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Automatic correction of performance drift
under acquisition shift in medical image
classification

Mélanie Roschewitz 1,2 , Galvin Khara1, Joe Yearsley1, Nisha Sharma3,
Jonathan J. James4, Éva Ambrózay5, Adam Heroux1, Peter Kecskemethy1,
Tobias Rijken 1 & Ben Glocker 1,2

Image-based prediction models for disease detection are sensitive to changes
in data acquisition such as the replacement of scanner hardware or updates to
the image processing software. The resulting differences in image character-
istics may lead to drifts in clinically relevant performancemetrics which could
cause harm in clinical decision making, even for models that generalise in
terms of area under the receiver-operating characteristic curve. We propose
Unsupervised Prediction Alignment, a generic automatic recalibrationmethod
that requires no ground truth annotations and only limited amounts of unla-
belled example images from the shifted data distribution. We illustrate the
effectiveness of the proposedmethod to detect and correct performance drift
in mammography-based breast cancer screening and on publicly available
histopathology data. We show that the proposed method can preserve the
expected performance in termsof sensitivity/specificity under various realistic
scenarios of image acquisition shift, thus offering an important safeguard for
clinical deployment.

Artificial intelligence (AI) holds the promise for more objective, accu-
rate, and cost-effective analysis of imaging data and could funda-
mentally transform clinical workflows in image-based diagnostics and
population screening. The use of AI could help to ease the pressure on
health services, for example, through automated prioritisation of cri-
tical cases1,2, or by providing second opinions in diagnostic
screening3,4.

Different use cases will have different requirements on AI per-
formance, depending on the role of the AI system within the clinical
workflow. An AI system used for triaging or prioritisation would be
expected to have near-perfect sensitivity (SEN), while a low specificity
(SPC) may be acceptable. AI as a second reader in double reading
breast cancer screening, on the other hand, may be expected to per-
form at similar SEN/SPC levels as a human reader. Many AI systems are
versatile prediction models that can be used at different operating

points in terms of a specific clinically meaningful SEN/SPC trade-off.
Here, an operating point is associated with a calibrated threshold on
the continuous AI prediction score. The thresholds are often pre-
determined, ideally as part of large-scale validation studies. Thresholds
may also be adjusted as part of local optimisation using historical data
from a new deployment site5. Here, the assumption is that such vali-
dation data is, and remains, representative of new data from unseen
patients and the associated operating point is within approved values.

Changes occurring after deployment pose a fundamental chal-
lenge to medical imaging AI6–10. Current systems are susceptible to
differences in the image characteristics. Changes to the input images,
for example, due to replacement of scanner hardware or updates to
the image reconstruction and processing software, can cause differ-
ences in the AI output predictions (see Fig. 1). These changes may
occur any time after deployment and are often outside of the control
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of theAImanufacturer.While changes in the image characteristicsmay
not necessarily affect the overall predictive power (i.e., the ability to
discriminate between positive and negative cases), any shift or drift in
the output distribution may invalidate the calibrated thresholds. This
would directly impact the SEN/SPC trade-off, and thus, the intended
operating point of the AI system. If undetected, such clinical perfor-
mance drift could result in under- or overdiagnosis and have severe
consequences on patient safety.

There is an urgent need for an effective methodology for mon-
itoring AI in real-world deployments, enabling automated correction
of performance drift that is caused by image acquisition shifts. The
topic of performance monitoring is a pressing matter for the practical
deployment of machine learning models, in particular in critical
applications such as disease detection11,12. In the past, some methods
have been proposed to detect such performance drifts and update
models13–18, but these all require human annotations of new samples.
However, obtaining annotations in near real-time and linking them
with the acquired images is usually not possible in clinical practice, in
particular in applications such as breast cancer screening where con-
firmed diagnosis (e.g., biopsy-proven malignancy) is not available at
the time of image analysis. Some methods have been proposed to
automatically detect shifts based on statistical tests comparing model
predictions19, but there remains an unmet need for methods allowing
to automatically correct performance drift in the absence of any
diagnostic information (such as disease labels). This is precisely the
focus of this work.

