supplementary Table 1). In all patients, thoracic
CT scans closest to the day of death demonstrated typical and
extensive COVID-19 pneumonitis comprising ground glass chan-
ges and consolidation (Supplementary Table 1). Five of 12 lung
sections showed evidence of both PCR and immunostaining for
SARS-CoV2 Nucleocapsid protein; 3 were PCR+ but protein
negative (Supplementary Table 2). Four sequential lung sections
(6 μm thick) were used for haematoxylin and eosin (H&E), 37-plex
panel staining (35 metal-tagged antibodies and 2 DNA chelators),
and selected immunofluorescence validation sequentially.

Initial histopathology analysis (independently performed by two
senior pathologists with expertise in lung and infectious disease, and a
senior respiratory clinician) revealed a highly distorted lung archi-
tecture with extensive cellular infiltrate in all samples, changes pre-
viously observed in post mortem studies of COVID-19 lung
sections21–26. However, all our sections can be categorised into three
formal histopathology classifications of predominantly alveolitis
(ALV), diffuse alveolar damage (DAD) or organising pneumonia (OP)
(n = 4 patients in each category)27,28 (Fig. 1b and Supplementary Fig. 2).
ALV was characterised by thickened alveolar epithelial wall and septae
with immune cell infiltrate and congestion of alveolar walls; DAD, by
widespread alveolar epithelial lining injury accompanied by hyaline
membrane, regenerating/proliferating Type II alveolar epithelium and
interstitial oedema,whileOPdepicts a repair state typifiedby presence
of fibroblasts, proliferation of alveolar epithelium and collagen pre-
sence around bronchial epithelium28. In keeping with this, patients
with dominant OP histopathology showed a trend of being sampled
furthest away from their first symptoms (Fig. 1c), had longer periods of
stay in hospital and were mechanically ventilated for longer (Supple-
mentary Table 1 and Supplementary Fig. 3) (no statistical difference
observed). All 5 patients with evidence of dual SARS-CoV-2 N protein
and PCR expression had lung sections that showed DAD. No sections
withOPwere positive for SARS-CoV-2 protein staining (Supplementary
Table 2; Supplementary Fig. 4). There were no associations between
histopathology states and clinical features (age, drugs used, co-mor-
bidities, or C-reactive protein (CRP) nearest the point of death) (Sup-
plementary Table 1, Fig. 1D).

These results provide a histopathology-based temporally pro-
gressive states for further analysis. 2–3 regions of interest (ROIs) per
patient (total of 4 mm2 area per patient), selected as representative
areas for the dominant histopathology state, were drawn for ablation.

Identification of immature neutrophils—CD8 T cell clusters with
high immune activity
After preliminary stainingwith an initial panel (Supplementary Table 3,
Supplementary Fig. 5) on a ‘sentinel’ cohort, we designed a final panel
which incorporated the most abundant structural and immune cell
types (Supplementary Fig. 7A). Single cell segmentation performed

Article https://doi.org/10.1038/s41467-023-42421-0

Nature Communications |         (2023) 14:7216 2



Fig. 1 | Spatial analysis pipeline and histopathology categorisation of samples.
a Overview of the workflow and SpOOx pipeline. The steps of the analysis are
presented in Supplementary Fig. 1 in more detail. n = 677,623 single cells refer to
segmented cells, without filtering for cells with no antibody staining, and ‘unde-
fined’ clusters. IMC – imagingmass cytometry. bH&E section fromCOVID-19 tissue
section showing formal histopathology features of alveolitis (ALV), diffuse alveolar
damage (DAD) andorganizing pneumoniawith their correspondingMCD file image
showing staining for 5 of 35 antibodies (α-SMA, EpCAM, PanCK, Col 1a and CD31).
‘a–‘c’ in figure refer to characteristic features of ALV, DAD and OP. ‘a’ - thickened
alveolar epithelial wall and septae with immune cell infiltrate and congestion of
alveolar walls ‘b’ widespread presence of hyaline membrane, and regenerating/
proliferating Type II alveolar epithelium and ‘c’ -fibroblasts and collagen presence
around bronchial epithelium. See also Supplementary Fig. 2. Representative H&E

and MCD images is for ROI from n = 10 ROIs for ALV, n = 8 ROIs (DAD), n = 8 ROIs
(OP); n = 12 patients. H&E staining performed once per tissue section. 37-plex
staining was performed once for each lung sample. c Point when samples were
obtained from the first day of symptoms and corresponding histopathology states
in lung sections. Mean and S.D. shown, p value calculated using one-way ANOVA
test with Tukey’s multiple comparison test; normality tested with d’Agostino &
Pearson test. n = 4 patients in each histopathology group (ALV, DAD and OP). d
C-reactive protein (CRP) levels closest to the point of sampling and corresponding
histopathology state in lung sections. Median and IQR shown, p value calculated
using Kruskal-Wallis test with Dunn’s multiple comparison test. n = 4 patients in
each histopathology group (ALV, DAD and OP). Source data are provided in the
Source Data File.
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using Mesmer library from the DeepCell algorithm29 resulted in
677,623 single cells from all ROIs, [ALV (n = 10 ROIs), DAD (n = 8), OP
(n = 8) and HC (n = 4)] (Fig. 2a, Supplementary Fig. 7 and 12). Cell
clusters were derived using Phenograph and annotation was per-
formed using a combination of expression heat map analyses and
expression density plots (Supplementary Fig. 7). Final annotation was
refined with Pseudotime analysis of selected groups of cell clusters,
examination of distributions of the cell clusters in all samples, and
cross-checking with H&E and MiniCAD Design (MCD) images (gener-
ated by the Hyperion imaging system) against known structural cell
location and cell morphology (Supplementary Fig. 7). This produced a

final list of 37 identifiable cell clusters (26 immune cell types and
11 structural) (Fig. 2b, c). Expandeddescription of the annotated cells is
provided in Supplementary Table 4. For clarity of terminology, once
the cell clusters were annotated, they were termed ‘cell types’ or ‘cells’
unless there were more than two cell types in the annotation.

Compared with healthy lungs (without dividing into different
histopathology states), monocytes were the most abundant
immune cells (Fig. 2b). Amongst the annotated cell types, five
were found to co-express defining markers of different immune
or structural cells, reflecting closely located or apposed cell
groups (Neutrophil and CD8 T cell, Monocyte and CD31+ cells,
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Monocyte- PAI-1+ cells, CD8 T cells – PAI-1+ cells and IFN-γhi cells
and RAGE+ cells). We labelled these ‘adjacent’ (ADJ) cell types.
Immunofluorescence staining confirmed presence of two differ-
ent adjacent cells for the Neut_CD8_ADJ (immature neutrophil and
CD8 T cells) (Fig. 2d, and Supplementary Fig. 7L). Mono_CD31_ADJ
comprised both monocytes that were found adjacent to endo-
thelial cells and CD31-expressing monocytes (Fig. 2e).

Of note, the Neut_CD8_ADJ cells contained the most immature
neutrophil cell type (CD71hi neutrophils) coupled with CD45RO+

CD107a-CD8 T cells (Fig. 2f). The cluster also had the highest expres-
sion ofGranzymeB (GZB), CD172a (SIRPA), IFN-β and IFN-γ (Fig. 2f, g-I).
Within the cluster, the GZB expression was found on the CD8 T cells,
indicating these as cytotoxicCD8T cells (Fig. 2I). Themonocyte subset
in the Mono_CD31_ADJ cluster was the least differentiated (to macro-
phage) monocyte subset; similar to the Mono_1 cell type (Fig. 2d,
Supplementary Fig. 7L).

High innate immune cell numbers found in all
histopathology states
We next sought to understand how immune cell abundance chan-
ged as the overall histology progresses from injury to repair. Firstly,
we observed that changes in numbers of structural and relevant
immune cells supported the temporal progression of histopathol-
ogy states from inflammation to damage and subsequent repair
(Fig. 3a). There was a progressive increase in numbers of all subsets
of macrophages, fibroblasts, proliferating fibroblasts and myofi-
broblasts from ALV to DAD to OP, consistent with transition from
tissue injury to repair. Endothelial and proliferating endothelial
cells, proliferating bronchial epithelium and bronchial epithelium
also increased progressively. Changes in abundance of macro-
phages over the three histopathology states reflected accumulation
of macrophages as monocytes differentiate into macrophages with
progression of disease.

Across the three histopathology states, we found high numbers of
classicalmonocytes, immatureneutrophils, and some subsets ofMAIT,
CD4 and CD8 T cells. The most significant progressive increase in
numbers across the histopathological states (compared to healthy
lungs)was observed forCD8T cell subsets andCD8 containingADJ cell
clusters, and CD107a+ CD4 T cells (Fig. 3b–d) (see Supplementary
Table 4 for expanded phenotype description of immune cell types).
Neut_CD8_ADJ cluster was increased from the earliest histopathology
state and remained high in all states. Apart from IFN-γlo MAIT cells,
there were only small numbers of MAIT and NK cell subsets (Fig. 3c).
Cycling (Ki67+) monocytes were not found in the lungs.

Overall, innate cell numbers in the infiltrate did not decline
despite disease progression and were accompanied by increasing
numbers of CD8 T cells [even though viral protein was absent in OP
(repair) samples]. Some immune correlates of severity in the blood
observed in other studies (cycling monocytes, NK cells, and activated
MAIT cells) were not found in significant numbers in the lungs.

