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Windows of opportunity for predicting
seasonal climate extremeshighlightedby the
Pakistan floods of 2022

Nick Dunstone 1 , Doug M. Smith 1, Steven C. Hardiman1, Paul Davies1,
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Skilful predictions of near-term climate extremes are key to a resilient society.
However, standardmethods of analysing seasonal forecasts are not optimised
to identify the rarer and most impactful extremes. For example, standard
tercile probability maps, used in real-time regional climate outlooks, failed to
convey the extreme magnitude of summer 2022 Pakistan rainfall that was, in
fact, widely predicted by seasonal forecasts. Here we argue that, in this case, a
strong summer La Niña provided a window of opportunity to issue a much
more confident forecast for extreme rainfall than average skill estimateswould
suggest. We explore ways of building forecast confidence via a physical
understanding of dynamical mechanisms, perturbation experiments to isolate
extreme drivers, and simple empirical relationships. We highlight the need for
moredetailed routinemonitoringof forecasts, with improved tools, to identify
regional climate extremes and hence utilise windows of opportunity to issue
trustworthy and actionable early warnings.

Seasonal climate prediction using dynamical global climatemodels is a
well-established operational activity1 coordinated by the World
Meteorological Organisation (WMO). There are 14 global producing
centres around the world (https://www.wmolc.org/) providing global
seasonal forecasts every month. These forecasts are used by national
meteorological and hydrological services and by WMO-organised
Regional Climate Outlook Forums (RCOFs) to provide advanced
warning of impending regional climate variability. However, seasonal
climate variability is strongly flow-dependent, with more extreme
regional climate anomalies occurring when the large-scale atmo-
spheric circulation is perturbed. Seasonal prediction relies primarily
on slowly evolving coupled ocean-atmosphere modes of variability,
particularly the El Niño Southern Oscillation (ENSO), which can be
skilfully predicted many months ahead2. The warm (El Niño) and cold
(La Niña) phases of ENSO, which peak in amplitude during boreal
winter, shift the location of regions of strong atmospheric convection
and hence latent heating in the tropical Pacific, resulting in global
changes in atmospheric circulation3 and associated surface climate
extremes4. Other coupled ocean-atmosphere modes, such as those in

the Indian and Atlantic oceans, can also drive remote teleconnections
to regional climate variability in a similar manner5.

ENSO events do not occur every year but typically every 2–7
years, so it is challenging to evaluate the conditional skill of sea-
sonal predictions given the typical 20- to 30-year period of retro-
spective forecasts (hindcasts) used for assessment. Commonly
used estimates of average forecast skill and reliability, calculated
over all years, may therefore be overly pessimistic for years with
active climate drivers such as ENSO events6,7. The standard way of
communicating seasonal forecast information is via probabilities
of different quantiles with respect to the climatological distribu-
tion. Terciles are the most common quantiles chosen. Whilst these
terciles provide a level of discrimination that is typically well
matched to the levels of average seasonal forecast skill, there exist
‘windows of opportunity’ where more confident warnings of more
extreme climate events can be provided. Here we explore the
extreme seasonal rainfall that led to widespread flooding over
Pakistan in the summer 2022 monsoon season as an example of
such a case.
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Pakistan sits on the western edge of the South Asian monsoon
system and typically has an arid summer climate. However, Paki-
stan can also be subject to extreme rainfall, as was the case in
summers 20108,9 and 2022. Many studies have linked the 2010
extreme rainfall and circulation anomalies to a strong summer La
Niña in the tropical Pacific and the resulting westward shifted West
Pacific Subtropical High10 as well as the wider ENSO teleconnection
to south Asia, which is well represented in seasonal forecast
systems11. In addition, an extratropical influence via upper tropo-
sphere circulation anomalies was also identified and linked the
Pakistan floods to the summer 2010 Russian heatwave12–14. The
2010 event has been described as a ‘freak incident’15. Yet only 12
years later, during the strongest summer La Niña since 2010,
another even more devastating Pakistan flooding event occurred,
causing a major humanitarian disaster: current estimates suggest
over 1730 people died, 2.1 million were left homeless and with
flood damages and economic losses estimated to be US$30 billion

(https://www.worldbank.org/en/news/press-release/2022/10/28/
pakistan-flood-damages-and-economic-losses-over-usd-30-
billion-and-reconstruction-needs-over-usd-16-billion-new-
assessme). Here we focus on the extent to which seasonal forecasts
were able to predict this extreme rainfall and lessons we can learn
in order to issue more confident warnings of climate extremes in
future.

Results
Observed and real-time operational forecasts of Pakistan sum-
mer 2022 rainfall
The 2022 Pakistan floods were unprecedented. The observed total
rainfall during the summer (June–August, JJA) monsoon season was
415mm which is 260% of, and 4.9 standard deviations (σ) above
(Fig. 1b), the climatological mean rainfall. This was considerably more
extreme than the impactful wet summer of 2010, which was a 2.4σ
extreme event.