In this work, we propose and evaluate a simple, generic, and
effective approach of unsupervised prediction alignment (UPA) which
is capable of detecting and correcting AI clinically relevant perfor-
mance drift caused by acquisition shift. Our experiments demonstrate
the effectiveness of UPA in several real-world scenarios in the context
of breast screening and histopathology. In the breast screening
application, we first show that UPA is able to adapt outputs of a model
optimised on one hardware vendor to recover the desired SEN/SPC
performance on different vendors across three large-scale UK breast
screening datasets. We confirm the generic nature of UPA using the
publicly available WILDS Camelyon1720 dataset showing that a classi-
fication model optimised on a particular staining protocol can auto-
matically adapt to a new staining protocol. Importantly, UPA is
designed such that it allows for continuous recalibration as it auto-
matically detects and adjusts to shifts observed in the prediction dis-
tribution over time. We showcase this by simulating multiple
acquisition shift scenarios including the introduction of new scanners
and updates to the image processing software. We discuss data
requirements, assumptions, and limitations of the proposed method.
We believe this work is of interest to anyone concerned about the

safety and reliability of medical imaging AI including AI developers,
healthcare professionals, patients, regulators, and policymakers.

Results
Datasets
We use four breast mammography datasets with side-wise biopsy-
confirmed malignancy labels. For each participant, four images are
recorded (two views per breast). The training dataset Dtrain is from
OPTIMAM21 which is an enriched dataset from the UK, whereas all
other evaluation sets are screening datasets from three sites in the UK
and four sites in Hungary representative of the real-world populations
in the respective national breast cancer screening programmes. For all
evaluation sets, if there was more than one study per participant, we
kept only one (randomly sampled). We additionally evaluate the
effectiveness of UPA on WILDS Camelyon17, a publicly available his-
topathology dataset22. This dataset was designed to study dataset
shifts caused by variations in staining protocols from one hospital to
another. The dataset contains patches from whole-slide images with
patch-wise labels indicatingwhether the tissue is cancerous or not. The
training dataset is composed of data from three hospitals and the
reference set is sampled from the same sites. Evaluation is on two
unseen datasets from two newhospital sites. A summary of the dataset
characteristics can be found in Tables 1 and 2.

Experimental setup
We designed several realistic scenarios of acquisition shift to evaluate
the effectiveness of UPA in the context of breast cancer detection in
digital mammography and tissue classification in histopathology. UPA
is a simple method aligning model predictions from an unseen
acquisition domain (e.g., data acquired with a new scanner) to the
reference prediction distribution recorded on a known domain (e.g.,
data from the validation set that was used during method develop-
ment). Prediction alignment is achieved using piecewise linear cumu-
lative distribution matching. For the two applications of
mammography and histopathology, we train standard deep convolu-
tionalneural networkmodels for image classification, calibratedon the
validation data to yield an operating point where sensitivity equals
specificity. More details about UPA, the AI models, and the settings for
each scenario can be found in the Methods section.

Scenario 1: Deployment to a new site
In this first set of experiments, we simulate the scenario where we want
to deploy a model that has been optimised on validation data from a
reference site to new unseen sites. Here, an acquisition shift may occur
due to the use of different scanners at new sites (digital mammo-
graphy), or more broadly due to differences in the imaging protocol

Fig. 1 | Illustration of a shift in model prediction when applying a mammo-
graphy malignancy detection model to a new scanner. From left to right:
a distribution of predictions observed on the reference set coming from a scanner
representative of the majority of the development set and used to set the classifi-
cation threshold, b observed distribution of predictions when applying this model

