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Reconstructing disease dynamics for
mechanistic insights and clinical benefit

Amit Frishberg1,2,3,4,11, Neta Milman1,11, Ayelet Alpert1, Hannah Spitzer 2,5,
Ben Asani 6, Johannes B. Schiefelbein6, Evgeny Bakin4, Karen Regev-Berman4,
Siegfried G. Priglinger6, Joachim L. Schultze 3,7,8, Fabian J. Theis 2,9,10,12 &
Shai S. Shen-Orr 1,4,12

Diseases change over time, both phenotypically and in their underlying
molecular processes. Though understanding disease progression dynamics is
critical for diagnostics and treatment, capturing these dynamics is difficult due
to their complexity and the high heterogeneity in disease development
between individuals. We present TimeAx, an algorithm which builds a com-
parative framework for capturing disease dynamics using high-dimensional,
short time-series data. We demonstrate the utility of TimeAx by studying
disease progression dynamics for multiple diseases and data types. Notably,
for urothelial bladder cancer tumorigenesis, we identify a stromal pro-invasion
point on the disease progression axis, characterized by massive immune cell
infiltration to the tumor microenvironment and increased mortality. More-
over, the continuous TimeAx model differentiates between early and late
tumors within the same tumor subtype, uncovering molecular transitions and
potential targetable pathways. Overall, we present a powerful approach for
studying disease progression dynamics—providing improved molecular
interpretability and clinical benefits for patient stratification and outcome
prediction.

Diseases are dynamicprocesses encompassing amultitude of changes.
These range from intra-cellular molecular states, such as those
occurring following cellular differentiation or activation, to changes in
systemic molecular, cellular and physiological states. Identifying the
underlying dynamics of diseases at high-resolution enables their
quantitative comparison and is critical for designing novel preventive
and therapeutic strategies to improve health. Time-series experi-
mental designs provide an opportunity for studying disease dynamics

and the variability across patients. However, while disease progression
rate is patient-specific, time-series data is usually collected at fixed
intervals. This reduces the efficiency of comparing progression
dynamics when using time as a predictive variable and forces the
clustering of data from different time points to obtain some level of
shared dynamics (Fig. 1A). Such attempts are further confounded by
the fact that disease progression dynamics are often orchestrated by
multiple biological processes simultaneously, requiring modeling to
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be performed in a high dimensional space. Dimensionality reduction
methods, such as Principal Component Analysis (PCA), Factor Analysis
(FA)1, as well as state-of-the-art trajectory inference methods such as
diffusion maps (DMs)2, may be driven by time-independent variation,
yielding low interpretability and making the inference of patients’
disease progression dynamics non trivial3. Recent advances in this area
focused on the calculation of differentially expressed features over
time, but only when comparing extreme states, such as disease versus
controls4,5, rather than describing the global dynamics of the disease.
Therefore, forming a model for disease progression remains challen-
ging, even when large time-series data are available.

Here, we present TimeAx, a method that captures a representa-
tion of disease dynamics over time based on time-series data from
multiple individuals. Akin to multiple sequence alignment, a histori-
cally transformative tool, which enabled biologists to build a
quantitative-mechanistic understanding of DNA and protein
functions6, TimeAx performs multiple trajectory alignment providing
major benefits for molecular interpretation and clinical diagnosis of
both acute and chronic diseases.Wedemonstrate the utility of TimeAx
for multiple time-series data types, including patients’ transcriptomes

and features extracted frommedical imaging. Overall, our framework
allows for a high resolution understanding of disease progression
dynamics, discovery of underlying molecular mechanisms, and paves
the way for better clinical decision making—including the design of
new clinical interventions.

Results
TimeAx reveals shared disease dynamics across multiple
patients
Patient cohorts tend to display high heterogeneity in patients’ disease
courses, masking shared disease progression dynamics and the
underlying biological mechanisms that are shared across all patients.
Often, the naive solution is clustering patients into disease-specific,
clinical stages or subtypes, which many times fails to capture the
continuous dynamics of the disease and its progression over time
(Fig. 1A). To overcome this problem, TimeAx quantitatively models a
representation of the shared disease dynamics over time. TimeAx
relies solely on measured features (i.e, genes, clinical markers, etc.)
collected longitudinally frommultiple patients (3 or more time points
per patient). Importantly, patient time points can differ in number and

Fig. 1 | TimeAxdiscovers the shareddisease dynamics acrossmultiple patients.
A Disease progression is not captured by patient subtyping. While current patient
stratification and disease state comparison requires clustering of patients into
coarse subgroups (top), understanding disease dynamics as a common ground
between patients’ disease trajectories enables patient stratification in a higher
resolution (bottom). B TimeAx seed features selection process. TimeAx selects a
“conserved-dynamics-seed”with shared dynamics across all subjects. In the heatmap
(left), each row is a patient and each column is a sample collectedat a different time.

Each feature spans multiple patients (multiple rows) and is also presented as a line
plot (right). C An illustration describing TimeAx’s utility for revealing the shared
disease progression dynamics and the projection of patients-specific disease
pseudotime positions, integrating the differences between patients’ disease tra-
jectories over time.DDisease pseudotime can be utilized to discover novel disease
mechanisms as well as to support new clinical frameworks for patient stratification
and outcome prediction. We thank Yuval Abraham for his contribution in the
design and creation of (A, C and D).
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in collection time. Broadly, the TimeAx process consists of three steps
(Fig. S1A, seeMethods): First, a feature selection step, in which TimeAx
uses either a user-predefined or an unsupervised, computationally-
selected, set of features whose dynamics are loosely similar across
patients (“conserved-dynamics-seed”). While not directly associated
with the hidden disease progression axis, their shared dynamics point
toward their ability to serve as the backbone for the comparison
between patients’ disease trajectories (Fig. 1B). Second, TimeAx builds
a model, which approximates the shared dynamics across all patients’
disease trajectories (Fig. 1C). Finally, TimeAx can leverage themodel to
identify the disease state of a particular individual at a particular time
point, referred to as ‘disease pseudotime’. By capturing a shared
representation of disease progression dynamics across patients,
TimeAx-inferred disease pseudotime can simulate patient-specific
disease states, discovering disease progression-related mechanisms
and providing predictive clinical utility. By explicit modeling of sample
identity and sequential sampling as well as iterative building of the
trajectory, TimeAx outperforms standard models using chronological
time or trajectory inference methods (Fig. 1D; additional information
in Supplementary Note 3).