Distinct spatial organisation found between immune and
structural cells
To determine if the cells showed spatial association and organisation
amongst themselves,weemployed spatial statistical algorithms (Fig. 1a
and Supplementary Fig. 1) to (a) understand which immune cells were
found co-locatedwith injured structural cells, (b) explorehow immune
cells organise amongst themselves, and (c) for the immune cells
implicated in severe disease from COMBAT (monocyte, mega-
karyocyte, MAIT, CD4, CD8 and neutrophil subsets), determine where
these were co-located or physically interacting with other immune or
structural cells

In total, we found 3888 non-replicate pairs of cell types
(mono1:mono1 and CD15hi iNeut:CD15hi iNeut were examples of pairs
of identical cell types, and filtered out) in the three histopathological
states (ALV, DAD and OP). Using our three-step spatial analysis, 357
pairs of cell types were identified as statistically correlated in the
QCManalysis (FDR < 0.05). These cell pairs were submitted for cross-
PCF analysis, with one cell type in the pair defined as the ‘anchor cell’
-the cell against which statistically significant connections were
quantified. By pre-analysis consensus, pairs of cell types with bor-
derline statistical significance i.e. FDR values between 0.05 and 0.10
were also submitted to prevent loss of biologically relevant data from
hard mathematical cut-off. The resulting co-located cell pairs were
divided into ‘structure:immune’ pairs (structural cells were desig-
nated the ‘anchor’ cell type) (n = 33) and ‘immune: immune’ pairs
(one cell type in one of the duplicate pairs was designated the anchor
cell type; e.g. for the CD107a+CD8:mono1 pair and mono1:
CD107a+CD8 pair; CD107+CD8 in the former pair was made the
anchor cell, and the latter pair was excluded) (n = 117) (Fig. 4a).
‘Structure’ cells of interest were the key structural cells that were
known to be inflamed or damaged in COVID-19 pneumonitis –

endothelium (‘Endothelium’ and ‘proliferating endothelium’) and
larger blood vessels (‘blood vessels’), alveolar epithelial cells (‘pro-
liferating alveolar epithelium’) and bronchial epithelial cells (‘HLA
DRhi bronchial epithelium’ ‘HLA DRlo bronchial epithelium’

and ‘bronchial epithelium’). We were particularly interested in ‘pro-
liferating alveolar epithelium’ as their markers and location in the

Fig. 2 | High definition immunophenotyping of lung cells and identification of
tissue structure. a UMAP representation of myeloid, lymphocyte and structural
cell ‘mega clusters’ from all regions of interest (ROI) (k = 30) (COVID-19 and HC).
See also Supplementary Fig. 7 for extended analysis steps. HC – healthy control.
b, cNumber of cells per mm2 of lung tissue sections in all COVID-19 samples (n = 12
patients, 30 ROIs’ in total) compared to healthy control (HC) samples (n = 2 indi-
viduals, 4 ROIs in total). Median shown, error bars are IQR. n = 524,552 cells in total
for COVID-19 samples, n = 30,053 cells for HC. Statistical analysis performed after
samples grouped into histopathology states (see Fig. 3d). Source data are provided
in the Source Data File. d, e Immunofluorescence (IF) staining validation for
Neut_CD8_ADJ cell cluster and Mono_CD31_ADJ cell clusters. Small panels are high
magnification confocal images showing CD8 and CD15 staining (top small panel),
and CD14 and CD31 staining (bottom small panel) on adjacent cells. Broken yellow
circles show CD8 T cell (white- CD8) – neutrophil (green-CD15) couplets through-
out lungs (d); and CD14-staining cells next to CD31-expressing cells (endothelium)
in lung tissue (e). See also Supplementary Fig. 6 for negative controls. IF images
shown are representative of lung sections from n = 3 patients; staining experiment
performed once per lung sections. f Heatmap of median scaled intensity for each
marker for all cell clusters in the ‘Myeloid’mega cluster. ‘n_cells’ - average number

of cells in all COVID-19 ROIs. Total cells – 171, 777. UD – undefined cluster.
g,h ExemplarMCD image from37-plex imagingmass cytometry (IMC) staining of a
DAD ROI showing expression of CD8 T cells (CD8 -green), neutrophils (CD15-red)
and CD8_CD15_ADJ cell clusters (green and red co- expression, making yellow).
Image is one of n = 26 ROIs, some of which do not have the CD8_CD15_ADJ cell
clusters—see Fig. 3b for number of ROIs showing presence of this cell cluster in all
ROIs (n = 26COVID-19; n = 4HC).h SameMCD images as (G) butwith IFN-β channel
‘open’ (white) showing IFN-β expression on Neut_CD8_ADJ (yellow). i Higher mag-
nification of a set of 3 MCD panels - ‘none’ - Neut_CD8_ADJ (yellow) only (arrows);
‘IFN-γ’ –with ‘IFN-γ’ (white) channel opened onMCDviewer showing expression on
Neut_CD8_ADJ (yellow) (arrows) and some CD8 (green); ‘GZB’ - with ‘GZB’ (cyan)
channel opened and showing expression on Neut_CD8_ADJ (yellow) (arrows).
CD172a panel shows confocal immunofluorescence staining (white) on CD15 and
CD8 adjacent to each other. IF images shown are representative of lung sections
from n = 3 patients; staining experiment performed once per lung sections. ALV –

alveolitis, DAD – diffuse alveolar damage, OP -organising pneumonia. MCD images
from all 26 ROIs (n = 10 ALV, n = 8 DAD and n = 8 OP) were analysed and median
expression intensity for all ROIs shown in (f) and Supplementary Fig. S7. All scale
bars in μm.
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lung sections suggest they were likely the type II alveolar epithelial
cells, the purported progenitors (or stem cells) of alveolar epithelium
(Supplementary Fig. 7J and K). The ability of these cells to differ-
entiate to type 1 alveolar epithelium is critical to normal repair and
alveolar regeneration after viral induced damage30–32.

Amongst the immune cells, the strongest co-location, depicted by
g(r = 20) > 2 [i.e. >2 times more cells of type B observed at 20 μm from
cells of type A (anchor cell) than expected under complete spatial
randomness], was observed for pairs of immune cell types that
belonged to the same immune phenotype, e.g. Mac1 and Mac2 (mac-
rophages), and the CD4 and CD8 T cell types (Fig. 4b). This was
expected biologically and provided a degree of validation for the
mathematical analysis. For example, close association between helper
CD4 T cells (IFN-γ +CD4 T cells) and cytotoxic CD8 T cells (CD107a +
CD8 T cells) is expected as the former plays critical roles in aiding the
latter’s anti-viral activities. However it is notable that this close physical
relationship persists in OP, despite lack of viral protein at this stage of
the disease (Supplementary Fig. 9).

These results signify presence of specific spatial organisation for
several immune and structural cells despite appearance of disorder in
tissue. The strongest co-location between all cells was found between
CD4 and CD8 T cell subsets, particularly active effector memory CD4
T cells (IFN-γ+ CD4 T cells) and cytotoxic CD8 T cells (CD107a+ CD8
T cells), which did not lessen with progression to repair, and despite
absence of viral proteins.

Immature neutrophil-CD8 T clusters are co-located with pro-
liferating alveolar epithelium in regions with maximal
alveolar damage
For the significantly co-located pairs of cells, we next questioned
which immune cells were found co-located with injured structural
cells. To provide a composite view of the multiple outputs from
our spatial analysis, we generated a ‘spatial connectivity plot’ to
show all cell types that were statistically co-located with a desig-
nated ‘anchor cell type’. Each spatial connectivity plot displayed
the strength of co-location [g(r = 20)] and the average count for
the immune cell types in the histopathology state (Fig. 5a, b). The
proportions of co-locating cell types which were in direct contact
with the anchor cell type were calculated with the ACN analysis
(see Methods) and shown in the accompanying histograms
(Fig. 5c, d).

Our main structural cell types of interest were the Ki67+ pro-
liferating alveolar epithelial cell and endothelial cells. Designating pro-
liferating alveolar epithelium as the anchor cell, we found CD15hi iNeut,
Mono_CD31_ADJ and Neut_CD8_ADJ to be significantly co-located with
proliferating alveolar epithelium in DAD (Fig. 5a, b) [g(r = 20) > 1]. Of
these cells, proliferating alveolar epithelium was most in contact with
Mono_CD31_ADJ (average of 17.6% of proliferating alveolar epithelial
cells inDAD) andNeut_CD8_ADJ (8.9%of proliferating alveolar epithelial
cells in DAD) (Fig. 5c). There was also a small number of IFN-
γhi_RAGE_ADJ cells found co-located with proliferating alveolar

Lymphoid cells

Structural cellsa.
d.

Myeloid cellsb.

c.

vs HC

Fig. 3 | Quantification of immune and structural cells in COVID-19 lungs.
a–c Cell abundance plots for immune cells (myeloid and lymphoid cells) and
structural cells in lung tissue, adjusted for surface area in COVID lungs categorised
into those with histopathology states of alveolitis(ALV) (n = 4 patients, 10 ROIs),
diffuse alveolar damage (DAD) (n = 4 patients, 8 ROIs) and organising pneumonia
(OP) (n = 4patients, 8ROIs), compared tohealthy control (n = 2 individuals, 4 ROIs).
Line in figure represents median. See Supplementary Table 4 for extended phe-
notypic description for all cell types and clusters. Source data are provided in the

Source Data File. d Heatmap of fold change (FC) difference in abundance of cell
types for COVID-19 samples (ALV,DADandOP) vs healthy controls (HC) depicted in
(a). Asterisks show those with significant differences - adjusted p values are
*p <0.05 **p <0.01 ***p <0.001, calculated using code from the diffcyt R package
(version 1.8.8) with the option testDA_edgeR; two-sided analysis employed, and
multiple comparisons adjusted using Benjamini-Hochbergmethod. Arrow refers to
immune cells that showed progressive increase in abundance with progression
histopathology states from ALV to OP.
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epithelium in all histopathology states, which could be resident alveolar
macrophages found along alveolar epithelium.

For endothelial cells (which encompassed the smaller capillaries
and the larger blood vessels in the lungs), the co-locating cell types
with highest g(r = 20) in DAD were Mono_CD31_ADJ (2.1) and
Mono_PAI-1_ADJ (1.6) clusters (Fig. 5b, f). ACN analysis showedmore of
the endothelial cells were

physically in contact with theMono_PAI-1_ADJ cluster (21.2%) than
Mono_CD31_ADJ (16.5%) inDAD (Fig. 5d).Mono_CD31_ADJ cells showed
significant spatial association with endothelial cells across all histo-
pathology states.

Next, we designed a ‘radial connectivity map’ to provide an
overview of all immune cells that were significantly co-located
with all structural cells and their corresponding histopathology
states (Fig. 5g). Using this map, and focusing on proliferating
alveolar epithelium and endothelial cells, we observed that while
the monocytes (and their subsets and ADJ clusters) were mainly
found co-located with both alveolar epithelium and endothelial
cells, immature neutrophils were found predominantly with pro-
liferating alveolar epithelium. We also observed that besides
proliferating alveolar epithelium, the Neut_CD8_ADJ cluster was
not found with any other structural cell types.