on a completely unseen scanner we can observe that despite ROC-AUC general-
isation there is a clear shift inmodel predictions and calibration, c effect of applying
the proposed UPAmethod in terms of predictions distribution and SEN/SPC trade-
off. Source data are provided as a Source Data file.
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including the use of different staining protocols (histopathology). For
the breast cancer detection task, we use a test dataset from a scanner
that has not been seen during model development. For the histo-
pathology tissue classification task, the evaluation data comes from
another hospital using different staining protocols. In both cases, we
assume that the corresponding classification models have been pre-
calibrated on reference validation data (prior to deployment to new
sites). The classification threshold has been selected at the clinical
operating point where SEN equals SPC on this reference data. We first
evaluate the performance of themodel in terms of SEN/SPC on the new
data prior to using UPA. Then we apply the proposed alignment tech-
nique to evaluate its effect on threshold shift. Metrics are reported in
terms of image-wise area under the receiver-operating characteristic
curve (ROC-AUC) and SEN/SPC, in Fig. 2 for breast cancer detection and
in Fig. 3 for Camelyon17. Additionally, in Tables 3 and 4 we also report
Youden’s Index23, a compound measure taking into account simulta-
neously sensitivity and specificity, before and after applying UPA. We
find that without UPA there is a substantial change in SEN/SPC balance,
across all tasks and evaluation datasets. Without UPA the model is no
longer performing at the desired operating point. Conversely, results
show that after applying our alignment method the SEN/SPC balance is
largely restored for the unseen data. Additionally, in Supplementary
Note 1, we show that UPA also works independently of the particular
choice of operating point (e.g., predefined target specificity).

Scenario 2: Transition to a new scanner
Here, we simulate a scenario requiring continuous model updates
where a new scanner is installed, and an old scanner is gradually
decommissioned. There is a planned transition period where the old
and new scanners are used in parallel with a gradual switch to the new
scanner. At the start, there is only data fromscanner A, at the end there
is only data coming in from scanner B. Classification thresholds of the
AI model were optimised for scanner A. Results can be found in Fig. 4
(top), where the left-hand side depicts the number of cases processed
by each scanner over time for each scenario and the right-hand side
shows the corresponding results in termsof themodel’s sensitivity and
specificity over time, with and without applying UPA overall and
scanner-wise. From the figure, we observe that the introduction of the
new scanner would lead to substantial drifts in SEN/SPC when not
using UPA, whereas applying UPA preserves the desired SEN/SPC bal-
ance over time.

Scenario 3: Addition of a new scanner
Similar to the scenario above, here a new scanner B is installed, how-
ever, the old scanner A will continue to be used in parallel. The new

scanner B is introduced gradually, meaning the total number of scans
increases over time until there is an equal proportion from both
scanners, resulting in the overall number of cases doubling. Classifi-
cation thresholds were optimised for scanner A. Results can be found
in Fig. 4 (bottom row), again UPA is able to preserve a balanced SEN/
SPC over time.

Scenario 4: Image processing update
In this scenario,we simulate the effect of anOEMupdate applied to the
image processing algorithm for an existing scanner. The deployment
site is assumed to operate a single scanner and at the time of AI
deployment, the classification thresholds are optimised for the initial
version of image processing software. At a later time point T1, we
assume that the scanner manufacturer has applied a software update
to their image processing algorithm resulting in an increase in image
sharpness. Suchupdates are largely outside the control of theAImodel
developers. The results of this simulation can be found in Fig. 5. The
increase in image sharpness induces a sudden and substantial change
in the SEN/SPC balance. Applying UPA results in a rapid adaptation to
the new image characteristics, with the model quickly performing at
the desired SEN/SPC trade-off.

Effect of dataset sizes
To gain more insights on the amount of data needed for obtaining
good performance in the alignment phase of UPA, we analyse the
sensitivity of the alignment method to the size of the reference set
(from the source domain), as well as to the size of the alignment set
(from the new domain). Results for mammography scanner B can be
found in Fig. 6, with additional results for other datasets provided in
Supplementary Note 2. These show that an alignment set as small as
250 cases (1000 images) is enough to recover the SEN/SPC shift across
mammographic datasets. For the reference set, with 500 cases in the
alignment set, we find that 1,000 cases are sufficient for stable results.
In practice, one can use the same reference set as used for model
validation and selection of the classification threshold.

Discussion
We have proposed an effective method to correct clinically relevant
performance drift attributable to changes in the image acquisition
pipeline (e.g., replacement of scanners, updates of image processing
software, use of different staining protocols). This has been demon-
strated across various scenarios fromone-off changes when deploying
to a new site to gradual and progressive drifts in acquisition char-
acteristics over time. Our experiments show that a generalisable ROC-
AUC does not necessarily mean that selected classification thresholds
(i.e., clinical operating points) generalise to unseen data. As shown in
Figs. 2 and 3, the studied models did generalise in terms of ROC-AUC
across all datasets while the SEN/SPC balance varied substantially
across sites when applying a predefined classification threshold. Our
results demonstrate that the proposed unsupervised prediction
alignment method can successfully mitigate threshold shifts on
unseen datasets in two very different image classification tasks. UPA
was able to recover the desired SEN/SPC trade-off, without using any
labels from the unseen target domain. Importantly, this simple yet
effectivemethod can be used for continuousmodel updates and helps