Disease pseudotime captures disease progression dynamics
better than chronological time
To showcase the molecular and clinical benefits of explicitly mod-
eling disease progression from longitudinal data, we contrasted
disease pseudotime with chronological time as a measure of disease
progression, in both simulations (see Supplementary Note 3 and
Fig. S1C–G) and real-life human disease datasets, using various data
types as input. We first focused on influenza infection, an acute
disease which affects the immune-system over short periods of time.
In this study, 17 healthy adults were challenged with influenza and
then profiled longitudinally for whole blood gene expression by RNA-
seq at 13–15 fixed time points within the first 108 h following infec-
tion (Fig. 2A, see Methods; total of 268 samples7, denoted as ‘Long-
itudinal influenza cohort’). As samples were collected at fixed times,
similarly across all patients, chronological time points could not be
used to differentiate between symptomatic and asymptomatic
patients (Fig. S2A). On the other hand, based on TimeAx modeling,
we projected disease pseudotime positions for all samples, observing
a clear gradual increase in disease pseudotime in symptomatic but
not in asymptomatic patients (Fig. 2B and Fig. S2B; p < 10−29), an
observation which we validated using two additional cohorts,
including both children and adult patients (Figure S2C–D; p < 10−47

and 0.0003 for longitudinal adult and children cohorts respectively,
see Methods). Moreover, we identified changes in molecular pro-
cesses over the course of disease pseudotime that would otherwise
bemissed using chronological time as a basis for disease progression
(Fig. 2C and Fig. S2E, see Methods). In addition to genes which were
associated with both disease pseudotime and chronological time, we
identified 3432 genes which were only significantly associated with
disease pseudotime, accounting for ~29% of the genes and 79% of
genes with any association. Of note, genes with positive associations
to disease pseudotime were highly enriched for multiple pathways,
including the interferon pathway and heme metabolism (Fig. S2F),
which is in concordance with previous findings emphasizing these
pathways as related to augmented immune responses8–11 with impli-
cations to disease severity and patients’ clinical outcomes during
influenza infections.

Diseases often advance slowly and progress at different rates
across patients, making it difficult to track their dynamics and under-
stand theirmolecular drivers. A common approach is to cluster patient
samples into disease subtypes, clinical or data-driven, which risks
losing the continuous aspect of disease dynamics due to large differ-
ences in rates of disease progression between patients12,13. To highlight
the ability of TimeAx to capture long-term processes of disease

progression through explicit quantitative modeling of disease
dynamics, we studied urothelial bladder cancer (UBC). UBC is a tumor
with high recurrence rates after cancer removal or treatment that
predominantly presents as a non-muscle invasive tumor with a small
proportion of patients progressing to its muscle-invasive form,
increasing the risk of developing metastases14. We trained a TimeAx
model using time series microarray data from 18 patients with recur-
ring non-muscle invasive bladder cancer who ultimately progressed to
advanced disease and who were sampled longitudinally during each
incidence of tumor recurrence (Fig. 2D, seeMethods; ‘UBC longitudinal
cohort’). In this cohort, each patient had 4–6 samples, collected up to
15 years apart from first to last recurrence12.

Using TimeAx, we inferred disease pseudotime positions for this
cohort, which exhibited high patient-specific variability when con-
sidering the chronological time that had passed since their primary
diagnosis (Fig. 2E). UBC disease pseudotime also uncovered strong
molecular associations, which could not be observed when modeling
the data using chronological time (Fig. 2F; using linear regression).
Specifically, we identified 7484 genes (~32% of the genes and 95% of
genes with detected signal) as significantly associated solely with dis-
ease pseudotime and not with the chronological time (Fig. 2F, upper
left quarter). These included known clinical biomarkers of UBC pro-
gression such as CCL2 and IFITM2, as well as negatively associated
SGPL1, a marker linked to positive outcomes in cancer15–17 (Fig. S3A).
This signal enhancementwas alsoobserved at thepathway level,where
a TimeAx based analysis identified stronger associations for known
cancer-related processes such as the epithelial-mesenchymal transi-
tion (EMT)18,19, TNFα signaling20, interferon gamma21 and G2/M cell
cycle checkpoint22 (Fig. S3B, see Methods; q < 10−48, q < 10−25, q < 10−19

and q < 10−9, respectively).
Dynamic modeling by TimeAx is applicable to multiple data

types, including imaging technologies commonly used for patient
diagnosis and monitoring in the clinic. To further demonstrate the
scope of TimeAx’s utility, we sought to apply TimeAx to age-related
macular degeneration (AMD), a chronic disease monitored periodi-
cally using low cost and non-invasive optical coherence tomography
(OCT)23. AMD is an irreversible progressive chronic disease of the
retina, resulting in decreased visual acuity and is one of the leading
causes of blindness in developed countries24,25. We generated a
TimeAx model of AMD progression, using segmented features,
generated from OCT scans of 157 patients, each with 15 to 79 con-
secutive scans over several years (4953 scans overall; AMD train
cohort). We then used the generated model to predict disease
pseudotime positions for an additional 34,836 OCT scans, collected
from 1641 different patients (Fig. 2G, seeMethods; 2–90 consecutive
scans per patient; denoted as ‘AMD test cohort’26). The original
analysis, based on OCT scans from a subset of both cohorts, used
chronological time but did not identify any changes in retinal mor-
phology associated with disease progression26. Consistent with this
finding, we observed that individuals’ disease pseudotime generally
increased over time, and was highly variable between patients
(Fig. 2H), suggesting that disease pseudotime accounts for patient
variability—which is only partly captured by chronological time.
Indeed, we observed a strong association between the increase in
disease pseudotime and the severity of the patients’ disease burden
as assessed by visual acuity (Fig. 2I, top), while no significant asso-
ciation was found for chronological time (Fig. 2I, bottom). Moreover,
we observed an increase, at higher disease pseudotime positions, in
the usage of anti-VEGF injections —a clinical procedure for reducing
the accumulation of retinal fluids that are associated with worst
visual acuity (Fig. S4A; p < 10−192). This supports the notion that ret-
inal fluids appear, mostly, in late stages of the disease (see Supple-
mentary Note 4 for full the AMD progression analysis, including the
identification of disease progression-related segmented features and
clinical applications). Taken together, these results suggest that
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TimeAx dynamic modeling enables molecular interpretability and
may provide increased clinical utility compared to naive longitudinal
monitoring based solely on chronological time.

