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Machine learning-enabled constrainedmulti-
objective design of architected materials

Bo Peng 1,2,7, Ye Wei 3,7,8 , Yu Qin 4,7,8 , Jiabao Dai1,2, Yue Li 5,
Aobo Liu1,2, Yun Tian6, Liuliu Han 5, Yufeng Zheng 4 & Peng Wen 1,2,8

Architected materials that consist of multiple subelements arranged in parti-
cular orders can demonstrate a much broader range of properties than their
constituent materials. However, the rational design of these materials gen-
erally relies on experts’ prior knowledge and requires painstaking effort. Here,
we present a data-efficient method for the high-dimensional multi-property
optimization of 3D-printed architected materials utilizing a machine learning
(ML) cycle consisting of the finite element method (FEM) and 3D neural net-
works. Specifically, we apply our method to orthopedic implant design.
Compared to uniform designs, our experience-free method designs micro-
scale heterogeneous architectures with a biocompatible elastic modulus and
higher strength. Furthermore, inspired by the knowledge learned from the
neural networks, we develop machine-human synergy, adapting the ML-
designed architecture to fix a macroscale, irregularly shaped animal bone
defect. Such adaptation exhibits 20% higher experimental load-bearing capa-
city than the uniform design. Thus, our method provides a data-efficient
paradigm for the fast and intelligent design of architected materials with tai-
lored mechanical, physical, and chemical properties.

Architected materials are one of the most widely adopted engineering
materials. Due to their excellent mechanical performance and
adaptable properties, architected materials are very popular in many
fields, such as those of lightweight structures1–7, acoustics8, battery
electrodes9, electromagnetics10–12, and tissue engineering13–17. More-
over, recent progress in 3D printing has further enabled the custo-
mized and inexpensive fabrication of complex material geometries.
Despite the broad applicability and immense potential of architected
materials, designing them is particularly difficult. The traditional
method generally relies on numerical simulation, theoretical analysis,
and topology optimization (TO). These rule-based undertakings are
usually exhausting and time-consuming, and the performance of
resultant designs highly depends on the designer’s professional
knowledge and their initial guesses18–21. Recently, machine learning

(ML) has emerged as a promising technique to circumvent this
problem and find the optimal solution without any prior knowledge
requirements22–27. Furthermore, active learning that combines
machine learning and simulations or experiments to tackle optimiza-
tion problems is an emerging topic at the frontier of science28. It
introduces an iterative ML algorithm that identifies high-value solu-
tions with fewer labeled data29,30. Such efficiency is highly desirable
when thedata is sparsely distributed.However, someof thesemethods
mainly focus on 2D-structure-related problems, while others use
Bayesian optimization to solve low-dimensional problems or focus on
an unconstrained single objective31–34. The efforts toward solving high-
dimensional multi-objective problems are often obfuscated by the
data sparsity, the enormity of the search space, and stringent external
constraints.
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In this work, we introduce an active learning route that effec-
tively combines a generative model with physical simulation to per-
form a high-dimensional multi-objective optimization under various
constraints (Supplementary Fig. 1), commonly encountered in many
real-world engineering designs35. As demonstrated in Fig. 1, our
approach consists of three main parts: (1) generative architecture
design (GAD). In this step, GAD leverages the encoder-decoder
neural network (autoencoder) to generate architecture sets with
unknown properties. The autoencoder learns an effective repre-
sentation of the high-dimensional data in an unsupervised manner,
which converts the exploration in a high-dimensional design space
into a lower one. This method has been proven to be a revolutionary
technique in materials discovery36,37. (2) Multi-objective active
learning loop (MALL). MALL evaluates the generated dataset and
searches for high-performance architecture by recursively querying
the finite element method (FEM). (3) 3D printing and testing. Finally,
we fabricate the ML-designed architected materials via a specialized
3D printing technique (laser powder bed fusion) and experimentally
verify the corresponding mechanical properties. We call the overall
method “GAD-MALL”. The technical details are described in the
“Methods”.

