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Thermal dependence of the hydrated proton
and optimal proton transfer in the
protonated water hexamer

Félix Mouhat 1, Matteo Peria 2, Tommaso Morresi3, Rodolphe Vuilleumier 4,
Antonino Marco Saitta 2 & Michele Casula 2

Water is a key ingredient for life and plays a central role as solvent in many
biochemical reactions. However, the intrinsically quantum nature of the
hydrogen nucleus, revealing itself in a large variety of physical manifestations,
including proton transfer, gives rise to unexpected phenomena whose
description is still elusive. Here we study, by a combination of state-of-the-art
quantum Monte Carlo methods and path-integral molecular dynamics, the
structure and hydrogen-bond dynamics of the protonated water hexamer, the
fundamental unit for the hydratedproton.We report a remarkably low thermal
expansion of the hydrogen bond from zero temperature up to 300K, owing to
the presence of short-Zundel configurations, characterised by proton delo-
calisation and favoured by the synergy of nuclear quantumeffects and thermal
activation. The hydrogen bond strength progressively weakens above 300 K,
when localised Eigen-like configurations become relevant. Our analysis, sup-
ported by the instanton statistics of shuttling protons, reveals that the near-
room-temperature range from 250 K to 300 K is optimal for proton transfer in
the protonated water hexamer.

For more than 200 years and the seminal work of von Grotthus, the
properties of the hydrated proton H+

ðaqÞ have intrigued the scientific
community1,2. Despite significant advances, the exact role of the sol-
vated proton in proton transfer (PT) reactions in chemical and biolo-
gical systems is not fully elucidated yet. The textbook picture is that
the hydrated proton exists as classical hydronium cation H3O

+, but it
looks more appropriately described as a delocalised charge defect
shared by multiple molecules. The spread of this charge defect blurs
the identity of the excess proton between two limiting structures,
namely the Zundel3 and the Eigen4 ions. Indeed, the hydrated proton
Infrared (IR) spectrum displays a combination of a few discrete
absorption bands on top of an absorption continuum, broadly exten-
ded over the entire spectrum. Neither the symmetrically solvated
hydronium H9O+

4 (Eigen) ion, nor the equally shared proton in the
H5O+

2 (Zundel) ion, can individually rationalise this characteristic IR

fingerprint.Models involving fast inter-conversions between these two
ionic species are also shown to fail5.Moreover, the question ofwhether
the hydrated excess proton and the related PT mechanism should be
based on an Eigen-6–8 or Zundel-likemotif9,10, one or the other taken as
the most dominant species, has been actively debated.

To deal with these issues, Stoyanov et al.11 have introduced the
stable H13O+

6 species, the protonated water hexamer, which is Zundel-
type in the sense that the excess proton is equally shared between two
water molecules. The core of the cluster is characterised by a central
oxygen–oxygen distance dO1O2

that, however, is more elongated than
in the Zundel cation12. On the other hand, recent Molecular Dynamics
(MD) simulations suggest the existence of a distorted, nonsymmetric
Eigen-type cation, remaining at the heart of a dynamical charge defect
spanning multiple water molecules6,13. The protonated water hexamer
represents one of the smallest protonated water clusters for which
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both of these characteristic binding motifs coexist14–16. Snapshots of
themain protonated hexamer configurations are represented in Fig. 1,
for both Zundel- and Eigen-like forms, while other low-lying isomers
exist17,18, but with a much lower probability to occur starting from the
global minimum, due to their different topology.

The protonated hexamer Potential Energy Surface (PES) has been
partially explored by IR spectroscopy19–21 and electronic structure
calculations performed within Empirical Valence Bond (EVB), Density
Functional Theory (DFT), experiment-directed DFT, Møller-Plesset
(MP2), and Coupled Cluster (CC) approaches, also supplemented by
Machine Learning (ML) techniques6,7,9,15,18–20,22–24, confirming that the
two structures introduced above are the lowest energy isomers. The
quantumnatureof the protonhowever induces a delocalised structure
on this PES.

In this work, we apply MD simulations fully retaining the nuclear
quantum nature of the atoms. In particular, the quantum proton,
described within the Feynman path integral (PI) approach, evolves in a
very accurate PES estimated by means of Quantum Monte Carlo
(QMC). This stochastic technique introduces an intrinsic noise, which
affects the forces driving the ion dynamics and, consequently, the
simulation temperature. Relying on the generalised fluctuation-
dissipation theorem, a Langevin-based approach has been developed
to address this issue for classical25 and quantum26 ions. It allows one to
sample microscopic configurations in the canonical ensemble with a
high level of quantum accuracy. Although our QMC wave function
ansatz leads to the dissociation limit of two water molecules ≈ 20% (≈1
kcal/mol) off with respect to CCSD(T) values, the QMC PES is suffi-
ciently accurate to yield structural properties and quantum-thermal
distributions around equilibrium in a good agreement with CCSD(T)-
derived PESs for benchmark systems such as the water dimer27 and the
Zundel ion28. Details of the method and of its accuracy are provided in
the ‘Methods’ section and in Supplementary Notes I and II of the Sup-
plementary Information (SI).