TimeAx uncovers an advanced tumor state with unfavorable
clinical outcomes
To further highlight the utility of TimeAx, we focused on the UBC
progression model where the long time scales of disease progression
result in large differences between patients’ disease progression rates
on the one hand, and on the other, the high resolution molecular data
enables the study of cellular and molecular mechanisms of tumor-
igenesis. To confirm that our TimeAx model captures tumor progres-
sion, we compared the disease pseudotime positions in the UBC
longitudinal cohort with the tumor stage of the patients (seeMethods;

based on TMN staging), and saw a clear association between increased
disease pseudotime andmore advanced stages (Fig. 3A, p < 0.0005 by
linear regression), compared to no association using chronological
time (Fig. S5A). We validated these results using held-out longitudinal
UBC samples from the same dataset, and two additional cross-
sectional UBC test cohorts ‒ the former consisting of microarray data
of 276 UBC patients27 and the latter of 430 UBCRNA-seq samples from
the Cancer Genome Atlas (TCGA) Program (Fig. S5B, see Methods;
respectively denoted as ‘longitudinal’, ‘microarray’ and ‘TCGA’ test
cohorts). Tumors with higher disease pseudotime positions were also
more transitional/invasive (Fig. S5C; p < 10−7), compared to more
papillary tumors found at lower pseudotime positions. In addition,
patients with prior malignancy were positioned further along disease
pseudotime (defined by TCGA; Fig. S5D; p < 10−4).

Fig. 2 | Disease pseudotime captures disease progression dynamics better than
chronological time. A An illustration of the influenza infection dynamics TimeAx
modeling and disease pseudotime inference, based on the longitudinal influenza
cohort. B TimaAx disease pseudotime (y-axis) is different from chronological time
(time from infection, x-axis). Shown are the differences between symptomatic
(green lines) and asymptomatic (red lines) patients from the longitudinal influenza
cohort. P value was calculated by comparing the prediction of disease pseudotime
(by ANOVA), using only time or the interaction between time and symptoms as
predictors. Trend lines represent the average levels in each of the groups ±
standard error. C Gene associations (−log10 transformed, FDR-corrected, Q values
based on linear regression), across all symptomatic and asymptomatic patients,
using either sampling time (x-axis) or disease pseudotime (y-axis), and applying aQ
value threshold of 10−5 (Dashed lines) (See Methods). Genes are colored based on
their association with the two time axes. D An illustration of the UBC dynamics
TimeAx modeling and disease pseudotime inference, based on the UBC long-
itudinal cohort. E TimeAx disease pseudotime (y-axis) is different from chron-
ological time (time from primary tumor, x-axis), exemplified in six patients in the

UBC longitudinal cohort. F Gene associations (−log10 transformed, P values based
on linear regression) with sampling time (x-axis) and disease pseudotime (y-axis),
using a P value threshold of 10−2 (Dashed lines) (SeeMethods). Genes are colored
based on their association with the two time axes, displaying significant associa-
tions almost entirely onlywith thedisease pseudotime.GAn illustrationof theAMD
dynamics TimeAx modeling and disease pseudotime inference, based on seg-
mented features extracted from OCT scans of the patients’ retina. Optical coher-
ence tomography (OCT). H TimeAx disease pseudotime (y-axis) is different from
sampling time (time from first encounter, x-axis), exemplified in five patients in the
AMD train cohort. I The distribution of AMD test cohort patients’ disease pseu-
dotimepositions (top;n = 29205biologically independent samples) and times from
diagnosis (bottom; n = 11075 biologically independent samples) (y-axis), across
different visual severity states, determined according to the patients’ visual acuity
levels (logMAR; x-axis). Boxes represent the 25th, 50th, and 75th percentiles;
whiskers show maxima and minima. P values were calculated based on linear
regression.We thank Yuval Abraham for his contribution in the design and creation
of (A, D and G).
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We hypothesized that the TimeAx model, based on whole bulk-
tissue transcriptomes, represents a continuous shift in complex mul-
ticellularprograms inwhich both cell compositions and cell-statesmay
change along the disease pseudotime and result in tumor progression.
To explore our hypothesis, we first looked at tumor purity, a measure
for the fraction of cancer cells in a tumor sample (calculated as in ref.
12), along the TimeAx UBC disease progressionmodel. We identified a
position along the disease pseudotime (disease pseudotime of 0.7),
where a sharp decrease in tumor purity occurred, a trend undetectable
when ordering samples by the time from primary tumor occurrence
(Fig. 3B, seeMethods; r = −0.44 and r = −0.1, respectively). A decrease in
tumor purity has been previously associated with elevated immune
infiltration and overall poor prognosis28,29. This sharp decrease in
tumor purity was not associated with patients’ demographics, includ-
ing sex (Fig. S5E) and age (Fig. S5F). Taken together, the TimeAxmodel
highlights the existence of a stromal pro-invasion point (SPIP), char-
acterized by a change in the immune-stroma composition within the
tumor microenvironment29,30.

