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Metabolic fingerprinting on retinal pigment
epithelium thickness for individualized risk
stratification of type 2 diabetes mellitus

Shaopeng Yang 1,2,3,4, Zhuoting Zhu5, Shida Chen1,2,3,4, Yixiong Yuan1,2,3,4,
Mingguang He1,6 & Wei Wang 1,2,3,4

The retina is an important target organ of diabetes mellitus, with increasing
evidence from patients and animal models suggesting that retinal pigment
epithelium (RPE) may serve as an early marker for diabetes-related damages.
However, their longitudinal relationship and the biological underpinnings
remain less well understood. Here, we demonstrate that reduced in vivo
measurements of RPE thickness (RPET) represents a significant risk factor for
future type 2 diabetes mellitus (T2DM) and its microvascular phenotypes.
After performing systematic analyses of circulating plasma metabolites using
two complementary approaches, we identify a wide range of RPET metabolic
fingerprints that are independently associated with reduced RPET. These fin-
gerprints hold their potential to improve predictability and clinical utility for
stratifying future T2DM and related microvascular phenotypes beyond tradi-
tional clinical indicators, providing insights into the promising role of retinas
as a window to systemic health.

Type 2 diabetes mellitus (T2DM) represents a chronic metabolic dis-
order that poses a significant global health challenge, with an esti-
mated 783.2 million projected to suffer from the disease by 20451–3.
Although seminal risk factors and models have been established to
improve risk assessments and prevention of T2DM4–7, their predictive
abilities are imperfect, highlighting the necessity for research into
novel biomarkers that enhance our understanding of the disease
process and bridge the current gap in diabetes stratification7.

The retina is an important target organ of diabetic damage, which
has exceptional susceptibility to diabetes-related metabolic
stresses8–10. Using state-of-the-art in vivo retinal optical coherence
tomography (OCT), changes of retina were captured even before evi-
dent diabetes11–13. Retinal pigment epithelium (RPE) is theouter layer of
the retina and plays an important role in maintaining retinal function
by providing 60–80% of the retina’s glucose supply through its high-
capacity transport system14. Evidence frompatients and animalmodels

have suggested RPE structural damages and dysfunction in pre-
diabetes and early stages of diabetes without retinopathy, indicating
that RPE may serve as an early marker for diabetes-related
damages15–22. However, to our knowledge, there are currently no stu-
dies evaluating the association between in vivo RPEmeasurements and
the risk of diabetes in cohorts. Therefore, their longitudinal relation-
ship and the biological underpinnings remain unknown.

We hypothesized that RPE alterations precede the onset of dia-
betes, possibly owing to the exuberant nature of RPE metabolism,
which predisposes RPE to subtle metabolic perturbations that may
exist well before the manifestation of evident diabetes. Under this
hypothesis, RPE-associated metabolic alterations may provide a dis-
tinctive glimpse into diabetic metabolic disturbances at amuch earlier
stage. Herein, we first scrutinized the prospective association of in vivo
OCTgaugedRPE thickness (RPET)with future risk of developingT2DM
in the general population of Europe. Subsequently, we performed a
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systematic analysis of circulating plasma metabolomics to identify
RPET-associated metabolites and to explore the potential of these
metabolic fingerprints to inform T2DM risk. Finally, a deeper-
penetrating OCT device and a more sensitive metabolomic assay
were deployed in a southern Chinese diabetic population to further
assess the association of RPET with future diabetic microvascular
phenotypes, and the role of RPET metabolic fingerprints in facilitating
risk stratification for these complications.

Results
Baseline characteristics
The workflow of the study design is shown in Fig. 1. A total of 7,824
participants in population-I with 3,913 right eyes and 3,911 left eyes
were eligible for phase-I and -II analyses. In addition, 84,224 eligible
participants in population-II were included for phase-III analysis, of
which baseline diabetes were excluded prior to all analyses. Baseline
characteristics of the study population are summarized in Supple-
mentary Table S1. Compared to population-II, participants in
population-I were typically younger, male, more educated, had higher
income, lower BMI, smoked less, and less likely to be hypertension (all
P <0.05). Participants in the training and testing sets shared similar
distributions of characteristics (all P >0.05).

Association between RPET and risk of T2DM
A greater average RPET significantly reduced the risk of future T2DM,
both in the overall population-I (hazard ratio [HR] = 0.856, 95% con-
fidence interval [CI]:0.768, 0.954; P =0.005) and in the subgroup with
participants in the lower three quartiles of AMD-PRS (HR =0.835, 95%
CI:0.734, 0.950; P = 0.006) after adjusting for a wide range of covari-
ates. These associations persisted across both sexes and 8 ETDRS
subfields of RPET (Fig. 2, Supplementary Tables S2, S3). However, no
association was observed when analyzing participants in the highest
quartile of AMD-PRS (HR =0.900, 95% CI:0.731, 1.107; P =0.319).
Similar results were obtained in sensitivity analyses, including those

that (1) adjusted formore comprehensive ethnicity classifications with
further subdivisions for South Asian, East Asian, Black, and Mixed
races; (2) further adjusted for biological age23; (3) further adjusted for
frailty score24; and (4) excluding cancer, cardiovascular diseases, and
renal diseases (Fig. 2, Supplementary Table S4).