We find that the hydrogen bond (H-bond) mediated by the
hydrated proton shows a remarkably low thermal expansion from
zero temperature up to 300 K, with a nearly temperature-
independent length that becomes shorter than the classical-ion
counterpart in the [200–350] K temperature range. A non-trivial
behaviour of the H-bond has also been found in H-rich crystals and
ferroelectric materials, such as the potassium dihydrogen phosphate
(KDP)29, first detected by Ubbelohde in 1939 upon isotopic
substitution30. In the latter case, the lighter the hydrogen, the shorter
the H-bond. This was interpreted as a quantum manifestation of
proton delocalisation, strengthening the H-bond. In the present
situation, the strength of the H-bond results from a non-trivial
cooperation of nuclear quantum effects (NQEs) and thermal activa-
tion, as we will show in this work. Indeed, NQEs strongly affect the

vibrational levels of the proton shuttling mode bridging the central
O1 and O2 oxygen atoms. These levels are then thermally occupied
according to the dO1O2

distance of a given configuration. We can thus
distinguish three regimes (see Fig. 1): (i) “short-Zundel” configura-
tions with the shortest dO1O2

, where the proton along the shuttling
mode feels a quadratic potential close enough to its energyminimum
and it is perfectly shared between the two central water molecules;
(ii) “elongated-Zundel” configurations for intermediate dO1O2

, com-
prising the equilibrium distance, where a potential energy barrier
starts to develop in between O1 and O2 and the proton is delocalised
only due to NQEs; (iii) “distorted-Eigen” configurations at even larger
dO1O2

, where the central barrier is large enough that the hydrated
proton is localised on one of the two flanking water molecules,
forming an Eigen-like complex.

Here, we show that the occurrence of short-Zundel configurations
is key to understand the H-bond thermal robustness and to enhance
the proton transfer dynamics. Despite being energetically disfavoured
by the short dO1O2

distances at the classical level, these configurations
are populated thanks to the synergistic action of NQEs and tempera-
ture, yielding a sweet spot for proton transfer in the [250–300] K
temperature range.

Results
Thermal expansion of the H-bond
To rationalise our main outcome, we first study the zero-temperature
classical geometry and PES of the protonated water hexamer, and
compare it with the Zundel cation. While the latter system misses a
large part of water solvation effects, the former includes the full con-
tributionof thefirst and second shells of the solvatedproton. The zero-
temperature results are reported in Supplementary Note III.1 of the SI.
We simply highlight here that the Variational Monte Carlo (VMC)
equilibrium O1-O2 distance is found to be dO1O2

= dmin = 2:3930ð5Þ Å, in
good agreement with MP2 calculations, the most widely used post
Hartree-Fock theory to study water clusters (see Supplementary
Note I.2 of the SI for a more extended comparison between VMC and
MP2). VMC has a milder scale with the system size than MP2, allowing
one to perform extensive calculations of the protonated hexamer. At
variance with the Zundel cation31,32, the protonated hexamer equili-
brium geometry is asymmetric, implying that the global minimum is
split into a double well, separated by an energy barrier between the
two central water molecules. This barrier vanishes at dO1O2

= dsymm ’
2:38 Å, a distance that separates the short Zundel below from the
elongated-Zundel configurations above. The height of the barrier is
less than 100 K (in kB units) at dmin, rapidly increasing as a function of
dO1O2

. We therefore expect several consequences on the hydrated
proton distribution and on its mobility at finite temperature, once the
NQEs are taken into account.

Fig. 1 | Different regimes of the protonated water hexamer H13O+
6 . a Short-

Zundel configuration with a Zundel center (H5O+
2 ) in colours and its first solvation

shell (4 H2O) in grey shades. b elongated Zundel with the quantum nature of
hydrogen atoms highlighted by the full representation of its imaginary-time

positions in a PI configuration. c distorted-Eigen configuration with an Eigen cation
(H9O+

4 ) in colours accompanied by two solvating water molecules (2 H2O) in grey
shades. The O1, O2 and H+ labels are used throughout the paper to refer to the
corresponding atoms, as indicated here.
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To understand how the dynamics of the hydrated proton evolves
with temperature, QMC-driven ab initio MD simulations are relevant.
Such calculations are carried out for both classical and quantumnuclei
of the H13O+

6 ion, within the temperature interval T∈ [50−350] K,
thanks to the methodological developments detailed in ref. 26 and in
the ‘Methods’ section. At these conditions, the clusters are stable
during the simulated time frame (≈30 ps), allowing us to access the
thermal properties of the hydrated proton and the O1H

+O2 bond over
an extended temperature range. This is the advantage of performing
accurate computer simulations for this system, particularly if an
experimental investigation of the cluster will require a more extended
lifetime, with the risk of molecular evaporation at the highest tem-
peratures studied here. The details of these challenging calculations,
such as the number of iterations and their computational costs at a
given temperature, are reported in Supplementary Table 4 of the SI.

From our QMC-MD simulations, we extract the normalised Pair
Correlation Functions (PCFs) gO1O2

for the twooxygen atomsO1 andO2

of the cluster core (Fig. 2). The expectedbroadeningof the PCFsdue to
nuclear quantisation is significant over the whole temperature range
(Fig. 2b). Only at temperatures as high as 350 K, the classical gO1O2

(Fig. 2a) starts resembling the quantum distribution. This implies that
theNQEs cannot beneglected for temperatures up to this value, above
ambient conditions. We also notice that, when comparing to the
Zundel ion results33, the peak position is shifted up by at least ~0.01 Å.
Thus, it appears that the H13O+

6 cluster frequently adopts elongated-
Zundel configurations8,34,35 at the lowest temperatures considered
here. This is at variance with the protonated water dimer, where the
hydrated proton lives in a single minimum symmetrically located
between the two water molecules.

