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Nonlinearity synergy: An elegant strategy
for realizing high-sensitivity and
wide-linear-range pressure sensing

Rui Chen 1, Tao Luo 1, Jincheng Wang 1, Renpeng Wang 1, Chen Zhang 1,
Yu Xie1, Lifeng Qin 1, Haimin Yao 2 & Wei Zhou 1

Flexible pressure sensors are indispensable components in various applica-
tions such as intelligent robots and wearable devices, whereas developing
flexible pressure sensors with both high sensitivity and wide linear range
remains a great challenge. Here, we present an elegant strategy to address this
challenge by taking advantage of a pyramidal carbon foam array as the sensing
layer and an elastomer spacer as the stiffness regulator, realizing an unpre-
cedentedly high sensitivity of 24.6 kPa−1 and an ultra-wide linear range of
1.4MPa together. Such a wide range of linearity is attributed to the synergy
between the nonlinear piezoresistivity of the sensing layer and the nonlinear
elasticity of the stiffness regulator. The great application potential of our
sensor in robotic manipulation, healthcare monitoring, and human-machine
interface is demonstrated. Our design strategy can be extended to the other
types of flexible sensors calling for both high sensitivity and wide-range line-
arity, facilitating the development of high-performance flexible pressure sen-
sors for intelligent robotics and wearable devices.

The keen tactile sensing of humans relies on numerous mechan-
oreceptors that can detect pressure in a wide range (up to 300 kPa)
with a low detection limit (down to 1 Pa)1–4. In robotics, the achieve-
ment of dexterity of robots demands high-performance flexible sen-
sors for pressure sensing5–7. For example, dexterous robotic
manipulation such as grasping objects with unforeseen weight or fra-
gility necessitates pressure sensors with a high sensitivity and a wide
linear range8. The past five years witnessed the fast development of
flexible pressure sensors from low sensitivity and narrow range to high
sensitivity and wide range9–14. However, pressure sensors with high
sensitivity normally exhibit a narrow range or poor linearity15–22, while
those with a wide linear range tend to have low sensitivity23–31.

To date, various methods have been developed to enhance the
performance of the flexible pressure sensor. To enhance the sensitivity
of flexible pressure sensors, a variety of surface topological micro-
structures, such as pyramidal32–34, interlocked35,36, cylindrical37, and
domed microstructures38, were employed in the pressure sensing

layer. However, sensors based on these surficial microstructures nor-
mally exhibit sensitivity lower than 10 kPa−1, which is the minimum
sensitivity requirement for tactile sensing in dexterous robotic
manipulation8. For higher sensitivity, sensing layers with interior
microscopic porous structures and therefore notable deformability
were adopted in pressure sensors39–41. Nevertheless, the aforemen-
tioned strategies, rooted in either surficial topologicalmicrostructures
or interior microscopic porosity, suffer from a narrow linear range no
more than 100 kPa. To extend the linear range, hybrid surficial topo-
graphical microstructures, which combine micro-dome and micro-
cone arrays, were applied in the sensing layers, resulting in a remark-
able extension of the linear range to 1MPa. However, sensors based on
the hybrid surficial topographicalmicrostructures showa sensitivity of
only around 0.3 kPa−1 23. To reconcile the intrinsic conflict between the
high sensitivity and wide linear range in the traditional flexible pres-
sure sensors, sensing layers with a hierarchical microstructure based
on a porous lattice structure were applied and proven to be an
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effective strategy for achieving a moderate sensitivity of 4.7 kPa−1

across a broad linear range of 1MPa31. For a further augment of sen-
sitivitywithin this ultra-wide linear rangeof 1MPa, a hybrid hierarchical
structure integrating microscopic gradient pores and pyramidal sur-
ficialmicrostructurewas employedwithin aflexible sensor42, yielding a
sensitivity surpassing 10 kPa−1. However, fabricating the gradient pores
with high controllability in its geometrywas proven challenging, which
thereby compromised the reproducibility and reliability of this strat-
egy. In addition, the principle governing the efficacy of this strategy
remain obscure, making it quite difficult to further improve and opti-
mize this approach.

