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Human thalamic low-frequency oscillations
correlate with expected value and outcomes
during reinforcement learning

Antoine Collomb-Clerc 1, Maëlle C. M. Gueguen 1,2, Lorella Minotti1,3,
Philippe Kahane1,3, Vincent Navarro4, Fabrice Bartolomei5,6, Romain Carron 6,7,
Jean Regis 8, Stephan Chabardès1,9, Stefano Palminteri 10,11 &
Julien Bastin 1,11

Reinforcement-based adaptive decision-making is believed to recruit fronto-
striatal circuits. A critical node of the fronto-striatal circuit is the thalamus.
However, direct evidence of its involvement in human reinforcement learning
is lacking.We address this gapby analyzing intra-thalamic electrophysiological
recordings from eight participants while they performed a reinforcement
learning task. We found that in both the anterior thalamus (ATN) and dor-
somedial thalamus (DMTN), low frequency oscillations (LFO, 4-12Hz) corre-
lated positively with expected value estimated from computational modeling
during reward-based learning (after outcome delivery) or punishment-based
learning (during the choice process). Furthermore, LFO recorded from ATN/
DMTN were also negatively correlated with outcomes so that both compo-
nents of reward prediction errors were signaled in the human thalamus. The
observed differences in the prediction signals between rewarding and pun-
ishing conditions shed light on the neural mechanisms underlying action
inhibition in punishment avoidance learning. Our results provide insight into
the role of thalamus in reinforcement-based decision-making in humans.

As the philosopher John Locke put it “reward and punishment are
the only motives to a rational creature: these are the spur and the
reins whereby all mankind is set on work and guided”1. Research
in reinforcement learning aims at characterizing the processes
through which people learn, by trial and error, to select actions
that respectively maximize or minimize the occurrence of
rewards or punishments2. Converging evidence suggests that

reward-based reinforcement learning engages a fronto-striatal
circuit and the dopaminergic system3–5. The striatum receives
inputs from both cortical and thalamic regions and is densely
innervated by midbrain dopamine neurons. Information is then
relayed back to the cortex through the basal ganglia, which pro-
ject through the thalamus. However, there is no evidence in
humans regarding how neural activity in the thalamus—a key node
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in this circuit—is associated with subject’s expectations or with
the experienced outcomes during learning.

Punishment avoidance learning is of equal ecological importance
for organism survival and has been shown in many experimental set-
tings to be at least as effective as reward seeking6,7. Critically, while the
performance based on rewards or punishments exhibits comparable
learning accuracies, subjects are constantly slower in punishment
avoidance learning tasks8. This increase in reaction time is thought to
reflect a manifestation of a Pavlovian bias according to which motor
responses are inhibited by punishment expectations, irrespective of
the appropriateness of the instrumental response9–11.

Intriguingly, both fMRI and intracranial signals indicate that the
behavioral asymmetry observed between reward-seeking and punish-
ment avoidance is mirrored by a corresponding neural asymmetry.
Specifically, BOLD signals (fMRI) or cortical broadband gammaactivity
(iEEG) in the ventromedial prefrontal cortex exhibit significant corre-
lation with reward prediction errors during reward-based learning.
Conversely, BOLDandbroadbandgammaarepreferentially associated
with punishment prediction errors in the anterior insula12–15.

Despite early lesion studies in rabbits16 suggesting the invol-
vement of the mediodorsal and the anterior parts of the thalamus
during punishment-avoidance learning, most of the animal studies
surprisingly focused on reward-based learning17–22, leaving the role
of theses thalamic regions in punishment-based learning largely
unexplored. The dorsomedial (DMTN) and anterior thalamic nuclei
(ATN) have a critical role in the prefronto-striatal-thalamic limbic
circuit, facilitating flexible behaviors through the updating of
stimulus-action-response associations16,22–24. ATN and DMTN are
both connected to the network of brain regions involved during
reinforcement learning, such as the medial prefrontal, cingular and
insular cortices25. Functional magnetic resonance imaging studies in
humans consistently showed that thalamic signals correlate with
the difference between predicted and actual outcomes14,26. Animal
electrophysiological and lesion studies suggest that the ATN and
the DMTN could play dissociable functions during decision-
making21,27. On the one hand, ATN neuronal activity increases dur-
ing fear conditioning28 and plays a causal role in aversive avoidance
tasks16 while ATN lesions do not affect the learning of response-
reward associations19. Given its strong connections with the medial
prefrontal cortex, there were comparatively more studies in the
functions of DMTN during reward-based tasks and instrumental
behavior17–19,22. Yet, the precisemechanism by which ATN and DMTN
modulate neural activity in the prefronto-striato-thalamic loops
during reward vs. punishment-based learning processes were never
explored so that this study aimed at testing whether oscillatory
activity in these structures could be associated with learning
signals29,30.