Results
Multi-objective active learning algorithm
We applied the GAD-MALL approach to a multi-property optimization
problem with clinical importance—bone grafting implants. Bone is a
typical architected material primarily consisting of cortical and can-
cellous parts, with the elasticmodulus (E) ranging from0.03 to 30GPa
depending on the bone mineral density and varying according to age,
sex, and race38. Although bone can repair itself, a bone defect of a
critical size necessitates a grafting implant to support the load and
inducebone growth.Metals are the promising choice for bone implant
materials due to their excellent mechanical properties. However, the
E of the existingmetal bulk materials is much greater than that of the
bones (i.e., titanium −100GPa; iron −200GPa, etc.), which results in
the stress shielding effect and impedes the recovery of the bone39.
One effective solution is introducing a 3D-printed scaffold archi-
tecture to lower the E. The geometrical shape and mechanical
properties of the scaffold should be comparable to those of the
individual defective bone to provide reliable structural support and
smooth stress conduction. The mechanical response of the scaffold
can be represented by a compressive stress-strain curve. The slope of
the linear section of the curve represents E, which measures a
material’s ability to resist external stress before being deformed
permanently, and the yield point with 0.2% strain represents the yield
strength (Y), which quantifies the maximum resistance before the

onset of nonreversible deformation. Therefore, we need to optimize
several targets under external constraints: (1) the E of the scaffold
implant must match that of the bone. (2) the Y must be as high as
possible to sustain the bone. (3) the resultant structures must be
biocompatible and 3D-printable. An important prerequisite is that
the simulated properties agree with experimental observation within
an acceptable error range. Therefore, several replicates (to ensure
reproducibility) of candidate materials were manufactured and tes-
ted, by which the experimental measurements (E and Y)were used to
calibrate the FEM parameters such that the error between the
simulation and experimental results was less than 10% (see “Meth-
ods”). In addition, the overall weight of the scaffold should not go
beyond a certain threshold since aminimumusage is always required
considering long-term biosafety.

Moreover, to balance complexity and computing efficiency, we
adopted the 3 × 3 × 3 cubic arrangement of the gyroid units as the
model input for the optimization task (see Methods for the structure
generation). Therefore, this problem can be treated as a high-
dimensional multi-objective optimization problem, presenting an
exponential difficulty due to the “curse of dimensionality”42. The
gyroid geometry is categorized in the triply periodic minimal surfaces
(TPMS) family—it is an ideal porous structure for bone scaffolds due to
its high interconnectivity, smooth surface, and mathematically adjus-
table geometrical attributes40,41. The multi-objective topology optimi-
zation can also achieve multiple mechanical targets by optimizing the
topology under constraints, but such change often compromises
other desirable biological functions and leads to overly complicated
designs with limited printability or suboptimal mechanical
performance42–44. The gyroid unit is carefully chosen since it has many
advantages for bone implants, e.g., it has a Gaussian curvature close to
0 and a saddle shape similar to that of bone trabeculae, whichhas been
shown in related studies to better promote tissue growth compared to
other structures45. In addition, various works have pointed out that the
distribution of TPMS units can influence the mechanical properties,
but so far none has quantitatively evaluated such correlation, not to
mention the optimization46. Hence, to guarantee biocompatibility, 3D-
printability, and service applicability, we adjust the size of the gyroid
unit (porosity) within the scaffold instead of changing the topology of
the subunit, resulting in a geometrical alteration that modulates the
overall mechanical properties.

Applications to orthopedic implants
Theproperties of the architectedmaterials are determinedby both the
scaffold architecture and the constituent materials. Ti6Al4V (Ti) and
pure zinc (Zn) were used as constituent materials for orthopedic
implants. Ti alloy is bioinert in humanbodies and has been the de facto
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Fig. 1 | An overview of the proposed workflow (GAD-MALL, i.e., Generative
architecture design—multi-objective active learning Loop). a The neural net-
work proposes candidates with unknown properties. b The machine-learning (ML)
algorithm interactively queries the finite element methods (FEM) to propose new

designs. c The 3D printing technique fabricates the proposed architectural design.
d GAD-MALL explores the design landscape of architected materials and discovers
various high-performance architected materials (mean ± SD, n = 3). Source data
are provided as a Source Data file.
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choice for 3D-printed orthopedic implants, achieving successful clin-
ical application to repairing bone defects. Biodegradable Zn provides
an alternative option to bioinert materials and is regarded as promis-
ing for addressing the clinical concerns associated with permanent
existence and secondary surgery47. Such features are especially desir-
able for bone regeneration. As both materials are worthy of investi-
gation, to demonstrate the effectiveness and general applicability of
the GAD-MALL framework, we designed two optimization tasks for
both constituent materials and applied the learned design principle to
the real bone replacement architecture. Specifically, the Ti alloy scaf-
folds were assigned a high E, while the pure Zn scaffolds had a low
E, indicating different clinical needs based on the constituent materi-
als. In addition, two tasks were given different initial data distributions
to demonstrate that GAD-MALL can work under different initial
conditions. Notably, all tasks were completed in one week with
the current hardware setup, as tasks in the clinical scene are usually
time-constrained. In the following section, we begin with the Ti cubic
scaffolds.