Table 2 | Statistics of the datasets for the WILDS Camelyon17
Histopathology dataset

Dataset Type N images % positives

Sites S1–S3 Reference set Dref 33,560 50%

Site S4 Unseen 34,904 50%

Site S5 Unseen 85,054 50%

Source data are provided as a Source Data file.

Table 1 | Statistics of the breast cancer screening datasets

Dataset Device Country Type N cases N images % positives images

Scanner A Hologic UK Reference set Dref 3221 12,884 2.5%

Scanner B IMS Giotto Hungary Unseen 4152 16,608 1.8%

Scanner C Siemens UK Unseen 3904 15,616 1.9%

Scanner D GE Healthcare UK Unseen 4115 16,460 1.8%

Source data are provided as a Source Data file.
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Fig. 2 | Scenario 1:Deployment to anewsite—breast screening task. Left column:
Specificity in function of sensitivity before and after prediction alignment. For this
analysis,we sample anevaluation set (of 2500cases) and adisjoint alignment set (of
1000 cases) from all available cases, this sampling is repeated 500 times with
replacement. Sensitivity, specificity, ROC-AUC are measured over these 500
bootstrap samples and results are reported in terms of average results over the
bootstrap samples and error bars depict the 95%-bootstrap confidence interval for

eachmetric. Right column: the differencebetween sensitivity and specificity before
and after alignment. Boxplots are constructed from 500 repeated sampling of
evaluation and alignment sets; each box shows the 25%, 50% and 75% percentiles of
the bootstrap distribution; whiskers denote the 5% and 95% percentiles and any
point outside of this range is represented as an outlier. UPA is effective at reco-
vering the desired sensitivity/specificity balance across all out-of-distribution
datasets. Source data are provided as a Source Data file.
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in the case of progressive performance drift. Our sensitivity analysis
shows that UPA requires only limited amounts of data from the shifted
distribution and can re-use existing validationdata as the reference set.
With only N = 500 cases from the target domain and N = 1000 cases
from the source domain, we observed near-optimal and stable results
for recalibration of the model outputs. The fact that only a limited
amount of data from the target domain is required is important for the
practical implementation of UPA. Used as a continuous performance
monitoring and recalibration tool, UPA could run over a relatively
small time window of new incoming data. In breast cancer screening,

for example, acquiring a set of 500 new cases is often only a matter of
days at many screening sites.

In practical use-cases where several scanners or acquisition pro-
tocols are used at the same site (such as scenarios 2 and 3 above), it is
worth noting that UPA is applied in a scanner/protocol-wise manner.
That is, we fit one alignment algorithm for each scanner separately
based on the most recent set of patient scans acquired with this spe-
cific scanner. This allows them to operate fully independently. This
fine-grained device-wise adaptation is particularly advantageous in
cases where the proportion of scans processed by a given type of
scanner varies on a day-to-day basis or one of them is suddenly not
operating for maintenance. Similarly, if one scanner has a software
update affecting the model predictions, only this scanner would have
to automatically recalibrate without affecting other scanners.

Compared to approaches that directly adjust the classification
threshold instead of themodel predictions24, UPAhas the advantage of
maintaining relative calibration of the model as it preserves the shape
of the distribution between reference and target domain. This enables
more informed decisions based on the value of the prediction asso-
ciated with a given sample (e.g., to assess the prediction uncertainty).
Conversely, if one simply adapts the threshold, there is no guarantee

Fig. 3 | Scenario 1: deployment to a new site—WILDS Camelyon17 histo-
pathology task. Left column: Specificity in the function of sensitivity before and
after prediction alignment. For this analysis, we sample an evaluation set (of 15,000
patches) and a disjoint alignment set (of 5000 patches) from all available patches,
this sampling is repeated 500 times with replacement. Sensitivity, specificity, ROC-
AUC are measured over 500 repeated sampling of evaluation and alignment sets
and results are reported in terms of average results over the bootstrap samples and
error bars depict the 95%-bootstrap confidence interval for each metric. Right

column: the difference between sensitivity and specificity before and after align-
ment. Boxplots are constructed from 500 bootstrap samples of evaluation and
alignment sets; each box shows the 25%, 50% and 75% percentiles of the bootstrap
distribution; whiskers denote the 5% and 95% percentiles and any point outside of
this range is represented as an outlier. UPA is effective at recovering the desired
sensitivity/specificity balance across all out-of-distribution datasets. Source data
are provided as a Source Data file.