RPET-associated metabolites and risk of T2DM
A total of 64 metabolic biomarkers were independently associated
with average RPET after multiple testing correction (false discovery
rate [FDR] P <0.05). These included 60 with negative associations,
encompassing total lipids, triglycerides, phospholipids, cholesterol,
free cholesterol, and cholesteryl esters in very low-density lipoproteins
(VLDL) and low-density lipoproteins (LDL) particles, as well as apoli-
poprotein B and linoleic acid, with adjusted β values ranging from
−0.204 to −0.104 per 1-standard deviation (SD) change. Additionally, 4
biomarkers showed positive associations with RPET, including leucine,
isoleucine, tyrosine, and phospholipids to total lipids ratio in small
HDL, with adjusted β values ranging from 0.112 to 0.132 per 1-SD
change (Fig. 3, Supplementary Table S5).

After amedian time of 12.3 (interquartile range: 11.6, 13.0) years of
follow-up, a total of 5,714 participants in population-II developed
T2DM, including 4,038 in the training set and 1,676 in the testing set.
Figure 3 and Supplementary Table S6 demonstrate that after adjusting
for potential confounders and correcting for multiple testing (FDR
P <0.05), 57 of the 64 RPET-associated metabolic biomarkers were
significantly associated with the risk of T2DM, including 32 with posi-
tive associations, with adjusted HRs ranging from 1.072 to 1.439 per
1-SD change; and 25 with negative associations, with adjusted HRs
ranging from 0.775 to 0.968 per 1-SD change.

Performance of RPET-associated metabolites for T2DM
stratification
The RPETmetabolic statemodel is a stepwise Cox proportional hazard
(CPH) model trained on RPET-associated metabolites. We have
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Fig. 1 | The analytic framework of the study. Eligible UKB participants were split
into population-I for evaluating the prospective association of RPET with future
T2DM (phase-I analysis) and identifying RPET metabolic fingerprints (phase-II
analysis); and population-II for evaluating the prospective association of the RPET
metabolic fingerprints with future risk of T2DM, as well as their incremental pre-
dictive value and clinical utility (phase-III analysis). Additional GDESpopulationwas

employed to investigate the association between averageRPETwith future diabetic
microvascular phenotypes, and the potential of RPET metabolic fingerprints in
facilitating risk stratification for these outcomes (phase-IV analysis). UKB UK Bio-
bank, GDES Guangzhou Diabetes Eye Study; RPET retinal pigment epithelium
thickness; T2DM type 2 diabetes mellitus; LC/MS Liquid Chromatography/Mass
Spectrometry.
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observed increasing T2DM event rate over RPET metabolic states and
significant differences in the cumulative hazard across the four
quartile-risk trajectories (Ptrend <0.0001), suggesting the rich infor-
mation these fingerprints hold to distinguish individuals at different
T2DM risk (Fig. 4).

The Harrell’s C-statistic of the metabolic state model (C-statis-
tic = 0.805, 95% CI:0.794, 0.817) for discriminating T2DM was sig-
nificantly higher than that of all individual clinical indicators,
including age (C-statistic = 0.589, 95% CI:0.575, 0.603; P < 1.0 × 10−8),
sex (C-statistic = 0.572, 95% CI:0.559, 0.585; P < 1.0 × 10−8), ethnicity
(C-statistic = 0.530, 95% CI:0.522, 0.538; P < 1.0 × 10−8), smoking (C-
statistic = 0.536, 95% CI:0.522, 0.549; P < 1.0 × 10−8), drinking (C-sta-
tistic = 0.503, 95% CI:0.494, 0.513; P < 1.0 × 10−8), BMI (C-statistic =
0.714, 95% CI:0.701, 0.726; P < 1.0 × 10−8), WHR (C-statistic = 0.718,
95% CI:0.704, 0.731; P < 1.0 × 10−8), hypertension (C-statistic = 0.642,
95% CI:0.628, 0.655; P < 1.0 × 10−8), and use of antihypertensive
(C-statistic = 0.639, 95% CI:0.626, 0.652; P < 1.0 × 10−8) and lipid-

lowering medication (C-statistic = 0.681, 95% CI:0.668, 0.694;
P < 1.0 × 10−8).