The high spatiotemporal resolution necessary to disentangle
human thalamic neuronal activities during such cognitive processes is
unattainable with ordinary imaging tools. To address this gap, we
conducted a study leveraging rare direct intracranial neural recordings
obtained from the human limbic thalamus of eight patients (Table S1)
with pharmacoresistant epilepsy who were implanted for deep brain
stimulation of the anterior thalamus31.We investigated whether neu-
ronaloscillationswere associatedwith reinforcement-related signals at
different time points during a well-validated reward-seeking and
punishment avoidance learning task6,12,13. To achieve this, we fitted a
Q-learning model to each patient’s behavioral data to estimate trial-
wise values of latent variables (option values and prediction errors).
More specifically we looked for correlations with the computational
model variables at the decision stage (option-specific value expecta-
tions) and the outcome stage (prediction errors). By combining intra-
thalamic recordings with computational modeling of learning beha-
vior, our study investigates time-resolved choice and learning signals
in the human thalamus.

Results
Behavioral results
Local field potentials were recorded from eight pharmaco-resistant
epileptic patients (Table S1) implanted bilaterally in the thalamus with
deep-brain stimulation electrodes as a surgical treatment to alleviate
their seizures. Electrodes had two upper contact pairs inside the
anterior thalamic nucleus, with the more ventral contact pairs loca-
lized in the dorsomedial thalamic nucleus (Fig. 1a). Intra-thalamic
recordings were collectedwhile patients were performing a previously
validated instrumental learning task with the instruction to maximize
the monetary gains and minimize the monetary losses (Fig. 1b)6,12,13.

Behavioral results were consistent with what was previously
observed in this task (Fig. 1). Reaction times (Fig. 1c, d) were sig-
nificantly shorter in the reward (1173 ± 164ms) than in the punishment
(1726 ± 291ms) condition (t(7) = −3.10, p =0.017). Accuracy was on
average (Fig. 1 e, f) higher than chance in both the reward (65 ± 0.04,
t(7) = 4.23, p =0.0039) and punishment conditions (0.60 ± 0.02,
t(7) = 5.13, p =0.0014) and was not different between the two condi-
tions (t(7) = 1.68, p = 0.14). To further check how well participants
understood the task, we next examined the last four trials of each cue
pair in every session, i.e., when the cue-action-reward association is
presumed to be most effectively learned. This analysis (Fig. 1g) con-
firmed that in both the reward and punishment conditions, the accu-
racy approaches 70% and surpassed chance levels (reward: 0.71 ± 0.06,
t(7) = 3.78, p =0.0069; punishment: 0.68 ±0.04, t(7) = 4.96, p =0.0016;
two-tailed paired student t-test). Finally, to assess whether or not our
participants were better explained by a QL model compared to ran-
dom responding, we compared the goodness of fit of the QL model
compared to that of random responding using the Aikake Information
Criterion (AIC). This confirmed that the QL model displayed a sig-
nificantly lower AIC (indicating better fit, see Fig. 1h; random
responding: 642 ± 40; QL: 732 ± 36; t(7) = −3.2, p =0.015; two-tailed
paired student t-test). The observed rate of correct choices in those
pharmacoresistant epileptic patients were comparable to similar stu-
dies in the field, such as those conducted with similar tasks in other
clinical cohorts, such as Parkinson (~60%)32, Tourette (~63%)33 and,
more recently, epileptic patients (~70%)13. Thus, patients learned
similarly from rewards and punishments but took longer to choose
between cues for punishment avoidance, in line with previous beha-
vioral data from healthy subjects7 or epileptic patients12. These results
confirm that, although instrumental performances are similar, the
decision process differs in reward-seeking and punishment-avoidance
contexts in away that is compatiblewith amotor inhibition induced by
punishment expectation8–10.

We next investigated the association between thalamic neural
activity and reinforcement learning variables. To do so, we fitted a
Q-learningmodel (QL) to behavioral data to estimate trial-wise option-
specific expected values and prediction errors. The QL model gen-
erates choice probabilities applying a SoftMax function to option
values (Q-values), which are then updated at the time of outcome via a
prediction error minimization process2,7. Fitting the model means
adjusting its two parameters (learning rate and choice temperature) to
maximize the likelihood of observed choices (see Methods).