Fig. 1 | Extreme Pakistan rainfall in summer 2022. a Standardised rainfall
anomalymaps for summer (June–August) 2022 for GPCP observations and the DP3
ensemble mean forecast. b Timeseries of observed and predicted standardised
Pakistan summer rainfall anomalies with correlation coefficients shown both
including and excluding summer 2022. Large crosses show 2022 values, and the
small blue crosses in 2021 and 2022 show estimates of the impact due to La Niña
from perturbation experiments, as discussed in the text. c Timeseries of

probabilities of exceeding the upper threshold of different quantiles (upper tercile,
quintile and decile) relative to the 1990–2020 DP3 climatology (horizontal lines).
Star symbols show the correspondingmulti-systemmean quantile probabilities for
summer 2022 Pakistan rainfall from the eight operational seasonal prediction
systems in the C3S database (see “Methods”) relative to their common 1993–2016
climatological period.

Article https://doi.org/10.1038/s41467-023-42377-1

Nature Communications |         (2023) 14:6544 2

https://www.worldbank.org/en/news/press-release/2022/10/28/pakistan-flood-damages-and-economic-losses-over-usd-30-billion-and-reconstruction-needs-over-usd-16-billion-new-assessme
https://www.worldbank.org/en/news/press-release/2022/10/28/pakistan-flood-damages-and-economic-losses-over-usd-30-billion-and-reconstruction-needs-over-usd-16-billion-new-assessme
https://www.worldbank.org/en/news/press-release/2022/10/28/pakistan-flood-damages-and-economic-losses-over-usd-30-billion-and-reconstruction-needs-over-usd-16-billion-new-assessme
https://www.worldbank.org/en/news/press-release/2022/10/28/pakistan-flood-damages-and-economic-losses-over-usd-30-billion-and-reconstruction-needs-over-usd-16-billion-new-assessme


Seasonal forecast outlooks for Pakistan and thewider South Asian
region did provide some warning of enhanced risk of rainfall ahead of
summer 2022. The Pakistan Meteorological Department issued an
outlook for summer 2022 (dated May 31, 2022, https://www.pmd.gov.
pk/en/assets/seasonal-outlooks/Seasonal-June-July-August-2022.pdf)
in which it forecast “a tendency for above-normal precipitation is pre-
dicted over most parts of the country” and that “flash flooding in hill
torrents of Punjab, AJK [Azad Jammu and Kashmir] and KP [Khyber-
Pakhtunkhwa], also urban flooding in major plain areas of Punjab, Sind
and KP cannot be ruled out.”. Similarly, the South Asian Regional Cli-
mate Outlook Forum (SARCOF, https://meteorology.gov.mv/
downloads/89/view), in their pre-summer meeting (held during April
26–28, 2022), showed regional rainfall tercile probability maps with a
>60% probability in the upper tercile leading them to forecast that:
“Normal to above-normal rainfall is most likely during 2022 southwest
monsoon season over most parts of South Asia”. The WMO Global
Seasonal Climate Update (https://www.wmolc.org/gscuBoard/list),
issued on May 26, 2022, stated that “Parts of the Indian subcontinent
and the southern Arabian Peninsula do have enhanced probabilities for
above-normal rainfall but model consistency is only moderate.”.

The focus on tercile probabilities essentially gave a two in three
chance for Pakistan summer rainfall to lie in the upper third of clima-
tological Pakistan rainfall distribution. Given that the upper tercile is
expected to occur on average one year in three, this forecast for a
doubling of upper tercile probability may not have appeared overly
concerning to many users and indeed little preparatory action was
taken.We show below that signals for extreme rainfall, well beyond the
upper tercile, were widely present in seasonal prediction systems in
summer 2022 and suggest approaches that may enable more con-
fident warnings to be issued in future.

Looking beyond tercile probabilities
In this study, we focus on predictions made by the Met Office DePre-
Sys3 near-term prediction system16 (hereafter referred to as ‘DP3’),
initialised on 1stMay, which has a 1-month lead-time aheadof summer.
We use this system as it has a long 43-year (1979–2021) hindcast per-
iod, a large 40-member ensemble size and has been used previously
for perturbation experiments to probe forecast signals and drivers17,18,
but similar forecasts were made by other systems (discussed below).
Ensemble mean summer 2022 rainfall anomalies, in units of standard
deviations of the ensemble mean hindcast variability (Fig. 1a), show
extreme rainfall (+2-3σ) anomalies widely over Pakistan. The area-
averaged ensemble mean rainfall over Pakistan (Fig. 1b) shows a +3.5σ
anomaly for summer 2022, which, in agreement with the observed
timeseries, is an unprecedented extreme over the last 44 years.

The DP3 upper tercile probability forecast for summer 2022
Pakistan rainfall of 67.5% (corresponding to twice the 33% climatolo-
gical probability) is in good agreement with the operational multi-
model seasonal forecasts discussed above (and shown in Fig. 1c as star
symbols). However, to fully assess how extreme this forecast is, we
need to probe further into the forecast probability distribution. An
obvious question, one that a user may ask when presented with the
raised summer 2022upper tercile probability, is howdoes this forecast
compare to previous years? The summer 2022 Pakistan rainfall upper
tercile prediction of 67.5% is the highest probability over all 44 years
considered (Fig. 1c, blue line)—eclipsing even thewet summers of 2010
and 2020. This additional comparison with previous years, not readily
available from the real-time seasonal outlooks discussed above, is
another clear indication that the summer 2022 forecast is unusually
extreme.