Herein, we conceive a novel strategy for developing flexible pie-
zoresistive pressure sensors with both high sensitivity (>10 kPa−1) and
wide linear range (>1MPa). First, to achieve high sensitivity, we adopted
a double-sided pyramidal carbon foam (DPyCF) array as the sensing
layer, which integrates tapering microstructure43–48 and microscopic
porosity49–53, two prevalent approaches to enhancing sensitivity of the
piezoresistive materials. The hierarchal 3D porous structure and high
compressibility of such carbon foam-based sensing layer endow it with
a highly nonlinear piezoresistivity48,54,55. On the other hand, to extend
the range of pressure sensing, we introduced an elastic spacer sur-
rounding the sensing layer, called stiffness regulator (SR), to regulate
the load share on the sensing layer. The requirement for high sensitivity
at low pressure as well as the pressure sensing at high pressure neces-
sitates a stiffening behavior (namely nonlinear elasticity) of the SR
under compression. The synergy between the nonlinearities in the
elasticity of the SR and the piezoresistivity of the sensing layer gives rise
to the high linearity of the piezoresistive pressure sensor.

To demonstrate the aforementioned strategy, we developed a
prototype following this strategy,whichexhibits a sensitivity as high as
24.6 kPa−1 and excellent linearity [coefficient of determination (R2) >
0.99] in a range from 0 to 1.4MPa. Our sensor was demonstrated
capable of grasping and lifting not only rigidmetal blocks (~900 g) but
also soft and fragile tofu (~40 g). Moreover, our sensor was found able
to measure various physiological pressure signals ranging from
~200Pa to ~1.2MPa. A 4 × 4 array of our sensors was applied to a
keypad of a password lock, realizing a code-pressure double encryp-
tion. The design philosophy behind our sensor for achieving both high
sensitivity and wide linear range can be further extended to the pie-
zocapacitive pressure sensors and beyond.

Results
Accomplishment of high sensitivity together with a wide lin-
ear range
Figure 1a shows the structuraldesignof our sensor (seeSupplementary
Fig. 1 for the details of the DPyCF@SR sensor fabrication process),
which consists of a double-sided pyramidal carbon foam(DPyCF) array
serving as the sensing layer and an elastomeric (Ecoflex rubber) spacer
serving as the stiffness regulator (SR). The sensing layer was fabricated
using a 3D dynamic focusing laser technology followed by a pyrolysis
process, with ultrastructure and composition being characterized by
scanning electronmicroscopy (SEM), energy dispersive spectrometer,
Raman spectroscopy, and X-ray diffractometer (Supplementary Figs. 2
and 3). The sensing layer is nested inside the SR (Supplementary Fig. 4)
and together are packaged by a 50μm thick polyimide (PI) film with a
pairof 20/30 nmCr/Auelectrodes, resulting in apressure sensor called
DPyCF@SR. The piezo-resistivity of the sensing layer was character-
ized (Supplementary Fig. 5), and the electrical resistance (R) shows an
ultra-nonlinear decay with the applied compressive strain (ε), which
can be perfectly (R2 > 0.98) fitted by an exponential function as:

R=R0 expð�ε=αÞ ð1Þ

where R0 is the resistance at zero strain and α is the decay constant
characterizing thedecaying rateof the resistancewith the compressive

strain. It was demonstrated that the decay constant (α) can be con-
trollably regulated in a range from 0.12 to 0.22 by tuning the aspect
ratio (height over base) of the micro-pyramid (Supplementary Fig. 6
and Supplementary Note 1). The relative change of electrical current
(4I=I0) caused by compressive strain (ε), according to Ohm’s law, is
thereby given by (Fig. 1b):