To understand how cellular composition and regulatory pro-
grams change along the disease pseudotime and how these relate to
the decrease in tumor purity at the SPIP (Fig. 3B), we deconvolved the
cell composition of all samples in all four cohorts and, predicted the
compositions of seven major cell types: urothelial cells, muscle cells,
basal tumor cells, endothelial cells and fibroblasts, as well as T cells,
macrophages and additional immune cell subtypes (see Methods).
Samples localized to disease pseudotime positions ‘beyond the SPIP’
showed a significant decrease in the abundance of urothelial cells,
accompanied by an increase in the abundance of activated macro-
phages and fibroblasts (Fig. 3C and Fig. S5G; p < 0.003), a transition
fromnaive tomemoryCD4+ T-cells (Fig. 3C and Fig. S5G;p <0.05) and
no significant change in basal tumor cells (Fig. S5G–H; p > 0.1). We
reasoned that differences in cell compositions along the TimeAx
model may be due to either differences in disease severity or technical
variation during biopsy sampling. We therefore decided to leverage
the clinical outcome data available in the TCGA test cohort to test

whether mapping pre- versus post- the SPIP carried clinically mean-
ingful signal (see Methods). Indeed, we observed a significantly lower
survival probability for patients mapping to the TimeAx disease pro-
gression axis past the SPIP (Fig. 3D; p < 0.003 by Kaplan-Meyer). The
classification of patients into either pre- or post- SPIP improved sur-
vival rate prediction even after accounting for other covariates with
known association with survival, including age, sex and the clinical
stageof thedisease (SupplementaryData 1;p < 0.02,Cox Proportional-
Hazards Model). Specifically, even within a specific molecular cancer
subtype, such as urothelial-like and basal/squamous tumors, patients
with disease pseudotime positions past the SPIP displayed a higher
mortality percentages (Fig. 3E; 72% compared to 39%, p <0.03) and
more rapid rates of mortality (Figure S5I, J). These observations sug-
gest that the SPIP we observed reflects a biological milestone in UBC
progression, in line with previous findings associating the infiltration
of activated immune cells and cancer-associated fibroblasts into the
tumor microenvironment with tumor progression and poor clinical
outcome31,32. Taken together, this suggests that the TimeAx model
accurately reflects tumor developmental processes and improves
clinical prediction over the previously suggested tumor classification
frameworks.

Disease pseudotime captures variation undetectable by current
stratification frameworks
Current clinical assessmentofUBCprogression, aswell as the selection
of interventions and therapies, relies mostly on histopathological sta-
ging. As patients’ disease courses in UBC are highly heterogeneous,
these traditional methodologies, focusing on a relatively small set of
markers, are not sufficient for optimal clinical decision making.
Recently, molecular profiling analyses divided urothelial carcinomas
into two major molecular types, luminal and basal, with the latter
showing down-regulation of urothelial differentiation markers, a
higher incidence inmuscle invasive tumors and associationwithworse
clinical prognosis33. The luminal type, which represents most of the
non-muscle invasive tumors, can be further divided into urothelial-like

Fig. 3 | TimeAx uncovers an advanced tumor state with unfavorable clinical
outcomes. A Disease pseudotime clinical applicability. Shown are disease pseu-
dotime (y-axis) relation with tumor stage (x-axis) for samples within the UBC
longitudinal cohort. P value was calculated based on linear regression. B Tumor
purity scores (y-axis) along the disease pseudotime (left) and the time fromprimary
tumor (right) (x-axis), displaying a sharp decrease in high disease pseudotime
positions (SPIP; dashed line). Disease pseudotime ranges pre and post the SPIP are
marked by colored bars. C Cell type deconvolved cell contributions (y-axis), dis-
playing major differences between pre- and post- SPIP samples. * p <0.05, **
p <0.01 basedona two-sided t-test (p < 10−4, 0.003, 0.05,0.05, 10−4; Urothelial cells,

Macrophages, naive T cells, memory T cells and Fibroblasts, respectively).
D Survival plot for UBC patients within the TCGA test cohort, comparing patients’
tumors with disease pseudotime positions lower and higher the SPIP (pre versus
post, respectively; color coded). P value was calculated based on a log-rank test.
E Survived (black) versus deceased (white) percentagesof basal/squamous patients
within the TCGA test cohort pre and post SPIP (x-axis). p value was calculated using
Fisher’s exact test. In (A and C), boxes represent the 25th, 50th, and 75th percen-
tiles; whiskers show maxima and minima and n = 84 biologically independent
samples. Stromal pro-invasion point (SPIP).
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and genomic-unstable subtypes, with the former harboring alterations
in the FGFR3 pathway34–36. While these subtyping frameworks aim to
stratify patients, they are not widely applied in the clinic due to their
high complexity and uncertainty surrounding their utility for clinical
prognosis over traditional frameworks33. Importantly, the grouping of
patients into small sets of disease subtypes results in the loss of con-
tinuity in assessing disease progression. For example, though the ori-
ginal analysis12 of the ‘UBC longitudinal cohort’ (Fig. 2D and Methods)
divided patients’ UBC recurrences into distinct molecular subtypes, it
also showed that clinical progression occurred in all patients regard-
less whereas molecular subtyping remained predominantly stable in
most patients. Moreover, in some cases patients were simultaneously
associatedwith twodifferent subtypes12. This suggests that discretized
molecular subtyping does not reflect disease state, nor necessarily
severity, and in some cases, dynamical changes in disease progression
may be interpreted as different disease subtypes.

We hypothesized that the disease pseudotime we identified
represents a generalized UBC disease dynamics axis, shared across
luminal and basal molecular subtypes. Indeed, relying on previously
published molecular typing (‘LundTax’ tumor molecular
classification37), modeling disease dynamics, while excluding patients
with basal tumors, allocated all patients to nearly the same disease
pseudotimepositions (Fig. S6A; r =0.91), and yielded similarmolecular
associations as in theoriginalmodel (Fig. S6B). This suggests that these
molecular subtypes reside in the same disease dynamics axis, which
accommodates transitions between molecular subtypes along the
disease pseudotime. Supporting this, we observed higher disease
pseudotime levels in more progressive molecular tumor subtypes,
such as basal and mesenchymal, compared to lower values in
urothelial-like subtypes (Fig. 4A; p < 10−5 by one-way anova). This
classification by molecular subtypes was strongly associated with
patients’ allocation to either the pre- and post- SPIP groups (Fig. 4B)
but the resolution achieved by this classification was insufficient for
the correct assignment to patients’ histological staging (Fig. S6C, D).