The integration of these metabolic fingerprints to the model
based on clinical indicators yielded a significant improvement in the
C-statistic (from 0.809, 95% CI: 0.798, 0.819, to 0.837, 95% CI: 0.827,
0.847, P < 1.0 × 10−8) (Fig. 4). Statistically significant improvements in
net reclassification index (NRI, 0.287, 95% CI:0.259, 0.324; P <0.0001)
and integrated discrimination index (IDI, 0.051, 95% CI:0.046, 0.066;
P <0.0001) were also observed for the model combining clinical
indicators and RPETmetabolic fingerprints. The goodness of model fit
was confirmed (PHosmer-Lemeshow > 0.9), and decision curve analysis
revealed further improvement in the clinical utility with the addition of
these fingerprints (Fig. 4). Similar improvements were observed in the
sensitivity analyses of constructing the RPET metabolic state model
using only: (1) biomarkers associated with both thinner RPET and
increased T2DM risk; and (2) biomarkers independent of ageing
(Supplementary Figure S1, S2, Supplementary Tables S7, S8).
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Fig. 2 | Study overview and prospective association of RPET measurements
with T2DM risk. a Schematic representation of study endpoints. b Multinational
participants were recruited from the UKB cohort in the UK and the GDES cohort in
southern China. c Schematic representation of in vivo RPET measurement using
optical coherence tomography. d Hazard ratios for incident T2DM (n = 5,714) per
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sided statistical tests were conducted, and no adjustments weremade for multiple
tests. * P <0.05; **P <0.01. Source data are provided as a SourceData file. Parts of a,
b, and cweremodified fromServierMedical Art (smart.servier.com) licensedunder
a Creative Commons Attribution 3.0 Unported License and BioRender (bior-
ender.com). T2DM type 2 diabetes mellitus, RPET retinal pigment epithelium
thickness, ETDRS Early Treatment of Diabetic Retinopathy Study, AMD age-related
macular degeneration, UKB UK Biobank, GDES Guangzhou Diabetes Eye Study, SD
standard deviation, CI confidence interval.
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RPET-associated metabolites and T2DM microvascular
phenotypes
In the GDES cohort, a total of 2,373 T2DM participants underwent
swept-source OCT (SS-OCT) scanning and 593 of them with Liquid
Chromatography Tandem Triple Quadrupole Ion Trap Mass Spectro-
metry (LC-QTRAP-MS/MS) metabolomic profiling at baseline assess-
ment were eligible. The baseline characteristics are summarized in
Supplementary Table S9. After adjusting for age, sex, duration of
diabetes, HbA1c, BMI, SBP, smoking, drinking, and hyperlipidemia, a
lower baseline average RPET was significantly associated with an
increased risk of diabetic microvascular phenotypes, including devel-
opment and progression of diabetic retinopathy, rapid decline of renal
function, and fast retinal capillary rarefaction in bothmacula and optic
nerve head (ONH) (Fig. 5, Supplementary Table S10–S12). As shown in
Fig. 5 and Supplementary Table S13, 58 metabolites were indepen-
dently associated with average RPET after multiple test correction (all
FDR P < 0.05), including 57 with positive associations, encompassing
amino acids, FAs, benzene, nucleotides, organic acids, heterocyclic
compounds, and their derivatives, with adjusted β values ranging from
1.120 to 2.856 per 1-SD change; and 1 with negative associations
(quinmerac, β = −1.460, 95% CI: −2.306, −0.614). Finally, the incor-
poration of these metabolites into the clinical indicators-based model
resulted in improvements in discriminative power and clinical utility,
further confirming the role of RPET metabolic fingerprints in facil-
itating risk stratification for T2DM-related damages (Supplemen-
tary Fig. S3).

Discussion
This study presents evidence for the prospective association of in vivo
RPET measurements with T2DM risk in a large population-based
cohort. To probe the biological underpinnings, we performed a sys-
tematic analysis of circulating metabolomics and identified 64 plasma
metabolic fingerprints associated with RPET, many of which were also
associated with the risk of T2DM. These fingerprints exhibited the
potential to improve predictability and clinical utility for T2DM
beyond traditional risk factors. Moreover, by utilizing a deeper-
penetrative OCT device and a more sensitive metabolomic assay, we
provided further evidence for the association of RPET with future
adverse microvascular phenotypes, and the role of RPET metabolic
fingerprints in facilitating risk stratification for these outcomes in a
southern Chinese community-based diabetic cohort. These findings
provide insights into the promising role of retinas as a window to
systemic health and suggest the potential value of RPET metabolic
fingerprints for individualized risk stratification for diabetes and rela-
ted target organ damages.

There is growing evidence that structural and functional damage
to the RPE have already taken place in patients and experimental ani-
mals with pre-diabetes and early stages of diabetes15–17,19. Karaca et al.15

found RPE thinning in patients with pre-diabetes, suggesting that
damage to the RPE associated with diabetes-related metabolic dis-
orders precedes the onset of evident diabetes. Enzoly et al.16 showed
that while the overall retinal thickness of rats with early diabetes
remains unchanged, decreases in RPET and RPE65 protein
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immunoreactivity are evident. Consistently, Hammoum et al.19 also
observed a significant reduction in RPE65 staining intensity in high-fat
diet-induced diabeticMeriones shawi at threemonths. In addition, RPE
dysfunction concomitant with the onset of hyperglycemia has also
been reported, suggesting RPE dysfunction as an early hallmark of
diabetes17. Consistent with these studies, our analysis revealed that for
every 1-SD decrease in RPET, the 12-year risk of T2DM increases by
approximately 15%.