Table 3 | Youden’s Index for scenario 1, deployment to a new
site, breast screening

Dataset Before correction After correction

Scanner B 0.295 (0.011) 0.651 (0.021)

Scanner C 0.599 (0.023) 0.594 (0.020)

Scanner D 0.644 (0.024) 0.640 (0.021)

Reported as average over 500 bootstrap samples, with standard deviation in brackets. Source
data are provided as a Source Data file.
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that the shape of the prediction distribution is preserved, which may
render it impossible to interpret the absolute value of the prediction.
This is important, as it has been shown that model calibration is not
necessarily transferable when moving from validation to unseen test
domains25. In Fig. 1, we saw how the shape of the distribution changes
before and after alignment and how the alignment preserves the shape
of the reference. When comparing the expected calibration error
(ECE)26, we found that after alignment the ECE is preserved between
the reference (ECE = 0.13) and the aligned distribution (ECE =0.14),
whereas it was twice as large on the original predictions before align-
ment (ECE = 0.29). The preservation of the shape of prediction dis-
tribution may be of particular importance in applications utilising the
absolute value of the model predictions such as uncertainty-aware
triaging1,2, or when used in risk prediction models27.

In terms of limitations, it is important to highlight that UPA
focuses on addressing the effects of acquisition shift only, it is not
designed to tackle other types of distribution shifts that alsomaycause
performance drift such as population, prevalence or annotation
shift28,29. Crucially, in UPA we assume that the prevalence is (roughly)
preserved between reference and target domains. This is a reasonable
assumption in many practical clinical scenarios, e.g., in screening
programs where the expected prevalence is known and usually similar
across sites with similar populations. Note that if the prevalence

assumption is violated, but the target prevalence is known, or it is
possible to gather labels on theunseendataset, UPAcan still be applied
by ensuring that the prevalence in the chosen reference set matches
the target prevalence (e.g., using re-sampling techniques). However, if
no or only insufficient information is available about the causes of the
distribution shift between the reference set and the new target
domain, UPA should not be used for automatic recalibration without
further investigation. In practice, we would envision UPA to be used
alongside comprehensivemonitoring of the input data includingmeta
information about the patient population. This would enable the
detection and flagging of unexpected changes in the patient popula-
tion. Monitoring of base demographics is already standard practice in
screening programmes. This could be complemented with automated
monitoring tools, for example using auxiliary AI models, to predict
patient anddata characteristics from the input images (e.g., age, breast
density, image quality, etc.) and methods that have been specifically
developed for drift detection19. The detection of shifts is an important
aspectof continuousperformancemonitoring. Note thatUPAdoes not
have to be applied in real-time, meaning for deployment it may be
reasonable to implement a time delay (say a few days) between the
detection and the correction of the distribution shift. This would
facilitate a human-in-the-loop inspection of whether other sources
may have contributed to the detected shift. Here, we note that mixing
effects of different sources of potential bias in the datasets can com-
plicate the root cause analysis of data distribution shift29. Still, even in
such settings, UPA can be employed for the detection of distribution
shift during deployment, as we have illustrated in the case of pre-
valence shift in Supplementary Note 4.

Secondly, we should note thatUPA is designed to tackle threshold
shift, not model generalisation overall. Importantly, we assume here
that the acquisition shift primarily induces a shift in the model pre-
dictions invalidating the selected operating point while preserving
ROC-AUC across domains. All models investigated in this study satisfy

Table 4 | Youden’s Index for scenario 1, deployment to a new
site, histopathology

Dataset Before correction After correction

Site S4 0.868 (0.003) 0.864 (0.005)

Site S5 0.859 (0.006) 0.863 (0.004)

Reported as average over 500 bootstrap samples, with standard deviation in brackets. Source
data are provided as a Source Data file.