Electrophysiological results
The neural activity of each recording site (n = 48 bipolar channels,
see Methods) was then regressed in the time-frequency domain
against both expectation and outcome signals at different time
points during the task. Upon examining the post-operative CT scans
images that were co-registered to Fast Gray Matter Acquisition T1
Inversion Recovery34 (FGATIR) 3 T MRI images, it was determined
that the electrodes consisted of two upper contact pairs positioned
within the anterior thalamic nucleus and of themore ventral contact
pairs localized within the dorsomedial thalamic nucleus (Fig. S1).
Given the absence of significant differences between thalamic
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nuclei (ATN vs. DMTN) and sides (Left vs. Right, Figs. S2, 3), in the
following, all the analyses were conducted across all recording sites.
This time-frequency analysis confirmed the presence of expected
value signals in low frequency oscillations (LFO, 4-12 Hz) after the
cue (Fig. 2a) and before the choice onset (Fig. 2b). The LFO fre-
quency regime was preferred to separately analyzing theta (4-8 Hz)
or alpha (8-12 Hz) because there was no empirical evidence for the
existence of separate clusters in the time-frequency domain
(Figs. 2a, b and 3a, b) and for consistency with a connected literature
on the functional role of other subcortical areas during cognitive
tasks (e.g. subthalamic LFO35–39).

We first investigated neural signals occurring after the cue
(Fig. 2a) and before the choice onset (Fig. 2b). We found that low-

frequencyoscillations (LFO, 4–12 Hz)were significantly correlatedwith
punishment expectations (Qp) early after the cue onset (Fig. 2c; 0.85 to
1.56 s window, βQp =0.39 ±0.01, sum(t(47)) = 41.77, pc < 0.05) whereas
there was no significant association between thalamic LFO and reward
expectation (Qr) at these latencies. Furthermore, we found that LFO
were associated more strongly with Qp than with Qr (Fig. 2c; 0.55 to
1.56 s window, βQp-βQr = 0.41 ± 0.02, sum(t(47)) = 51.73, pc < 0.05).
Consistently, when neural activity was time-locked to the choice onset
(Fig. 2b), there was a significant association between thalamic LFO and
expectations signals during both learning conditions (Fig. 2d; −2.03 to
1.32 s window, βQr = 0.23 ± 0.01, sum(t(47)) = 79.29, pc < 0.05; −1.25 to
−0.08 s window, βQp = 0.43 ± 0.02, sum(t(47)) = 81.26, pc < 0.05), with
LFO significantly more powerfully associated with Qp than with Qr

Fig. 1 | Reinforcement-learning paradigm and behavior. a Schematic figure
(derived from Allen brain atlas) of the position of the deep brain stimulation
electrodes used to record intra-thalamic signals (ATN anterior thalamic nucleus,
DMTN dorsomedial thalamic nucleus, TH Thalamus, HTH Hypothalamus, GPi/GPe
Globus pallidus intern/extern, LV Left ventricle). b Successive screenshots of a
typical trial in the reward (top) and punishment (bottom) conditions. Patients had
to select one abstract visual cue among the two presented on each side of a central
visual fixation cross and subsequently observed the outcome. Durations are given
in seconds. c Average±SEM reaction times across patients (n = 8 patients) through
trials shown separately for the reward (Rew, green) and punishment (Pun, red)
conditions. d Average ± SEM reaction times across patients (n = 8 patients) in the
reward and punishment conditions. Dots represent data from individual patients.
Asterisk indicates the significance of a paired two-sided t-test comparing reaction
times between conditions (t(7) = −3.10, p =0.017). e Average±SEM choice perfor-
mance across patients (n = 8 patients). The average predicted performance from a

fitted Q-learning model is indicated by a white dot for each condition. Gray dots
represent data from individual patients. Asterisk indicates the significance of the
one-sample two-sided t-test used to compare for each condition the correct choice
rate to the chance level (i.e., 50%; reward: t(7) = 4.23, p =0.0039; punishment:
t(7) = 5.13, p =0.0014). f Average±SEM learning curves across patients (n = 8
patients) through trials shown separately for the reward and punishment condi-
tions. g Average±SEM choice performance across patients (n = 8 patients) restric-
ted to the last 4 trials of each condition. Asterisk indicates the significance of the
one-sample two-sided t-test used to compare for each condition the correct choice
rate to the chance level (i.e., 50%; reward: t(7) = 3.78, p =0.0069; punishment:
t(7) = 4.96, p =0.0016). h Average ± SEM Akaike Information Criterion (AIC) of
Q-learning (QL) model versus random choices across patients (n = 8 patients). Dots
represent data from individual patients. Asterisk indicates the significance of the
two-sided paired t-test used to compare the AIC of the QL model versus random
choices (t(7) = −3.2, p =0.015). Source data are provided as a Source Data file.
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(Fig. 2d; −1.25 to 0 s window, βQp-βQr = 0.32 ± 0.01, sum(t(47)) = 66.52,
pc < 0.05). Altogether, decision-related activities in the thalamus are
consistent with a stronger encoding of punishment expectations (Qp),
at least during the first second after stimulus onset, although both
reward and punishment expectations are encoded later on.