Although diabetes-related damages may collectively affect the
retina and other target organs in the body, the exceptional suscept-
ibility of the retina to the metabolic stresses may permit early mani-
festation of these damages. Previous studies have indicated that
insulin resistance can stimulate triglyceride synthesis and VLDL pro-
duction, leading to an excessive accumulation of VLDL and LDL25–27.
Studies on NMRmetabolomic profiling have also linked VLDL and LDL
particle sizes and concentrations to an increased risk of T2DM28–31.

These findings are in keeping with the adverse RPET metabolic state
contributing to the increasedT2DMrisk observed in this study. Studies
on retina have established that diabetic retinopathy and its severity are
associated with multiple VLDL and LDL particles, and lipid-lowering
therapy has been shown to have significant benefits in preventing and
mitigating diabetic retinopathy32,33. Modified LDL can have toxic
effects on retinal cells, including RPE cells, and their excessive accu-
mulation in these cells may result in oxidative stress and endoplasmic
reticulum stress34, potentially leading to dysfunction and structural
damages of the RPE. Consistently, in vitro studies have demonstrated
thatRPE cells culturedunder diabetic-like conditionsproduce elevated
levels of reactive oxygen species compared to those incubated under
non-diabetic conditions35. All these lines of evidence indicate that a
specific metabolic state that prioritizes damage to the retina before
evident T2DM has already taken place, and while these subtle meta-
bolic alterationsmay not have a noticeable effect on the body yet, they
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are already detectable through in vivoOCT scanning andmetabolomic
profiling.

To investigate the predictive value of RPETmetabolic fingerprints
for stratifying future T2DM and related target organ damages, we
conducted receiver operating characteristic and decision curve ana-
lyses. The inclusion of these fingerprints in clinical indicators-based

models led to improvements in C-statistic and clinical utility, revealing
that RPET metabolic fingerprints captured residual risk that eluded
quantification by traditional risk factors. Considering the proposition
that T2DM might be a manifestation of premature aging36, we con-
ducted further investigations to compare RPET metabolomics in
relation to aging and diabetes. Remarkably, similar improvements in
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predictability and clinical utilitywereobservedwhenutilizingonly age-
independent fingerprints for model construction. These findings sug-
gest that the RPET metabolic fingerprints was specific markers of
T2DM that transcend the confounding of the aging process. All these
lines of evidence highlight the potential of these fingerprints to aug-
ment individualized T2DM risk stratification. Since the retina is highly
susceptible to metabolic damage, an exploration on RPET-mediated
biological changes may help further unravel the early pathogenesis of
T2DM and provide insights into biological changes in early T2DM
stages. More importantly, intensive interventions aimed at modifiable
risk factors in identified high-risk individuals, including RPET-
associated metabolites, hold the promise for reversing or interrupt-
ing the onset of T2DM and minimizing target organ damages in the
future.

Given the potential limitations on SD-OCT imaging and 1H-NMR
metabolomic assays, we employed more advanced SS-OCT scanning
and more sensitive ultra-performance LC/MS analysis in the GDES
cohort to explore the stratification value of in vivo measurement-
based RPET metabolic fingerprints for diabetic target organ damages.
Although SD-OCT can already achieve satisfactory in vivo retinal ima-
ging, the major limitation of SD-OCT is the loss of resolution with
increasing depths, due to sensitivity roll-off effect as the light travels
deeper into the tissue being imaged37. With the use of longer wave-
lengths, SS-OCT reduces attenuation from ocular opacities and pro-
vides deeper penetration and lower scattering from the RPE37,38,
thereby facilitating more accurate RPETmeasurements. Moreover, SS-
OCT achieves faster scan rates, which substantially reduces the impact
of motion artifacts on imaging39. Employing more accurate RPET
measurements, we provided further evidence for the independent
associations of this retinal biomarker with the risks of diabetic
microvascular phenotypes.

1H-NMR has been established to be a robust and reliable tool for
comprehensive metabolic profiling, necessitating minimal sample
preparation and providing high levels of automatability and
reproducibility40. This approach offers a unique opportunity to
investigate the intricate link underlying metabolic states and diseases
in large-scale studies, including those on diabetes and its
complications40,41. However, one of the primary limitations of NMR is
its relatively low sensitivity when compared to MS-based approaches.
To address this limitation, we performed LC/MS assay in an indepen-
dent cohort to further investigate the value of RPET metabolic fin-
gerprints for stratifying diabetic adverse microvascular phenotypes.
Within this approach, an expanded range of RPE-associated metabo-
lites were identified, particularly those present at low concentrations.
NMR and LC/MS assays offer complementary coverage of metabolic
markers, providing a more comprehensive RPETmetabolic landscape.
Future metabolomics studies with higher coverage were poised to
improve our system-level understanding of the link underlying RPE
with diabetes risks.