Finally, we developed a topographical correlation map (TCM)
(Methods, Supplementary Fig. 15) to visualise how the spatial corre-
lation between Neut_CD8_ADJ and proliferating alveolar epithelium
changed across anROI (Fig. 5h).We observedmarked heterogeneity in
the strength of correlation for this pair of cell types across the tissue.

One other cell type of interest was the megakaryocyte. These
CD34- platelet precursors, a product of emergencymyelopoiesis, were
the most abundant immune correlate in the blood in the COMBAT
study6. Examining their spatial connections with our two structural
cells of interest, we observed that megakaryocytes were associated
with endothelium in DAD (Fig. 5g).

Drawing these data together, our spatial analysis identified
Neut_CD8_ADJ and Mono_CD31_ADJ clusters as key spatial corre-
lates with proliferating alveolar epithelium in DAD. A visual
exemplar of this co-location of Neut_CD8_ADJ and alveolar epi-
thelium is shown in Fig. 5I. Mono_CD31_ADJ and Mono_PAI-1_ADJ
were the strongest spatial correlates with endothelial cells, the

former was the case across all states. No immature neutrophils
(alone or in an ADJ cluster with CD8 T cells) were found with
endothelial cells in any histopathology states. It is noteworthy
that there was no significant co-location between any immune
cells and the larger blood vessels; nor between CD107a+ CD8
T cells and IFN-γ+ CD4 T cells with proliferating alveolar epithe-
lium or endothelial cells despite relatively high abundance in the
tissue. In addition, despite a correlation with disease severity in
the blood, NK and MAIT cells did not co-locate with any structural
cells. Further, even though macrophage subsets were the most
abundant cells in lungs, there was also no statistically significant
co-location between these cells and damaged structural cells.

All data, the spatial connectivity plot, radial connectivitymap, and
topographical correlation map functions are available as open
resources on MDV (https://mdv.molbiol.ox.ac.uk/, Supplementary
Fig. 10, “Methods”).

Immature neutrophils have a spatial predilection for CD8 T cells
Wenext examined how immune cells connected to other immune cells
by interrogating the 91 pairs of immune cells with g(r = 20) > 1 across
the three histopathology states (Fig. 6a–c).

We observed that as single entities (as opposed to those found
within ADJ clusters), immature neutrophils only co-located with CD8 T
cells or CD8-ADJ clusters (Fig. 6a), regardless of histopathology state.
However, immature neutrophils within the Neut_CD8_ADJ cluster, co-
localised with Mono_CD31_ADJ clusters in DAD and other monocyte
subsets in OP (Fig. 6a, d).

Therefore, in DAD, proliferating alveolar epithelium not only co-
located with Neut_CD8_ADJ, but also with a further network of co-
locating immune cell types linked to the Neut-CD8_ADJ cluster, form-
ing a super network of Neut_CD8_ADJ and Mono_CD31_ADJ clusters
around theproliferating alveolar epithelial cells. This canbe seen in the
ACN analysis (Fig. 6f) and an MCD image view of the cells in the tis-
sue (Fig. 6g).

In contrast to neutrophils, there was a less restricted repertoire of
co-locating cell partners for monocytes. Monocyte subsets and ADJ
clusters were found co-located with NK, MAIT, CD4 and CD8 T cell
subsets (Fig. 6b, c). Notably, megakaryocytes were found uniquely
associated with Mono_CD31_ADJ in DAD (Fig. 6e).

Fig. 4 | Spatial analysis of immune and structural cells in COVID-19 lungs.
a Schematic representation of the sequential spatial analysis of cellular co-location,
startingwith quadrat correlationmatrix (QCM), then cross pair correlation function
(cross-PCF) analysis, interrogation of cross-PCF output and organization according
to main questions. QCM output is provided in Supplementary Fig. 8. b. g(r = 20)
heatmaps showing statistically significant correlated pairs of cells derived from

QCM and cross-PCF analysis (see Methods for full description). n = 479,349 single
cells from n = 12 COVID patients’ lung sections (n = 26 ROIs); in total, n = 144,937
cells in ALV, n = 146333 in DAD and n = 163,506 in OP. Red boxes indicate groups of
cell subsets from the same immune phenotype—neutrophils (Group 1), monocytes
and macrophages (Group 2), CD3 T cells (Group 3) and MAIT cells (Group 4).
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Our analyses showed that there were distinct organisations
amongst immune cells in COVID-19 lungs, with specific predilection of
immature neutrophil for CD8 T cells, and upon connection (as the
neutrophil_CD8_ADJ cluster), a further connection with Mono_-
CD31_ADJ cluster was formed, resulting in a network of Neut_CD8_ADJ
and Mono_CD31_ADJ, linked to proliferating alveolar epithelium in

diffuse alveolardamage. Thesewere then linked tomegakaryocytes via
the latter cell type’s connection with Mono_CD31_ADJ cluster in DAD.
Thus, a spatial network of immature neutrophils, CD8 T cells, classical
monocytes and megakaryocyte form a connected web of cells juxta-
posed against proliferating alveolar epithelial cells and alveolar capil-
laries in DAD.
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Projection of the circulating source of lung CD8 T cells, mono-
cytes and immature neutrophils
Finally, we returned to our COMBAT data6 to explore if we can identify
the circulating source of the monocytes, CD8 T cells and neutrophils
found in the lungs. Using scmap, a method which enables label pro-
jection by calculating the similarity between cells profiled by two
separate studies33, we examined the phenotypic similarity between
monocytes and CD8 T cells in the lungs [this study (COSMIC)] and
blood (COMBAT study). For COMBAT, we used the CYTOF dataset
from neutrophil-depleted whole blood (Supplementary Fig. 3 in
COMBAT)6.

Both lung CD107a- CD8 and CD107a+ CD8 matched to blood
‘GZBneg CD8 T cells’ in COMBAT (Fig. 7a). Lung IFN-γ +CD4 T cells
matched to COMBAT’s ‘activated CD4 T cells’ subset (which contained
CD27- and CD27+ CD4 T cells). All monocyte subsets in the lung
[including Mono_CD31_ADJ, Mono_PAI-1_ADJ (but not Mono3)], and all
macrophage subsets showed high Jaccard similarity index with HLA
DRhi classical monocytes in the blood (Fig. 7b).

We next interrogated the markers for these two COMBAT cell
types (GZBneg CD8 T cells and HLA DRhi classical monocytes) (data
found in Supplementary Data 3 in COMBAT). We observed that com-
pared to healthy and disease controls, GZBneg CD8 T cells expressed
markers of exhaustion and were KLRG1+ compared to other CD8
T cells. HLA DRhi classical monocytes showed high expression of CLA.
Both GZBneg CD8 T cells andHLADRhi classical monocytes were unique
amongst CD8 T cell and monocyte subsets in showing lower abun-
dance in COVID-19 patients compared to healthy volunteers6, raising
the possibility that these were the subsets that have trafficked to the
lungs. This is not unprecedented given previous findings in lungs
which showed sparse antigen-specific T cells in blood of severe influ-
enza patients but 8 times higher in matched blood-lung samples34.

For neutrophil comparisons between lungs (COSMIC) and blood
(COMBAT), we obtained stored whole blood samples and stained
these with a 42-marker CYTOF panel (Supplementary Table 5). 8 sub-
clusters of neutrophils were evident from dimensionality reduction
(UMAP) and unsupervised clustering, and annotated according to
maturity – from pro-neutrophil to mature neutrophils (Fig. 7c, d).
Compared to the lung neutrophils, ‘immature neutrophil 2’ in the
blood (which expressed the highest level of CD172a amongst the
immature CD10- neutrophil subsets), most closely matched the neu-
trophil subset in Neut_CD8_ADJ (Fig. 2f). Notably, the abundance of
‘immature neutrophil 2’ correlated positively with severity of dis-
ease (Fig. 7e).

These findings showed that the lung CD8 T cell subsets matched
most closely to a GZBneg KLRG1+ CD8 T cell subset in the blood, which

also expressed a T cell exhaustion signature. This suggests that this
bloodCD8Tcell subset is a likely source for theGZB+ CD8Tcells found
in the Neut_CD8_ADJ cluster; and that within this cluster, CD8 T cells
expressed GZB, possibly with exposure to IFN-β35. On the other hand,
blood CD172ahi immature neutrophil subset is the likely source for the
immature neutrophils in the lungs, including that found in the
Neut_CD8_ADJ cluster.

Discussion
In this paper, we deconvoluted a highly disordered immune and
structural landscape to provide accurate annotations and abundance
metrics for the cellular landscape and then leveraged mathematical
techniques to describe co – location and cell contact-based network
construction. Our mathematical tools encompassed a range of spatial
statistics and methods from network science; some transposed from
ecology36–38. The pipeline uncovered a hitherto undescribed physical
partnership between immature neutrophils and CD8 T cells in COVID-
19 lungs linked toproliferating alveolar epithelium in areaswith diffuse
alveolar damage. This further connected with classical monocytes and
megakaryocyte around endothelial cells, forming a super pro-
inflammatory network across the alveolar bed in DAD. The observa-
tions on neutrophils are especially significant since relatively little is
understood of the role of neutrophils in the lungs of patients with
COVID-19 due to poor detection with transcriptomic methods17,39.

Our study did not elucidate how neutrophil-CD8 clusteringmight
contribute to disease pathogenesis. However, evidence from other
diseases provide some insight. Neutrophils and CD8 T cells aggrega-
tion in colorectal cancer and graft vs host disease have been shown to
enhance T-cell receptor–triggered activation of CD8+ T cells40 causing
neutrophil-mediated tissue damage by the release of reactive oxygen
species41. Neutrophils can also act as antigen presenting cell which
cross present antigen to CD8 T cells, further enhancing activation42,43.
CD8 T cells with a similar effector memory and GZB+ profile as that
found in the Neut_CD8_ADJ cluster have also been implicated in
immunopathology of COVID-19 in other organs. Imaging mass cyto-
metry studies in COVID-19 brain tissue showed intriguing spatial
associations with microglia, which also sustained immune activation
and neuroinflammation44.