At the timeof outcomedisplay, we found that LFOwere positively
associated with expectations (Fig. 3a) and negatively associated with
the magnitude of the outcome (Fig. 3b). This demonstrates that the
two core components of the teaching signal—the prediction-error—are
encoded by thalamic LFO which relate to the difference between what
subjects expect and the actual decision outcome—what we get. Inter-
estingly, around outcome onset, the level of expectation was sig-
nificantly related to LFO only in the reward-based learning condition
(Fig. 3c; 0.08 to 0.70 s window, βQr = 0.23 ± 0.01, sum(t(47)) = 43.22,
pc < 0.05). Both types of outcomes were significantly encoded by LFO
in both rewarding and punishing conditions (Fig. 3d; 0.39 to 1.95 s
window, βR = −0.21 ± 0.01, sum(t(47)) = 113.56, pc < 0.05; 0.63 to 1.80 s
window, βP = −0.20±0.01, sum(t(47)) = 83.99, pc < 0.05). These nega-
tive associations between LFO and outcomes were driven by stronger

decrease of LFO when winning or losing money compared to neutral
outcomes (Fig. S5).

Altogether, outcome-related activity is consistent with a similar
encoding of rewards and punishments in the thalamus. Q-value
encoding was detected only in the reward condition, but the
absenceof a significant differencebetween the two conditions prevent
a conclusion in favor of a proper dissociation in the encoding of the
prediction error. We also assess how reliable were the associations
between thalamic LFO and prediction errors; we found that 7 out of 8
patients displayed a significant negative association between LFO and
prediction errors (Fig. S6).

To ensure that our focus on LFOwas justified,we explored activity
in other frequency bands (Fig. 4). This analysis revealed that LFO were
significantly associated to prediction errors in the reward (t(47) = −4.15,
p =0.00014) and the punishment conditions (t(47) = −5.73, p = 6.89e
−07). The other frequency bands did not exhibit any significant asso-
ciation with prediction errors neither in the reward (delta: t(47) = 1.0,
p =0.32; beta: t(47) = −0.039, p =0.97; gamma: t(47) = −0.61, p =0.54)
nor in the punishment condition (beta: t(47) = 1.24, p =0.22; gamma:

Fig. 2 | Thalamic low-frequency oscillations associated with choice expecta-
tions during choice. a,bTime-frequency decomposition of expected value signals
following cue onset (a) or preceding participant’s choice (b). Hotter (cooler) colors
indicate more positive (negative) regression estimates (between thalamic power
and Q-values). Black contours delimit statistical thresholds from pc <0.05 to pc
<5.0 × 10−6. Significance was assessed usingmultiple two-sided one-sample student
t-tests against zero across all thalamic sites (n = 48 sites). The boundaries of the
frequency bands delta (δ: 1–4Hz), low-frequency oscillations (LFO: 4–12Hz), beta
(β: 12-33Hz), and gamma (γ: 50–150Hz) at indicated on the right side. Shaded area
represents the standard deviation of the reaction time giving the timing of the

choice (a) or go signal onset (b). c,dTime-course of average (solid lines) regression
estimates obtained from linear fit of LFO with Qr or Qp after the cue onset (c) and
before the choice (d). Shaded gray areas around the mean represent SEM across
sites (n = 48 sites). Colored horizontal bars displayed on the top of c, d indicate
significance (pc <0.05) for one-sample t-tests against 0 in the reward (green) and
punishment conditions (red) or for two-sided paired t-tests comparing the
regression estimates in the reward andpunishment conditions. Reaction times (RT)
in the reward and punishment conditions are represented as circles (reward: green;
punishment: red) and horizontal lines (mean± sd). Source data are provided as a
Source Data file.
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t(47) = −0.27, p =0.79) at the exception of the delta band in the pun-
ishment condition (delta: t(47) = 2.08, p =0.042). To further check
whether any frequency band could provide additional information
about prediction errors, we next fitted separately reward or punish-
ment prediction errors with all possible general linear models (GLMs)
containing LFO together with any combination of other frequency
bands (see Methods). Bayesian model selection designated the LFO-
only GLM as providing the best account of both types of prediction
errors (RPE: Ef = 0.9821, Xp = 1; PPE: Ef = 0.9821, Xp = 1). Thus, even if
delta-frequency activitywas significantly related toprediction errors in
the punishment condition, it carried redundant information relative to
that extracted from LFO.

To compare the time courses of the association between thalamic
and cortical LFO and prediction errors, we re-analyzed a data-set13 in
which we recorded intracerebral data from the hippocampus, orbito-
frontal and prefrontal regions during an identical task. We found that
the temporal dynamics of LFO associated with prediction errors were
similar between thalamic and cortical sites (Fig. S4). The main quali-
tative difference was that in hippocampal and cortical areas, there was
an initial positive association between LFO andprediction errorswhich

then reverted to a negative association (i.e., sign reversals) whereas
this initial increase was absent in the thalamus.