Focusing our attention to hdO1O2
i (Fig. 2c), its classical and quan-

tum behaviours are remarkably different as a function of temperature.
On the one hand, the classical dO1O2

keeps increasing with tempera-
ture, as more energy is given to the intermolecular vibration modes.
On the other hand, the quantum dO1O2

displays a nearly flat behaviour
with the cluster temperature, up to 300 K. This very low thermal
expansion extended over a wide temperature range leads to a tem-
perature regime where dO1O2

for the quantum system become shorter
than the classical values at the same temperatures. This is clearly seen
in Fig. 2c. We will come back to this point later.

Finally, as the temperature further increases, the NQEs reduction
weakens the central H-bond strength. Consequently, dO1O2

spreads
out, due to stochastic fluctuations of the core and the solvent, and a

more classical regime is reached, when the averaged dO1O2
values for

classical and quantumnucleimeet again. The PCF distributions display
longer tails, with more configurations covering regions with dO1O2

2
½2:5� 2:7� Å, and the peak position rapidly shifts to larger values.
Configurations with such a large hdO1O2

i are of distorted-Eigen type8,36.

A cooperative thermal-quantum species: the short-Zundel ion
To refine our structural analysis, we compute the bidimensional dis-
tribution function ρ2D, which correlates the oxygen–oxygen (O1O2)
and the oxygen–proton (O1/2H

+) distances, and study its temperature
dependence ρ2D = ρ2D(T). In Fig. 3, we show the contour plot of the
temperature-driven ρ2D variation (see also Supplementary Note III.2 of
the SI). By taking ρ2D(250 K) as reference, four temperature variations
are explored: 100 K, 200 K, room temperature (RT), and 350 K (from
the top to the bottom of Fig. 3).

In the classical protonated hexamer (Fig. 3, left column), rising the
temperature from 250 K up to 350 K tends to stretch hdO1O2

i, by pro-
moting configurations from the elongated Zundel (blue central dis-
tribution with dO1O2

2 ½2:38,2:5� Å in Fig. 3) to an Eigen-like
arrangement with larger dO1O2

and a proton much more localised on
one of the two central oxygen atoms (red wings). The situation is
reversed at lower temperatures (100 K and 200 K) if compared to the
250 K reference, with positive (red) variations in the elongated Zundel
and negative (blue) variations in the wings. Thus, for classical nuclei,
there is a progressive depletion of the elongated Zundel and a corre-
sponding population of the distorted-Eigen wings upon temperature
rise. Short-Zundel configurations, highlighted in Fig. 3 by a grey
background, seem to play a very marginal role in the temperature-
driven density distribution shift.

The scenario is strikingly different with quantum nuclei (right
column), particularly at the lowest temperatures (100 K and 200 K). In
this regime, distorted-Eigen configurations are barely populated or
depleted, and the density shift upon rising temperature takes place
between the elongated-Zundel region and the short-Zundel sector.
The latter is significantly more populated at 250 K than at lower tem-
peratures at the expense of the elongated Zundel, which instead loses
density with respect to the classical counterpart at the same
temperature.

In the higher-temperature limit, at 350 K, NQEs are less relevant
and, by consequence, the classical and quantum variations have a
qualitatively similar behaviour. In both classical and quantum case, we
notice the presence of red wings at large oxygen–oxygen distances

Fig. 2 | Classical and quantum oxygen–oxygen gO1O2
pair correlation functions

as a function of temperature. a, b The dashed vertical lines indicate the average
hdO1O2

i distance for each simulation, at the corresponding temperature. The
dotted vertical line is located at the classical equilibrium geometry. Panel (c) shows

the T-dependence of the hdO1O2
i average distance. The classical equilibrium geo-

metry is represented by a short-dashed horizontal black line. At 250 K and 300 K
the oxygen–oxygen distance is shortened by NQEs with respect to the classical
counterpart. Source data are provided as a Source data file.
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(dO1O2
2 ½2:5,2:7� Å), which are the signature of thermally activated

Eigen-like states, with a strongly localised proton. This is related to less
frequent elongated-Zundel configurations, indicated by the depleted
distribution for dO1O2

< 2:5 Å, confirming that the distorted-Eigen con-
figurations are indeed promoted by high temperature. For quantum
nuclei, the corresponding depletion goes well below the elongated-
Zundel region, by touching also short-Zundel configurations, down to

dO1O2
∼ 2:3 Å, at variance with the classical case, where the short-

Zundel configurations are not involved.
To interpret these results, we first construct an accurate effective

potential by projecting the full PES, computed during QMC-driven
classicalMDcalculations, onto the degrees of freedommostly relevant
to understand the dynamics of the hydrated proton. These are the
dO1O2

distance and the proton sharing coordinate δ, referenced to the

Fig. 3 | Bidimensional oxygen–oxygen/oxygen–proton distributions. Differ-
ence between bidimensional oxygen–oxygen/oxygen–proton distributions ρ2D
obtained by QMC-driven LD simulations for classical (left panels) and quantum
(right panels) particles, computed at different temperatures. The bidimensional
distribution computed at 250K is taken as reference. Positive (negative) regions are

in red (blue) colour. The black filled circles correspond to the zero-temperature
equilibrium geometries of the H13O+

6 ion at a fixed dO1O2
distance. The coloured

background highlights the three different regimes explained in the paper: the short
Zundel (grey), the elongated Zundel (yellow), and the distorted Eigen (green)
species. Source data are provided as a Source Data file.
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midpoint of the O1H
+O2 complex: δ � ~dO1=2H

+ � dO1O2
=2, with ~dO1=2H

+

the O1/2-H
+ distance projected onto the O1O2 direction. The resulting

two-dimensional (2D) potential is V2D =V 2DðdO1O2
,δÞ. We refer the

reader to Supplementary Notes IV and V of the SI for technical details
about the PES projection.We highlight that the potentialV2D is derived
here at VMCquality. We also notice that δ is the vibrational coordinate
of the proton shuttling mode, while dO1O2

is related to the stretching
mode of the two water molecules in the cluster core.