We further examine evenmore extremequantiles. The probability
of the upper quintile Pakistan rainfall is 52.5% (Fig. 1c, green line),
which is 2.6 times the 20% climatological probability, whereas the
upper tercile probabilitywasdoubled. An evenmore extremequantile,
seldomused in seasonal forecasting, is that of deciles wherewefind an

exceptional (35%) probability of the upper decile (Fig. 1c, red line),
which is 3.5 times the 10% climatological probability. Note also that the
2022 forecast becomes more extreme relative to other years as higher
quantiles are considered, e.g., the upper decile probability was only
two times higher than climatology in 2010 and 2020. We note that
these raised probabilities for the higher quantiles in 2022 are con-
sistent with the >3σ anomaly in the DP3 ensemble mean (Fig. 1b).

Significantly raised probabilities for extreme quantile Pakistan
rainfall in summer 2022 were widespread among the operational sea-
sonal prediction systems and DP3 is very representative of the eight
systems in the Copernicus Climate Change Service (C3S) archive (star
symbols in Fig. 1c, see “Methods”). Remarkably, four of the nine sys-
tems considered here predicted summer 2022 to have an unprece-
dented high probability for upper decile Pakistan rainfall, with three of
these systems having 50–80% of their ensemble members occupying
the upper decile, which corresponds to five or more times the clima-
tological values.

In summary, these results present a much more extreme view of
Pakistan rainfall forecasts in summer 2022 compared to the tercile
probabilities presented in the real-time forecast outlooks discussed
above. Such extreme forecasts are potentially much more useful for
motivating actions to reduce the impacts, but the key question is how
much confidence do we have in them?

Using physical understanding to build forecast confidence
The most common way of assessing forecast confidence is to assess
the average skill over the hindcast period. The correlation between
observed and forecast ensemble mean Pakistan rainfall is significant
and reasonably high (r = 0.50, p < 0.001) over the 44-year hindcast
(Fig. 1b). However, when 2022 is excluded to represent the situation
prior to this summer’s extreme, then the correlation is much lower
(r = 0.27, p = 0.08). We note similar levels of skill are seen in the
hindcasts of the eight C3S seasonal forecast systems (r = −0.02 to
0.38). Importantly, this average skill could severely underestimate the
skill when strong climate drivers such as ENSO, or the Indian Ocean
Dipole (IOD), are active and perturb the large-scale atmospheric
dynamics in a predictable way. For example, the forecast ensemble
mean correctly predicted increased rainfall in both 2010 and 2020
(Fig. 1b), twoof thewettest Pakistan summers prior to 2022, which also
coincided with strong summer La Niña events. If we had a sufficiently
long sample of observed and forecast events, then we could quanti-
tatively assess this state-dependent skill—i.e., how skilful Pakistan
rainfall seasonal forecasts are when certain climate drivers (such as
ENSO) are active. Unfortunately, the typical 20- to 30-year length of
seasonal hindcasts gives too few cases to allow state-dependent skill to
be robustly assessed. This assessment becomes even harder if there
are two or more drivers that can combine to drive regional climate
extremes. We suggest a possible way forward is to build a collection of
evidence to assess forecast confidence based on a physical under-
standing of the dynamical mechanisms.

The forecast low-level (850 hPa) circulation anomalies in summer
2022 are very similar (pattern correlation, r = 0.7) to that of the ERA519

observational reanalysis (Fig. 2a, b). Anomalous easterly flow is seen
extending from the Bay of Bengal across northern India towards
Pakistan, similar to that seen in summer 201010, creating anomalous
convergence of moisture over Pakistan. In addition, the anomalous
easterlies promote the northwest track of monsoon depressions (low-
pressure systems) from the Bay of Bengal into the monsoon trough
and towards northern Pakistan20, as was observed in both summer
2010 and 2022. The anomalous easterlies stretch further east to the
Philippines, with an anomalous south-westerly flow also seen over
China. Together these anomalies are indicative of an intensified and
westward-shifted West Pacific Subtropical High (WNPSH). Further-
more, anomalous south-westerly flow is seen over the Arabian Sea,
corresponding to an increase in the strength of the Somali jet (or ‘low-
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level’ jet), which increases the advection of moisture towards north-
west India and Pakistan21.

Crucially, all of the key low-level circulation features identified in
2022 are also seen in the historical teleconnection between Pakistan
rainfall and circulation in observations and DP3 predictions (Fig. 2d, e)
andhavebeen identifiedpreviously, showing that the forecast for 2022
was consistent with known drivers. Furthermore, they exhibit sig-
nificant average skill over the hindcast period (Fig. 2f).

We similarly analyse the upper-level (250 hPa) circulation
anomalies (Fig. 3). The observed and predicted summer 2022
anomalies both show a poleward shift of the subtropical Asian jet,
giving anomalous easterlies to the south and westerlies to the north.
The observed anomalous easterlies were significantly stronger than
those predicted by DP3 and reversed the climatological westerly flow
over the southern Tibetan Plateau. This reversal in upper-level winds
has been linked to anomalous ascent and hence extreme rainfall over
Pakistan in summer 202222. Again, the circulation anomalies in 2022
comparewell to the historical teleconnection between Pakistan rainfall
and upper-level circulation (Fig. 3d, e). The DP3 predictions of the
zonal wind anomalies are also skilfully predicted (Fig. 3f), particularly
on the southern flank of the subtropical jet.