In analyzing the association of RPE with T2DM, it is imperative to
not neglect the significant impact of AMD on RPE42. Numerous studies
have shown that progressive degeneration and impairment of RPE
function are the early and key events in AMD, which not only con-
founds the association of RPET with T2DM but also compromises the
accuracy of macular segmentation of the OCT system42–44.

Furthermore, AMD is considered greatly attributable to heredity, with
an estimated 46%–71% of AMD variation likely to be explained by
genetic factors45,46. Recent studies revealed RPET thinning in clinically
normal individuals with AMD risk single-nucleotide polymorphisms,
suggesting that AMD-related retinal changes may take place much
earlier in the life course47. To further exclude AMD from confounding
the results, we used the upper quartile of the AMD-PRS constructed
based on meta-analyzed summary statistics GWAS data as a cut-off
point to divide population-I into two subgroups for separate analyses,
and no association was observed when analyzing participants with the
highest AMD-PRS48,49. We speculate that RPET in participants with
higher AMD-PRS may have been confounded by other complicated
mechanisms associated with AMD pathologies, thus leading to the
absence of the associations. In view of this, we excluded participants
with high AMD-PRS when identifying RPET-associated metabolites in
phase-II analyses to avoid potential confounding. However, we did not
exclude individuals with high AMD-PRS in phase-III analysis, given that
genomic data are unlikely to be available when applying the RPET
metabolomic fingerprints as a screening modality for T2DM, though
doing so might further improve the predictability.

The present study boasts several strengths. First and foremost, it
benefits from a sizable sample size and extensive longitudinal follow-
up, both of which serve to enhance the robustness of the study’s
findings. Second, this study collected a wide range of covariates to
adjust for potential confounders. Third, to obviate the impact of pre-
clinical AMD on RPET measurements, the AMD-PRS was incorporated,
and participants were stratified accordingly for separate analyses. This
approach has yielded evidence for the prospective association of RPET
with T2DM risk in a large, population-based cohort. Fourth, to probe
the underlying link between the association, we identified RPET
metabolic fingerprints and evaluated their added predictability and
clinical utility for T2DM in an even larger population. Fifth, by using
longer wavelengths, more accurate RPET measurements were
acquired with the state-of-the-art SS-OCT technology in the GDES
cohort to further investigate the association between RPET and dia-
betic microvascular phenotypes. Finally, the complementary LC/MS
assay further broadened the metabolic landscape of RPET and pro-
vided additional evidence for their value in stratifying diabetic organ
damages, even in a different race.

Certain limitations of this study should also be acknowledged.
First, some participants lacked first diagnosis data in their inpatient
records, so the date of diagnosis for these participants was defined
based on self-reported questionnaires, which could lead to potential
recall bias. Second, participants in population-I were younger, male,
more educated, had higher income, lower BMI, smoked less, and less
likely to be hypertension. Therefore, caution may be warranted when
generalizing the RPET metabolomic fingerprints to other populations.
However, the concept was confirmed in both UK and Chinese popu-
lations. Third, our results showed that a decreased RPET based on
in vivo OCT imaging was associated with diabetes and its organ
damages; however, it is important to acknowledge that the measure-
ment of thicknesswas inferred by the hyperreflective band situated on
the outer layer of the retina. Consequently, it must be recognized that
in certain instances, a dissociation may arise between alterations in
optical reflectance and actual changes in thickness, thus posing

Fig. 5 | RPET-associated metabolites and T2DM microvascular phenotypes.
a, bHazard ratios for (a) incident DR (n = 161) and (b) DR progression (n = 160) per
1-SD increment in RPET across ETDRS subfields. Asterisks and steel blue indicates
significant negative effects; light blue and orange indicates insignificant. c The top
30 metabolic biomarkers that are associated with RPET estimated with multiple
linear regression models. Data are presented as hazard ratios and 95% confidence
intervals. Asterisks and brick red indicate significant. Two-sided statistical tests
were conducted, and BH method was employed to reduce false discovery rate for

multiple tests. d–g, Receiver operating characteristic curves and net benefit curves
of clinical indicators alone versus the combination of clinical indicators and RPET
metabolic states for stratifying incident DR (d–e) andDRprogression (f–g). Orange
indicates clinical indicators only; blue indicates the combination of clinical indi-
cators and RPET metabolic states; horizontal dotted gray line indicates treat none;
and vertical dot-dash gray lines indicates treat all. * P <0.05; **P <0.01; *** P <0.001.
Source data are provided as a Source Data file. RPET retinal pigment epithelium
thickness, DR diabetic retinopathy.
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challenges in establishing a direct functional relationship thus far.
Nevertheless, we bolstered the robustness of our results by extending
the association between RPE thinning and diabetes-related organ
damages in an independent cohort of a distinct ethnic background,
utilizing themore advanced and higher-resolution SS-OCT. Fourth, the
metabolomics profiling was based on a single sample collection at
baseline in both cohorts and thereforemay not reflect the fluctuations
of these metabolites over time. Fifth, we did not account for the
potential diurnal change of RPE. Finally, although a comprehensive
range of confounders was adjusted for in the current study, potential
residual confounders that could not be excluded may still exist.