4I
I0

=
R0 � R

R
= exp ε=α

� �� 1 ð2Þ

On the other hand, themechanical behavior of the ensemble of SR
and the sensing layer (DPyCF) under compression was also char-
acterized (Supplementary Fig. 10). The relationship between the
nominal pressure (p), which is defined as the applied force divided by
the area enclosed by the outer perimeter of the SR, and the com-
pressive strain (ε) exhibits a nonlinear dependence, which can be
perfectly (R2 > 0.99) described by an exponential function as (Fig. 1b):

p=βE0 expðε=βÞ � 1
� � ð3Þ

where E0 is the tangential modulus of the ensemble of SR and the
sensing layer (DPyCF) at zero strain and β is the stiffening constant. It
was demonstrated that the stiffening constant (β) can be controllably
regulated in the range from 0.11 to 0.18 by tuning the mixing ratio of
two building compositions when preparing the SR (Supplementary
Fig. 11). Based on Eqs. (2) and (3), the sensitivity (S) of the sensor then is
given by

S � d 4I=I0
� �

dp
=

1
αE0

exp
1
α
� 1

β

� �
ε

� 	
ð4Þ

Equation (4) indicates that the dependence of the sensitivity (S)
on the compressive strain (ε) vanishes when α =β, resulting in the ideal
linearity (R2 = 1). Guided by this theoretical finding, we designed a
DPyCF@SR pressure sensor by using a sensing layer and SRwith decay
constant α =0:117 and stiffening constant β=0:122 (Supplementary
Fig. 12a, b). The as-prepared sensor exhibits a linear variation (R2 =
0.999) of 4I=I0 in an ultra-wide range from 0 to 1.4MPa with a high
sensitivity of 24.6 kPa−1, as shown in Fig. 1c. The linear sensing factor
(LSF), the product of the sensitivity and the linear sensing range56, of
our DPyCF@SR sensor, reaches 34440, whichoverweighs the values of
any pressure sensors found in the literature9–21,23–31,57, as shown in
Fig. 1d and Supplementary Table 1.

Equation (4) also implies that the linearity of the sensor degrades
with the discrepancy between α and β. We numerically calculated the
linearity of theDPyCF@SR sensorwithdifferent combinations ofα and
β and found that a satisfactory linearity (e.g., R2 > 0.99) can still be
ensured as long as β falls in a range as follows (Fig. 1e):

0:68α +0:01<β<2:7α1:5 +0:04 ð5Þ

The above condition was experimentally verified by six
DPyCF@SR sensors with different combinations of decay constant (α)
and stiffening constant (β) (Supplementary Fig. 13 and Supplementary
Table 2).

Performance of pressure sensing
To demonstrate the respective importance of the DPyCF sensing layer
and the SR in securing the high sensitivity and wide linear range of the
pressure sensor, we conducted a comparative studywith three control
samples. We first replaced the sensing layer with a plain carbon foam
and kept the SR unchanged, the resulting pressure sensor (denoted as
CF@SR) shows a much lower sensitivity and a similar linear range as
compared to the DPyCF@SR sensor (Fig. 2a). We then removed the SR
from the sensor and applied the DPyCF as the sensing layer, the
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resulting SR-free pressure sensor (denoted as DPyCF) exhibits a higher
sensitivity but a much narrower linear range as compared to the
DPyCF@SR sensor (Fig. 2a). Moreover, we adopted an SR with a larger
stiffening constant (β=0:21) and the same DPyCF sensing layer with
decay constant (α =0:11), the resulting pressure sensor (denoted as
DPyCF@SR2) shows a lower sensitivity and poor linearity as compared
to the DPyCF@SR sensor (Fig. 2a). Above results demonstrate that the
synergy of the nonlinearities in the piezo-resistivity of the sensing layer
and elasticity of the SR is indispensable for ensuring high sensitivity
and wide linear range together.