The presence of viral antigen could be the trigger for these foci of
immature neutrophils and CD8 T cells, possibly initiated by recogni-
tion of viral antigen by CD8 T cells. However, we note abundant
Neut_CD8_ADJ cluster in theOP state (Fig. 3b)where therewereno viral
proteins or RNA. One explanation is that these CD8 T cells were self-
proliferating, as suggested by Liao’s study using single cell RNA
sequencing of lung-lavaged cells in COVID-19 patients45. Supporting

Fig. 5 | Spatial organization of immune cells around structural cells in COVID-
19 lungs. a, b Spatial connectivity plots for proliferating alveolar epithelium,
showing immune cells that are significantly co-located to proliferating alveolar
epithelium (designated ‘anchor cell’) in the three histopathology states. The size of
the nodes (filled-in circle) represents mean cell counts (abundance) for the speci-
fied cell cluster for all the ROIs in the histopathology state (scale shown in grey),
and colour of nodes relate to histopathology state. Connecting lines indicate a
statistically significant co-location between the two cell types derived from QCM
and cross-PCF analyses. The thickness of the lines relates to the g(r = 20) value
relative to each pair in the plot – the thicker the line, the higher the g(r = 20) and
therefore greater strength of co-location between the immune cell type and anchor
cell. n = 479,349 single cells from n = 12 COVID patients’ lung sections (n = 10 ROIs
for ALV; n = 8 DAD; n = 8 OP); n = 144,937 cells in ALV, n = 146333 in DAD and
n = 163,506 in OP. Histogram shows % of two anchor cells – proliferating alveolar
epithelial (PAE) cells (c) and endothelial cells (d) that are in contact with specified
immune cell type. Source data are provided in the Source Data File. e, f Cross-PCF
profiles for the two most abundant co-located structure:immune cell pairs in DAD.
Curves show the change in g(r) along the radius(r) from anchor cells [proliferating
alveolar epithelium (prolif alv epit) and endothelial cells (endo)] for Neut-CD8_ADJ
cell clusters and Mono_CD31_ADJ cell clusters respectively. Blue coloured area

around curve is the 95% confidence interval for n = 8 ROIs with DAD. g. Radial
connectivity map depicting all statistically significant pairs of structure:immune
cells in all histopathology states; anchor cells (structural cells) are in smaller, inner
circle.n = 479,349 single cells fromn = 12COVIDpatients’ lung sections (n = 10ROIs
for ALV; n = 8 DAD; n = 8 OP). ‘DRhi BE’ –HLADRhi bronchial epithelium; ‘DRlo BE’ –
HLA DRlo bronchial epithelium; “Endo’- endothelial cells; ‘PAE’- ‘proliferating
alveolar epithelium’, ‘PBE’ – ‘proliferating bronchial epithelium’; ‘PE’ – ‘proliferating
endothelium’ ‘BV” –‘blood vessels’. Numerical values indicate g(r = 20) for that pair
in that state (coloured bar), and % indicates proportion of anchor cells that are co-
located with the specified immune cells. h Topographical correlationmap showing
distribution of the co-located Neut_CD8_ADJ cluster and proliferating alveolar
epithelial cell pair (left panel) in an exemplar tissue (an ROI with DAD). Cells of type
A (e.g. Neut_CD8_ADJ) are positively (Γab≫0) or negatively (Γab≪0) associated with
cells of type B (e.g. Proliferating alveolar epithelium) (seeMethods). i. MCD images
showing Neut_CD8_ADJ clusters amidst single CD8+ T cells, CD15+ immature neu-
trophils and epithelial markers (EpCAM and PanCK). Couplets of CD8+ and CD15+

cells - Neut_CD8_ADJ clusters (red and greenmerging to form yellow cells) (arrows)
are most clearly visible in DAD. Exemplar section is shown from analyses of n = 10
ALV ROIs, n = 8 DADROIs and n = 8 OPROIs (n = 12 patients). Sections were stained
once with 37 plex panel.
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this, Neut_CD8_ADJ cluster showed the highest Ki67 expression
(Fig. 2f), with MCD imaging isolating this expression to CD8 T cells
(Fig. 2I). Organising pneumonia is not a natural sequela of all viral
infection or alveolar inflammation. Indeed, many patients who do well
do not progress to consolidation on computed tomographic (CT)
scans. Thus, a potential deleterious effect of these foci of inflammation
could be the obliteration of regenerative potential in type II alveolar

epithelial cells, the purported stem cells for the alveolar unit46, and
development of organising pneumonia (OP).

Another cluster highlighted by our analyses was the Mono_-
CD31_ADJ cluster, which was spatially associated with Neut_CD8_ADJ
cluster, and with proliferating alveolar epithelial cells. Proliferating
alveolar epithelial cells are the nominal stem cells for the alveoli and
key to replenishment of type 1 alveolar epithelial cells. Its health, and
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ability to function optimally, is a key requirement for repair of infected
and damaged alveoli. A consequence could be that the production of
type I IFN, [and other monocyte-specific cytokines like IL-6 and TNF- α
(as reviewed by,47,48]), combined to impact on regeneration of alveolar
epithelium. It is also possible that type I IFN production from these
monocytes causes upregulation of ACE2, thereby sustaining viral entry
and alveolar epithelial damage49. This agrees with observation from
transcriptomic studies of the lungs where type II alveolar epithelium
were found in an inflammation-associated intermediate state rather
than progressing via normal regeneration to type I alveolar
epithelium13,15,17.

The tight association between a large number of monocytes and
endothelial cells in all histopathology states could result in excess
inflammation and also predispose to small vessel thrombosis, parti-
cularly with further presence of megakaryocytes at the point of max-
imal injury (DAD) (Fig. 5b). Single cell transcriptomic analyses inCOVID
lungs have demonstrated upregulation of endothelial-damage mar-
kers, including VWF, ICAM1 and VCAM1, and transcriptional programs
suggesting altered vessel wall integrity and widespread activation of

coagulation pathway associated genes in endothelial cells13,16,50. In
addition, autopsy studies have shown high numbers of mega-
karyocytes and platelet rich thrombi in the lungs with COVID-19
pneumonitis51.

Beyond these key messages, other findings clarified the impor-
tanceof immune cell numbers andphenotype in bloodof patientswith
severe COVID-19. There was no significant spatial co-location between
activated NK cells andMAIT cells with any structural cells although the
numbers for MAIT cells were increased, in keeping with blood levels.
With the ability to identify single cells of CD4 and CD8 T cells, and
quantify their abundance per mm2 of lungs, we also showed defini-
tively that levels of CD4 and CD8 T cells were high in lung samples in
contrast to studies which inferred their depletion from gene expres-
sion profiles15. Immature cycling monocytes, one of the most striking
observations in the blood of patients with severe compared to mild
COVID-19 disease6,8, were not found in lung tissue. This suggests that
immaturemonocytes are unlikely to be involved in tissue damage, and
unlike immature neutrophils, probably differentiated rapidly to
mature monocytes and macrophages.

Fig. 6 | Spatial organization amongst immune cells in COVID-19 lungs. Radial
connectivitymapdepicting all statistically significantly co-locatedpairs of immune-
immature neutrophil subsets (including ADJ subsets) (a) immune-monocyte sub-
sets (b, c, separated for clarity) cells in all histopathology states (n = 10 ALV, n = 8
DAD and n = 8 OP). Anchor cells (immature neutrophil and monocyte subsets) are
in smaller, inner circle. Numerical values indicate g(r = 20) for that pair in that state
(coloured bar), and % indicates proportion of anchor cells that are co-located with
the specified immune cells. These significantly co-located pairs of cells are derived
from n = 479,349 single cells in all ROIs from n = 12 COVID patients’ lung sections
(n = 10 ROIs for ALV; n = 8 DAD; n = 8 OP); n = 144,937 cells in ALV, n = 146333 in
DAD and n = 163,506 in OP (see “Methods” for 3-step mathematical algorithm for
determining statistical significance of co-location). Spatial connectivity plots for
Neut_CD8_ADJ (d) and Mono_CD31_ADJ (e), showing immune cells that are statis-
tically significant co-located to proliferating alveolar epithelium (designated
‘anchor cell’) in the three histopathology states (see “Methods” for 3-step mathe-
matical algorithm for determining statistical significance of co-location). Size of
nodes (filled-in circle) representmeancell counts for the specified cell cluster for all

the ROIs in the histopathology state, and colour of nodes relate to histopathology
state. Connecting lines indicate a statistically significant co-location between the
two cell types derived fromQCMand cross-PCF analyses. Thickness of line relate to
value of g(r = 20) relative to eachpair in theplot– the thicker the line, thehigher the
g(r = 20) and strength of co-locationbetween the immune cell type and anchor cell.
f Adjacency cell network (ACN)map showing contact between theMono_CD31_ADJ
cluster, Neut_CD8_ADJ cluster and proliferating alveolar epithelial. Cell segmenta-
tion masks generated by DeepCell were used to produce this spatially-embedded
network in which nodes represent centres of cell types (e.g. green – Neut_CD8_ADJ
cell cluster). Nodes are connected by a line if the corresponding cells in the seg-
mentationmask share a border.gMCD image showing CD8 (green), CD15(red) and
CD15 and CD8 co-staining (yellow) (representing Neut_CD8_ADJ cell clusters)
amidst endothelial cells (CD31 staining in turquoise) andmonocytes (CD14 staining
in purple) in a lung section with DAD on histopathology analysis. Exemplar ROI is
shown for (f) and (g), out of 26 ROIs stained, from 12 patients (n = 10 ALV ROI, n = 8
DAD and n = 8 OP).
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Fig. 7 | Comparison between blood (COMBAT) and lung (COSMIC) data.
aSCMAPmatchingheatmaps representing the Jaccard indices of similaritybetween
COMBAT (blood)6 and COSMIC (lung) lymphocyte clusters. CD107a- CD8 T cell and
CD107a+ CD8 T cell in COSMICmatched to bloodGZB- CD8 T cells in COMBAT. IFN-
γ+ CD4 T cells matched to COMBAT’s ‘activated CD4 T cells’. b SCMAP matching
heatmaps representing the Jaccard indices of similarity between COMBAT (blood)
and COSMIC (lung) myeloid clusters. Mono_CD31_ADJ and Mono_PAI-1_ADJ and all
macrophage subsets matched with HLA DRhi classical monocytes in the blood from
COMBAT data. c UMAP representation of neutrophils from controls and COVID-19
infected patients (n = 2,776,928 single cells from n = 77 COVID-19 patients and 11
healthy volunteers (HV), down sampled to 100 000 cells per condition) obtained
from COMBAT consortium, showing 8 subsets of neutrophils. d Heatmap showing
median marker expression for genes (selected to match COSMIC’s key protein