Given V 2DðdO1O2
,δÞ, we then proceed to quantize the variable δ.

Indeed, while dO1O2
can be taken as classical, for it is related to the

motion of heavier oxygen atoms ofmassmO, the δ coordinatemust be
quantised, owing to the light mass (mH) of the hydrated proton. At the
leading order in 2mH/(mO +mH),we separate the stretchingmode from
the shuttling one, by invoking an adiabatic Born-Oppenheimer type of
approximation for the two species37. We finally solve quantum-
mechanically the Hamiltonian of a proton in the potential Vδ �
V 2Dðα,δÞjα =dO1O2

at fixed dO1O2
value. In Fig. 4a–c we plot the ground

state distribution and eigenvalues obtained for three distances, i.e. at
dO1O2

= 2.375 Å, in the short-Zundel region close to the boundary
between the short and the elongated Zundel, at dO1O2

= 2.495 Å, in the
elongated-Zundel region close to the frontier between the elongated
Zundel and the distorted Eigen, and finally at dO1O2

= 2.585Å, deep into
the distorted Eigen regime.

One can notice three different quantum behaviours of the vibra-
tional shuttling mode, that provide a more quantitative ground to the
three-regimedistinctionmade at the beginning. In the short Zundel, Vδ

is indeed a quadratic potential with a single minimum at the core
center, which widens as dO1O2

gets close to dsymm≃ 2.38Å, a distance
where it becomes quartic because its curvature falls to zero before

changing sign. The ground state energy, i.e. the zero point energy
(ZPE) of the shuttling mode, decreases as the potential widens, as
reported in Fig. 4d. In the elongated Zundel, a central barrier starts to
develop, with a ground-state proton distribution that stays uni-modal
thanks to a ZPE larger than its height, till dO1O2

’ 2:5 Å, where the ZPE
equals the barrier height. In this regime, for dO1O2

2 [dsymm, 2.5 Å], the
ZPE is particularly small, due to the quartic nature of Vδ, and weakly
dO1O2

-dependent, as shown in Fig. 4d. Finally, for dO1O2
> 2:5 Å, we enter

the distorted-Eigen regime, with an even larger central barrier (>1000
K), such that the quantumproton is instantaneously localised in one of
the twowells, and its distribution is thenbimodal. The ZPE starts to rise
again as dO1O2

is stretched, with a slope steeper—in absolute value—
than the ZPE decrease in the short Zundel, because it is now set by the
much deeper lateral minima of the double-well potential. This can be
seen again in Fig. 4d.

We can now correct the classical O1-O2 potential, defined as
VO1O2

� V2DðdO1O2
,δÞjδ = δmin

, where δmin is the V2D minimum at fixed
dO1O2

value, by adding the ZPE 8dO1O2
, obtained from the quantisation

of the shuttling mode δ. The resulting potential is plotted in Fig. 4e.
Remarkably, the anharmonic classical VO1O2

potential becomes har-
monic after ZPE-correction. It is a consequence of themuch larger ZPE
in the distorted-Eigen configurations than in the short Zundel, which
compensates for the underlying VO1O2

anharmonicity. This rationa-
lises two main features. On the one hand, it explains the very low
thermal expansion of hdO1O2

i, being the average position in a har-
monic potential temperature-independent. On the other hand, it
proves that NQEs enhance the occurrence of short-Zundel configura-
tions upon heating, while the distorted Eigen is penalised by its large
ZPE with respect to the classical counterpart. The enhancement of the

Fig. 4 | NQEs on the shuttlingmode, and their impact on the O1-O2 interatomic
potential VO1O2

. We quantize the proton shuttling mode δ, defined as the dis-
placement along the segment connecting the two oxygen atoms in the core of the
cluster from its midpoint position. We study the ground-state wave function and
the first 5 eigenvalues for the confining potential Vδ, as a function of dO1O2

. Panels
(a), (b) and (c) report the ground state wave function and the lowest 5 energy levels
for dO1O2

= 2.375, 2.495 and 2.585 Å, respectively. In panel (d), the variation of the

zero-point (ground-state) energy (ZPE) as a function of dO1O2
is explicitly plotted.

While the ZPE dependence is very flat in the elongated-Zundel region (depicted by
the yellow shaded area), the ZPE increases in both short-Zundel (grey shaded area)
and distorted-Eigen (green shaded area) regions, with a much steeper slope in the
latter. In panel (e), the ZPE is added to the classical interatomic potential VO1O2

(solid blue line) to yield the quantum-corrected effective interatomic potential
(solid dark-pink line) between the two inner oxygen atoms.
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occurrence of Zundel configurations by NQEs is also revealed by the
population analysis presented in Supplementary Note VI and Supple-
mentary Fig. 17 of SI. This is also in agreement with a similar analysis
carried out in ref. 6 in bulk water.