A data-efficient route toward high-performance structure
Tomimic themechanical behavior of trabecular and compact bones,
the task was to design high-Y scaffolds with E = 2500MPa and
5000MPa (E2500 and E5000). The uniform-designed scaffolds at
E = 2500MPa and 5000MPa set the “gold criteria” for themechanical
performance of the scaffolds (see Supplementary Fig. 2 for the
design protocol of a uniform scaffold with specific E), the expert and
uniform designs refer to two designs: one is a scaffold generated
using topological optimization (see Supplementary Fig. 3) and the
other uniformly sized Gyroid subunits which has been adopted in
other studies44,48,49. GAD-MALL stopped if the Y of the designed
scaffold significantly surpassed the “golden criteria” (termed the
“treasure” scaffold) or the learning process showed no further pro-
gress. The initially labeled dataset was composed of merely 95 data
points (the simulation took ca. 7 days, hardware specified in the
Methods section), since the predictive model based on this
dataset already showed good performance on the testing dataset.
Figure 2a demonstrates the good performance of the 3D convolu-
tional neural networks (3D-CNNs) on the test dataset (uniformly
sampled from the labeled dataset) in the 1st round and last round, in
which both 3D-CNNs demonstrate high accuracy (coefficient of
determination, i.e., R2 > 0.92). A more detailed performance evalua-
tion of the models used in this study can be found in Supplementary
Fig. 4 (Performance evaluation of the 3D-CNNs on the Ti test dataset),
Supplementary Fig. 5 (performance evaluation of the 3D-CNNs on the
Zn testing dataset), Supplementary Fig. 6 (Training of the 3D con-
volutional autoencoder), and Supplementary Fig. 7 (the average
negative log-likelihood versus the number of clusters in the Gaussian
mixture model). Figure 2b shows that the scaffolds had been pre-
cisely manufactured—the cross-sections of the micro-computed
tomography (Micro-CT) of the scaffolds largely overlapped with
that of the designs (more Micro-CT can be find in Supplementary
Fig. 8). The superior efficiency of GAD-MALL is evidenced by com-
parison with other baseline methods under current problem settings
as well as under a toy problem setting, in which the global optimal
solution is known (Fig. 2c, Supplementary Methods, and Supple-
mentary Fig. 9). In the current design problems, the GAD-MALL
iteration-strength curve demonstrated a clear upward trend of
mechanical strength improvement, while both curves of the random-
search-based and Bayesian-optimization-based active learning were
relatively flat, showing no notable improvements.

Figure 2e shows the overall data distribution in terms of E and Y
with the treasure scaffolds indicated by blue stars. Each active learning
iteration is characterized by colored ellipses. Figure 2d, f demonstrate
two distinct exploration paths for two different tasks (the detailed
results of each learning round are described in Supplementary Fig. 10

and Supplementary Table 1). The E2500 exploration path shows a
steady upward trend, and GAD-MALL quickly discovered the treasure
scaffolds at the 3rd and 5th rounds withmore than a 30% increase in Y.
However, the E5000 task wasmore complicated—the learning process
exhibited a downward trend before it recovered and found the treas-
ure scaffolds. Specifically, the batches from the 1st to 3rd rounds either
fell out of the target E region or had inferior Y-values. The 4th-round
batch finally hit the target of E, albeit Ywasnot notably better than that
of the uniform designs. Finally, the treasure scaffolds were discovered
on the 5th and 6th rounds. This oscillatory trend is likely due to
the sparsity of data within this range (with only two initial data points
available).

The experiments confirmed the discovery—the ML-designed
scaffolds (A1–A4) showed better performance than the uniform-
designed scaffolds (H1 and H2). More details are available in Fig. 2g,
Supplementary Fig. 11, and Supplementary Table 2. The experimental
strain‒stress curves of the A1 and H1 scaffolds are also displayed in the
inset in Fig. 2g. To understand the ML design, we further analyzed the
ML-designed scaffold by extracting the corresponding regression
activation map (RAM) and performing FEMmechanical analysis. As an
illustrative example, we applied the RAM to the Y-predicting 3D-CNN
model to reveal the driving mechanism behind the high Y of the
A1 scaffold. RAM is a variant of a classification activation map that
extracts the last convolutional layer to visualize the discriminative
regions used by a 3D-CNN to predict the output50. In this case, the RAM
highlights the scaffold’s spatial characteristics that correlate to its
mechanical strength, identifying the regions that contribute to the
enhancement of strength. Figure 2h demonstrates the A1 scaffold
geometrical structure, the corresponding porosity matrix, and the
RAM (see Supplementary Fig. 12 for more results). The RAM implies
that the “attention”distribution extracted from the 3D-CNN resembled
a heterogeneous “face-centered” lattice. Indeed, a closer look at the
A1 scaffold revealed that the gyroid units at each face center of the
scaffold showed a minimal porosity (0.3). This observation indicates
that instead of uniformity, a heterogeneous scaffold with more mate-
rials distributed at the face centers could significantly enhance the
strength (see Supplementary Fig. 13 for more results). Moreover, from
amacroscopic point of view, the strength of a typical porous structure
can be approximated by the Gibson-Ashby equation51:

Y =Cð1� pÞαY0 ð1Þ

where Y0 stands for the strength of the constituent material, C repre-
sents a geometry-related parameter, p is the porosity of the unit, and
the exponent α relates to the deformation behavior of the structure.
According to the FEM calculated data, we fitted the curve of strength Y
as a function of p for ML and uniform-designed scaffolds and found
aML = 2.11, aUD = 1.86, CML =0.84, and CUD =0.64, in which UD stands
for uniform design.

The ML-designed scaffold had a larger a and C than the uniform
design. Generally, increasing the mechanical anisotropy of a porous
structure leads to an increase in the exponential factor a, while an
increase in parameter C can be found in the material distribution in
favor of the load direction52.

Microscopically, FEM analysis confirmed the above observation.
Figure 2i shows the distribution of von Mises stress and hydrostatic
pressure of the A1 and H1 scaffolds (see Supplementary Fig. 14 for
more results). Compared with the H1 scaffold, the A1 scaffold endures
amuchweaker effect of stress concentration;moreover,more struts of
the A1 scaffolds are compressed rather than stretched. The MLmodel
preferentially placesmorematerials on the face center of the scaffolds,
which optimizes the stress distribution and improves the structural
strength with increasing limited mass. Hence, GAD-MALL was able to
find the optimal architectures by efficiently learning from a few initial
data points.
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Learning without prior data in the target range
To demonstrate the robustness of the GAD-MALL approach, we
designed a learning task by which GAD-MALL found the appropriate
scaffolds “from scratch”—the initial Zn dataset did not contain any
prior data points in the target range by design. The task of this section
was to design high-Y scaffolds at E = 500MPa and 1000MPa (E500 and
E1000), targeting the replacement of cancellous bone. Again, the
uniform-designed scaffolds at E = 500MPa and 1000MPa set the
“golden criteria”.

Figure 3a–c illustrate the E–Y distribution of the initial data
(marked as light blue dots) and the results from each active learning
round characterized by colored ellipses (the detailed results of each
learning round are described in Supplementary Fig. 15 and Supple-
mentary Table 3). Figure 3b demonstrates that the GAD-MALL
exploration paths of the missing data were complicated, exhibiting
back-and-forth trends. For the E500 task, the E distribution of the 1st
round shows a significant standard deviation. It is noteworthy that
some scaffolds from the 1st round had already reached the target
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comparison of GAD-MALL (Generative Architecture Design—Multi-objective Active
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finite element method (FEM) simulation data distribution in terms of the E-yield
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i Numerical compression analysis. Here, we show the y–z cross-sections of A1 and
H1 scaffolds in terms of von Mises stress and hydrostatic pressure under 10%
deformation. Source data are provided as a Source Data file.
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E ≈ 500MPa. The 2nd round shows improvement—the overall standard
deviation was significantly reduced (from 52 to 19MPa). While all
scaffolds’ E valueswere located at approximately 500MPa, the Y values
were still 30% less than the gold criteria. In the following rounds, the
exploration path reached a plateau, and the selected candidates were
slightly better than the golden criteria (14.8MPa). The E500 task was
terminated after the 5th round since no further progress was observed
(see inset of Fig. 3b).

On the other hand, GAD-MALL excelled at the E1000 tasks, out-
performing the golden criteria by a largemargin.More specifically, the
1st round already showed promising results, in which all scaffolds
exhibited the targeted E, although with slightly worse Y ( ≈ 10%). The
subsequent round witnessed a significant decrease in porosity (Sup-
plementary Table 3), which in turn remarkably enhanced Y. However,
the reduced porosity resulted in another problem—the E increased to
1200 ~ 1400MPa. GAD-MALL incorporated this knowledge into the
database in the subsequent learning process.

Eventually, the average porosity increased, and the treasure
scaffolds were discovered in the 3rd and 4th rounds. The entire
learning process took approximately 9 days, and the mechanical
properties of the resultant designs are tabulated in Supplementary
Table 4.