Discussion
Combining intra-thalamic human recordings with a probabilistic
reinforcement learning task and trial-wise estimates of prediction
errors from a Q-learningmodel brings a mechanistic understanding of
the role of the human limbic thalamus during reward-based vs. pun-
ishment avoidance learning. We found that during the choice phase,
LFO were better associated with punishment expectation signals,
extending the previously observed role of the limbic thalamus in
memory encoding in humans40 to aversive contexts which were
examined in rabbits in early studies16. These signals could originate
from the dorsolateral or anterior insular cortex which were previously
shown to implement punishment avoidance signals during an identical
task in previous studies12,13.

In this study, there was no significant differences between ATN
and DMTN functions during learning, thus raising the question of why
we were not able to detect such differences, in contrast to previous
studies focusing on memory processes40–42. We can only offer trivial

Fig. 3 | Thalamic low-frequency oscillations associated with prediction error
components. a,bTime-frequencydecomposition of prediction errors expectation
(a: Qr or Qp) and outcome (b: R or P) components. Hotter (cooler) colors indicate
more positive (negative) regression estimates. Black contours delimit statistical
thresholds frompc<0.05 to pc <5.0 × 10−6. Significancewas assessedusingmultiple
two-sided one-sample student t-tests against zero across all thalamic sites (n = 48
sites). The boundaries of the frequency bands delta (δ: 1–4Hz), low-frequency
oscillations (LFO: 4–12Hz), beta (β: 12–33Hz), and gamma (γ: 50–150Hz) at indi-
cated on the right side. Grey shaded rectangles on the right side of all panels

represent the standard deviation of the next cue pair (trial t + 1). c,dTime-course of
average (solid lines) regression estimates obtained from linear fit of LFO with
prediction error components (Qr, Qp, R, P). Shaded gray areas around the mean
represent SEM across sites (n = 48 sites). Colored horizontal bars displayed on the
top of c-d indicate significance (pc <0.05) for two-sided one-sample t-tests against 0
in the reward (green) and punishment conditions (red) or for two-sided paired t-
tests comparing the regression estimates in the rewardandpunishment conditions.
Source data are provided as a Source Data file.
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explanations here, such as a relative lack of statistical power. It is also
possible that we did not detect any significant difference because ATN
and DMTN were equally recruited by our task. Indeed, it is very well
established that during instrumental learning action-outcome asso-
ciations are not the only learned variables and such learning is
accompanied by concomitant habit (state-action) and Pavlovian (state-
outcome) associations such that concomitant activations of the ATN
and the DMTN could reflect the deployment of multiple learning
systems.

Given the behavioral asymmetry in decision times between
reward and punishment-based learning, we hypothesized that the
neural activity could reflect the activation/inhibition balance of the
thalamocortical learning circuitry during choice: the motor action
threshold40. This interpretation is also consistent with the fact that the
Pavlovian bias on reaction times has been computationally interpreted
as being largely due to an increase of non-decision time, which, within
the decision diffusion modeling framework, is the parameter that
better captures motor inhibition8,43.

Conversely, the association between thalamic LFO and outcomes
(rewards andpunishments)went in the samedirection inboth learning
conditions (Fig. S5). The similar directionality of outcome encoding
may prima facie suggest that thalamic LFO signals behavioral saliency.
Yet, the (positive) correlation between thalamic LFO with the reward
outcome and the (negative) correlation with the reward expectation
were both observed after outcome display (Fig. 3). These opponent
associations are in accordance with the very notion of reward predic-
tion error, as it demonstrates a straightforward neural implementation
of the difference between the outcome and the expectation compo-
nents of the teaching signal. Furthermore, the stronger association
between punishment expectation compared to reward expectation at

the time of choice (Fig. 2) also speaks against the idea that saliency
alone could explain the current results.

The thalamic reward prediction error signals likely reflect a cor-
tical input from the ventromedial prefrontal cortex / lateral orbito-
frontal cortexwhich also exhibited sustained LFOmodulations (lasting
about 2.5 s), compared to the faster (<1.5 s) dynamics observed when
using broadband gamma activity as a neural proxy during value
rating44 or during reinforcement learning13. This suggests that rein-
forcement learning processes trigger a sustained neural activity in the
cortico-thalamic circuit involved to implement the teaching signal
during reward-based learning. This also echoes recent studies in non-
human primates suggesting that LFO in the orbitofrontal cortex are
crucial for reward-guided learning and are driven by LFO in the
hippocampus45. As the limbic thalamus shares extensive connections
with the hippocampus, orbitofrontal, and prefrontal areas, they may
form together a circuit in which reward-guided learning is enco-
ded by LFO.