expression on neutrophils) on the 8 neutrophil subsets, demonstrating high simi-
larity of marker expression in immature neutrophil 2 (iNeut2) in COMBAT (blood)
with Neut_CD8_ADJ in COSMIC (lung) (See also Fig. 2f). e Abundance of the 8
neutrophil subsets in blood as % of total neutrophils, from healthy volunteers (HV),
mild, severe and critical COVID-19 patients from the COMBAT consortium showing
a progressive increase in immature 2 neutrophils with increasing COVID-19 disease
severity. HV (n = 11), mild (n = 18), severe (n = 41), critical (n = 18) patients, n = 1
experiment. The boxplot is median, with IQR; whiskers are the range or 1.5*IQR
(whichever is smaller). Composition analysis was performed using scCODA with
inbuilt adjustment for multiple comparison70. Credible compositional changes
were identified comparing all groups to HV and FDR <0.1 is marked with #. Source
data are provided in Source Data File.
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Our findings refined our earlier work on a smaller subset of
COVID-19 lungs (n = 3) using targeted transcriptomic analysis (GeoMx)
in specified sections in the lungs linked to alveolar damage52. In that
work, we deconvoluted cells detected by gene expression profile using
limitedproteinmarkers and showed thatCD8T cells andmacrophages
with IFN-γ signature correlated with areas of lungs with alveolar
damage. Interestingly, areas of severe damage exhibited consistent
expression of IFNG-regulated chemokines such as CXCL9/10/11 that
may promote CXCR3-mediated chemotaxis or retention of CD8 T
effector lymphocytes. Further to the findings from this paper, we
performed additional analyses to determine if we can provide a tran-
scriptomic view of the immature neutrophils and CD8 T cell cluster.
This strengthened but did not reveal further findings (described in
Supplementary Fig. 11).

Another earlier work in the same lung samples showed significant
presence of neutrophil extracellular traps (NETS) in the lung samples
which correlated with areas of low CD8 T cell levels. Re-examining the
number of NETS per lung section, we observed widespread presence
with no significant difference between the three histopathology states
(Supplementary Fig. 3C). As NETS production is a feature of mature
rather than immature neutrophils20, one explanation is that there is a
CD8-directed immature neutrophil localisation to proliferating alveo-
lar epithelium, which is separate from the relatively less discriminate
NETS expression by mature neutrophils.

The key limitation of our study is that it is an observation of
association, albeit that there was clear comparison between histo-
pathology characterisations of alveolitis, damage and repair. Thus, it is
not possible to elucidate causeor effect. Further functional studieswill
strengthen the findings. Our cohort was also small though this was
counterbalanced by uniquely fresh samples from lungs, with minimal
effect of degradation due to the sampling methods at the point of
death. Finally, our study was led by specific questions. To that end, the
antibody panels, and analyses were targeted to those questions and
cellular identities were constrained to that linked to the
antibody panel.

We conclude that statistically rigorous analyses of spatial asso-
ciations of immune and structural cells in lungs of those with fatal
COVID-19 identified an inflammatory nidus of immature neutrophils
and CD8 T cells with high immune activity and proliferating cap-
abilities that were linked to alveolar progenitor cells in areas with
greatest alveolar damage. It establishes the importance of emergency
myelopoiesis in lung immune pathology, with potential roles for
immature neutrophils and megakaryocytes in alveolar damage, aber-
rant alveolar regeneration, and excess thrombogenesis. The findings
support the evaluation of therapeutics that target monocytes and
immature neutrophils, potentially earlier in disease to limit its impact
on progression to widespread alveolar damage and organising pneu-
monia. It also means that drugs that increase the longevity or survival
of CD8 T cells require further assessment given the potential con-
tribution of CD8 T cells to lung damage.

Methods
Table of antibodies and reagents used in imaging mass cyto-
metry and immunofluorescence
All antibodies, their catalogue numbers, final dilutions, and source are
documented in Supplementary Data 1.

Patients, samples, and ethical approvals
Lung samples were obtained from collaborators from theUniversity of
Navarra, Spain and comprised thosepatients who died in hospital after
admission with COVID-19. The only inclusion criteria were (i) hospita-
lisation, (ii) evidence for COVID-19 pneumonitis, defined as presence
of ground glass changes +/− consolidation and peri bronchial sha-
dowing in mid to peripheral distribution on thoracic CT scan begore
death, (iii) PCR+ results for nucleocapsid (N) and/or envelope protein I

in lung or liver tissue sample and (iv) negative bacterial culture from
blood and lung within 3 days of death. The study was approved by the
Ethics Committee of the University of Navarra, Spain (Approval
2020.192). Tissue collections were obtained with consent from a first-
degree relative, following a protocol approved by the ethics commit-
tee of the University of Navarra (Protocol 2020.192p); and stored
under Spain’s Human Tissue Authority regulations. Samples were
collected during the first wave of pandemic (2020) via an intercostal
space incision, using core biopsy methods (BioPince Full Core Biopsy
Instrument kit) immediately after death20,53. Tissues were immediately
fixed in neutral buffered formalin for over 24 hours, and then paraffin‐
embedded. These samples were also shared with other collaborators
and studies carried out independently20,52.

Healthy lung controls were obtained from the Oxford Centre for
Histopathology Research and the Oxford Radcliffe Biobank based at
theOxfordUniversityNHSHospitals FoundationTrust. Ethics approval
was received from Oxford A South-Central NHS REC (ref. 19/SC/0173).
The inclusion criteria were that lung sections had to be obtained away
from localised lung cancer site on lung imaging; they had to have
normal lung histopathology as agreed by two independent histo-
pathologists, aged between 50-90 y and had no concomitant lung
diseases. Altogether 8 suchpatientswere identified, their lung sections
stainedwithH& E and two representative patients selected to proceed
to IMC staining. H & E stained sections are shown in Supplemen-
tary Fig. 4.

We have considered sex balance in selection of samples. There are
5 females and 7 males in our cohort. Patients and relatives were not
financially compensated.

RNA extraction and quantitative RT-PCR for viral genes
RNA extraction from biopsies was performed using the QIAamp Viral
RNAMini Kit (Qiagen) and the identification of SARS‐CoV‐2 transcripts
encoding nucleocapsid (N) and an envelope protein I was performed
using a commercial kit (SARS‐CoV‐2 Real Time PCR Kit, Vircell), both
according to manufacturer recommendations, at the Microbiology
Laboratory of the Clinica Universidad de Navarra (ref). Samples with
amplification of both targets with Ct values below 35 were considered
positive for SARS‐COV‐2. Ct threshold was selected based on com-
parison between Ct values and presence of viral DNA on nasophar-
yngeal‐swab standards.

SARS-CoV-2 nucleocapsid protein staining
Slides were deparaffinised and heat-induced epitope retrieval were
performed on the Leica BOND-RXm using BOND Epitope Retrieval
Solution 2 (ER2, pH 9.0) for 30minutes at 95 °C. Staining was con-
ductedwith the Bond Polymer RefineDetection kit, a rabbit anti-SARS-
CoV-2 nucleocapsid antibody (Sinobiological; clone: #001; dilution:
1:5000) and counterstained with haematoxylin.

Region of interest (ROI) selection
H&E stained sections were examined by two senior pathologists
independently and apulmonologist anddata compiledwith consensus
at the third iteration. ROIs were selected based on size (2x 2mm
squares or equivalent surface areas) to represent the dominant histo-
pathology findings for the section. Slides were imaged on AxioScan
Z1 slide scanner [Zeiss] and viewed using QuPath54

Imaging mass cytometry (IMC) staining
Sequential 6 µm thick FFPE lung tissue section slides were incubated
for 2 hours at 60oC on a slide warmer, dewaxed twice in Histo-clear II
(National Diagnostics) for 10minutes before rehydration through
serial alcohols; 100%, 100%, 95%, 70% ethanol and MilliQ water. Slides
were then incubated for 30minutes at 96oC in EDTA Target Retrieval
Solution, pH 9 (Agilent) and cooled to 70oC before washing twice in
MilliQ water. Slides were blocked in 3% BSA solution in Maxpar PBS
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(Standard BioTools; previously Fluidigm) for 45min. Sections were
then stained with metal-conjugated antibodies in Maxpar PBS con-
taining 0.5% BSA overnight. Antibodies conjugated in house were
conjugatedwithMaxParX8antibody labelling kits (StandardBioTools)
or Lightning-Link kits (Abcam) according to manufacturer’s instruc-
tions. Slides were washed in 0.2% Triton X-100 then twice in Maxpar
PBS. Intercalator-Ir (Standard BioTools) diluted in Maxpar PBS was
used to stain DNA (30min), slides were washed in MilliQ water then
air dried.

Ablation of the relevant regions of interest (ROIs) was carried out
on Standard BioTools Hyperion Imaging System using CyTOF7 Soft-
ware v7.0 (Standard BioTools) and visualized using MCD Viewer
(StandardBioTools). Imageswere processed for publication using FIJI55

to de-speckle and sharpen the images.

Antibody validation and optimization
Antibody clones were selected which had previously been published
and validated in IMC studies as well as antibodies frequently utilized
for immunofluorescence or immunohistochemistry studies with FFPE
tissues. Staining validation for IMC markers was performed in healthy
control lung and tonsil as well as in some COVID-19 infected lung
(Supplementary Fig. 5,6 and 12). During optimisation, we checked that
(i) mutually exclusive expression pattern were found in key immune
and structural lineage markers i.e. CD68, Epcam, CD3 and CD19 (ii)
markers showed appropriate subcellular location expression i.e. tran-
scription factors Foxp3 and Ki67 were nuclear, whereas CD68
expression was cytoplasmic and cell membrane. (iii) structural cell
identities defined by IMC lineage marker expression are compatible
with cell morphology and location in H&E. Adjacent H&E-stained slides
and structural markers expression was examined e.g. α-SMA expres-
sion around vessels and bronchi, EpCAM expression on bronchial and
alveolar epithelial cells. (iv) Non-biological sense expression e.g. CD4
and CD8 co-expression and biologically expected and coherent co-
expression patterns eg. cells expressing CD45, CD3, CD8 and CD45RO
were examined (v.) Expression for the following key markers was
validated by immunofluorescence staining in adjacent slides – CD4,
CD8, CD14, CD15, CD31, CD172a, CD206, ProSPC, PAI-1, Epcam
and Ki67.