Fig. 4 | Scenarios 2 and 3: Prediction alignment over time under continuous
acquisition shift. Each simulation is repeated 250 times, solid lines depict the
average difference between sensitivity and specificity across all bootstrap samples
and shaded regions denote the 5%-95% percentile bootstrap confidence interval.
Plots in the left column depict the number of scans processed by scanner A and
scanner B over time for each scenario. Plots in the middle column compare the
evolution of the sensitivity-specificity balance over time with and without applying

UPA across all scans. The right-most two columns compare the evolution of the
SEN/SPC balance scanner-wise. The goal is to avoid a drift between sensitivity and
specificity in the presence of a gradual acquisition shift. The proposed method
successfully maintains a null difference between sensitivity and specificity over
time, whereas the non-adapted model can lead to dramatic shifts in the sensitivity-
specificity balance. Source data are provided as a Source Data file.
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this requirement and generalise well in terms of ROC-AUC, i.e., their
ability to separate classes is largely preserved even when the input
image characteristics change. As we apply piecewise linear interpola-
tion to the model outputs, UPA guarantees that the ROC-AUC is
identical before and after the alignment (as it does not change the
relative order of the predictions). As such, UPA’s ability to recover the
expected SEN/SPC balance is not dependent on the classification
performance, as long as the ROC-AUC is preserved across domains. If
the ROC-AUC of a model were to drop significantly from one domain
to another, UPA is expected to perform suboptimally, and will not be
able to recover ROC-AUCperformanceonunseendata. Tackling issues
related to performance drop in terms of overall class separability, i.e.,
measured by a drop in ROC-AUC, is the focus of a large body of works
in domain adaptation (DA)30,31 and domain generalisation (DG)32,33.
These lines of work are complementary as DA/DG methods focus on
building generalisable models in terms of ROC-AUC, with usually little
attention on threshold shift. Here, UPA addresses an unmet need by
focusing on the generalisability of model calibration and its pre-
defined, clinical operating points. The proposed method is by no
means meant as a replacement for traditional DA/DG techniques but
should be considered in addition. While using DA/DGmethods during
model development may result in increased robustness to acquisition
shift, there is noguaranteeof theperformance innewunseendomains,
in particular in terms of clinical metrics. Here, UPA adds an important
safeguard for identifying performance drift in new deployments.
Additionally, we believe that local validation on representative data5,
regular AI audits34, and a careful analysis of discordant cases remain
critical components for safe clinical deployment and the assurance
that AI continues to be safe over time.

Additionally, where we propose UPA in a medical imaging use
case, global medical device regulations must be considered. Strict
control of a cleared medical device is required to ensure continued
safety and effectiveness following release to amarket, especially when
considering an unsupervised modification to parameters. As such, we
do not claim that applying UPA would dispense users of standard
auditing procedures involving comparison to human assessment.
However, integrated in the workflow it can allow for automatic cor-
rection to happen before the next auditing round, as data acquisition
updates may happen at any time. Modern AI software as a medical
device regulations include the option of ‘change protocols’ to allow AI
devices to improveover timewith respect to clinically relevantmetrics

but must be negotiated and agreed upon with the regulators and
include appropriate human oversight in deployment35. Thorough
validation of processes influencing the performance of a medical
device, as well as comprehensive post-market surveillance and con-
tinuous model monitoring are critical to the success of this approach
in a regulated environment.

Methods
Unsupervised prediction alignment
UPA consists of applying linear piecewise cumulative distribution
matching between the prediction distribution on the unseen dataset
and the reference prediction distribution. Piecewise linearmatching is
also known as ‘histogram matching’ and is a well-known technique in
the field of image processing where it is traditionally applied to stan-
dardise image intensities36. In our setting, this matching algorithm is
applied to the model’s output predictions. To fit the matching algo-
rithm, we require a set of predictions from the reference domain (the
‘reference set’), as well as a set of predictions coming from the out-of-
distribution domain, the ‘alignment set’.

The matching algorithm then consists of the following three
simple steps:

• Compute the observed cumulative distribution of the predic-
tions on the reference and alignment sets.