Above RT, the distorted Eigen configurations will eventually
become dominant again. This can be understood within this frame-
work as well. Indeed, thermal excitations are energetically more
available in the distorted Eigen, where the spacing between the ZPE
and the first-excited state shrinks, and higher excited states are piled
up more densely than in the short and elongated Zundel (see
Fig. 4a–c). The full thermal dependence of the short Zundel, elongated
Zundel and distorted Eigen populations is reported in Supplementary
Fig. 16 of Supplementary Note VI in SI.

Optimal proton transfer from instantons statistics
The analysis made so far highlights the paramount importance of the
NQEs to set the non-trivial temperature behaviour of the H13O+

6 clus-
ter. At this stage, direct information about the excess proton dynamics
along the QMC-PIMD trajectory is necessary to estimate more quan-
titatively its impact on the PT processes occurring in the system.

One way to achieve this goal is by analysing the statistics of
selected transition-state (TS) configurations, defined by means of
instanton theory. Within the PI formalism, the instanton path seam-
lessly connects the reactants and products minima, along the minimal
action trajectory, periodic in the quantum imaginary time τ = βℏ38. It
provides a generalisation of the TS theory for anharmonic quantum
systems39, and it has been very recently applied in a QMC
framework40,41, by efficiently recovering the proper scaling of ground-
state tunnelling rates. TS configurations are therefore identified as
those where each half of the instanton path is located on either side of
the central O1O2 midpoint, sampled during the QMC-PIMD dynamics.

With the aim at resolving the contribution of the three different
regimes to the PT dynamics, we collect the instanton events and
compute their statistical distribution as a function of dO1O2

. We plot
the instanton density distribution function in Fig. 5a at various tem-
peratures. To deepen our analysis, we compute also the cumulative
density distribution function in Fig. 5b, after normalising it based on
the algorithmic frequency of the instanton occurrences, as counted
during our QMC-PIMD simulations. Although this does not give direct
access to real-time quantities, the ring-polymer MD with Langevin

thermostat has been shown to yield physically reliable information on
frequencies and frequencyvariations42. Note that the couplingwith the
Langevin thermostat is kept constant across the full temperature range
analysed here42. The fully integrated frequency distribution gives the
total proton hopping frequency, plotted in Fig. 5c as a function of
temperature. This shows a clear maximum located in the [250–300] K
temperature range. Consequently, we expect the hydrated proton
mobility tobeoptimal ina near-RTwindow,with amaximisedGrotthus
diffusion. To understand the source of this temperature sweet spot, in
the same panel (c) we plot the contribution to the total frequency of
instanton events occurring in the short-Zundel region. This is yielded
by the cumulative frequency distribution of panel (b) evaluated at the
boundaries between short and elongated Zundel, i.e. at dO1O2

=dsymm.
The short-Zundel contribution to the total frequency shows a peak of
the same intensity as the total one in the same temperature range,
clearly pointing to the key role played by thermally activated short-
Zundel configurations to the PT dynamics. The short-Zundel arrange-
ment enables instantaneous proton jumps between the two sides of
the cation, since there is no barrier to cross. Thus, the sweet spot
constitutes the best compromise between acquiring enough thermal
energy to access short-distance configurations, boosted by NQEs, and
controlling the amplitude of the chemical (covalent or H-) bonds
fluctuations, that might trap the proton into an asymmetric well.
Indeed, at larger temperatures (>300 K), the onset of distorted-Eigen
and the corresponding fall of short-Zundel configurations localize the
hydrated proton around its closest oxygen atom, thus reducing its
shuttling probability. A similar non-monotonous PT behaviour has
experimentally been found in bulk water by assessing the limiting
conductivities of the H3O

+ and D3O
+ species43. Thanks to these mea-

sures, performed at 20MPa, the excessmolar conductivities due to PT
have been estimated. They show a peak located at a temperature in
between 420 K and 430 K. In this temperature range and at the pres-
sure conditions of the experiment, the water density is only 7–8%
smaller than the standard conditions44, a regime comparable to the
one of our cluster.

Beside this PT mechanism, which is adiabatic in nature and
driven by the synergy of ZPE and thermal effects, NQEs could also
contribute to the proton diffusion by means of instantaneous tun-
nelling, which can further accelerate the PT dynamics. By comput-
ing the root-mean-square (RMS) displacement correlation

Fig. 5 | Instanton statistics and proton hopping frequency. a Instanton dis-
tribution resolved as a function of the dO1O2

distance for different temperatures.
b Cumulative distribution of (a) normalised by the occurrence frequency of the
instanton (proton hopping) events during the PIMD simulations. c Proton hopping
frequency as a function of temperature, together with the contribution coming

from the short Zundel configurations, with dO1O2
< dsymm = 2:38 Å. The dsymm value

is reported as vertical dashed line in (a) and (b). Here, we report simulations per-
formed also at 400 K, a temperature at which the cluster is still stable or meta-
stable. Source data are provided as a Source data file.
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functions45 over the instantons population, we verified that tun-
nelling events could take place only in the distorted Eigen and in the
intermediate temperature range (see Supplementary Note VII of SI
for a detailed analysis). This additional PT channel has however a
marginal effect with respect to the main mechanism unveiled here.
Indeed, Fig. 5c shows that the sweet spot is mainly due to PT events
originating in short-Zundel configurations, where quantum tun-
nelling is not relevant.