To better understand the connection between the upper and low-
level circulation anomalies, we assess the latitude-height cross-section
over Pakistan (Fig. 4). The observed and predicted 2022 anomalies are
again very similar, with a barotropic easterly flow connecting the low
and upper levels and anomalous ascent (arrows) over Pakistan. The
poleward shift of the subtropical jet is also clearly visible in the upper
troposphere. The 2022 anomalies are very similar to the historical
teleconnection of the field with Pakistan rainfall in both observations
and DP3 prediction and zonal winds are skilfully predicted in the key
regions (Fig. 4d–f).

Overall, the excellent agreement between the predicted 2022
atmospheric circulation anomalies and the historical teleconnections

and skill maps over the Indo-Pacific region shows that the forecast was
consistent with known drivers and helps to build confidence in it. We
further note that this evidence is not particularly sensitive to the inclu-
sion of 2022 (Supplementary Fig. S1). However, teleconnection patterns
do not necessarily establish causality, and we assess additional experi-
ments to build further confidence in the drivers in the next section.

Perturbation experiments to further assess mechanisms
As mentioned earlier, 2022 saw the strongest summer La Niña since
2010 in both the observations and DP3 ensemble mean predictions.
Forecasts of summer ENSO variability are highly skilful (Niño3.4 region
skill: r = 0.86, p<0.001), giving us significant confidence in the La Niña
prediction. Given the existing literature connecting La Niña with Paki-
stan flooding10 and the evidence above (Figs. 2–4), further perturbation
experiments arewarranted to verify its role in driving the 2022 forecast.
Similar perturbation experiments have been performed in previous
retrospective case studies to isolate and understand the impact of dif-
ferent drivers, for example, the influence of a sudden stratospheric
warming on the European winter of 2005/623, the strong North Atlantic
sea surface temperature (SST) tripole effect on European summer
201817 and the influence of the extreme IOD event on European winter
2019/2018. We suggest that such perturbation experiments to establish
physical drivers and mechanisms of responses to large-scale SST
anomalies could, in theory, be performed in real time in order to be able
to issue more confident warnings of impending extreme events.

To assess the influence of the summer 2022 LaNiña, wenudge the
ocean temperature and salinity in the tropical Pacific towards a recent
near-neutral ENSO year (taken as 2021 here). Nudging is performed to
create initial conditions onMay 1, 2022, that do not contain the strong
signal of summer 2022 La Niña, while the rest of the ocean, sea-ice and
the atmospheric initialisation remain unchanged from the original
forecast (see “Methods” for further details).We then run a 40-member
ensemble parallel to the original forecast and assess the impact of La

Fig. 2 | Low-level circulation associated with Pakistan summer rainfall.
a, b Maps of 850 hPa wind anomalies in summer 2022 for ERA5 (a) and DP3
ensemble mean forecast (b) with zonal winds (shading) and wind vectors (arrows)
and Pakistan outlined inmagenta. cAs (a, b) but for an estimate of the impact of La
Niña conditions from perturbation experiments (as discussed in the text).
d, e Historical (1979–2022) correlation between Pakistan summer rainfall

timeseries and the field of 850 hPa zonalwinds (shading) andwind vectors (arrows)
in ERA5 (d) and the DP3 ensemble mean (e). f Gridpoint correlation skill for DP3
ensemblemean in predicting ERA5 observed 850 hPa zonal winds. Stippling shows
correlations significantly different from zero at the 95% confidence level according
to a two-sided Student’s t-test.

Article https://doi.org/10.1038/s41467-023-42377-1

Nature Communications |         (2023) 14:6544 4



Niña as the original forecast minus this experiment. It is possible that
any perturbation may simply destroy the predictable signals such that
the difference does not represent the influence of La Niña. To address
this, we repeated the experiment in reverse by nudging the 2022 tro-
pical Pacific initial conditions into May 1, 2021, initial state and so
diagnosed the influence of LaNiña again as the differencebetween this
experiment and the original 2021 forecast.

The estimated impact of La Niña on DP3 Pakistan rainfall from
both perturbation experiments confirms its strong influence on the
2022 forecast (shown by the two small blue ‘+’ signs in Fig. 1b). The
impacts of La Niña on the 2022 large-scale atmospheric circulation
(Figs. 2–4panel c) are also consistentwith the actual forecast (Figs. 2–4
panel b), and historical teleconnections21 (Figs. 2–4 panels d and e).
This attribution of the forecast signals to the predicted summer La
Niña further strengthens our physical understanding. If these experi-
ments had been run in real-time, ahead of the summer, they would
have increased our confidence that the unusually strong forecast
summer La Niña was a significant driver of the predicted extreme
Pakistan rainfall signals.