Toevaluate the stability and robustnessof theDPyCF@SRsensor, a
cyclic pressure with an amplitude of 130 kPa and frequency of 2Hz was
applied to the sensor. The output signal shows that even after 50,000
loading/unloading cycles, the sensor still works well without any nota-
ble degradation in performance (Fig. 2b). To further examine the anti-
fatigue performance of our sensor, we performed a cyclic compression
test with an elevated pressure of 1MPa. The results (Supplementary
Fig. 14) show that the DPyCF@SR sensor can still output an undamped
electrical signal after ~7800 cycles. Structural characterization showed
that the integrity of the pyramidal porous structure of the DPyCF
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a Exploded view illustrating the design layout of the DPyCF@SR sensor.
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tures. LSF: linear sensing factor. e Numerically calculated linearity of the
DPyCF@SR sensors with different combinations of decay constant (α) and stif-
fening constant (β).
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sensing layerwaswell preservedduring the fatigue test (Supplementary
Fig. 15). The excellent reproducibility of the high sensitivity and ultra-
wide linearity of the DPyCF@SR sensor was demonstrated by the con-
sistent performance of eight samples we prepared, as shown in Fig. 2c.
Toevaluate thedynamic responseof theDPyCF@SR,wegently placed a
mass block (~70 g) on a DPyCF@SR sensor followed by a quick lift. The
response and recovery times of the sensor are 8.4ms and 9.2ms
respectively (Fig. 2d), which were faster than those of the human skin
(30–50ms)58. With its high sensitivity and wide linear range, our
DPyCF@SR sensor canmeasure a stepwise pressure increment from40
kPa to 1150 kPa and the output was considerably stable (Fig. 2e). In
addition, the repeatability and accuracy of the DPyCF@SR sensor were
verified at diverse pressure levels of 4, 56, 225, and 670kPa (Supple-
mentary Fig. 16). The pressure detection limit was measured to be 1 Pa
even in a cyclic loading mode (Supplementary Fig. 17), which is com-
parable to a commercial high-resolution pressure sensor (SMT 200N-S,
AiLogics, USA). More importantly, our DPyCF@SR pressure sensor was
found able to detect a very tiny pressure even at a highly pressurized
state. This unique performance of the DPyCF@SR allowed us to suc-
cessfully detect a small change (~1.5 kg) of the load weight in a 1.5-ton
sedan (Supplementary Fig. 18, Fig. 2f–h, and Supplementary Movie 1).
Such a high sensitivity (0.09%) in sensing a pressure change in a large
pressure not only exceeds the scope of most traditional pressure sen-
sors but also surpasses the sensitivity of human skin (7%)59.

Tactile sensing for robotic manipulation
Dexterous robotic manipulation requires high-sensitivity and wide-
rangedetection of the interactive forcebetween the robot andobjects,

which is commonly realized by employing multiple pressure sensors.
This greatly increases the hardware complexity and themanufacturing
cost of the robot. The high sensitivity and wide linear range of
DPyCF@SR sensor enable us to achieve dexterous robotic manipula-
tion with one sensor.

To demonstrate the versatility of our DPyCF@SR sensor in sen-
sing both tiny force and large force for multi-tasking adaptation of
roboticmanipulation, we designed a robotic grasping system, inwhich
a robotic gripper equipped with a DPyCF@SR sensor was applied to
grasp a tofu (bean curd) block (~40 g) and a steel block (~900 g), two
objects with distinct features, as shown in Fig. 3a. For comparison, we
adopted a commercial pressure sensor (Tekscan 5027, USA) as a
control sample. We designed a closed-loop algorithm (Supplementary
Fig. 19) to control the grasping force of the gripper based on the
pressure sensing signal received by the pressure sensors (Fig. 3b). The
process beginswith a lower initial grasping force, followedby a sensor-
guided lifting trial. If the lifting is unsuccessful, a higher grasping force
will be applied, followed by another lifting trial. Such a grasping-and-
lifting process will be repeated until a pressure signal with little fluc-
tuation is detected (see Supplementary Note 2 for details closed-loop
algorithm).

Figure 3c shows the pressure detected by the DPyCF@SR sensor
during the grasping-and-lifting process of the tofu block. The curve
shows a stable pressure signal which indicates that the DPyCF@SR
sensor accurately perceives the forces at different stages in the
grasping process, enabling the gripper to grasp the tofu block suc-
cessfully (Supplementary Movie 2). In contrast, the pressure signal
detected by the Tekscan sensor is quite unstable (Fig. 3d), which fails
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to guide the gripper to exert an appropriate grasping force on the tofu
block, resulting in an unsuccessful lifting and crush of the tofu block
(Supplementary Movie 3).