Our results also allowed us to address another open question in
the field, which is to test the frequency bands involved during
learning.We observed that reward prediction error was represented
in the low-frequency oscillations (4–12 Hz) in the human ATN at the
time of outcome onset, but this was not true for higher frequencies.
In mice, beta (13–30 Hz) synchrony between the mediodorsal tha-
lamus and the prefrontal cortex was associated with learning17,
whereas in humans, intracranial recording revealed that broadband
gamma activity (50–150 Hz) recorded in the cortex encoded reward
and punishment-based learning signals13. We speculate that this
absence of association in the high gamma band in ATN/DMTN could
be due to a lack of power since broadband gamma is known to be
spatially more focal than LFO46. Our findings extend previous
reports regarding the involvement of low frequency oscillations
during reward-based tasks42,47. The (negative) correlation of tha-
lamic LFO with the outcome and the (positive) correlation with the
expectation that were simultaneously observed after outcome dis-
play in ATN/DMTN are in accordance with the very notion of a
prediction error signal. These results also mirror our previous
finding that in the cortex, when we used broadband gamma activity
as a neural index, we found a similar opponent association between
both components of prediction errors. Interestingly, the sign of the
association reverted when comparing analyses based on broadband
gamma and LFO in the cortex. This likely reflects the negative cor-
relation existing between these two frequency bands, such as
increased gamma power and decreased LFO accompanied local
increase of the single-neuron firing rates48,49.

Of note, evidence for punishment prediction errors encoding in
the thalamus was somehow weaker, if not incomplete. If confirmed,
these results could be easily accommodated by the fact that several
other brain areas and systems outside the fronto-striato-thalamic cir-
cuits are devoted to punishment avoidance learning12–15.

To conclude, our study represents a step forward in elucidating
the computational reinforcement-learning processes underlain by the
thalamus. Given the centrality of this brain structure within the fronto-
striatal circuit, we believe that understanding its function will prove
useful to computationally characterize cognitive deficits observed in
many neuropsychiatric disorders50.

Methods
Patients and surgical approach
Intracerebral recordings were obtained from 8 patients (38.1 ± 3.7
years old, 3 females, see demographical details in Table S1) suffering
from intractable epilepsy. They were implanted bilaterally in the
limbic thalamic nuclei within the anterior thalamic nuclei (ATN)
with deep-brain stimulation electrodes (Medtronic DBS lead model
3389, 4 contacts, 1.5 mm wide with 0.5mm spacing edge to edge
between contacts) as a surgical treatment to alleviate their seizures.

Fig. 4 | Contribution of frequency bands to prediction error encoding in the
punishment (red) and reward (green) conditions. Average±SEM across sites of
the regression estimates of power against prediction errors for the frequency
bands delta (1–4Hz), LFO (4–12Hz), beta (13–33Hz) and gamma (50–150Hz). LFO
power was averaged over 0–2 s post-outcome window. Stars indicate significance
of regression estimates (one-sample, two-sided Student’s t-test; LFO reward:
t(47) = −4.15, p =0.00014; LFO punishment: t(47) = −5.73, p = 6.89e−07; delta pun-
ishment: t(47) = 2.08, p =0.042). Dots correspond to regression estimates across
trials for each recording site (i = 48 sites). RPE reward prediction error, PPE pun-
ishment prediction error. Source data are provided as a Source Data file.
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The stereotaxic trajectory of the electrode was calculated pre-
operatively based on the patient’s imaging data. Electrodes were
implanted through the ATN to ensure its maximal recording, with at
least the two most dorsal contacts inside the ATN. As a result, the
more ventral-proximal contacts pointed towards the dorsomedial
thalamic nuclei (DMTN) located below the ANT along the implan-
tation trajectory. All electrodes’ positions were checked intrao-
peratively using a 3D X-ray image using the O-ARM tool (Medtronic,
Dublin, Ireland). To improve targeting accuracy, post-operative 3D
CT-scan, was obtained and merged using ROSA software with pre-
operative CT-scan, T1 and nd Fast Gray Matter Acquisition T1
Inversion Recovery34 (FGATIR) 3 T MRI images. Patient-specific
segmentation of thalamic nuclei and electrode localization was
done with SureTune (Medtronic, Dublin, Ireland). Briefly, this tool
allowed us to fit an atlas to the patient MRI51 while the neurosurgeon
(S. Chabardes) also performed a manual segmentation to further
refine anterior thalamus targeting. As a result, the more ventral-
proximal contacts pointed towards the dorsomedial thalamic nuclei
(DMTN) located below the ANT along the implantation trajectory.
Electrode implantation was performed according to the clinical
procedures of the clinical trial “France” (NCT02076698), with tar-
geted structures preoperatively selected according strictly to clin-
ical considerations with no reference to the current study. Patients
were investigated either in the epilepsy departments of Grenoble or
Marseille. Written informed consent was obtained from all partici-
pants, and the study was approved by the ethics committee (Comité
de Protection des Personnes Sud-Est I, protocol number: 2011-
A00083-38) in accordance with the principles of the Declaration of
Helsinki.