We reasoned that in the absenceof long-termmolecular follow up
of patients, understanding the relationship between disease progres-
sion and disease subtypes can only be garnered through further
mechanistic understanding and the observation of clinically actionable
predictions. As early events in UBC tumorigenesis are largely unre-
solved, we focused on disease pseudotime positions prior to the SPIP.
TimeAx allowed us to discern high resolution dynamics and observe
differences between early (primary) and recurring tumors with a large
variation in disease pseudotime between recurrent tumors (Fig. 4C;
p < 10−9). Considering the present UBC molecular subtypings, we
observed thatwhilemost samples pre-SPIPwere classified as lowgrade
tumor stages (Lum-P, Lum-U by the consensus molecular subtyping13

and Urothelial-like and genomically-unstable by Lund taxonomy37),
those patients showed large variation in disease pseudotime (Fig. 4D
and Fig. S6E). These observations suggest that the current molecular
subtyping systems of UBC tumors only allow for a coarse stratification
of patients, precluding the high resolution granularity provided by
modeling the continuous dynamics of disease progression.

Of all molecular subtypes, UroA exhibited the largest variation
along the disease progression axis whereby UroA tumors at higher
disease pseudotime positions were associated with lower survival
percentages (Fig. 4E; p <0.01). Consistent with this, by dividing the
UroA tumors pseudotime continuum to ‘early’ and ‘late’, respectively,
using disease pseudotime cutoff of 0.25, we observed lower survival
percentages in late tumors (Fig. S6F; p <0.1)—suggesting that these
tumors represent different UBC progression stages.

Disease pseudotime uncovers molecular mechanisms
promoting UBC progression
We next explored whether we can detect molecular patterns asso-
ciated with differences between early and late progression within the

UroA tumors, and whether those differences manifest different
oncogenic transformation stages. We identified 2642 differentially
expressed genes between early and late UroA progression tumors,
which were highly co-regulated into two main modules (q <0.05,
Fig. 5A and Supplementary Data 2), one downregulated and one
upregulated along the disease progression axis. In contrast, we
observed no significant changes, between the two groups of UroA
tumors, in the expression of established urothelial markers, including
CCND1, FGFR3, FOXA1, RB1, CDKN2A, GATA3, ERBB2, PPARG and XBP1
(Fig. S6G).

The downregulated module was composed of 1587 down-
regulated genes within late UroA tumors (Fig. S6H). This module was
highly enriched in pseudogenes and microRNAs, (q < 10−4, 0.03
respectively; Fig. 5B, see Supplementary Data 3 for functional enrich-
ment). Interestingly, we noted that for many of these pseudogenes,
their coding paralogs were transcribed by RNA polymerase III38 and
involved in biosynthetic processes promoting cancer cell
proliferation39, suggesting pseudogenes actively suppress the trans-
formation process by downregulation of their coding equivalents. In
addition, we noted an enrichment for protein coding genes in this
module transcribing membrane channel proteins that were down-
regulated along disease pseudotime. Specifically, these included
ligandgated ion channels (q <0.05, Fig. 5C, see SupplementaryData 4),
primarily calcium, potassium and sodium voltage- gated channels,
controlling cellular ion homeostasis and downstream cell cycle and
cell death processes. Interestingly, we also detected down regulation
of G protein-coupled receptors (GPCRs) including neurotransmitter,
hormone and free fatty acids receptors (q <0.05, Fig. 5C, see Supple-
mentary Data 4). GPCR associations with tumor progression have
remained unclear, with evidence showing both tumor progressor40

and suppressor41 functions, likely explained both by differences in
functionality between GPCRs and tissue and malignancy dependency.
Our analysis showing downregulation of GPCRs as the disease shifts
toward advanced UroA, pinpoints these GPCRs as likely tumor sup-
pressors in bladder cancer.

The upregulated disease progression module contained 1055
genes (Fig. S6I), and was highly enriched for pathways associated with
malignant transformation as well as known hallmarks of cancer
including sustained proliferative signaling, activating invasion and
metastasis, genome instability and mutation and deregulation of cel-
lular energetics (q < 0.05; Fig. 5D, see Supplementary Data 5). Specifi-
cally, we detected a striking upregulation of genes in the ubiquitin
proteasome (UPS) system including structural components of the 26 S
proteasome, components of the anaphase promoting complex and
ubiquitin ligases. Post-translational polyubiquitylation of key reg-
ulatory proteins, results in their proteasomal degradation and alters
regulation of cell cycle and epithelial to mesenchymal transition42. In
addition, late UroA tumors showed upregulation of genes functioning
in cellular metabolism, including autophagy and oxidative phosphor-
ylation, allowing the tumor to meet the increasing energetic demands
and support cell proliferation during oncogenic transformation43.

Interestingly, we detected that the shift from early to late UroA
tumor progression was associated with an abundance of genes
involved in mitotic kinetochore- spindle microtubules (MT) interac-
tion which suggested it as a mechanism for malignant transformation
in UBC, undetectable without TimeAxmodeling. These genes spanned
six integral kinetochore constituents44 which together suggest that the
shift from early to late UroA involves increasing chromosomal
instability and aneuploidy. Specifically, these include MIS1245, Ska46,47,
RZZ48 components of the outer kinetochore, components of the
nuclear pore complex NUP107–16049,50 localized to the kinetochore
during mitosis, the MT binding protein CLASP-2 and the chromatin
remodeler RSF151, all required for stabilizing dynamic MT to
kinetochores52. Similarly, late UroA tumors showed upregulation in
genes coding for proteins localized to the spindle, including a subunit
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of the augmin complex (Haus) functioning in MT end capture53 and
KIF2A functioning in MT depolymerization, bi-polar spindle formation
and chromosome pulling54 (Fig. 5E and Supplementary Data 2). Taken
together the signal detected via TimeAx disease progressionmodeling
versus molecular subtyping suggests that modeling of disease pro-
gression not only provides high utility for understanding mechanistic
changes in the biology of disease but is likely a necessary step prior to
unsupervised sub-typing of diseases.