• Fit a linear interpolator to match the alignment set cumulative
distribution to the reference set cumulative distribution.

• Apply this linear interpolator to any new test prediction coming
from the unseen domain.

Pseudo-code for the matching algorithm is provided in Supple-
mentary Note 3, and a fully functional Python implementation is pro-
vided in the Supplementary Code.

AI model
For the purpose of this study, we trained a simple ResNet-5037 con-
volutional neural network on Dtrain (see above) with a cross-entropy
loss for each task. For breast cancer applications we apply breast
masking and intensity normalisation before processing the images
with the AI model. The model is trained on an enriched breast
screening dataset with 12,285 cases (22.7% positive images). For the
histopathology model, we train on the official training split from the
Camelyon17 dataset with 302,436 images (50% positives). After

Fig. 5 | Scenario 4: Prediction alignment over time in the case of software
update. Each simulation is repeated 250 times, solid lines depict the average dif-
ference between sensitivity and specificity across all bootstrap samples and shaded
regions denote the 5%–95% percentile bootstrap confidence interval. Plots in the
left column depict the number of scans processed by scanner A and scanner B over
time for each scenario. Plots in the right column compare the evolution of the

sensitivity-specificity balance over time with and without applying UPA. The goal is
to avoid a drift between sensitivity and specificity in the presence of a gradual
acquisition shift. The proposed method successfully maintains a null SEN/SPC
difference over time, whereas the non-adaptedmodel can lead to dramatic shifts in
the sensitivity-specificity balance. Source data are provided as a Source Data file.
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training, we select the classification threshold at the balanced oper-
ating point (where sensitivity equals specificity) on the in-distribution
validation set Dref , which we denote by the reference set (see Tables 1
and 2). Note that the trained models generalise well to their out-of-
distribution settings in terms of ROC-AUC but not in terms of sensi-
tivity/specificity (as shown in the Results section).

Details for ‘Scenario 1: Deployment to a new site’
We use the AI model along with a preset classification threshold
optimised on DRef . We first measure the performance of this model
when deployed to a site by sampling an evaluation set of 2500 cases
from the out-of-distribution dataset (resp. 15,000 patches for the
histopathology application) and evaluate the performance of the
model in terms of sensitivity and specificity on this set. Additionally,
we sample a disjoint set of N = 1000 cases (resp. 5000 patches) to fit
the prediction alignment algorithm. For the mammography applica-
tion, we use the full reference set Dref as our reference distribution
(3221 cases). For thehistopathology task,we sample 5000 images from
Dref to use as our reference distribution. We then re-evaluate the

performance of the model on the evaluation set after alignment to
measure the effectiveness of the proposed method to reduce the
sensitivity-specificity drift. Sampling of the alignment and evaluation
set is repeated 500 times to obtain uncertainty estimates for the
reported metrics. Note that, in the breast screening dataset, for each
case, we have 4 images per study.

Details for ‘Scenarios 2 to 4: Continuous model updates’
In these scenarios, we wish to study the effectiveness of our method
for continuous model updates in the presence of progressive tem-
poral acquisition shift for the mammography task. To this end, we
simulate a data flow by defining a function mapping time to a given
scanner distribution describing each of the above scenarios. To get
the reference set and the simulation sets for scanner A, we split the
originalDref into two disjoint subsets: one randomly sampled subset
of 1200 cases is used as the reference set (to set the starting clas-
sification threshold and as the target of the alignment throughout
the simulation); the remaining split of 2221 cases is then used as a
data source for the simulation itself. We assume here that the time

Fig. 6 | Sensitivity analysis on the effect of sizes of alignment and reference sets
on the performance of the alignment method (scanner B). In the sensitivity
analysis on the size of the alignment set (top), we used the full reference set (3221
cases). Results are reported over 500 bootstrap samples. For the alignment size
analysis, eachbootstrap sample is createdby samplingone alignment set of the size
of interest from all available cases aswell as one evaluation set (n = 2500 cases). For
the reference size analysis, each bootstrap sample is created by sampling one
reference set of the size of interest from all available cases as well as one evaluation
set (n = 2500 cases). On the left, the points depict the average SEN/SPC over sam-
ples and error bars represent the 95% bootstrap confidence interval. On the right,

each box shows the 25%, 50% and 75% percentiles of the bootstrap distribution;
whiskers denote the 5% and 95% percentiles and any point outside of this range is
represented as an outlier. This analysis shows that with as few as 250 cases in the
alignment set, we already get very good results, stable across repeated sampling
experiments. In the analysis below, we measured the performance of methods for
different reference set sizes, we used 500 cases for alignment and varied the size of
the reference set. We can see that the method is not too sensitive to the size of the
reference, even if the more data the reference distribution comprises, the better
the results get. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-42396-y