Figure 3e displays the pressure recorded by DPyCF@SR sensor in
the grasping-and-lifting process of the steel block (~900g). The
DPyCF@SR sensor with its ultra-wide linear range accurately detects
the gradually increasing grasping pressure (100–800 kPa), dictating
the gripper to exert sufficient gripping force on the steel block (Sup-
plementary Movie 4). In contrast, the Teksacn sensor shows an
unchanging pressure peak (~375 kPa) from 40 s, implying the satura-
tion of itsmeasurement range (375 kPa). Based on such a false pressure
input, the control algorithm would make a misjudgment that the
gripper has grasped the object. The procedure thus is terminated,
resulting in an unsuccessful lifting (Fig. 3f and SupplementaryMovie 5).

Physiological signal monitoring
The high sensitivity and wide linear range of our DPyCF@SR pressure
sensormake it quite suitable formonitoring the physiological pressure
signals of humans which range from a few hundred pascal to mega-
pascal (Fig. 4a).

The pulse waveforms of the radial artery are often used in non-
invasive and real-time diagnosis of cardiovascular problems, such as
hypertension and arteriosclerosis60,61. The high sensitivity and fast
response of our DPyCF@SR pressure sensor enable the capture of key
features of the pulse waveform. Figure 4b shows the real-time current
response (~200 Pa) of a DPyCF@SR sensor attached to the wrist of a
volunteer. It can be seen that the pulse signals with an average fre-
quency of ~78–80 beats per minute can be precisely captured. More-
over, the typical pulse waveforms, including the percussion wave (P

wave), tidal wave (T wave), and diastolic wave (D wave), can be suc-
cessfully recognized (inset of Fig. 4b), implying the great potential of
the DPyCF@SR sensor in healthcaremonitoring and disease diagnosis.
Figure 4c shows the pressure signal detected by a DPyCF@SR sensor
attached to the inner side of a mask worn by a volunteer. The current
signals synchronizes with the respiratory pace, indicating the potential
of our sensor to monitor the respiratory status. We also attached the
DPyCF@SR sensor to the knee joint of a volunteer to monitor knee
flexion. The repetitive triangle wave signals with flexion-dependent
amplitude were obtained (Fig. 4d), implying the high flexibility of the
sensor and its capability for quantitative detection of body motion.
Moreover, we evaluated the detection capability of the DPyCF@SR
sensor under higher pressure (~1.2MPa) by attaching a sensor to the
sole of a volunteer. A repetitive squarewave with stable amplitudewas
received when the volunteer was walking (Fig. 4e and Supplementary
Movie 6), indicating the great application potential of the DPyCF@SR
sensor in pedometer and tread monitoring

Code-pressure double encryption
Most keypad locks can be readily unlocked by an unauthorized person
who knows the code numbers, implying a significant security risk. This
issue could be addressed by introducing the keystroke pressure as a
biometric authentication so as to realize the code-pressure double
encryption.

To demonstrate this concept, we developed a keypad (Fig. 5a),
which consists of 4 × 4 DPyCF@SR sensor array (see Supplementary
Fig. 20 for details on the sensor array fabrication process). All the sen-
sors exhibit a consistent current change in response to the applied
pressure (Fig. 5b). A microcontroller was used for data collection, and
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gripper equipped with a Teksacn sensor fails to grasp and lift a soft tofu block

(~40g), resulting in the crush of the tofu block. e Robotic gripper equipped with a
DPyCF@SR sensor successfully grasps and lifts a steel block (~900g). f Robotic
gripper equipped with a Teksacn sensor fails to grasp and lift the steel block
(~900g) due to the saturation of measurement range.
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theoutput voltage rangeof thehardware circuit is 0–3.3 V.Wedefined a
keystroke as “light” if the output voltage is less than a prescribed
threshold (e.g., 1.5 V) and “hard” if it is greater than the threshold.
Considering the fact that the “light” and “hard” press varies from dif-
ferent users, a training algorithm based on the pressing data obtained
from a specific user can be used to determine the threshold for distin-
guishing the “light” and “hard” presses of the user. The hardware and
software components of the code-pressure double encryption lock
system consist of a data acquisition circuit equipped with a DPyCF@SR
sensor array and a host computer program developed by Unity3D
platform, respectively. The pressure data is transmitted to a host
computer via serial communication, which is parsed and displayed
simultaneously to enable human-machine interaction (Fig. 5c). A pass-
word can be preset through a user interface shown in Fig. 5d, where the
red buttons denote hard keystrokes and the blue buttons denote light
keystrokes. For example, by clicking the buttons of red 2, blue 7, red 4,
and blue 6 in succession, a password of 2(hard)-7(light)-4(hard)-6(light)
is set. When operating, the program would detect the password input
through the DPyCF@SR-based keypad. If the signals received are
2(light)-7(hard)-4(hard)-6(light) (Fig. 5e and Supplementary Movie 7),
the lock cannot be unlocked although the code numbers are correct.
Only when the received signals are 2(hard)-7(light)-4(hard)-6(light)
(Fig. 5f and Supplementary Movie 7), which means both code numbers
and the stroke pressures match with the preset, the lock is unlocked.
Such code-pressure double encryption endows the lockwith higher-tier
security in comparison with traditional keypad locks.