Antibody clones that did not perform well i.e. those with weak
signal, high background, or nonspecific staining were discarded.
Antibody titration was performed to maximise signal to noise ratio in
both lung and tonsil tissues and panels were designed to minimise the
already low levels of signal spill over see in IMC [less than 1-5%]56.

Immunofluorescence
Paraffin-embedded human lung tissue sections were deparaffinized
and each sectionwas pre-treated using heat-mediated antigen epitope
retrieval with sodium citrate buffer (pH 6) for 20minutes. Then sec-
tions were blocked in 10% normal goat serum (Thermo Fischer Scien-
tific, 50062Z) for 20minutes and then incubated with CD14 antibody
1:100 dilution (Abcam, AB183322), CD15 antibody 1:200 dilution (Cell
signalling Technology, 4744 S), CD31 Antibody 1:100 dilution (LS Bio,
LS-B15507-LSP), CD8 Antibody 1:100 dilution(Cell signalling Technol-
ogy, 90257SF), CD172a, Anti- SIRP-Alpha Antibody 1:100 dilution
(Abcam AB19149), Pro-Surfactant Protein C Antibody 1:100 dilution
(Abcam AB90716), overnight at 4˚C. Each section is washed three
times in TBS-T (0.1% Tween) and stained with Alexa Fluor 568 or 647
conjugated Goat anti Rabbit IgG or Alexa Fluor 488 or 568 conjugated
goat anti-mouse IgM secondary antibody or Alexa Fluor 488, 568 or
647 conjugated goat anti-mouse IgG1 for 30minutes andwashed three
times in TBS-T (0.1% Tween) and mounted with Prolong platinum
antifadeMountant with DAPI (Fischer Scientific) and the section slides
were imaged using a Nikon Ti2microscope (Nikon Instruments, Japan)
attached to an Andor Dragonfly 200 spinning disk confocal micro-
scope (Oxford Instruments, Belfast).

Imaging of fluorescent labelled tissue sections
Slides were imaged using a Nikon Ti2-E microscope (Nikon Instru-
ments, Japan) attached to an Andor Dragonfly 200 spinning disk
confocal unit (Oxford Instruments, Belfast). Using Andor Fusion soft-
ware, the microscope was configured for DAPI (Excitation 405 nm:
Emission 450/50nm), GFP (Excitation 488 nm: Emission 525/50nm),
Red (Excitation 561 nm: Emission 600/50nm) and Far Red (Excitation
647 nm: Emission 700/75 nm). A 10×0.45 NA objective was initially
selected to provide an overview of the entire area of the tissue section.
Relevant areas (or the whole section) were then selected using the
software for higher resolution scanning, utilizing either a Nikon Plan
Fluor 40×1.3 NA oil objective with 1 um z-slice sectioning or a Nikon
Plan Apo Lambda 100×1.45 NA oil objective with 0.13 um z-slice sec-
tioning, this ensured that the whole thickness of the tissue would be
imaged. Imageswere savedon a computer for further processing using
custom Fiji/Image J macros55.

Targeted transcriptomic analysis of specific areas of interest
with matched IMC staining and analyses
We extracted the RNA sequence data from AOIs (n = 46) in three
COVID lung sections as described in our previous paper (Cross, A.R.
et al. 2022) and organised these into enhanced histopathology
classification as described in this paper – ALV, DAD and OP. We then
compiled the differential expressed gene list between the three
states (using DESeq2) and performed a pathway analysis using
Reactome57 (Supplementary Fig. 11). Here, we found upregulation of
genes associated with neutrophil activation when comparing DAD
to OP and ALV as observed in Cross A.R. et al. In particular, S100A8
(highly expressed in neutrophils and a feature of degranulation) and
CXCL10 (chemokine related to neutrophils trafficking) were highly
upregulated, supporting trafficking of neutrophil to the tissue at the
DAD phase58. High expression of CXCL9 a key chemokine in T cell
extravasation into tissue supports finding of T cells (e.g. CD8 T cells)
in these AOIs.

Data analysis
Software and algorithms. All software and algorithms used are
documented in Table 1.

The Spatial Omics Oxford (SpOOx) Analysis Pipeline
The SpOOx pipeline is a computational framework that brings
together the methods we have used to derive final spatial inter-
pretation for the COVID-19 lung sections. It incorporates a suite of
Python and R based command line tools which may be run indivi-
dually or as a semi-automated pipeline. We have implemented
SpOOx using the Ruffus framework59. Ruffus allows encapsulation of
the workflow and parameters to enable reproducibility, transpar-
ency and code reuse. All steps discussed in the Methods are
encapsulated in the SpOOx pipeline and example commands to
achieve the step are shown below. An overview of the pipeline can be
found in Fig. 1a and Supplementary Fig. 1. Full detailed doc-
umentation and a tutorial are included on the SpOOx GitHub page
(https://github.com/Taylor-CCB-Group/SpOOx). SpOOx produces a
series of output directories and files that may be uploaded to the
Multi-Dimensional Viewer (MDV) software (see below). MDV has
been developed based on the Multi Locus View60 framework and has
been heavily modified and extended to allow visualisation and ana-
lysis of large multidimensional data sets, images and the resulting
spatial statistics. The code to upload data to MDV is available on
GitHub at https://github.com/Taylor-CCB-Group/MDV. Both the
SpOOx and MDV are open source under the GPL 3.0 license with
these links – SpOOx is available for install at https://github.com/
Taylor-CCB-Group/SpOOx and MDV at https://github.com/Taylor-
CCB-Group/MDV. The project data analysis is available online within
MDV at https://mdv.molbiol.ox.ac.uk/projects/hyperion/6567.
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Conversion of MCD files to TIFF. MCD files were checked for pro-
blems with ablation or staining using the MCD viewer (provided by
Standard BioTools). Once these initial checks were completed, the
images were converted to OME-TIFF format for segmentation.

Commands: python hyperion_pipeline.py make mcd_to_tiff and
python hyperion_pipeline.py make tiff_to_histocat

Segmentation and cell mask generation
Cell segmentation was performed with the Mesmer library in
DeepCell61, Nuclear markers (DNA1 and DNA3) and cytoplasmic mar-
kers (a-SMA, CCR2, CCR6, CD107a, CD10, CD114, CD115, CD14, CD15,
CD16, CD172a, CD31, CD3, CD45, CD45RO, CD4, CD71, CD8a, Col-
lagen1, DAP12, EpCAM, GZB, HLA DR, IFN-β, IFN-γ, PAI1, PanCK, PF4
and RAGE) were extracted to TIFF files and Z projected to single
channel nuclear and cytoplasmic single TIFF images (Supplementary
Fig. 13). These images were contrast adjusted (--contrast 5) and passed
to the Mesmer library (pixel size adjusted to 1 micron) as nuclear and
cytoplasm channels. From these, cell segmentation masks were gen-
erated for each ROI.

Command: python hyperion_pipeline.py make deepcell

Extraction of signal intensities for each cell
The intensity of each marker within each labelled cell was extracted
from the data using the segmentation masks using the mean arcsinh-
transformed (with –cofactor 5) pixel intensity for each. The data were
recorded as a table, each row representing a cell with a unique id for
the ROI. Shape features such as area, perimeter, eccentricity, and
centroid were also extracted from the masks. All cells were then fil-
tered using a cell area greater than 50μm and less than 300μm to
exclude poorly segmented cells and cell debris. Further QC was per-
formed within MDV by plotting the distribution of marker intensity
across each ROI.

Command: python hyperion_pipeline.py make signal_extraction

Dimensionality reduction and cluster analysis
For all downstream analysis the intensity values were arcsinh trans-
formed with a cofactor 5. Clustering was performed using the Pheno-
graph algorithm62 through the implementation of the Rphenograph R
package (version 0.99.1) with parameter k = 30. Using MDV, the clus-
ters were first visualised using interactive UMAP scatter plots and
heatmaps (showing the median marker intensities per cluster) then
manually annotated to define the cell phenotypes at the cell level. The
clustering was performed at two levels: a sample level (on the trimmed
[q =0.001] and scaled values) and per condition after having inte-
grated the data with Harmony (version 1.0)63, using the default para-
meters with the option do_pca = TRUE. The integration of the data was
performed per condition to remove variation from different patients
and to better define common populations of cells. The annotations

before and after integration were compared to ensure that no biolo-
gicallymeaningful populationsweremissedwhen integrating the data.
The heatmaps, PCA and UMAP plots were done using the functions
from the CATALYST R package (version 1.16.0).

Command: python hyperion_pipeline.py make phenoharmonycluster

Annotation workflow
Cells were first examined for antibody staining and those cells that did
not show any antibody stainingwerefiltered from further analysis. The
remaining cells were grouped into three mega-clusters termed Struc-
tural, Myeloid or Lymphocyte based on presence and/or absence of
CD45, EPCAM, PanCK, CD31, α−SMA, CD56, Vα7.2, CD3, CD14, CD68,
PF4 and CD15 expression. The three mega-clusters were then re-
clustered using protein markers selected on immunological basis
(Supplementary Fig. 7). The resultant final clusters were annotated
using an integrated approach. In the first step, we defined clusters
using (i) heatmaps showing median marker expression (ii) expression
density histograms which allow better delineation of the range of
marker expression, specifically differentiating low and negative
expression levels and (iii) cluster distribution plots which showed the
frequency of each cluster in different samples. Phenotypic similarity of
clusters was interrogated via UMAP and cluster dendrograms. To fur-
ther define cluster identities, the spatial location of clusters was
visualised using cell centroid plots and mapped onto an adjacent H&E
slide with the same ROI. Based on these analyses, some clusters were
excluded under the following criteria: (a) clusters with uniformly low/
negative expression of markers, (b) clusters only found in one sample,
and (c) Undefined clusters (where the combination ofmarkers did not
amount to a subset which could be defined). These clusters were not
submitted for spatial analysis. Sub-clusters with very similar expres-
sion profiles were merged and those which contained 2 or more
clusters were annotated as such. A small number of clusters demon-
strated expression of markers normally associated with disparate cell
populations (e.g. Neutrophil_CD8 adjacent),which canbe attributed to
closely apposed cell types. These adjacent cell populations were vali-
dated via high resolution immunofluorescence microscopy. To aid
final annotation, we also performed Pseudotime inference for selected
populations.