Behavioral task
Patients performed a probabilistic instrumental learning task. No
seizures took place during the testing sessions. Patients were
provided with written instructions (reformulated orally if neces-
sary) stating that the goal was to maximize their financial payoff by
considering reward-seeking and punishment avoidance as equally
important. Patients performed short training sessions to famil-
iarize themselves with the timing of events and with response
buttons. Participants performed up to 6 sessions (see Table S1).
Each session was an independent task containing four new pairs of
cues to be learned, each pair of cues being presented 24 times for a
total of 96 trials. Cues were abstract visual stimuli taken from the
Agathodaimon alphabet. The four cue pairs were divided into two
conditions (2 pairs of reward and 2 pairs of punishment cues),
associated with different pairs of outcomes (winning 1€ versus
nothing or losing 1€ versus nothing). To win money, patients had
to learn by trial and error the cue-outcome associations and
choose the most rewarding cue in the reward condition and the
less punishing cue in the punishment condition. The reward and
punishment conditions were intermingled in a learning session
and the two cues of a pair were always presented together. Within
each pair, the two cues were associated with the two possible
outcomes with reciprocal probabilities (0.75/0.25 and 0.25/0.75).
On each trial, one pair was randomly presented, and the two cues
were displayed on the left and right of a central fixation cross, their
relative position being counterbalanced across trials. The subject
was required to choose the left or right cue by using their left or
right index to press the corresponding button on a joystick
(Logitech Dual Action). Since the position on the screen was
counterbalanced, response (left versus right) and value (good
versus bad cue) were orthogonal. The chosen cue was colored in
red for 250ms and then the outcome was displayed on the screen
after 1000ms. Visual stimuli were delivered on a 19-inch TFT
monitor with a refresh rate of 60 Hz, controlled by a PC with Pre-
sentation 16.5 (Neurobehavioral Systems, Albany, CA).

Local field potentials acquisition and processing
Intracranial signals recordings were performed at the bedside of
patients from externalized electrode leads in the two days following
electrode implantation (i.e., before the electrodes were connected to
the stimulator). LFP signals were recorded with lead extensions con-
nected to an EEG acquisition system (Micromed SD MRI, bandwidth
0.1–200Hz, sampling rate 1024 or 2048Hz). Each DBS electrode
consisted of 4 contacts with a length of 1.5mm, separated by 0.5mm
(deep brain stimulation macro-electrode 3389, Medtronic, Minnea-
polis, US). Signal processing was performed using a longitudinal
bipolar montage between the 3 adjacent pairs of contacts per elec-
trode to maximize the sensitivity to local sources of LFP. Overall, 48
bipolar channels were recorded (3 contact-pairs/electrode × 2 hemi-
spheres × 8patients) using a commercial video-EEGmonitoring system
(System Plus, Micromed).

Time-frequency analyses were performed with the FieldTrip
toolbox (v. r7276) for MATLAB (2016). The electrophysiological data
were resampled at 512Hz and segmented into epochs from 5 s before
to 5 s after the cue onset and outcome onset. A multi-tapered time-
frequency transform allowed the estimation of spectral powers (Sle-
pian tapers; lower-frequency range: 1–32Hz, 6 cycles and 3 tapers per
window; higher frequency range: 32–200Hz, fixed time-windows of
200ms, 4–31 tapers per window). This approach uses a steady number
of cycles across frequencies up to 32Hz (time window durations,
therefore, decrease as frequency increases) whereas, for frequencies
above 32Hz, the time window duration is fixed with an increasing
number of tapers to increase the precision of power estimation by
increasing smoothing at higher frequencies. Time-frequency power
was converted into dB (decimal logarithm transformation) to improve
the Gaussian distribution of the data and thereafter baselined using a
trial wise z-score transform (using the average power in a 10 s time
window centered on the event of interest), as previously described13,52.
To remove artifacts and pathological interictal epileptiform discharge,
we employed the followingprocedure for each recording site. A sliding
windowof 50mswas employedwithin each event of interest (10 s time
window centered on each event). Trials exhibiting a power that spor-
adically surpassed five times the standard deviation of the average
signal were excluded. Consequently, an average of 6.1% of trials per
patient were excluded from each epoching window. This exclusion
rate primarily stems from twopatients, whohad an average of 20.6%of
trials excluded.

Contributions of frequency bands
To assess the contribution of the different frequency bands to pre-
diction error representation, reward prediction errors (RPE) or Pun-
ishment prediction errors (PPE) were regressed separately across trials
against power P (normalized envelope) of each frequency band,
averaged over time between 0 and 2 s after outcome onset:

RPE =α+βP+ ϵ ð1Þ

with α corresponding to the intercept and ε to the error term. The
significance of the regression estimates β was assessed across
recording sites using two-sided, one-sample, Student’s t-tests.