Discussion
Wepresent TimeAx, a framework for studying time-dependent disease
dynamics at high resolution. TimeAx modeling frees researchers from
relying on chronological time in experimental designs and analyses.
Instead, it makes biological time (disease pseudotime) a comparable
unit that researchers can discuss quantitatively. Akin to the insight
introducedby sequence alignment6, and single cell cell-state trajectory
inference55, TimeAxopens the door to ahigh-resolution understanding

Fig. 4 | Disease pseudotime captures variation undetectable by current stra-
tification frameworks. ADisease pseudotime distribution across tumormolecular
classifications in patients within the UBC longitudinal cohort based on the ‘Lund-
Tax’molecular subtyping framework. B Distribution of ‘LundTax’ tumor molecular
classifications for pre (red) and post (blue) stromal pro-invasion sampleswithin the
UBC longitudinal cohort. C Comparison of disease pseudotime (y-axis) between
primary and recurrent tumors in pre-SPIP samples within the UBC longitudinal

cohort. D Disease pseudotime distribution across tumor molecular classifications
in patients pre-SPIP within the UBC longitudinal cohort based on the ‘LundTax’
molecular subtyping framework. E Percent of surviving patients in the TCGA test
cohort with UroA tumors (y-axis) across disease pseudotime bins (bin size = 0.1; x-
axis) pre-SPIP. p value was calculated based on linear regression. In (A, C and D),
boxes represent the 25th, 50th, and 75th percentiles; whiskers show maxima and
minima and n = 84 biologically independent samples.

Fig. 5 | Disease pseudotime uncovers molecular mechanisms promoting UBC
progression. A Co-expression matrix for genes (rows, columns) differentially
expressed (q <0.05) between early and late UroA tumors. Two gene sets were
discovered and are highlighted in green and purple.BHigh enrichment of different
pseudogene families within the downregulated module, compared to the upregu-
lated module set and a random gene set (color-coded). C Pathway enrichment for
the downregulated module, including pathway enrichment scores (left) and a
heatmap of the expression levels of these pathways genes (columns), in early and
lateUroA tumors (rows)within theUBC longitudinal cohort.D Pathwayenrichment

scores for the upregulatedmodule. EAn illustrationof themolecularmodel ofUBC
tumorigenesis, discovered by the TimeAx-based analysis, based on the increasing
gene module. The illustration includes the association of known hallmarks of
cancer with disease pseudotime (top) and the suggested mitotic kinetochore-
spindle microtubules (MT) interaction (middle), which is also presented as box-
plots of differential expression of its subunits (bottom; n = 40 biologically inde-
pendent samples, boxes represent the 25th, 50th, and 75th percentiles; whiskers
show maxima and minima). G protein-coupled receptors (GPCRs). We thank Yuval
Abraham for his contribution in the design and creation of (E).
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of complexdiseasedynamics, often hiddendue to theheterogeneity in
patients’ disease courses. Specifically, based on different omics tech-
nologies, including sparse data, TimeAx allows the inference of a dis-
ease pseudotime position—a quantitative metric that represents the
samples’ disease progression state—which can be used to build a high-
resolution understanding of the temporal disease process, facilitating
mechanistic discovery and patients’ outcome prediction.

We highlight TimeAx’s utility for both acute and chronic diseases,
including the host responses after challenging healthy individuals with
influenza virus, AMDdiseaseprogressionandUBC tumorigenesis. In all
cases, we discovered a high degree of molecular regulation, which
could not be captured based on the analysis using chronological time
and showcased the clinical utility of incorporating biological disease
progression for patient diagnosis and disease prognosis. We further
demonstrated TimeAx utility for modeling diverse data types, includ-
ing not only omics data, such as transcriptomics fromblood or biopsy,
but also incorporating data used regularly in the clinic, such as seg-
mented features extracted computationally from OCT scans of
patients over time.

Even though the underlying mechanisms of disease progression
are shared across many patients, its manifestation might vary in time
and magnitude within each patient trajectory—affecting the utility of
chronological time as a measurement of disease progression. On the
other hand, disease pseudotime presents high variation over time,
capturing hidden shared dynamics. Moreover, we note that one may
use this framework to uncover patient-specific disease trajectories
through repeated assembly of the trajectory with samples from a sin-
gle patient left out. Combining these trajectories with chronological
time should allow the calculation of disease progression rates, which
comes with major implications for predicting patient prognosis and
patient-specific treatment.

We followed the progression dynamics of UBC recurrences,
across patients over many years. Even in the expected presence of
many small-accumulated environmental effects over the long lifespan
of the study, we were able to devise a continuous disease progression
trajectory that captured the shared dynamics across all patients. The
disease pseudotime, inferred by the model, supported patient strati-
fication at a higher resolution compared to the patient stratification
systems currently used in the clinic while demonstrating improved
patient outcome prediction. In addition, it captured cellular and
molecularmechanisms of disease progression, whichwere hidden due
to patients’ disease course heterogeneity. Specifically, we observed a
major drop in tumor purity at late pseudotime positions (denoted as
the ‘stromal pro-invasion point’; SPIP), which is associated with the
remodeling of the tumor microenvironment including the transition
fromnaive to activated immune cells and an increase in fibroblasts.We
show that patient transitions between pre- to post- SPIP pseudotime
positions result in increased disease severity, reflecting worse patient
outcome, even when patients are classified among identical molecular
subtypes. These observations emphasize the utility of the continuous
disease progression model over previously suggested patient stratifi-
cation frameworks.