Using a simple empirical model to gain understanding
Simple empirical models (e.g., using multiple linear regression) can be
useful tools to assess the impact of multiple drivers on year-to-year
variability. Above, we identified both the strength of theWNPSH and a
meridional shift in the subtropical Asian jet as two large-scale circu-
lations driving Pakistan summer seasonal rainfall. We create a WNPSH
index24 and a subtropical jet meridional shift (STJshift) index using the
boxes shown in Fig. 3 (see “Methods”). As expected, these two indices
are both significantly correlated with observed Pakistan rainfall

(Fig. 5c, r = 0.34 and r = 0.51 for theWNPSH and STJshift, respectively).
They are largely independent (cross-correlation = 0.15) and provide a
multiple linear regression model with high correlation (r = 0.67). We
note that the correlation drops to r = 0.53 (p < 0.001) when 2022 is
excluded but remains highly significant. Furthermore, the influence of
the two drivers becomes more similar (r = 0.31 and r = 0.34 for the
WNPSH and STJshift, respectively) when 2022 is excluded. Although
simple, this empirical model does help us to understand some of the
past variability of Pakistan rainfall. For example, whenWNPSH and the
STJshift acted in opposite directions, such as in the strong La Niña of
summer 1998, extreme rainfall did not occur.

The WNPSH is highly predictable (Fig. 5a, r = 0.72, p <0.001) over
the hindcast period, consistent with previous studies examining the
WNPSH as a driver of summer Chinese climate25. The skill in predicting
the STJshift index is weaker but still highly significant (Fig. 5b, r = 0.48,
p =0.001). We note that if we exclude 2022, we find no drop in skill for
the WNPSH and a relatively small drop for the STJshift index
(r = 0.41, p = 0.007).

Using themultiple linear regressionmodel with the DP3 ensemble
mean predicted 2022 standardised anomalies for the WNPSH and
STJshift indices gives a greater than two standard deviation forecast
for Pakistan rainfall in 2022 (Fig. 5c magenta cross). Note that both
indices are in phase in summer 2022, both acting to increase Pakistan
rainfall, thereby providing further evidence to support the extreme
prediction from the dynamical model.

Discussion
We have shown that strong signals for extreme rainfall that led to the
summer 2022 Pakistan floods were present in current seasonal

Fig. 3 | Upper-level circulation associated with Pakistan summer rainfall.
a, b Maps of 250 hPa wind anomalies in summer 2022 for ERA5 (a) and DP3
ensemble mean (b) with zonal winds (shading) and wind vectors (arrows) and
Pakistan outlined inmagenta. cAs (a,b) but for an estimate of the impact of LaNiña
conditions from perturbation experiments (as discussed in the text).d, eHistorical
(1979–2022) correlation between Pakistan summer rainfall timeseries and the field

of 250 hPa circulation in ERA5 (d) and the DP3 ensemble mean (e). f Gridpoint
correlation skill for DP3 ensemblemean in predicting ERA5 observed 250hPa zonal
winds, stippling shows correlations significantly different from zero at the 95%
confidence level according to a two-sided Student’s t-test. Magenta boxes on all
panels show the boxes used to define the subtropical jet meridional shift index
(STJshift, see “Methods”).
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prediction systems. Whilst the real-time operational seasonal outlooks
provided good advice for an enhanced risk of above-normal (or upper
tercile) Pakistan rainfall, they did not explicitly signal a high risk of
extreme rainfall. Had a fuller examination of the forecast distribution
been considered, for example, using higher quantiles, then the greatly
increased risk of extreme rainfall, with multiple systems showing
unprecedented upper decile probabilities, could have been identified.
We therefore suggest that near-term climate forecasts should be rou-
tinely monitored for extreme signals and discuss ways to build con-
fidence in such forecasts.

Climate extremes, by definition, are rare events, and so
assessing skill is very challenging from a sample size of 20–30
cases (years) typically provided by seasonal hindcasts. This is
particularly true when an extreme arises due to the combination of
drivers acting together. However, by examining the physical dri-
vers of the Pakistan rainfall, we suggest that summer 2022 was a
window of opportunity for increased forecast confidence. There
was a particularly strong summer La Niña, which our perturbation

experiments show promoted a combination of a strong WNPSH
and a poleward shifted subtropical Asian jet that provided the
large-scale dynamical conditions leading to the extreme Pakistan
rainfall. However, whilst La Niña may have been necessary to drive
these circulation features in 2022, it is not likely a sufficient con-
dition alone, and other perturbation experiments could be per-
formed to understand the influence of other drivers such as those
from the North Atlantic region26 and the extent to which they were
simulated. The regional large-scale circulation drivers are con-
sistent with historical Pakistan rainfall variability and are skilfully
predicted by DP3, and therefore can be used to provide alternate
lines of evidence to build confidence in the extreme forecasts.