Discussion
Using highly accurate QMC-PIMD simulations of the H13O+

6 cation at
finite temperature, we found a remarkably low thermal expansion of
theprotonatedwater hexamer core. It stems froma cooperative action
of both NQEs and thermal effects, which leads to the emergent beha-
viour of short-Zundel species as PTbooster, where the excessproton is
perfectly shared between two neighbouring water molecules. The
relevance of short-Zundel configurations is enhanced by NQEs, which
instead penalize the distorted-Eigen states, having a larger ZPE. In the
intermediate temperature range, comprising RT, the occurrence of
short-Zundel events is maximised by thermal population, leading to a
sweet spot in the PT dynamics. Around these temperatures, distorted-
Eigen states can still contribute to PT with quantum tunnelling pro-
cesses, although occurring at much lower rates. The cluster core
spreads out again at larger temperatures, as soon as stronger thermal
fluctuations favour the formation of more classical distorted-Eigen
structures, where the proton gets strongly localised in one of the
flanking molecules.

The short-Zundel quantum species is crucial for an efficient proton
diffusion, as the shortness of its structure enables a fast charge redis-
tribution during the adiabatic PT process. Recent progress in ultrafast
broadband two-dimensional (2D) IR spectroscopy46,47 allowed to probe
the vibrational properties of protonatedwater at vibrational frequencies
around the hydrated proton stretchingmode, by measuring the lowest-
lying excitations in the mid-infrared continuum47. These state-of-the-art
experiments revealed a strongly inhomogeneous behaviour of the
pump-probe spectra, implying large structural distributions in proton
asymmetry and O1O2 distance. Therefore, the traditional “Zundel limit”3

needs to be revisited and extended, in order to cover the broad range of
structures detected experimentally9,48. In particular, the occurrence of
qualitatively different short hydrogen-bond configurations, straightfor-
wardly connected with the short-Zundel species described here, has
been detected and highlighted in a recent fully solvated (HF2)

−(H2O)6
experiment through femtosecond 2D IR spectroscopy in ref. 49. The
present work crucially extends those findings by providing a tempera-
ture resolved analysis of the short hydrogen-bond events and by
revealing their fundamental relation with the PT dynamics.

While proton transfer and proton transport occur in a variety of
environments, from solutions to membrane proteins and fuel-cell
membranes, the protonated water hexamer is one of the smallest
clusters to incorporate most of the PT experimental features and
solvation effects at the leading order. According to ref. 50, one
more hydration layer is needed to reach the water bulk limit. From
this viewpoint, the hexamer is close to that limit, and some relevant
effects, emerging already at this size, can be transferred to larger
systems. Our findings thus call for further efforts to explore the
temperature behaviour of the proton dynamics and transport both
in aqueous systems and in other extended environments, by keep-
ing the same accuracy as the one delivered by our QMC-driven PIMD
approach in the protonated water hexamer. That goal could be
achieved by training efficient atomistic ML potentials on QMC51,52 or
other high-quality datasets24,53, which could allow one to generalise
quantitatively the PT behaviour unveiled here to a wider class of
aqueous systems.

Methods
Zero-temperature electronic structure calculations
Before running finite-temperature calculations, we build a quantum
Monte Carlo (QMC) variational wave function. The molecular dynam-
ics (MD) will develop on the potential energy surface (PES) generated
by the variational energy of this wave function. All zero- and finite-
temperature calculations have been carried out with the TurboRVB
code54. We choose the variational ansatz such that the chemical
accuracy (1 kcal/mol) in the binding energy of the Zundel ion andwater
dimer is reached. We highlight the fact that benchmarking the binding
energy is much stricter than taking energy differences of geometries
around the minimum, because the configurations involved in the
binding energy are very different.

The variational wave function jΨqi we used in our work is
written as a Jastrow Antisymmetrised Geminal Power (JAGP)
product55

Ψqðx1, . . . ,xNel
Þ= Jqðr1, . . . ,rNel

ÞΨAGP,qðx1, . . . ,xNel
Þ: ð1Þ

The set xi = ðri, σiÞ
� �

i = 1,...,Nel
represents spatial and spin coordinates of

the Nel electrons, and q is the vector of nuclear coordinates.
We report here the main ingredients of the JAGP wave

function56–59. The Bosonic Jastrow factor is written as a product of one-
body, two-body and three/four-body terms Jq = J1,qJ2,qJ3,q. The one-
body term reads

J1,q = exp �
XNel

i

XN

j

2Zj

� �3=4
u 2Zj

� �1=4
ri � qj

���
���

� � !
ð2Þ

withuðjr� qjÞ= 1�e�bjr�qj
2b andb is a variational parameter,which satisfies

the electron-ion Kato cusp conditions. N the number of atoms and Zj
the electric charge of the j-th atom. In the protonated hexamer
Hamiltonian, the hydrogen keeps the bare Coulomb potential, while
the oxygen atoms are replaced by the Burkatzki-Filippi-Dolg (BFD)
pseudopotential60, smooth at the electron-ion coalescence points.
Thus, J1,q is applied only to the hydrogen atom. The two-body
correlations are dealt with by the higher-order Jastrow factors. The
two-body Jastrow factor is defined as

J2,q = exp
XNel

i<j

u ri � rj
���

���
� � !