In order to determine whether other frequency bands provided
additional information relative to LFO, the following 8 GLMs were
compared:

RPE =βLFO × PðLFOÞ+βδ ×PðδÞ+ββ ×PðβÞ+βγ× PðγÞ ð2Þ

Here,βLFO,βδ,ββ andβγ correspond to the regression estimates of
the power P in the LFO (4–12 Hz), delta (1–4Hz), beta (13–33Hz), and
gamma (50–150Hz) bands in the 0–2 s time-windowafter the outcome
onset. We compared this general linear model with eight possible
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alternative models:

RPE =βLFO × PðLFOÞ ð3Þ

RPE=βLFO × PðLFOÞ+βδ ×PðδÞ ð4Þ

RPE=βLFO × PðLFOÞ+ββ ×PðβÞ ð5Þ

RPE=βLFO × PðLFOÞ+βγ ×PðγÞ ð6Þ

RPE=βLFO × PðLFOÞ+βδ ×PðδÞ+ββ ×PðβÞ ð7Þ

RPE=βLFO × PðLFOÞ+βδ ×PðδÞ+βγ ×PðγÞ ð8Þ

RPE=βLFO × PðLFOÞ+ββ ×PðβÞ+βγ ×PðγÞ ð9Þ

RPE=βLFO × PðLFOÞ+βδ ×PðδÞ+ββ ×PðβÞ+βγ× PðγÞ ð10Þ

The model comparison was conducted using the Variational
Bayesian Analysis (VBA) toolbox53. Log-model evidence obtained in
each recording sitewas taken to agroup-level, random-effect, Bayesian
model selection (RFX-BMS) procedure54. The RFX-BMS provided an
exceedance probability (Xp) that measures the likelihood of a given
model being more frequently implemented relative to all the others
considered in the model space in the population from which samples
are drawn.

Behavioral analysis and modeling
The percentage of correct choice (i.e., selection of themost rewarding
or the less punishing cue) and reaction time (between cue onset and
choice) were used as dependent behavioral variables. Statistical com-
parisons between the correct choice rate and chance choice rate (i.e.,
0.5) were assessed using t-tests. Statistical comparisons of correct
choice rate and reaction times between reward and punishment con-
ditions were assessed using paired t-tests.

A standard Q-learning algorithm (QL) was used to model choice
behavior. For each pair of cues, A/B, themodel estimates the expected
value of choosing A (Qa) or B (Qb), according to previous choices and
outcomes. The initially expected values of all cues were set at 0, which
corresponded to the average of all possible outcomevalues. After each
trial (t), the expected value of the chosen stimuli (say A) was updated
according to the rule:

Qat+ 1 =Qat +α*δt ð11Þ

The outcome prediction error, δ(t), is the difference between
obtained and expected outcome values:

δt = Rt +Qat ð12Þ

with R(t) the reinforcement value among −1€, 0€, and +1€. Using the
expected values associated with the two possible cues, the probability
(or likelihood) of each choice was estimated using the SoftMax rule:

Pat = e
Qat=β=ðeQat=β + eQbt=βÞ ð13Þ

The constant parameters α and β are the learning rate and choice
temperature, respectively. Expected values, outcomes, and prediction
errors for each patient were then z-scored across trials and used as
statistical regressors for electrophysiological data analysis.

Regression between electrophysiological signals with reward
and punishment learning behaviors
Power (Y) at each time-frequency point was regressed using a general
linearmodel against both outcomevalue (R) and expected value (Q) to
obtain a regression estimate for each time-frequency point and each
contact pair:

Y =α+βR*R +βQ*Q ð14Þ

with βR and βQ corresponding to the R and Q regression estimates,
respectively.

The significance of regression estimates across thalamic sites was
assessed at each time-frequency point using a one-sample two-tailed t-
test against zero across all bipolar channels. Statistical significancewas
assessed through permutation tests as previously. First, the pairing
between neural responses and predictors across trials was shuffled
randomly 300 times for each recording site. Second, we performed
60,000 random combinations of all sites, drawn from the 300 shuffles
calculated previously for each site. Themaximal cluster-level statistics
(the maximal sum of t-values over contiguous time points exceeding a
significance thresholdof0.05)were extracted for each combination to
compute a “null” distribution of effect size. The p-value of each cluster
in the original (non-shuffled) data was finally obtained by computing
the proportion of clusters with higher statistics in the null distribution,
and reported as the corrected p value noted (pc).

Low-frequency (4–12 Hz) time series were computed, and the
same general linear model approach was used for each time point of
the time series separately in the reward and punishment conditions.
The significance of regressors was assessed using a cluster correction
approach comparable to the one described above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavior and neural data generated in this study have been
deposited in the Figshare database [https://doi.org/10.6084/m9.
figshare.23659896]. Source data are provided with this paper.

Code availability
The custom codes used to generate the figures and statistics are
available from the lead contact (JB) upon request.
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