In summary, we provide evidence for the prospective association
of RPETwith risks of T2DMand relatedmicrovascular phenotypes.Our
evidence suggests that alterations of in vivo measurements of RPET
may represent a specific metabolic state of the human body that
indicates an elevated risk of future T2DM and target organ damages.
RPET metabolic fingerprints improve individualized risk stratification
for T2DM and its microvascular phenotypes beyond traditional risk
factors, providing insights into the promising role of the retina as a
window to systemic health.

Methods
Study design and population
Our study adheres to the Guidelines of the Ministry of Science and
Technology (MOST) for the Review and Approval of Human Genetic
Resources. From 2006 to 2017, UK Biobank (UKB) recruited over
500,000 men and women aged 40–69 years old from 22 assessment
centers in the UK. The detailed study design is described elsewhere50.
Baseline assessments were conducted through questionnaires, medical
interviews, physical examinations, and blood tests (2006–2010). Health
outcomes were linked to hospital and primary care records as well as
cancer and death registries. The Guangzhou Diabetes Eye Study (GDES)
is a community-based cohort study that recruits over 2,300 T2DM
patients aged 35–85 in Guangzhou, China51. Baseline assessments were
conducted from 2017 to 2019. The study was approved by the North-
west Multicenter Research Ethics Committee (11/NW/0382) and the
Ethics Committee of Zhongshan Ophthalmic Center (2017KYPJ094),
withwritten informed consent obtained fromall participants. The study
was performed in accordance with the STROBE statement52 and the
STARD guidelines53 (Supplementary Tables S14, S15).

The overall design of the study consists of four parts (Fig. 1). UKB
participants were divided into three non-overlapping groups54: (1)
population-I with bothOCTmeasurements andmetabolomicsdata; (2)
population-II with metabolomics data only and without OCT mea-
surements; and (3) the remaining others excluded from the analysis.
Population-I was used to evaluate the prospective association of RPET
with future T2DM (phase-I analysis) and identify RPET metabolic fin-
gerprints (phase-II analysis). Population-II was used to evaluate the
prospective association of the RPETmetabolic fingerprints with future
risk of T2DM, as well as their incremental predictive value and clinical
utility (phase-III analysis). Additional analyses on diabetic micro-
vascular phenotypes in the GDES population were described in a
separate section below (phase-IV analysis).

Nuclear magnetic resonance metabolomic profiling
High-throughput nuclear magnetic resonance (NMR) platform
(NightingaleHealth, Finland)was used to obtain 249metabolicmetrics
from the plasma samples of the participants55–57. Sample collectionwas
undertaken at baseline in 22 local assessment centers across the UK
between 2007 and 2010. Cryopreserved EDTA plasma samples were
thawed and centrifuged and then the supernatant was mixed with
phosphate buffer. The sampleswere then loaded onto a cooled sample
changer, and two NMR spectra of each plasma sample were recorded
using a 500MHz NMR spectrometer (Bruker AVANCE IIIHD). One
spectrum characterized resonances produced mainly by proteins and

lipid lipoprotein particles, whereas the other detected low-molecular-
weight metabolites. After accredited quality controls58, metabolic
metrics, including 168 presented in absolute levels (i.e., fatty acids,
glycolytic metabolites, ketone bodies, amino acids, lipids, and lipo-
proteins) and 81 presented as ratio values, were quantified using the
Nightingale Health Biomarker Quantification Library 2020.

Spectral-domain OCT imaging
Spectral-domain OCTwas performed in an enclosed darkroom using a
Topcon 3DOCT-1000Mk II (Topcon, Inc., Oakland, NJ,USA) using a 3D
6 × 6mmmacular volume scanmode centered at the fovea with a scan
density of 512 A-scans × 128 B-scans within 3.7 seconds. The Topcon
Advanced Boundary Segmentation algorithm59 (version 1.6.1.1) auto-
matically segmented the retinal layers and delineated RPE-Bruch’s
membrane complex60,61. The inner boundary corresponds to the pho-
toreceptor outer segment-RPE boundary, while the outer boundary
corresponds to the BM-choroid boundary. Measurements were
acquired across 9 Early Treatment of Diabetic Retinopathy Study
(ETDRS) subfields. The parafoveal average RPET was determined by
calculating the average RPET of the four inner-ring quadrants, while
the perifoveal average thickness was calculated by averaging the RPET
of the four outer-ring quadrants. The overall average RPET was com-
puted as a weighted average of the sectoral thickness measurements.
Thiswas doneusing the following formula: (1/36 × center) + (1/18 × sum
of the four inner-ring quadrants’ thickness) + (3/16 × sum of the four
outer-ring quadrants’ thickness)62. Image quality scores, inner limiting
membrane metrics, validity count, and motion metrics were recorded
for quality control,whereby imageswith low signal strength (Q < 45) or
poor segmentation or centration (the worst 20% of each indicator)
were excluded. If both eyes were eligible, then one eye was randomly
selected for further analysis.