Discussion
Traditionalflexible pressure sensors canbarely achieve high sensitivity
and wide linear range together. Here, we tackled this problem by
adopting a sensing layer with nonlinear piezo-resistivity and a stiffness
regulator with nonlinear elasticity. By synergizing the piezoresistive
nonlinearity of the sensing layer and the elastic nonlinearity of the
stiffness regulator, high-sensitivity and wide-linear-range pressure
sensing are achieved simultaneously. The sensor we developed exhi-
bits an unprecedentedly high sensitivity (24.6 kPa−1) over an ultra-wide
linear range (1.4MPa), excellent linearity (R2 = 0.999), and outstanding
mechanical durability (50,000 cycles). The great application potential
of our sensor in tactile sensing for robotic manipulation, healthcare
monitoring, and human-machine interaction has been demonstrated.
Our design strategy for achieving both high sensitivity and wide linear

range, which is the synergy of the nonlinearities in mechanical and
electrical behaviors, can be further extended to the other types of
pressure sensors such as piezocapacitive sensors (Supplemen-
tary Note 3).

Methods
Fabrication of the sensing layer
On a melamine foam (MF, Sihang Nanotechnology Co., China) block
(20× 20×4mm3, 32mg cm−2), a 12 × 12 micro-pyramids array was pro-
duced on both sides by carvingwith an infrared picosecond laser (PINE-
1064-20, China). Then, the pyramidal foam was cleaned by ultra-
sonication for 10min in deionized water. After drying, the pyramidal
foam was placed into a tubular furnace and heated from room tem-
perature to 650 °C at a rate of 5 °C/min under the atmosphere of
99.999% nitrogen and kept for 30min for pyrolysis. After cooling down
to room temperature in the furnace, a double-sided pyramidal carbon
foam array was obtained and sliced into 7 × 7mm2 pieces to be used as
the sensing layers of the pressure sensor (Supplementary Fig. 1).

Fabrication of the stiffness regulator
Parts A and B of the Ecoflex rubber (Smooth-On Ecoflex 0030, USA)
were mixed in 1:1 by weight in a petri dish. Then, the mixture was left
for 10min to degas completely before curing at 70 °C for 5 h. After
that, the cured rubber with a thickness of approximately 0.8mm was
peeled off from the petri dish and cut into a square frame (outside
dimensions 9 × 9mm2, inside dimensions 7 × 7mm2) with laser cutting,
which is to be used as a stiffness regulator.

Fabrication of the DPyCF@SR electrode and packaging of the
DPyCF@SR sensor
To fabricate the DPyCF@SR electrode, an 8 × 8 cm2 polyethylene ter-
ephthalate (PET, Dongguan Hengjie Plastic Raw Material Co., Ltd,
China) film was cleaned with deionized water and dried in a drying
oven. A 20 nm thick titanium adhesive layer and a 30 nm thick gold
layer were sputtered on the PET film sequentially with a magnetron
sputtering apparatus (EXPLORER-14, USA). Then, the gold layer was
patterned with a 355 nm ultraviolet laser beam (SEAL-355-10S, JPT,
China). After that, the PET substrate with the patterned gold layer was
cut into small pieces using laser cutting, which will be used as elec-
trodes. Finally, the as-prepared electrode, the double-sided pyramidal
carbon foam array (sensing layer), and the stiffness regulator were