Nature Communications |         (2023) 14:6608 8



unit in these simulations is in weeks. For each time point T, we
sample data according to the expected scanner distribution at point
T—as defined by each scenario. At any given time point T, we use a
running window composed of the data of the last two weeks T-2 and
T-1 for fitting both alignment algorithms (separately for each
scanner). We then evaluate the performance of the model before
and after alignment on the set sampled for time T both scanner-wise
and overall. We additionally ensure that—at any given time point T—
the running window set (samples of T-1 and T-2) is disjoint for the
evaluation set (samples of T). In scenarios 2 and 4 we assume that
the total number of cases per time point (week) is constant at
N = 250 cases. In scenario 3, we start with N = 250 at the beginning of
the simulation and progressively increase the number of cases
screened as the second scanner ramps up until we reach N = 500. In
scenario 4, we simulated the software update by increasing the
sharpness of the input images, we used Scanner A images in this
scenario too.

Ethical information
The internal breast cancer datasets from the UK and Hungary were
collected previouslywith ethical approval from theUKNational Health
Service (NHS) Health Research Authority (HRA) (Reference: 19/HRA/
0376) and theMedical ResearchCouncil, Scientific andResearch Ethics
Committee in Hungary (ETT-TUKEB) (Reference: OGYÉI/46651–4/
2020). The original study was performed in accordance with the
principles outlined in the Declaration of Helsinki for all human
experimental investigations. The need for informed consent to parti-
cipate was reviewed by HRA and ETT-TUKEB and confirmed to not be
required as the study involved the secondary use of retrospective and
pseudonymised data. The present studymade secondary use of a fully
anonymised version of this previously collected data. For the OPTI-
MAM breast cancer dataset, the OPTIMAM project obtained renewed
HRA approval and a favourable ethical opinion in July 2019 (Reference:
19/SC/0284) for a renewable period of 5 years, to collect images and
data from participating sites for the creation of a research database
and to add newcollection sites. Patient consentwaswaived by theNHS
HRA South Central—Oxford C Research Ethics Committee under the
NHS constitution which clarifies that the collection of de-identified
data without patient consent is permissible. The present study used a
fully anonymised version of the OPTIMAM dataset. The use of the
histopathology datasets is exempt from ethical approval as the ana-
lysis is based on fully anonymised, secondary data which is publicly
available.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All anonymised model outputs supporting the findings described in
this manuscript are publicly available in our code repository at https://
github.com/biomedia-mira/upa. Source data are provided in this
paper which includes the data used to plot the graphs shown in the
figures, aswell as tables. Access to theOPTIMAMbreast cancer dataset
can be requested on the project’s website: https://medphys.
royalsurrey.nhs.uk/omidb/. The WILDS-Camelyon dataset is publicly
available under a Creative Commons CC0 license as part of the WILDS
benchmark and is readily available for download to anyone. Down-
loading instructions can be found at https://wilds.stanford.edu/get_
started/. Official data splits were used as part of this study. Raw images
from the internal breast cancer imaging datasets from the UK and
Hungary were obtained under commercial licences and are not pub-
licly available. Requests for further information can be made via email
to the corresponding authors and will be processed within four
weeks. Source data are provided in this paper.

Code availability
The implementation of UPA together with code to reproduce all
results and figures are provided in the Supplementary Code and are
also made publicly available on https://github.com/biomedia-mira/
upa. The code is written Python 3.10 along with the following packa-
ges: seaborn-0.12.2, matplotlib-3.7.1, numpy-1.25, pandas-2.0.2,
scikit_learn-1.2.2, jupyter-1.0.0, tqdm-4.65.0, notebook-6.5.4.
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