Figure 3d illustrates themodel andMicro-CT of an exemplaryML-
designed scaffold (see Supplementary Fig. 16 for more results). From
the cross-section view, the model and manufactured sample were
shown to agree with each other. The ML-designed scaffolds were
manufactured, and their mechanical properties were measured
experimentally (Fig. 3e and Supplementary Fig. 17). TheML design had
a significant performance advantage over the uniformdesign, whose Y

(26.4 ± 0.7MPa) exceeded thegolden criteria (21.7 ± 1.8MPa) by a large
margin of 21.6%, with a slightly lower porosity. As the E and Y of the
bulk Zn was less than those of the Ti alloy, the Zn scaffold still had a
lower porosity even though the target Ewas only 1000MPa. Similar to
the Ti scaffold, the FEM analysis in Fig. 3f shows that the low-porosity
face-centered units in the ML-designed scaffold had less stress con-
centration, leading to enhanced strength (see Supplementary Fig. 18
formore results). Since the face-centered and the central unit of the Zn
scaffold had reached the lower limit (porosity = 0.2) and the excess
weight was allocated to the central and the ridge-center unit of the
cubic scaffold, the E of the scaffold did not hit the targeted E range
(E = 1000 ± 50MPa). Thus, the central and ridge-center units pro-
moted E to the target range without decreasing Y. In this task, we
showcased that GAD-MALL was able to find the optimal architecture
even when the initial data distribution and the constituent material
were considerably different from those in the previous section. Such
robustness is highly desirable since clinical situations can be quite
variable—the patient data (target material and mechanical range) are
often unknown beforehand, and the initial data can have various
distributions.

ML-inspired anatomic bone implants
Most real-world bone implants require scaffolds in anatomical shapes
that fit to the defective bone. Figure 4a, b shows a large, irregularly
shaped bone defect in a New Zealand rabbit model animal model—a
defect of critical size (30mm) occurred in the middle part of the tibia.
Figure 4c shows the 3D shape of the tibia, which was acquired through
Micro-CT scanning. It is difficult and time-consuming to find the
optimal scaffold architecture to fit the shape, whether by experimental
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or numerical trials since there are many possible choices. Here, we
demonstrate how a machine-learned design principle can be readily
adapted to a clinical scene through a facile machine-human design
workflow.

Concretely, to use the ML-designed cubic scaffold for a larger
implant for large, irregularly shaped bone defect fixation, our work-
flow constituted the following two steps (Supplementary Fig. 19): (1)
Using the ML-designed cubic scaffold as the basic unit, we manually
created a cuboid of 3 × 3 × 9 units with width, length, and height of
18mm, 18mm, and 54mm, respectively. (2) Subsequently, we caved
out an irregularly shaped scaffold from the interior of the cuboid that
matched the bone shape. Then we performed a FEM study of TO
(Supplementary Fig. 3), ML, and uniform designs to assess their
mechanical performance, and the simulated results show that the load-
bearing capacity of the ML design is considerably higher than that of
the other two designs (Fig. 4d). The experimentally validated
mechanical behaviors at the macroscale could be characterized by the
displacement-force curves in Fig. 4e and Supplementary Fig. 20, which
confirmed that the stiffness of uniform-designed and ML-inspired
implants was almost the same, while the ML-inspired implant’s load-
bearing capacity (indicated by stars) was considerably higher (20%).
The von Mises stress distribution, given in the inset of Fig. 4e, showed
that the overall stress (under 0.6mm deformation) of the ML-inspired
design was considerably higher than that of the uniform design (see
Supplementary Fig. 21 formore results).With the samebone shape and
deformation, the higher inner stress accumulation of the ML-inspired
design indicated stronger support of the bone implant. Therefore, the
strengthening effect of the ML-designed face-centered lattice was
accumulative; a large structure made up of many individual strength-
ened cubes still demonstrated better load-bearing capacity than the
uniform design of the same scale.

Discussion
This work demonstrates amulti-objective active learning approach for
designing 3D-printed architected materials with generative models