While cell-compositional changes strongly affected themolecular
profiles of the tumors, we were able to utilize the disease pseudotime
to observe molecular processes which correspond to the deregulation
of cellular programs associated with tumorigenesis, ultimately leading
to increased tumor proliferation. Among the deregulated cellular
programs, we observed loss of cell cycle regulation and metabolic
reprogramming as shown by upregulation of genes from the ubiquitin
proteasome system, autophagy and oxidative phosphorylation. Of
particular interest, we observed an upregulation of a group of genes
localized to the contact site between the mitotic kinetochore and the
spindle microtubules (Fig. 5E). The upregulation of these genes could
be themere result of increased levels of mitotic cells, due to increased
proliferation rates. Another possibility, however, is the unraveling of

an uncharacterized mechanism contributing to chromosomal
instability (CIN) in bladder cancer. Merotelic kinetochore attachment
is an erroneous process in which a single kinetochore is attached to
microtubules originating from both spindle poles during mitosis. This
process is considered to be one of the major drivers of aneuploidy in
mitotic cells and therefore to chromosomal instability56. Correction of
merotelic kinetochore attachment requires an accurately regulated
rate of MT-kinetochores attachment (formation and resolution).
Changes in this rate, by experimentally increasing the stability of
kinetochore microtubule attachments, results in increased levels of
lagging chromosomes in anaphase indicating that slight changes in
stability during mitosis are sufficient to increase chromosomal
instability57. UBC progression was associated with the upregulation of
several genes localized to and potentially stabilizing the kinetochore-
MT interaction, therefore increasing the rate of merotelic kinetochore
attachment44. Furthermore, the correction of erroneous kinetochore-
MT interactions occurs by Aurora B kinase phosphorylating KMN
network components to reduce their affinity toMT. Our data points to
the upregulation of PPP2R5A, which encodes the B56 regulatory sub-
unit of the Serine/threonine protein phosphatase 2A in UroA late
tumors. This phosphatase localizes to kinetochores and stabilizes the
kinetochore-MT interaction, counteracting the activity of Aurora B
kinase58. Clearly, extensive experimental validation is required to
confirm the proposed mechanism for chromosomal instability in
bladder cancer. However, this sole example demonstrates the great
potential of utilizing TimeAx-based disease pseudotime to provide
highly predictive models for a better understanding of the molecular
mechanisms leading to malignant transformation and for the dis-
covery of potential novel drug targets.

In the present study we have demonstrated TimeAx’s utility for
modeling dynamics as a one dimensional consensus trajectory, how-
ever, this does not exhaust the full potential of our framework. TimeAx
canbe further extended todealwithdiseases displayingmorecomplex
dynamics (such as branching trajectories) aswell as sub-populations in
the data. Specifically, this can be done by adding pre-processing and
sub-group identification stages (in a supervised or unsupervised
manner), and then running TimeAx separately on each subgroup.
Alternatively, in the case one of the groups is too small, this can be
done by building the trajectory on one group and assessing how this
trajectory is disrupted when new individuals from another disease
subtypes are sequentially added59. The seed detection step, currently
limited to the discovery of increasing or decreasing features, can be
also extended to features exhibiting more complex dynamics over
time. Another extension of TimeAx would allow the inference of dis-
ease dynamics based on data from less than three time points per
individual or through meta-analyses of multiple datasets. TimeAx can
also be used to model other types of dynamics, such as disease
recovery over time and non-disease biological processes, such as
immune age60. Last, while used here for gene expression and features
extracted from bioimages, TimeAx can be applied to other data
modalities, such as protein,microbiome and epigenetic data, as well as
clinical data, including clinical markers regularly used in the clinic and
multi-omic data from the same patients.

Methods
The TimeAx algorithm
TimeAx aims to model the entirety of a disease’s dynamics and con-
struct a quantitative framework through which one can better com-
pare individuals’ sample states as part of a dynamic process shared by
all individuals under examination. TimeAx takes as input a compen-
dium of measurement profiles with each profile describing a time
point (required at least 3), sampled from a specific individual and
assayed when the individual was undergoing a biological condition
whose trajectory we are interested in delineating. Profiles are a quan-
titative snapshot of the abundance of different measured data types
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(any kind of omics; e.g., genes or proteins). The snapshots from each
individual are then aligned with snapshots from other individuals to
construct a consensus trajectory that describes the dynamics of the
biological process above.

The TimeAx algorithm can be divided into three steps:
1. Conserved-dynamics-seed selection: Identifying disease dynamics

requires a common ground. We thus start off by choosing a set of
“conserved-dynamics-seed” features (seed -features). These features
can be predefined by the user or can be computationally-selected
by focusing on features whose dynamics are similar across
individuals.

2. Multiple trajectory alignment: Similar to principles stemming
from the mature field of DNA sequence alignment, TimeAx per-
forms a multiple trajectory alignment (MTA), merging all indivi-
duals’ trajectories into a unified consensus trajectory. The
alignment process relies solely on the above described “con-
served-dynamics-seed”

3. Disease pseudotime estimation: TimeAx allows the prediction of
disease pseudotime for new samples, based on the set of con-
sensus trajectories, generated during the alignment process.

Additional information about TimeAx is described in Supple-
mentary Note 1.

Public datasets
For influenza dynamic modeling, we trained the TimeAx model using
data from an influenza challenge study (H3N2/Wisconsin strain) in
which 17 healthy volunteers, between 18 and 45 years of age, were
infected and then profiled longitudinally over 13–15 timepoints (a
subset of 0, 5, 12, 21, 29, 36, 45, 53, 60, 69, 77, 84, 93, 101 and 108 h after
infection) for whole blood gene expression by RNA-seq (total of
268 samples). All patients were treated by oseltamivir orally on a daily
basis along the study7 (Longitudinal influenza cohort; accession
number G SE30550). To ensure that we capture disease progression
dynamics, we trained the model using only the symptomatic patients
(9 patients) but inferred disease pseudotime for all patients. We then
validated our results using an additional data froma challenge study of
an influenza infection (H1N1 strain) in 24 human adults, aged 20–35
years old, with similar study settings as in the longitudinal influenza
cohort61 (total of 382 samples; Longitudinal test cohort; accession
number G SE52428) and a blood microarray data from healthy and
H1N1 infected children (n = 19, 33 respectively), all below the age of 1762