Final annotated clusters were then sense-checked against the
MCD images by an independent investigator not involved in annotat-
ing the clusters, and some key clusters of interest were further
examined by immunofluorescence staining with confocal microscopy.

Pseudotime analysis
The Pseudotime analysis was performed on the macrophage, mono-
cytes and neutrophils populations (Supplementary Fig. 6). Their arc-
sinh transformed valueswere integrated usingHarmonywith the same
parameters as in the main analysis, followed by dimensionality

Table 1 | Software and algorithms used in data analysis

Name of software Source Identifier

imctools https://github.com/BodenmillerGroup/imctools RRID:SCR_017132

Deepcell https://vanvalen.github.io/about/ RRID:SCR_022197

Phenograph https://github.com/JinmiaoChenLab/Rphenograph RRID:SCR_016919

Harmony https://github.com/slowkow/harmonypy RRID:SCR_022206

Slingshot https://github.com/kstreet13/slingshot RRID:SCR_017012

Ruffus http://www.ruffus.org.uk/ RRID:SCR_022196

QuPath https://qupath.github.io/ https://doi.org/10.1038/s41598-017-17204-5

MCD https://www.standardbio.com/products-services/software RRID:SCR_023007

Catalyst R http://bioconductor.org/packages/CATALYST/ RRID:SCR_017127

Harmony https://github.com/immunogenomics/harmony RRID:SCR_022206

diffcyt R package (version 1.8.8) https://www.bioconductor.org/packages/release/bioc/html/diffcyt.html RRID:SCR_023006
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reduction usingUMAP. Then the Pseudotime inferencewas performed
by applying the Slingshot algorithm64 to the UMAP dimensions using
the default parameters and the above annotations as clusterLabels.

This analysis is not part of the SpOOx pipeline but code is avail-
able in GitHub.

Command: R slingshot.R <parameters >

Differential cell abundance analysis
Differential abundance analysis between conditions was performed
using code from the diffcyt R package (version 1.8.8) with the option
testDA_edgeR. To account for the differences in area between the
ablated samples, the area was used as a normalising factor. The dis-
persionwas estimatedusing the option trend.method = ”none” and the
negative binomial generalized log-linear model was used for the ana-
lysis (with the glmFit and glmLRT functions). The BH (Benjamini-
Hochberg) method was used to adjust p-values for multiple testing.

Cell centroid maps
For each ROI, the cell centroids were plotted and coloured according
to cell type to produce a cell centroid map which forms the basis of
subsequent analyses. These were overlaid with ROI images in MDV so
cell types may be located by colour.

Spatial analyses
A suite of mathematical tools for spatial analyses is incorporated in
SpOOx (see below under QCM, cross-PCF and ACN). The following
command runs all the spatial analysis methods in SpOOx:

Command: python hyperion_pipeline.py make spatialstats
It is also possible to run each spatial function separately and to adjust
parameters (see https://github.com/Taylor-CCB-Group/SpOOx/tree/
main/src/spatialstats for details). The command line option that can
be appended to the basic command above is stated after eachmethod
is described.

Quadrat Correlation Matrix (QCM)
The “Quadrat Correlation Matrix” (QCM) describes correlations
between counts of different cell types within square quadrats with
edge length 100μm (resulting in between 100 and 400 quadrats per
ROI), following an approach used by38 to identify statistically sig-
nificant co-occurrences (p <0.05) and applied to multiplex images of
cancer by65.

We construct the QCM by first generating a matrix O whose
entries Oij record the number of cells of type i in quadrat j, for 1≤ i≤n
and 1≤ j ≤m, where n is the number of cell types in the ROI andm is the
number of quadrats.We useO to generate 1000matricesN1, . . . ,N1000

which form a distribution of “observations” in which the number of
cells of each type and the number of cells in each quadrat are the same
as in O, but spatial correlations between cell types are removed by
shuffling cell labels. Each matrix Nk is such that, for each j:

X
i

Nk
ij =

X
i

Oij , ð1Þ

and for each i:

X
j

Nk
ij =

X
j

Oij , ð2Þ

We construct each matrix Nk as follows. We fix Nk,0 =O, and
define rules which permute the entries of Nk,s to obtain a new matrix
Nk,s + 1. This is accomplished by selecting two rows (a,b) and two col-
umns (c,d) of Nk,s at random. For some integer p sampled uniformly at

random from the interval ½0,minðNk,s
bc ,N

k,s
ad Þ�, we then fix:

Nk,s + 1
ac =Nk,s

ac +p, ð3Þ

Nk,s + 1
bc =Nk,s

bc � p ð4Þ

Nk,s + 1
bd =Nk,s

bd +p ð5Þ

and

Nk,s + 1
ad =Nk,s

ad � p: ð6Þ

This process is repeated for s =0, 1, … 10,000 to ensure that the
final matrix Nk =Nk,10000 is well shuffled.

Partial correlation matrices CO and CN1CN1000 are then calculated
for O and N 1, . . . ,N1000 respectively. Standard effect sizes (SES) are
determined by rescaling the partial correlations in CO by the element-
wise mean μ and standard deviation σ of the CNk , such that

SESij = ðCOij
� μ CNk

� �
ijÞ=ðσ CNk

� �
ijÞ ð7Þ

Non-significant associations are identified by calculating a 2-tailed
p-value for each pair of cell types and applying a Benjamini-Hochberg
correction, with false discovery rate FDR=0.05. Non-significant
entries of SES are set to 0 in order to generate the QCM, a cell asso-
ciation matrix whose non-zero entries identify standardised effect
sizes of pairs of cell types that are statistically significantly correlated
within the ROI.

The average QCM acrossQ ROIs is obtained by concatenating the
relevant observation matrices. Denoting by Oq the observation matrix
fromROI q, we concatenateO1, . . . ,OQ to forma combinedobservation
matrix O= ðO1O2OQÞ, an (n x (m1 +m2 +… + mQ)) matrix, where mq

denotes the number of quadrats in ROI q. Similarly, we concatenate
Nk

1 , . . . ,N
k
Q to form Nk = ðNk

1N
k
2N

k
QÞ. Standard partial correlation

matrices are then calculated and then the process described above for
a single ROI is used to compute the average QCM for multiple ROIs.

Command option: --function morueta-holme

Cross pair correlation functions (cross-PCF)
Significant correlations identified at length scales in the range
0-100μm via the QCM are further assessed by using cross pair corre-
lation functions (cross-PCFs – see, e.g., Bull 2020). Cross-PCFs quantify
clustering and dispersal of pairs of cell populations across a range of
length scales (here 0-300μm). The cross-PCF considers pairs of cells
which are separated by distances r 2 ½rk ,rk + 1Þ, where r0 =0 and
rk = rk�1 + 10 for k = 1, . . . ,30.

For cell populations A and B, the cross-PCF, gðrkÞ, is defined as
follows:

g rk
� �

=
1
NA

XNA

a= 1

XNB

b= 1

I rk ,rk + 1½ Þ xa � xb

�� ��� �

ρBArk
xa

� � , ð8Þ

whereNA andNB are the numbers of cells of types A and B,Ark
ðxÞ is the

area of that portion of an annulus centred at x = ðx,yÞ with inner radius
rk and outer radius rk + 1 which falls within the ROI, xa and xb are the
spatial coordinates of cells a and b (of types A and B respectively),
I ½rk ,rk + 1ÞðrÞ is an indicator function (I ½rk ,rk + 1ÞðrÞ = 1 if r 2 ½rk ,rk + 1Þ and
I ½rk ,rk + 1ÞðrÞ =0 otherwise), and ρB is the density of cells of type B in
the ROI.

A cross-PCF with g rð Þ> 1 means that cells of type A are observed
more frequently at distance r from cells of type B than would be
expected under complete spatial randomness (CSR), and is indicative
of clustering at distance r. Conversely, a cross-PCF with g rð Þ< 1 means
that cells of type A are observed less frequently at distance r from cells
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of type B than would be expected under CSR, and is indicative of
exclusion.

For individual ROIs, 95% confidence intervals are obtained via
bootstrapping. The spatial dependence of resampled points is
accounted for by resampling grid sites within a 20μm square lattice,
following66.

To aid comparison between the clustering and dispersal of dif-
ferent pairs of cell populations, we frequently report cross-PCF values
at rk =20, corresponding to length scales in the range r 2 ½20,30Þ μm.
We focus on rk = 20 since it approximates the distance between the
centroids of cells which are in physical contact. For notational sim-
plicity, we denote this value as g r =20ð Þ.

Command option: --function paircorrelationfunction

Topographical correlation map
The cross-PCF quantifies clustering and dispersal of pairs of cell
populations at different length scales within an ROI. We also introduce
the Topographical CorrelationMap (TCM), to visualise how the spatial
correlation between cells of types A and B, say, changes across an ROI.

In order to define Γab, the TCM for cells of types A and B, we first
associate amarkmab with eachcella of typeA. Themarkmab is defined
tobe the ratioofb, the number of cellsof typeBwithin 100μmof cella,
to the expected number of cells of type B if they were distributed
according to CSR:

mab =
XNB

j = 1

I ½0,100Þ xa � xj

���
���

� �

ρBA100ðxaÞ
, ð9Þ

where ρB is the density of cells of type B in the ROI, A100ðxaÞ is the area
of that portion of a circle with radius 100μm centred at xa = ðxa,yaÞ
which falls within the ROI, I 0,100½ ÞðrÞ is an indicator function
(I 0,100½ Þ rð Þ= 1 when 0 ≤ r<100 and I 0,100½ Þ rð Þ=0 otherwise), and NB is
the total number of cells of type B within the ROI. We interpret values
ofmab in a manner similar to that used for cross-PCFs:mab<1 indicates
anti-correlation between cells of types A and B within a distance of
100μm, and mab>1 indicates correlation.