Recent work has shown other windows of opportunity when
predictable factors (e.g., the IOD and North Atlantic SSTs) drive
changes in atmospheric circulation17,18,27. Here and in these earlier
studies, perturbation experiments can be used to attribute regional
climate extremes to remote drivers to understand the physical
mechanisms driving predictable climate variability. We suggest that

Fig. 4 | Cross-sections of circulation associated with Pakistan summer rainfall.
a, b Latitude-height cross-sections over Pakistan (longitudes 60-75E) of summer
2022 wind anomalies for ERA5 (a) and DP3 ensemble mean (b) with zonal winds
(shading) and wind vectors (arrows). c As (a, b) but for an estimate of the impact of
La Niña conditions from perturbation experiments (as discussed in the text).
d, e Historical (1979–2022) correlation between Pakistan summer rainfall time-
series and circulation in ERA5 (d) and the DP3 ensemble mean (e). f Gridpoint

correlation skill for DP3 ensemble mean in predicting ERA5 zonal winds, stippling
shows correlations significantly different from zero at the 95% confidence level
according to a two-sided Student’s t-test. Contours in all panels show the clima-
tological zonalwinds, with solid lines showing positive (westerly) winds anddashed
lines showing negative (easterly winds). Dashed vertical lines in all panels show the
approximate latitudinal extent of Pakistan.
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such experiments could even be performed in real-time in order to
build physical confidence in forecast extreme signals.

It is, of course, easy to be wise after the event with the benefit of
hindsight, but it is important to learn lessons so that windows of
opportunity can be fully utilised to issue more confident early warn-
ings in future. Such a task is potentially very labour-intensive but could
be helped by new tools that routinely identify extreme forecast signals
and also provide a preliminary analysis of physical drivers to build
confidence.

Here we present an example of such a tool, where the first step
is to identify extreme forecast signals by plotting global maps of
standardised ensemble mean forecast anomalies aggregated over
climate regions (as shown in Fig. 6 using the DP3 summer 2022
forecast). For this example, we use previously defined regions which
divide the global land into 237 regions of approximately equal area
(0.5 Mm2) which were specifically designed for the analysis of cli-
mate extremes28 (see “Methods”). Each region is approximately the
size of a medium-to-large country, for example, Pakistan is itself a
single region. An advantage of these regions being based on poli-
tical/economic boundaries is that they naturally align with geo-
graphical domains of decision-making, e.g., for disaster
preparedness. The standardised forecast rainfall anomalies for
summer 2022 show that Pakistan is one of only four regions with a >

±3σ signal, whilst a further 31 regions have >±2σ rainfall anomalies
(Fig. 6). The number of extreme regions identified is much larger
when predictable drivers such as ENSO are active, as in summer
2022. Whereas many summers have very few regions with sig-
nificant predicted extremes—for example, in 2013, only one region
had a >±2σ rainfall anomaly (Supplementary Fig. S2).

We propose an interactive version of Fig. 6 where each region can
be clicked to provide further automated analysis for that region. This
key second analysis step is aimed at probing the full forecast prob-
ability distribution and driving physical mechanisms. Data could
include timeseries such as that in Fig. 1b, c, allowing the user to view
forecast signals from a historical perspective, view changes in quantile
probabilities, assess average hindcast skill and whether previously
observed extreme years were well predicted. Other information that
could be displayed includes historical correlation maps between local
rainfall and the large-scale atmospheric circulation (as shown in Figs. 2
and3, panels d–f) and relationships to knowndrivers such asENSO, the
IOD and SST patterns. This could then be augmented by a third ana-
lysis step of perturbation experiments, when appropriate, to attribute
forecast signals. Such a tool would therefore help with the efficient
identification of forecast climate extreme signals, including the filter-
ing of false alarms by exploring the physical drivers and so increase
forecast confidence.

Fig. 5 | Simple empirical model for understanding forecast signals.
a Standardised timeseries of the west north Pacific subtropical high strength
(WNPSH) in ERA5 (black) and DP3 forecast ensemble mean (red) with individual
ensemblemembers shownby pink circles. bAs (a), but for the Asian subtropical jet
meridional shift (STJshift) index. c Standardised timeseries of observed Pakistan

summer rainfall (black), west north Pacific subtropical high (red), STJshift (blue)
and the resulting multiple linear regression timeseries (green) using these two
indices to predict Pakistan rainfall. The magenta cross in 2022 indicates the value
obtained from using the 2022 ensemble mean predicted values of the two indices
as input to the multiple linear regression model.

Article https://doi.org/10.1038/s41467-023-42377-1

Nature Communications |         (2023) 14:6544 7



The true value of such a tool would, of course, need to be tested
and verified in real-time forecasts. However, we assess the potential
utility of the tool’s first step by evaluating the observed quantile out-
comes (usingGPCCdataset29 over the 1979–2022period)whenextreme
(>±2σ) wet or dry summers are identified in the DP3 hindcast ensemble
mean (see “Methods”). As an example, we apply a modest minimum
average correlation skill threshold of r > 0.25 to filter for regions that
show some evidence (90% confidence) of significant rainfall skill. This
gives 77 regions (Supplementary Fig. S3), includingPakistan,with a total
of 134 extreme rainfall events predicted over the 44 years. The resulting
observed frequency of correct outer quantile outcomes (Fig. 7a) is
many times greater than their climatological probabilities. The most
frequent outcome is the outer quintile which happens in over half of
events. In contrast, the probability of an incorrect outer quantile out-
come is much reduced. The ratio of correct outcomes to climatological
frequency increases as we examine more extreme quantiles, with an
outer decile extreme occurring in more than a third of events and the
outer 5th percentile occurring in more than a fifth. As the average
correlation skill threshold is increased, the percentage of successful
outer quantile outcomes also increases (Fig. 7b), though fewer regions/
extremes are forecast (Fig. 7b, magenta line).