Ascertainment of T2DM
The Hospital Episode Statistics database, Scottish Morbidity Record,
and Patient Episode Database were used to obtained inpatient records
in England, Scotland, and Wales, respectively. The determination of
T2DM was based on ICD-10 code E11. Death dates were obtained from
national datasets with the NHS Digital (England and Wales) and NHS
Central Register (Scotland). The follow-up period was from March 16,
2006, to March 31, 2021. Person-days for each participant were cal-
culated from the date of baseline assessment to the date of disease
onset, death, or end of follow-up, whichever came first.

Assessment of covariates
Face-to-face interviews, detailed touchscreen questionnaires, and phy-
sical measurements were conducted on all participants at baseline
(2006–2010). The self-administered questionnaire covered demo-
graphic and socioeconomic factors (age, gender, race, education,
Townsend deprivation index, and household income), lifestyle factors
(smoking and drinking status), and medical history, including use of
lipid-lowering medications, antihypertensives. Baseline diseases were
determined by a combination of inpatient records, touchscreen ques-
tionnaires, and verbal interviews. Baseline body mass index (BMI) was
calculated as weight divided by height squared, and waist-to-hip ratio
(WHR) as waist circumference divided by hip circumference. Visual
acuity was tested with traditional LogMAR charts. The refractive error
was measured using an autorefractor (Tomey, Japan), and spherical
equivalent (SE) were calculated based on autorefraction results.
Intraocular pressure (IOP) was measured using an Ocular Response
Analyzer (Rerchert, USA). Genotyping was conducted using the UK
BiLEVE Axiom Array or the UKB Axiom Array, and quality control and
imputation of the genetic data were described elsewhere63. Polygenic
risk score (PRS) of age-relatedmacular degeneration (AMD) (AMD-PRS)
was computed using alleles and their effect based on meta-analyzed
summary statistics GWAS data across 26 studies48,49.
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Additional analyses on diabetic microvascular phenotypes
Weconducted additional analysis in theGDES cohort to investigate the
association between average RPET with future diabetic microvascular
phenotypes, and the potential of RPET metabolic fingerprints in
facilitating risk stratification for these outcomes. A total of 2,373 GDES
participants with type 2 diabetes mellitus, who met similar eligibility
criteria asUKBparticipants,were included in the phase-IV analysis, and
were further divided into two groups: (1) GDES population-I, which
included OCT measurements only; and (2) GDES population-II, which
included both OCT measurements and metabolomics data. GDES
population-I was used to analyze the association of average RPET with
the risks of T2DMmicrovascular phenotypes, whileGDESpopulation-II
was used to identify RPET-related metabolites and explore their value
in stratifying these outcomes.

Swept Source OCT (SS-OCT, DRI OCT Triton; Topcon, Japan) was
used to measure RPET across nine ETDRS subfields at baseline, with a
3D Macula Cube 7 × 7mm scan mode centered at the fovea. This
instrument is characterized by high scanning speed and deep pene-
tration, which is especially suitable for imaging of deep structures.
Each OCT scan is performed through an internal fixator, and the fixa-
tion is monitored by the instrument’s built-in fundus camera. Addi-
tionally, blood flow angiograms of themicrovasculature inmacula and
ONH region were acquired using SS-OCT angiography, with an Angio
Macula 6 × 6mmscanmode centered on the fovea and anAngioDisc 6
× 6mm scan mode centered on the disc, respectively. Automatic
image segmentation was conducted using a built-in software (IMA-
GEnet 6, Version 1.22).Metabolomic profiling was conducted using LC-
QTRAP-MS/MS (LC, ExionLC AD, SCIEX, USA; MS, QTRAP® System,
SCIEX, USA)64,65. During instrumental analysis, one quality control
sample is analyzed for every ten actual samples to monitor the
reproducibility of the analytical process. To further ensure the accu-
racy of the results, blank samples are also included in the experiment.
These samples contain no analyte, and their peaks reflect whether
there were any residuals during the assay. Internal standard samples
with known concentrations were included, and their coefficients of
variation are controlled at<5%.DRdiagnosis, including its severity,was
graded by the same ophthalmologist using the modified Airlie House
classification system with a severity score66. Overnight fasting venous
blood and mid-stream urine samples were collected to assess HbA1c,
creatinine, total cholesterol, triglycerides, HDL and LDL cholesterol,
and urine microalbumin.

Statistics
R (version 4.2.2) and Stata/MP (version 17.0) was used for all data
analyses and presentation of results. Continuous variables were pre-
sented as mean (SD), and categorical variables were presented as
number (percentage). Student’s t-test and chi-square test were used to
compare continuous and categorical variables, respectively. The
z-score normalization was performed for all metabolic measures to
ensure comparability across metabolites. No statistical method was
used to predetermine sample size. No eligible datameeting criteria for
inclusion were excluded from the analyses. The experiments were not
randomized, and the investigators were not blinded to allocation
during experiments and outcome assessment.