, ð3Þ

where u is a function of the same form as in Eq. (2), but with a different
variational parameter. The three-four body Jastrow factor is

J3,q = exp
XNel

i<j

ΦJq
ri,rj
� � !

, ð4Þ

with

ΦJq
ðri,rjÞ=

XN

a,b

XN J
basis

μ,ν

ga,b
μ,νΨ

J
a,μðri � qaÞΨJ

b,νðrj � qbÞ, ð5Þ

where N J
basis is the number of the basis set functions ΨJ

a,μ. We used
optimally contracted geminal embedded orbitals (GEOs)61 as basis set,
expanded over a primitive O(3s,2p,1d) H(2s,1p) Gaussian basis. The
convergence study of the water dimer binding energy as a function of
the Jastrow GEO expansion is reported in Supplementary Note I.1
of the SI.
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The Fermionic part of the wave function is expressed as an anti-
symmetrised product of the spin singlet geminals or pairing (AGP)
functions Φq(xi, xj):

ΨAGP,qðx1, . . . ,xNel
Þ= Â Φq x1,x2

	 

, . . . ,Φq xNel�1,xNel

� �h i
: ð6Þ

The spatial partϕq(ri, rj) of the spin singletsΦq(xi, xj) is expanded over
NAGP

basis optimally contracted GEOs, such that

ϕqðri,rjÞ=
XN

a,b

XNAGP
basis

μ,ν

λa,bμ,ν
�Ψ
AGP
a,μ ri � qa

	 

�Ψ
AGP
b,ν rj � qb

� �
: ð7Þ

The AGP GEOs are linear combination of primitive O(5s5p2d) H(4s2p)
Gaussian basis functions. We highlight that the Fermionic part is fully
optimised at theQMC level for eachMD step, and not generatedby on-
the-fly DFT calculations.

The GEOs are very effective in reducing the total number of var-
iational parameters, by keeping a high level of accuracy. This makes
thewave functionoptimisation55,62,63 muchmore efficient. Dealingwith
a compact wave function is very important, if one wants to use it as
variational ansatz in a MD simulation, because in a MD framework the
wave function needs to beoptimised at everyMD iteration. Indeed, the
wave function optimisation is by far the most time-consuming step of
our QMC-driven MD approach.

Previous works on the Zundel ion26,59 found that the optimal bal-
ance between accuracy and computational cost for the determinantal
part is reachedby theO[8]H[2] contractedGEObasis, in self-explaining
notations. As the protonatedwater hexamer is a very similar system, in
thisworkweused the sameO[8]H[2]GEOcontraction for theAGPpart.
Moreover, we further simplified the variational wave function pre-
viously developed for the Zundel ion, by contracting also the Jastrow
basis set, using the same GEO embedding scheme. We found that the
O[6]H[2] GEO basis set for the Jastrow factor is a very good compro-
mise between accuracy and number of parameters, as we checked in
the water dimer (see Supplementary Note I.1 of the SI). The final
accuracy is about 1 kcal/mol in the dissociation energy of the water
dimer, and supposedly it is much higher around the stable geometries
of water clusters. Thus, we used the O[6]H[2] GEO basis set for the
Jastrow factor, and the O[8]H[2] GEO basis for the AGP part in all our
subsequent MD simulations. For the protonated water hexamer, this
results into a total number of 6418 variational parameters, comprising
ga,b
μ,ν in Eq. (5), λa,bμ,ν in Eq. (7), the parameters of the homogeneous one-

body (Eq. (2)) and two-body (Eq. (3)) Jastrow factors, and the linear
coefficients of the Jastrow and determinantal basis sets.

Finite-temperature calculations
Path integral Langevin dynamics. At finite temperature, we carried
out path integral Langevin dynamics simulations to include NQEs. To
do so, we used the recently developed algorithm published in ref. 26,
which combines a path integral approach with very accurate Born-
Oppenheimer (BO) forces computed by QMC. It is an efficient
approach, alternative to the coupled electron ionMonteCarlo (CEIMC)
developed by Ceperley and coworkers64–66. The intrinsic noise of the
QMC force estimator is treated by the noise correction scheme
developed in refs. 25,26,67, which is based on the fulfilment of the
fluctuation-dissipation theorem. This implies that the friction matrix γ
governing the dumped dynamics is related to the random force η via
the α matrix:

α qð Þ=2kBTγ qð Þ, ð8Þ

hηi tð Þηj t
0ð Þi=αi,j qð Þδ t � t0ð Þ, ð9Þ

with q the vector of nuclear coordinates. The q-dependence comes
from the QMC noise correction, implemented through the relations:

αi,j qð Þ= γBO=ð2kBTÞδi,j +Δ0α
QMC
i,j qð Þ ð10Þ

α
QMC
i,j qð Þ= f i qð Þ � f i qð Þ� �	 
� �hðf jðqÞ � hf jðqÞiÞi, ð11Þ

where αQMC in Eq. (11) is the covariance matrix of QMC ionic forces,
measuring their stochastic fluctuations, and γBO and Δ0 parameters
taking values for an optimal Langevin dynamics. The random forceη is
then used to thermalise the system to a target temperature, according
to the Langevin thermostat of Eq. (8).