and 3D neural networks under several external constraints. With only
95 initial fine-tuned FEM simulation data points, our approach quickly
discovered high-performance architected materials. Thus, by fusing
high-precision simulation, ML, and 3D printing, our framework was
developed into a powerful and robust tool that excels at complex
multi-objective architecture optimization. It represents a data-effi-
cient, intelligent method that requires no prior knowledge and can be
readily adopted in wide-ranging architected materials applications.
While GAD-MALL can learn the structures described by a set of
parameters and is capable of discovering the corresponding
parameter-property relation, the structures without a clear mathe-
matical description are beyond the capacity of this method. One
could overcome such limitations by (1) introducing more archi-
tectural degrees of freedom in terms of parameters, such as taking
more non-linear terms as an input variable (i.e., gradients, periodicity,
etc.), or (2) using raw input representation such as 3D point clouds
and voxelization, both of which could lead to the discovery of new
families of metamaterials but requires more carefully design of the
generative model and significant computational effort. Meanwhile,
the application of other advanced generative models (such as vector-
quantized variational autoencoder) warrants further investigation, as
some of them show superior performance in generating high-quality
samples. In the present case, the input representation and underlying
data distribution of the unlabeled dataset are simple enough that the
3D convolutional autoencoder (3D-CAE) showed the best perfor-
mance. In the future, advanced models as such hold great promise in
learning more complex data with various underlying latent distribu-
tions, leading to the discovery of new metamaterials. Finally, we
developed a synergistic machine-human design methodology that
uses machine-learned small-scale, regular structures as subunits to
create large-scale, irregularly shaped architectures. Overall, we
anticipate that our methodology can be used for quickly designing
architected materials where optimal responses to various stimuli are
desirable, including mechanical, thermal, and chemical conditions or
application requirements.
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Methods
Workflow of the GAD-MALL method
Figure 5b shows the models of the 3D-CNN for E and Y prediction.
The 3D-CNN was designated for volumetric data representation
learning53,54. It included three main components: input, convolution,
and output layers. At the input layer, the scaffold structure was
voxelized into 60 × 60 × 60pixels. A pixel can be in either the solid (1)
or void (0) phase in the scaffold. The convolution layers consisted of
a series of 3D convolution kernels that extracted high-level infor-
mation about the scaffold, and the output layer provided the final
prediction.

Figure 5c illustrates a 3D convolutional autoencoder (3D-CAE)
with a typical two-neural network model, an encoder, and a decoder.
Notably, a variational 3D-autoencoder with identical architecture
showedmuch higher reconstruction loss for the same tasks, likely due

to the non-Gaussian underlying data distribution. Other input repre-
sentations, such as voxelization, might serve the same purpose.
However, it requires a sophisticated geometry optimization algorithm
that removes the artifacts, without which the generated shapes might
be able to satisfy the boundary condition or not even be 3D-printable.
Therefore, GAD-MALL adopts a parameterized presentation, which
guarantees the biocompatibility and printability of the generated
shapes. We circumvented this problem by adopting the porosity
matrix, a 3Dmatrix representation (3 × 3 × 3) that uniquely determines
the overall geometry through gyroid equations. It measures the rela-
tive density (positive scalars) rather than the actual shape of the gyroid
subunits, thereby allowing nonzero reconstruction errors. The enco-
der qφ(z | x) with parameters φ compressed the porosity matrix into a
hidden feature representation (8-dimension) using the neural encoder.
Then, the decoder qϕ(x | z) with parameters ϕ reconstructed the
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Fig. 5 | The workflow of multi-objective active learning. a The task is to design
scaffolds with a better mechanical response—fixed elastic modulus (E) and max-
imized yield strength (Y). b The 3D convolutional neural networks (3D-CNNs) for
predicting E and Y. c The generative model for targeted scaffold generation. The
encoder qφ (z | x) with parametersφ took the scaffold porosity matrix as input, and
the decoder pθ (x | z) with parameters θ could act as a generator for proposing new
scaffolds based on the learned latent z representation. d Multi-objective active

learning loop (MALL) for high-performance scaffold discovery. First, the sampling
algorithm sampled new data points from the latent z representation. Second, the
decoder reconstructed the corresponding scaffolds so that the 3D-CNNs could
infer theirmechanical properties. Third, themost suitable candidateswere selected
based on the predicted E and Y. Finally, the strain‒stress curves of the selected
scaffolds were calculatedby the finite elementmethod (FEM).Newdatawere either
fed back to the dataset or 3D-printed for further experiments.
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output from the 8-dimensional hidden features. A lower dimension
(e.g., 4-dimension) latent space was shown to suffer from high
reconstruction error, while a higher dimension (e.g., 16-dimension)
doubled the search space without a sufficient increase in reconstruc-
tion accuracy. Ultimately, 8 dimensions represented a balance
between loss and efficiency (Supplementary Fig. 6).