In summer 2022 35 regions (Fig. 6) have a predicted >±2σ rainfall
anomaly, of which 16 show evidence for significant skill in the hindcast
period (r > 0.25, see Supplementary Fig. S3). Examining the observed
GPCC summer 2022 outcomes, we find that 12 of the 16 (75%) regions
experienced a correct sign outer quintile rainfall event, of which eight
(50%of the 16)wereouter decile and four (25%of the 16) were outer 5%
rainfall extremes (including Pakistan). The frequency of these extreme
observedquantile outcomes is considerably higher thanclimatological
expectation, in agreement with the analysis in Fig. 7, and the four of 16
that did not experience an observed correct outer quintile event were
near-neutral outcomes (fell into the middle three quintiles).

Our results demonstrate the potential utility of this tool and
highlight that windows of opportunity exist for skilful predictions of

some boreal summer rainfall extremes, including the extreme Pakistan
rainfall in summer 2022. We note that the second step of the tool, the
interactive assessment of the hindcast performance and physical
mechanisms would, via expert judgement, help to further filter false
alarms and increase forecast confidence.

Here we have focussed on ways to extract the maximum infor-
mation from our seasonal predictions, particularly for climate
extremes. However, even the most skilful seasonal forecasts will only
help society if they are acted upon by those that receive and use them.
Whilst beyond the scope of this study, we highlight the increasingly
important role of social science in developing an understanding of
how best to communicate seasonal forecast information and build
user confidence. We acknowledge that forecast ‘false alarms’ are a key
concern andmust be carefully assessed in developing and issuing early
warnings of climate extremes. Nevertheless, given the potential
demonstrated here and in other studies, we strongly recommend
further using windows of opportunity to build confidence in seasonal
forecasts of climate extremes to issue trustworthy and actionable early
warnings.

Methods
Data and indices
Observed rainfall data are taken from the Global Precipitation Clima-
tology Project (GPCP) dataset30, allowing the examination of rainfall
over the wider Pakistan region, including over the ocean. In the eva-
luation of the extremes tool over land regions (Fig. 7), the Global
Precipitation Climatology Centre (GPCC) dataset29 is used. Observed
winds and mean sea level pressure (MSLP) are taken from the ERA5
reanalysis19.

The primary prediction system used here is the Met Office
DePreSys3 system (DP316) based on the HadGEM3-GC2 coupled cli-
mate model31. The atmosphere has a horizontal resolution of
approximately 60 km (and 85 vertical levels) and an ocean resolution
of 0.25° (75 vertical levels). A full-field data assimilating simulation is

Fig. 6 | An interactive tool to identify climate extremes. DP3 ensemble mean
standardised predicted rainfall anomalies for summer 2022 from 1stMay initialised
predictions are shown (see “Methods”). Global land is split into 237 regions28 of
approximately equal area (0.5 Mm2) with regional averages shown and green lines
dividing regions. The 31 regions with a >±2σ anomaly are highlighted by a thicker
cyan border and the four regions with a >±3σ are highlighted with a magenta

border. On an interactive web version of thismap, the user can ‘click’ on any region
to open a dedicated webpage showing further information aimed at assessing
forecast confidence (see text), and a mask layer can be applied to only show those
regions with statistically significant skill over the hindcast period (Supplementary
Fig. S3).
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performed where the climate model is nudged in the ocean, atmo-
sphere and sea-ice components towards observations. In the ocean,
temperature and salinity are nudged towards a monthly analysis cre-
ated using global covariances32 with a 10-day relaxation timescale. In
the atmosphere, temperature and zonal and meridional winds are
nudged towards the ERA-Interim33/ERA519 reanalysis with a 6-h
relaxation timescale. Sea ice concentration is nudged towards
monthly values from HadISST34 with a 1-day relaxation timescale.
Hindcasts are started from the 1st May initial conditions of this
assimilation simulation and a 40-member ensemble is created using
randomly generated seeds to a stochastic physics scheme. The
assimilation run, and hindcasts, have full knowledge of external for-
cing data sets (for example, greenhouse gases, aerosols, ozone, solar
and volcanic forcings) as per the CMIP5 protocol35 and follow the
representative concentration pathway (RCP4.5) after 2005.

Eight additional operational seasonal prediction systems are
assessed for their Pakistan rainfall forecast with data obtained via the
Copernicus Climate Change Service (C3S) website. The 1st May 2022
forecast and corresponding hindcasts (1993–2016) are used from the
ECMWF SEAS5 system36, Météo-France System 837, the Centro Euro-
Mediterraneo sui Cambiamenti Climatici SPS3.538, the Deutscher
Wetterdienst GCFS2.139, the National Centers for Environmental Pre-
diction CFS version 240, the Japan Meteorological Agency CPS341 and
the UK Met Office Global Seasonal Forecast system version 642.

The strength of the WNPSH is calculated by averaging MSLP over
the region [115-150E, 15-25N]24. We create a subtropical jet meridional
shift (STJshift) index by taking the difference in 250 hPa zonal wind
averaged over the purple boxes shown in Fig. 3. The ENSO Nino3.4
index is defined over the region [170-120W, 5S-5N].