In the phase-I analysis, the association of in vivo RPET measure-
ments with the risk of T2DM was evaluated using CPH models. Con-
sidering the significant impact of AMDonRPE, wedivided population-I
into two subgroups according to the upper quartile of AMD-PRS for
separate analyses. Participants with high AMD-PRS were at higher
genetic risk for AMD and may therefore be susceptible to preclinical
AMD pathologies. The covariates included age, sex, ethnicity, assess-
ment center, household income, Townsend deprivation index, edu-
cation, smoking, drinking, BMI, hypertension, hyperlipidemia, IOP, SE,
and use of antihypertensive and lipid-lowering medication. Variables
that reached a threshold of P <0.1 were adjusted in the multivariate

models. Sex-specific analyses were conducted, using the same
approach without the inclusion of sex as a covariate. Sensitivity ana-
lyseswas performedby: (1) adjusted formore comprehensive ethnicity
classifications with further subdivisions for South Asian, East Asian,
Black, and mixed races; (2) further adjusted for biological age23; (3)
further adjusted for frailty score24; and (4) excluding participants with
cancer, cardiovascular, and pulmonary diseases. HRs with 95% CI
showed the association of baseline RPET with the risk of T2DM.

In the phase-II analysis, associations between 249 metabolic bio-
markers and average RPET were assessed using multiple linear regres-
sion models after adjusting for age, sex, ethnicity, assessment center,
household income, Townsend deprivation index, education, smoking,
drinking, BMI, IOP, SE, use of lipid-lowering medications, and anti-
hypertensive medications. Participants with highest AMD-PRS were
excluded. β values and 95% CIs were used to represent the change in
RPET cause by 1-SD change for each biomarker. The Benjamini-
Hochberg (BH)methodwas employed to reduce FDR formultiple tests.

In the phase-III analysis, participants from population-II were
randomly divided into training and testing set at a ratio of 7:3 (Fig. 1).
The association between RPET metabolic fingerprints and the risk of
T2DM was evaluated using CPH models, which was adjusted for the
same covariates as in the phase-I analysis, with the BH method for
multiple testing correction. The RPET metabolic state model is a
stepwise CPH model trained on (1) all RPET-associated metabolic
biomarkers; (2) only biomarkers that showed negative associations
with RPET and positive associations with T2DM risk; and (3) only bio-
markers independent of ageing. Participants in the testing set were
divided into four quartiles based on the calculated RPET metabolic
states, and the risks of developing T2DM were compared among
groups. To assess the predictivity of the RPET metabolic states for
T2DM, the Harrell’s C-statistics was calculated, and their predictive
value for T2DM was compared with those of individual clinical indi-
cators. The added predictability of these metabolites for the risk of
T2DM was also evaluated compared to the clinical indicators-based
model. The NRIs and IDIswere also computed. The goodness ofmodel
fit was assessed using Hosmer-Lemeshow test. Finally, decision curve
analyses were conducted to estimate the benefits in clinical utility.

In the GDES cohort, the associations of average RPETwith the risk
of diabetic adverse microvascular phenotypes were evaluated using
logistic regression models, after adjusting for age, sex, duration of
diabetes, HbA1c, smoking, drinking, BMI, SBP, and hyperlipidemia. The
associations between each metabolite and RPET were assessed using
multiple linear regression models after adjusting for the same covari-
ates as above, with the BH method for multiple testing correction.
C-statistics were calculated, and decision curve analyses were con-
ducted to investigate the role of these metabolites in facilitating risk
stratification for these outcomes. A P value < 0.05 was statistically
significant, with exceptions for where specified.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data utilized in this study, including imaging, NMR, and geno-
typing data from the UKB, are available via data access procedures
(http://www.ukbiobank.ac.uk). Permission to use the UKB Resource
was obtained via a material transfer agreement as part of Application
62443, 62489, 62491 and 62525. Raw data from the GDES analyzed in
the current study are not publicly available due to HIPAA compliance
and were used with Zhongshan Ophthalmic Center institutional per-
mission for the purposes of this project. All requests for access to in-
house data will be addressed to the corresponding authors, Dr. Wei
Wang (Email: wangwei@gzzoc.com), and will be processed in accor-
dance with Zhongshan Ophthalmic Center guidelines. Guangzhou
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Diabetic Eye Study Groupwill assess all requests based on the purpose
of data request, and itmay take up to 90 days to process the request. A
material-transfer or data-usage agreement will be required between
ZhongshanOphthalmic Center and the receiving organization, and the
requesting organization must state the intended purpose of the data
transfer and provide assurances that the transferred data will only be
used for non-commercial academic and educational purposes in
compliance with Zhongshan Ophthalmic Center institutional guide-
lines. Source data are provided with this paper.

Code availability
R Scripts used for analyses are available at GitHub Repository https://
github.com/Yangshp5/RPEMet67.
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