Figure 5d shows the primary steps of the MALL workflow, which
comprised three steps. First, scaffold generation was formulated as a
process of sampling and reconstruction from the latent representa-
tion z. The sampling process required the latent representation to be
modeled as a continuous probabilistic distribution. Second, the
decoder qφ(x | z) reconstructed the porosity matrices from the sam-
pled latent points, which were then converted to their original
shapes in Cartesian space. The scaffold selection method was a var-
iant of the epsilon-greedy search: in each sampling iteration, we
sampled 2000 data points and selected those whose 3D-CNN-
predicted Emet the target and whose 3D-CNN-predicted Y exceeded
the best data point in the current dataset, with a chance of epsilon
(5%) that lower values were chosen. The selected data points would
still be rejected if their weights were 15% higher than the preset cri-
teria. Such a search method generally had a higher success rate than
the Edisonian approach, which hinged on a trial-and-error search55.
Last, the FEM calculated the E and Y of the queried scaffolds, and the
results augmented the dataset, from which the 3D-CNNs were
retrained for the following active learning round. The workflow
stopped when all the preset criteria were met.

TPMS structure generation
TPMSs and related structures are widespread in natural biological
systems56–63. TPMSs are considered to be the ideal geometric shape to
describe the biological form of the human skeleton64. Numerous stu-
dies have shown that the curved surfaces of TPMSs contribute to
enhanced plasma membrane elongation during cell crawling and
spreading65–67. In this study, we adopted the gyroid minimal surface
structure, which is a member of the TMPS family. In addition to the
abovementioned advantages of TMPSs, the helical surface structure of
the gyroid unit makes the force distribution more uniform, leading to
its excellentmechanical properties. The equation of the gyroid surface
is as follows68:

φG � sinX cos Y + sin Y cos Z + sin Z cosX = c ð2Þ

The equationφ (X, Y, Z) defines a surface evaluated at the isovalue
(i.e., level-set constant) c andhas a topology similar to thatof aminimal
surface. X = 2απx, Y = 2βπy, Z = 2γπz, α, β, and γ are constants related to
the unit cell size in the x, y, and z directions, respectively. In this work,
we created the gyroid lattice based on the minimal surface by con-
sidering one of the volumes divided by the surface as the solid domain
and the other as the void domain. This was done by considering the
volume bounded by the minimal surface such that φ (X, Y, Z) > c to
create a solid-network lattice. The porosity of gyroid lattices can be
graded by spatially varying the value of the level-set constant c in
Cartesian space depending on a certain function or tabulated data
such that69:

φG>cðx,y,zÞ ð3Þ

To achieve a smooth transition between units on edge (Supple-
mentary Fig. 22), we describe the isovalue as a linear function along
oneof the Cartesian coordinates such that c =Ax + B, whereA andB are
constants. This smooth transition is a prerequisite for representing the
actual geometric shape using a porosity matrix.

The scaffold contains 27 gyroid subunits in total, arranged as a
3 × 3 × 3 cubic structure. The geometry of the scaffold is controlled by

the 3 × 3 × 3 porosity matrix. The porosity c of each subunit can take
discrete values from 20 to 90%, with an increment of 10%.

Dataset generation
The unlabeled dataset consists of about 18,000 data points and is
generated for the training of the 3D-CAE. In principle, the porosity of a
subunit can take any value from 0 to 1. Therefore, the possible
arrangement is infinite. To simplify the problem, we allow the scaf-
fold’s porosity to take discrete values from 20 to 90% with an interval
of 10%. Nevertheless, there are still 727 possible combinations in the
design space. Three thousand matrices of various porosities are gen-
erated at each interval. For each interval, there are four kinds of
arrangement in the database (Fig. 6a): central, vertical, horizontal, and
randomarrangements. There are also three types of porositymatrices:
2 × 2 × 2, 3 × 3 × 3, and 4 × 4 × 4, which then all expand to a 12 × 12 × 12
matrix (Fig. 6b). In this way, our 3D-CAE can generate three different
kinds of porositymatrices.We choose the 3 × 3 × 3 arrangement in this
study to balance structural complexity and computational efficiency;
nonetheless, our GAD-MALL can handle three different scaffold
arrangements in principle.

For the labeled dataset, the labels (the elastic modulus (E) and
yield strength (Y) of the corresponding scaffolds) are computed by the
FEM, whose accuracy is verified through careful calibration with
experimental data. The deviations between the experiment and
simulation are confirmed to be less than 10% (Fig. 6c, d, e, f, g, h).