La Niña perturbation experiments
To assess the impact of the summer 2022 La Niña on Pakistan rainfall
and associated dynamical circulation anomalies, we performed per-
turbation experiments usingDP3.Theseuseda similarmethodology to
previous studies examining the impact of the North Atlantic SST tri-
pole in summer 201817 and the IOD in winter 2019/2018. DP316 creates
initial conditions for forecasts by nudging the climate model towards

an optimally interpolated ocean analysis43 with a 10-day relaxation
timescale. We modify the ocean analysis in the tropical Pacific, over a
region 20S-20Nwith a 5° latitude ramp, by swapping theocean analysis
in this region with that of 2021 (a neutral ENSO summer) for the
months starting in February and leading up to 1st May. The rest of the
ocean, sea-ice and the atmospheric initialisation remained unchanged
from the original forecast. After the initial conditions were created on
1stMay,we rana 40-member ensembleparallel to theoriginal forecast.
The impact of La Niña is assessed as the original forecast minus the
experiment (i.e., with La Niña minus without La Niña). In addition, to
assess the impact of the methodology, we performed the opposite
experiment—nudging the 2022 tropical Pacific into the 2021 initial
conditions. The impact of La Niña is then assessed as experiment
minus original. In common with previous studies using this method,
nudging only achieved approximately half of the desired signal
(change in tropical SSTs). This is because the ocean relaxation is
relatively weak (10 days), and no changes are made to the overlying
atmosphere, which is still nudged as in the original forecasts. There-
fore, to provide the best estimate of the impact of La Niña, and in
common with previous studies44, we inflate the signals according to
the ratio of desired and actual Niño3.4 values obtained (approximately
a factor of two).

Extremes tool
The proposed interactive tool presented in Fig. 6 is an example of how
extreme forecast rainfall could be identified and examined over
regions corresponding to medium-sized countries or major provinces
of larger countries. For this, we use the previously defined equal-area
regions of Stone28, but we note that the authors remain neutral with
regard to jurisdictional claims in all maps. When examining both the
regional extreme rainfall ensemblemean predictions (e.g., for summer
2022 in Fig. 6), and observed outcomes anomalies (including clima-
tological observed quantile thresholds calculated over 1979–2021), we
use the semi-standard deviation to separately calculate standardised
anomalies on the wet and dry sides of distribution due to the skewed
nature of rainfall in many regions. The use of the semi-standard
deviation gives an approximately equal number of wet and dry

Fig. 7 | Assessing the utility of the proposed extremes tool. a Predicted seasonal
extreme (>±2σ) DP3 ensemble mean rainfall signals are compared (over
1979–2022) with observed rainfall quantile outcomes for the 77 regions that have a
statistically significant average correlation skill over the hindcast (r > 0.25, Sup-
plementary Fig. S3) giving 134 predicted extreme events in total. Green bars show
quantile outcome frequencies with the text above giving the ratio relative to the

climatological quantile probabilities. The ‘neutral’ case refers to the central three
quintiles. b shows how the percentage of correct quantile outcomes increases as a
function of the minimum average correlation skill threshold. The magenta line
(right axis) shows how the number of predicted extremes reduces as less regions
are included in the analysis. The vertical dashed line highlights the r > 0.25
threshold illustrated in panel (a).

Article https://doi.org/10.1038/s41467-023-42377-1

Nature Communications |         (2023) 14:6544 9



extremes. In Fig. 7, we evaluate the first part of the proposed tool by
assessing howwell the identified extremeDP3predicted signals (>±2σ)
correspond to extreme outcomes over the 44-year hindcast period.
We note that land regions in Antarctica are excluded from the analysis
(Figs. 6 and 7) as insufficient verifying observations are available. We
use all other regions; however, we note that this could be filtered
further in future by applying a minimum threshold on climatological
rainfall totals, thereby excluding extremely dry regions.

Data availability
ERA5 reanalysis data was downloaded from the European Centre for
Medium-Range Weather Forecasts (ECMWF), Copernicus Climate
Change Service (C3S) at Climate Data Store (CDS; https://cds.climate.
copernicus.eu/). Data from the eight operational seasonal prediction
systems are also available to download from the Copernicus data
portal (https://climate.copernicus.eu/seasonal-forecasts). Global Pre-
cipitation Climatology Centre (GPCC) rainfall data over global land
regions was downloaded from Deutscher Wetterdienst (DWD; https://
www.dwd.de/EN/ourservices/gpcc/gpcc.html). Global Precipitation
Climatology Project (GPCP) rainfall data was downloaded from the US
National Oceanic and Atmospheric Administration (NOAA), National
Centers for Environmental Information (NCEI, https://www.ncei.noaa.
gov/products/global-precipitation-climatology-project). The shape-
files used to define the global land regions are available in the sup-
plementary data of Stone28 (https://link.springer.com/article/10.1007/
s10584-019-02479-6). Met Office DePreSys3 data used in this study are
available online (https://doi.org/10.5281/zenodo.8380700).

Code availability
The computer code used to produce the figures is available from the
corresponding author upon request.
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