To facilitate visualization and interpretation, we normalize the
mark mab by introducing the transformed mark, Mab, where:

Mab mab

� �
= 1 ifmab ≥α, ð10Þ

Mab mab

� �
=
mab � 1
α � 1

if 1<mab ≤α, ð11Þ

MabðmabÞ=
1� 1

mab

α � 1
if
1
α
<m

ab
<1, ð12Þ

Mab mab

� �
= � 1 ifmab ≤ 1=α: ð13Þ

The constant α defines a threshold for extreme clustering. If
mab > α then we have strong clustering and we fix Mab = 1; ifmab ≤ 1=α
then we have strong exclusion and we fix Mab = � 1.

A sketch of Mab is presented in Supplementary Fig. 14.
We note the following properties of the transformed mark, Mab.

First, Mab mab

� �
= �Mabð 1

mab
Þ, so that dispersal and clustering are

measured on the same scales. For example, mab =2 indicates the pre-
sence of twice as many cells of type B as expected under CSR, while
mab = 1=2 indicates the presence of half as many cells of type B as
expected under CSR. Secondly, the magnitude of Mab describes the
strength of the spatial interaction. Finally, the sign of Mab identifies
whether there is clustering (Mab>0) or exclusion (Mab<0) between cell
a (of type A) and cells of type B.

The parameter α characterises the most extreme clustering or
exclusion which can be resolved in each kernel, with extremal values
being mapped to 1 and -1 respectively. We use α = 5, so clustering or
exclusion stronger than 5x is interpreted as the strongest clustering/
exclusion that we can distinguish.

After calculating Mab for each cell of type a across the ROI, we
centre a Gaussian kernel, with standard deviation σ = 50μm, and
maximum height Mab, at xa. We sum the kernels associated with all
cells of type A to generate the TCM, ΓabðxÞ:

ΓabðxÞ=
XNA

a= 1

Mab

σ
ffiffiffiffiffiffi
2π

p e�
1

2σ2
x�xaj j2 ð14Þ

The TCM permits identification of spatial locations in which cells
of type A are positively (Γab≫0) or negatively (Γab≪0) associated with
cells of type B. For computational efficiency, when calculating Γab, we
assume that each kernel has compact support, being centred in a
square region of edge length 300μm.

Finally, we note that Γab≠Γba, since the kernels used to construct
Γab are centred on cells of type A (and vice versa).While areas in which
cells of type A and type B are co-located should be identified by both
Γab and Γba, their values will differ in regions rich in one cell type and
poor in another. We therefore stress that Γab describes locations in
which cells of type A are correlated or anti-correlatedwith cells of type
B, and that the presence or absence of cells of type B cannot be
inferred from regions in which Γab is close to 0.

Command option: --function localclusteringheatmaps

Adjacency cell networks
Weuse the cell segmentationmasks generatedbyDeepCell to produce
a spatially-embedded adjacency cell network (ACN), whose nodes
represent cell centres and are labelled according to their cell type.
Nodes are connected by an edge if the corresponding cells in the
segmentationmask share a border. To ensure that small perturbations
in cell boundaries do not lead to errors in cell connections, we expand
the border of each segmented cell by 5 pixels before generating the
network.

We use the ACN to define two statistics for each pairwise combi-
nation of cell types A and B. First, we compute ϕAB, the proportion of
cells of type A which are in contact with at least one cell of type B:

ϕAB =
1
NA

XNA

a= 1

IBðaÞ, ð15Þ

where NA is the number of cells of type A and IBðaÞ is an indicator
function ðIB að Þ= 1 if cella is connectedwith a cell of typeB and IB að Þ=0
otherwise. Secondly, we calculateΦAB, the average number of cells of
type B that are in contact with a cell of type A:

ΦAB =
1
NA

XNA

a= 1

ηBðaÞ, ð16Þ

where ηB að Þ is the number of cells of type B in contact with cell a.
In this paper, we used the ACN to calculateϕAB, the proportion of

cells of type A that have at least one cell of type B in contact with them,
andΦAB, the average number of cells of type B that are in contact with
a cell of type A in the ROI.

Command option: --function networkstatistics

Multi-dimensional viewer (MDV)
MDV is a comprehensive spatial analytics platform that facilitates the
interrogation of large complex data sets and includes various inter-
active dashboards to facilitate quality control, interactive clustering,
phenotyping and spatial analysis. It is an open source web application
which can be downloaded and installed locally or used on the publicly
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available web site http://mdv.molbiol.ox.ac.uk. Users register to use
the site and projects can private, shared with other users or made
public. Full documentation and tutorial videos are provided on the
MDV website but we provide an overview here.

MDV allows output generated by the SpOOx pipeline to be loaded
at different states. Data locations are specified in a yaml format file
which can be edited by the user (command: python mdvupload.py
myconfig.yaml). Examples of data tables that may be uploaded are:

• Image data (PNGs/OME-TIFF stacks): ROI image stacks, H and E
images binary cell masks.

• Cell data (tab separated file): one cell per row, including size,
size, shape, phenograph clusters identification, UMAP coordi-
nates, marker signal intensities.

• Spatial Statistics data (tab separated file): one row containing
cell to cell interaction data and associated statistics.

• Data related to the disease states (JSON file): allowing grouping
of samples for high level analysis.

Once uploaded the data are presented in MDV as a series of views
that contain multiple interactive charts corresponding to different
analytical methods from clustering, annotation, cell centroid visuali-
sation and spatial analyticalmethods. Eachview focuses on aparticular
aspect of the pipeline. View contents can be adjusted and added to by
adding other chart types and saved as a new view. Chart types can be
D3 components (https://d3js.org/) but we have also written custom
chart types for performance reasons. For example, MDV scatterplot
chart can visualise and interrogate at least 10 million data points. We
also integrate Viv viewer67 to visualise composite image stacks.

The complete analysis and data set were published by pub-
licly sharing the data at https://mdv.molbiol.ox.ac.uk/projects/
hyperion/6356.

COMBAT data mapping
COMBAT CyTOF data generation and processing. Cell suspension
mass cytometry (CyTOF) data were generated by the COMBAT con-
sortium as previously described6. In brief, whole blood from COVID-19
patients was stabilised using a Cytodelics fixative solution, red blood
cells were lysed, cellular material was fixed, and samples were run in a
Helios CyTOF machine. Importantly, samples were enriched for
mononuclear cells before profiling by performing magnetic depletion
of CD66+ granulocytes.

After acquisition, data were formatted into a single-cell protein
abundance table and annotated into cell types based on marker
expression6. For the analyses in the present study, this expression
matrix was split into two subsets: one containing T and NK cell types,
and a second one containing myeloid cell types (i.e. monocyte
subsets).

Mapping cells from lung tissue to blood cells from the COMBAT
study6. Cells in the lung dataset were matched to the most closely
related cell types in blood using scmap, a method which enables label
projection by calculating the similarity between cells profiled by two
separate studies33. In brief, CyTOF and CITE-seq expression matrices
from the COMBAT study were used to build index references for label
projection. First, proteins which were detected in both studies were
identified. This resulted in apanel of 13 and 18proteins sharedbetween
our study and the COMBAT CyTOF and CITE-seq panels, respectively.
Next, theseproteinswere used as a basis for cell type classificationwith
the scmapCluster function. Classification accuracy was tested by
splitting the COMBAT data into training and test sets containing 80%
and20%of cells, respectively. The training setwasused to generate the
scmap reference index, while the test set was used to assess cell type
prediction accuracy33. Given the reduced set of markers shared
between studies, not all COMBAT cell populations could be accurately
predicted. Thus, in order to maximise predictive accuracy similar

subpopulations of the same cell type were merged into a single group
and any cell types known to be absent from our lung data, such as B
cells and plasmablasts, were removed. This approach achieved over
70% accuracy for CyTOF data (71% and 78% predictive accuracy for
myeloid and lymphoid cell types, respectively) and 85% accuracy for
CITE-seq data and components of final merged clusters are shown in
Supplementary Fig. 16.

Indexed references were next used to match cells in the lung to
the most similar clusters in blood using the scmapCluster() function.
To do so, cell type labels were predicted for each cell in the lung based
on the CyTOF and CITE-seq reference sets. Any unassigned cells were
discarded. Cluster overlap between studies was visualised using San-
key diagrams68 and quantified using Jaccard indexes69.

Neutrophil subset analysis from stored COMBAT samples. Whole
blood samples frozen in whole blood cell stabilizer (Cytodelics) were
obtained from COMBAT consortium storage for healthy volunteers
(n = 11), health care workers (n = 12), COVID-19 (n = 93) and Sepsis
(n = 48). Pre-processed CD45+ gated FCS files of granulocyte contain-
ing whole blood samples were analysed with R (v4.0.0). 50000 cells
per sample were integrated using Harmony (v1.0)2 and the CATALYST
package (v1.14.0)3 was used for downstream analysis. CD45+ cells were
clustered based on the FlowSOM and ConsensusClusterPLus algo-
rithms using the cluster () function. 50 metaclusters (xdim=100,
ydim=100, k = 50) were then assigned to major cell types (T cells, B
cells, plasmablasts, mononuclear phagocytes and neutrophils). Neu-
trophils were selected and reclustered based on CD45, CD15, CD38,
CD64, CD16, CD43, CD66b CD10, CD33, KI67, CD172a/b, CD141, CD71,
CD114, CD371 and CD274 expression. 30 neutrophil metaclusters
(xdim=100, ydim=100, k = 30) were manually merged to 8 neutrophil
clusters (proNeut, preNeut, iNeut1-3, mNeut1-3) based on median
marker expression.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The spatial mass cytometry dataset (MCD) files and results of analysis
by the SpatialOmicsOxfordpipeline are available at https://doi.org/10.
5281/zenodo.6513508. The analysis results are also presented as a
dynamic online resource in Multi-Dimensional Viewer (MDV) (https://
mdv.molbiol.ox.ac.uk/projects/hyperion/6567). All source data are
found in https://doi.org/10.5281/zenodo.6513508; and also within the
hyperion 6567 project in the MDV link. Specific source data for graphs
are also provided in Source Data File. Source data are provided with
this paper.

Code availability
The complete code for the SpatialOmicsOxfordpipeline is available as
a GitHub repository under the GPL license: https://github.com/Taylor-
CCB-Group/SpOOx. In addition, the SpOOx pipeline has been depos-
ited at Zenodo (https://zenodo.org/record/8320986). The Multi-
Dimensional Viewer code is available under the GPL license: https://
github.com/Taylor-CCB-Group/MDV. This package has also been
deposited at Zenodo (https://zenodo.org/record/8324918).
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