3D printing and compression tests
The performance of the powder has an extensive influence on the
formation quality of the 3D-printed products. Spherical Ti6Al4V (Ti)
powders with few satellite particles were observed (Supplementary
Fig. 23), suggesting good flowability. The powder sizes of D10, D50,
and D90 in statistics were 23.9, 37.8, and 58.5 µm, respectively. Ti
scaffoldswith a size of 6 × 6 × 6mmwere additivelymanufactured by a
laser powder bed fusion (LPBF) process using an EOS M290 machine
(Supplementary Fig. 24) in this work. The processing chamber was
filled with argon gas to avoid harmful reactions. The key LPBF para-
meters used were as follows: laser power of 280W, laser scanning
speed of 1200mms−1, and layer thickness of 30 µm. After heat treat-
ment at a temperature of 800 °C for 2 h and cooling in a furnace, the Ti
scaffolds were surface treated by sandblasting. Ti6Al4V sand with an
average grain size of 106 µmwas used in the sandblasting process. The
outer surface of the Ti scaffolds was uniformly blasted to remove the
adhered powder particles, with a pressure of 0.6MPa at the outlet of
the spray gun. The relative density of the struts composing the Ti
scaffolds was greater than 99.5% (Supplementary Fig. 25).

Supplementary Fig. 23 shows the pure zinc (Zn) powders; the
powder sizes of D10, D50, and D90 in statistics were 10.2, 19.6, and
39.4 µm, respectively. Zn scaffolds of 6 × 6 × 6mm were processed
using a BLT S210 machine (Supplementary Fig. 24). The processing
chamber was filled with argon gas, and a gas circulation system was
employed to inhibit the negative effect of vaporization during the
LPBF process. The Zn scaffolds were fabricated with a laser power of
40W, a laser scanning speed of 500mms−1, and a layer thickness of
0.03mm. Chemical etching with 5% nitric acid and 5% hydrochloric
acid (room temperature, 2min) was applied to remove the adhered
powder particles, and the relative density of the struts composing the
Zn scaffolds reached 98.5% (Supplementary Fig. 25).

Compression tests were conducted using an Instron machine (10
kN load cell) at a crosshead speed of 1mmmin−1 at room temperature.
The compression direction was parallel to the building direction.
Three replicas were manufactured to ensure reproducibility.

Numerical simulation parameters
We performed the compression simulation on a 32-core and 64-
thread CPU (Intel Xeon Gold 6226R Processor) using ABAQUS/Explicit
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software70. The FEM was based on the same rigid-cylinder and
deformable-implant-structuremodel. Thematerial was homogeneous,
and the Poisson’s ratio was 0.25. The E was set to 5GPa and the Y was
set to 120MPa based on the compression experiments of a pure Zn
block prepared by LPBF (Supplementary Fig. 26). Ductile damage was
used to simulate the plastic deformation to the failure stage. The
fracture strain was set as 0.03, and the effects of triaxiality deviation
and strain ratewere neglected.We extracted displacements and forces
in postprocessing and then converted them to strains and stresses,
respectively.

Machine-learning algorithms
The 3D-CAE consisted of an encoder and decoder. The encoder was
composed of 3 3D convolutional layers (Conv3D). The input size was
(12, 12, 12, 1). The first, second, third, and fourth layers contained 60,
30, and 15 filters, respectively. Threemax-pooling layers between the
convolutional layers were responsible for the downsampling. For
example, onemax-pooling layer reduced the size of Conv3D from (12,
12, 12) to (6, 6, 6), shrinking each (2, 2, 2) box to (1, 1, 1) and taking the
maximum as its value. The size of the final layer was (3, 3, 3, 15).
Another max pooling reduced it to the hidden representation
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(1, 1, 1, x), where x represents the dimension. The decoder had
the same Conv3D architecture, but with upsampling, the hidden
feature (1, 1, 1, x) was converted back to (12, 12, 12, 1). The recon-
struction loss was the mean square error (MSE) between the input
and output.

The 3D-CNN model consisted of 3 convolutional layers (Fig. 5b).
The first, second, and third layers contained 8, 4, and 2 filters,
respectively; three max-pooling layers were located behind each con-
volutional layer. Finally, before reaching the output node, the last layer
was flattened into 1048 neurons, followed by a series of fully con-
nected layers (128, 64, 32). The activation functionwas the exponential
linear unit.Moreover, the loss functionwas themean square error. The
programwas written using Keras and TensorFlow71. We trained the 3D-
CAE and 3D-CNNs using a GPU (NVIDIA GeForce RTX 3090 Ti) with
24GB of memory.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training datasets of the 3D-CAE and 3D-CNNs, and the FEM
simulation dataset generated in this study have been deposited in the
GitHub repository at https://github.com/Bop2000/GAD-MALL, ref.
72. Source data are provided with this paper.

Code availability
The codes for the workflow of the GAD-MALL method, other state-of-
the-art active learning algorithms, finite element methods and its
automation pipeline, and the TPMS structure generation algorithm are
publicly available in the GitHub repository at https://github.com/
Bop2000/GAD-MALL, ref. 72.
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