0 2 4 6 8
0

1000

2000

3000

4000

5000

Δ
I/I

0
Time (s)

0 10 20 30 40 50
0

20
40
60
80

100
120

Δ
I/I

0

Time (s)

20.6 20.8 21.0 21.2

0
2
4
6
8

0 5 10 15 20 25 30
0

10

20

30

40

50

Δ
I/I

0

Time (s)
e

cba

d

Respiration
（~2.2 kPa）

Artery pulse
（~200 Pa）

Knee flexion
（~160 kPa）

Tread
（~1.1 MPa） 0 5 10 15 20

0

10000

20000

30000

40000

Δ
I/I

0

Time (s)

Fig. 4 | Detection of various physiological signals with DPyCF@SR sensor. a Important physiological signals for healthcare monitoring. Detection of b artery pulse,
c respiratory rate, d knee flexion, and e tread.

Article https://doi.org/10.1038/s41467-023-42361-9

Nature Communications |         (2023) 14:6641 6



assembled and packaged with 50 μm thick PI tape (3M 7413D, USA),
resulting in a DPyCF@SR sensor.

Characterizations and measurements
A scanning electron microscope (SUPRA55 SAPPHIRE, Zeiss Cor-
poration, Germany) equipped with an energy dispersive spectro-
meter (EDS) was used to characterize the structure and morphology
of the MF and DPyCF. A confocal Raman spectrometer (lDSPeC
ARCTlC; 532 nm laser wavelength, 50x objective lens) was used to
characterize the structural characteristics of the DPyCF. An X-ray
diffractometer (XRD, XRD-7000X) with Cu kα radiation (λ =
0.15406 nm) was used to identify the phase structure. The pressure
applied to sensors during tests was controlled by amotorizedmotion
platform (FUYU, FLS40, China) with a motion controller (FUYU, FSC-
2A, China). Pressure acquisition was done via a parallel beam pres-
sure transducer (HY, HYPX-017, China). The electrical resistance of
the DPyCF@SR was measured by a digital source meter (Keithley,
2400, USA).

Robotic manipulation application
A motorized robotic arm (Universal Robots, UR5, Denmark) was
combined with a servo-actuated robotic gripper (ChangingTek,

CTM2F110, China) for grasping selected objects including a steel block
and a tofu block. The gripper was equipped with a real-time pressure
sensor that transmitted data to the host computer via serial commu-
nication. The movement of the robotic arm and gripper was deter-
mined using a sensor-guided closed-loop control algorithm. To
maintain consistency in manipulation, the sensors (DPyCF@SR or
Tekscan sensors) were placed beneath a piece of scotch tape (3M
Scotch 810, USA) and then attached them together to the gripper’s
surface. The frictional coefficient between the scotch tape surface and
the objects for the grasping test was measured to be 0.15 for the steel
block and 0.04 for the tofu block.

Fabrication of the sensor array
To develop upper and lower flexible electrodes for the sensor array, a
12.5 µm thick copper layer was patterned on a PI film and partially
covered by a 25 µm thick insulation layer. The uncovered areas of the
copper layer (4 × 4 array of square patches) can form conductive
electrical contacts with the pressure-sensing layer when they are
sandwiched. The DPyCF array and the SR for the sensor array were
fabricated as previously described. Then, screen printing was used to
pattern a glue layer on the insulation layer. Finally, the DPyCF array,
the SR, and flexible printed circuits with the glue layer were
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laminated together to form the DPyCF@SR sensor array (Supple-
mentary Fig. 22).

Human research participants
Three males aged 23–29 participated in the physiological signals
monitoring and high-resolution pressure sensing study. The purposes
and significances of the experiment were informed to the participants
before the survey. Participants provided informed consent before the
experiment.

Ethics statement
All procedures during the testing of human participants are approved
by the Medical Ethics Committee of Xiamen University. The informed
consent of all participants was obtained prior to inclusion in this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon request.

Code availability
The codes generated in this study are available from the correspond-
ing authors upon request.
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