The quantumparticles are describedby necklaces extended in the
imaginary time interval [0, ℏβ], withβ = 1/(kBT), following thequantum-
to-classical isomorphism.This imaginary time interval is divided intoM
slices, the so-called “beads”, leading to an effective classical system of
NM particles. The path integral Langevin dynamics we developed in
ref. 26 is very efficient, because the quantum harmonic forces and the
Langevin thermostat—thermalising the quantum degrees of freedom—

are evolved together bymeans of an exact propagator, without Trotter
breakup. The evolution of quantum particles in a thermal bath à la
Langevin represents a quantum Ornstein-Uhlenbeck dynamics.
Therefore, we dubbed our integration scheme as “path integral Orn-
stein Uhlenbeck dynamics (PIOUD)”. The algorithm is detailed
in ref. 26.

In order to evolve the system and to sample the thermal quantum
partition function, nuclear forces must be estimated at each iteration
by computing the gradients f = −∇qV(q). The potential energy surface
V(q) is evaluated by VMC, namely:

V ðqÞ=
�
Ψq

��HðqÞ
��Ψq

�
�
Ψq

��Ψq

� , ð12Þ

where jΨqi is the QMC wave function, which minimizes the expecta-
tion value of H(q) for each bead configuration q(k), according to the
Born-Oppenheimer approximation.

The electronic variational wave function depends on the coordi-
nates q(k) of the k-th bead in two ways. Directly, through the explicit
dependence on the ion positions provided by the localised basis set,
and in an indirect way, through the wave function parameters opti-
mised at each q(k), in compliance with the Born-Oppenheimer
approximation. While the former dependence is of leading order,
the latter can be neglected in a first approximation. A clever way to do
so is to average the optimal parameters across different beads, by
gaining a significant fraction of statistics in the QMC energy mini-
misation. More precisely, the beads are gathered in groups of Ngroups

members each, to share the same set of wave function parameters.
This is called “bead grouping approximation”, and it has been intro-
duced in ref. 26.

Once the number of groups Ngroups is set for the beads, the elec-
tronic wave function is optimised at each new ionic position generated
by the dynamics. This is done by energy minimisation via the most
advanced optimisation techniques57,63. Between two consecutive steps
of ion dynamics, one needs to perform Nopt steps of energy mini-
misation, in an iterative fashion. Nopt must be large enough to con-
verge the wave function for each new ionic configuration. Thus, this
parameter is tuned such that the BO approximation is fulfilled, and the
dynamics follows the correct PES along the PIOUD trajectories.

During the dynamics, the GTO exponents in both the Jastrow and
the AGP part of the wave function are kept frozen to make the simu-
lation stable. Due to the continuity of the nuclear trajectories, the
number of energy minimisation steps is significantly smaller than the
one required for a wave function optimisation from scratch.
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There is a set of sensitive parameters one needs to tune to have
stable and unbiased simulations. They are:
(i) Convergence for quantumeffects set byM. In our calculations, we

used M= 32 for T = 250–400 K, M =64 for T = 150–200 K, and
M= 128 for T = 50–100 K. The bead grouping approximation is
made with Ngroup = 1. Therefore the whole ring shares the same
wave function parameters, except for the nuclear coordinates;

(ii) Time step δt for the integration of the equations of motion. We
used δt = 1 fs for a controlled time integration error, yielding a
difference between the virial and primitive estimators of the
quantum kinetic energy below a 25 mHa threshold along all the
trajectories;

(iii) A stable target temperature is reached despite the QMC noise by
setting the parameters γBO and Δ0, defining the α matrix in Eq.
(10). We used γBO= 0 and Δ0 = 0.5δt, optimal values for other
similar systems, such as the Zundel ion26. Indeed, the simulation is
efficient when the damping in the BO sector is minimised. The
thermalisation of the system is guaranteed thanks to the optimal
damping condition68 applied to the internal modes of the ring-
polymer, with the damping parameter of the center-of-mass
translational modes set to 0.231 fs−1;

(iv) To enforce the fulfilment of the BOapproximation, we allowed for
Nopt = 5 iterative wave function optimisation steps at each MD
iteration, such that the electronic energy minimum is reached
within the statistical accuracy for every ionic configuration, and
the PES is sampled without stochastic bias.

Classical Langevin dynamics. For classical MD calculations, we used
an improved variant of the original algorithmdeveloped by Attaccalite
and Sorella25. This variant has been detailed in refs. 26,67. It includes a
better integration scheme, involving a Langevin noise touching both
coordinates and momenta, which are therefore correlated.

As in the PIOUD calculations, relevant parameters are the time
step δt = 1 fs, the QMC noise correction parameters γBO =0.2 fs−1 and
Δ0 = δt, and the number of QMC optimisation steps per nuclear itera-
tion Nopt = 5.

Error estimates
Datapoints obtained from stochastic sampling, based either on the
electron or on the joint electron-nuclear distribution, are provided
with the associated stochastic error bars, which are obtained via the
reblocking technique69. The error bars on the fitting parameters plot-
ted in Supplementary Fig. 14 of the SI are yielded by the error propa-
gation in the Levenberg-Marquardt solution of the nonlinear least
squares curve-fitting problem. In all cases, they represent the standard
deviation of the data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
The TurboRVB code54 used to carry out our QMC-driven PIMD calcu-
lations is available under theGPLv3 license. It can be downloaded from
the following open source repository: https://github.com/sissaschool/
turborvb. In this work we have used Sandro Sorella’s legacy version
(v1.0.0), which can be found at this link: https://github.com/
sissaschool/turborvb/releases/tag/v1.0.0.
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