(Children test cohort; accession number G SE42026).
For the UBC disease progression model, we trained TimeAx

using a time series microarray data of microdissected tumors col-
lected from 18 recurring non-muscle invasive bladder cancer
(NMIBC) patients (3 males and 15 females), at different events of
tumor recurrence (4–6 samples per patient, collected up to 15 years
apart from first to last recurrence). At least one full induction course
of intravesical Bacillus Calmette-Guerin (BCG), an immunotherapy
for early-stage bladder cancer, was given for some of the patients12

(UBC longitudinal cohort; accession number G SE128959). To accu-
rately capture the variation between tumor samples, we used a
conserved-dynamics-seed containing 100 genes. The results for the
UBC longitudinal cohort were validated in additional 28 patients (22
males and 6 females; total of 52 samples), which were excluded from
the UBC longitudinal cohort due to having less than four samples per
patient (denoted as ‘longitudinal test cohort’) and two additional test
cohorts: a microarray gene expression data from the bladders of 276
UBC patients, who underwent radical cystectomy, not receiving any
treatment before bladder extraction27 (microarray test cohort;
accession number G SE83586) and RNA-seq data from 430 UBC
patients (116 females and 314 males), aged 34–90 with a median of
69, from the Cancer Genome Atlas (TCGA) Program (TCGA test
cohort; downloaded from the TCGA data portal).

The age-related macular degeneration (AMD) cohort
TheAMDpatient cohort and clinical data of the patientswere provided
from the database of the Department of Ophthalmology, Ludwig-
Maximilians-University, Munich, Germany. To identify patients suf-
fering from AMD, the data warehouse was searched for all patients
with the appropriate ICD-Code. Diagnosis of AMDwas confirmed after
proof of typical morphological features such as Drusen in fundoscopy
and OCT scans and/or of choroidal neovascularization in initial
Fluorescein angiography (in case of neovascular AMD). Overall, the
dataset contains longitudinal data of Optical computed tomography
scans of 1798 patients with AMD. The study was approved by the
institutional review board of the Department of Ophthalmology,
Ludwig-Maximilians-University, Munich, Germany and adhered to the
tenets of the Declaration of Helsinki. Written informed consent was
obtained from each participant AMD patient prior to the intervention
and all testing outlined herein. Ethics committee of themedical faculty
of the Ludwig-Maximilians-University of Munich gave ethical approval
for this work regarding the research on AMD.

For AMDdynamicmodeling, we trained TimeAx using conserved-
dynamics-seed of 10 previously segmented features (without
conserved-dynamics-seed selection), including retinal atrophy, fibro-
sis, retinal thickness, epiretinal membrane, neurosensory retina, sub-
retinal hyperreflective material, retinal pigment epithelium (RPE),
fibrovascular PED, drusen and choroid, derived fromOCT scans of 157
patients, eachwith 15–79 consecutive scans over the years (4953 scans
overall; AMD train cohort)26. The segmented features were obtained
using a deep U-net based semantic segmentation ensemble algorithm
previously described in ref. 26. Using thismodel, we predicted disease
pseudotime for additional 34836 OCT scans collected from 1641
patients (2–90 consecutive scans per patient; AMD test cohort), using
the same segmented features26. In this dataset, patientswere either not
treated or treated by eye injections of anti-VEGF agents. Additional
features, including posterior hyaloid membrane and intraretinal and
subretinal fluids, were excluded from the model due large technical
variation and the direct effect of treatment.

Cell type deconvolution and single cell analysis
We inferred cell type compositional abundance by applying
Cibersort63 on UBC bulk gene expression profiles, using two dif-
ferent sets of signature profiles. The first set contained cell type
profiles obtained directly from the UBC tumors and their micro-
environments. Specifically, based on single cell RNAseq data from
a muscle-invasive urothelial bladder cancer patient64, we calcu-
lated the mean expression profiles of seven major different cell
types: Urothelial cells (88 cells), T cells (369 cells), Muscle cells
(186 cells), Basal tumor cells (436 cells), Endothelial cells (362
cells), Macrophages (283 cells) and Fibroblasts (273 cells). This
set allowed us to focus on changes in the abundance of non-
immune as well as the main immune cell subsets. To study higher
resolution immune cell subsets, we used the LM22 reference
matrix63, which contains gene expression profiles of different
subtypes of macrophages, T, B, NK and dendritic cells. This
reference matrix was shown as reliable for deconvolving tumor
samples65.

In addition, we focused on basal tumor cells within the single cell
data and imputed the main two axes of variation, based PCA analysis
using the top 1000 highly variable genes (HVGs). We linked these axes
to tumor progression by presenting the association between themean
expression of HVGs and that of epithelial-mesenchymal transition
(EMT) genes, observing similar spread across the two axes.

Gene associations with disease pseudotime
For each cohort in this study, positive and negative gene associations
with disease pseudotime were calculated as ‘Pearson’ correlations
between gene expression levels and the disease pseudotime positions
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across all the cohort’s samples. To compare the number of disease
pseudotime versus sampling time associated genes, we calculated the
FDR-corrected p value (q value) based on a polynomial regression
between gene expression and either of the time axes using a single q
value cutoff (10−5 and 0.01 for Fig. 2C and Fig. 2D, respectively). In
Fig. S2F, we present a generalized comparison across multipleQ value
cutoffs (q < 10−5, 10−4, 10−3, 10−2, 10−1).

Pathway enrichment
To explore the relations of biological functionswith the progression of
the disease, we tested candidate pathways from the following sources:
GO, MSigDB Hallmark gene sets, Reactom, and KEGG. We correlated
the expression levels of each gene with the inferred disease pseudo-
time across samples (Pearson’s r score). Next, for each pathway, we
calculated a significance score for the difference in distributions
between correlation coefficients of pathway member genes versus
background genes that are not members of the pathway, using a
Kolmogorov–Smirnov test (KS test). Finally, to obtain enrichment
scores and allow their comparison across pathways, we applied a
–log10 transformation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Public datasets used in this paper can be found at National Center for
Biotechnology Information Gene Expression Omnibus (GEO) under
accession numbers GSE30550, GSE52428, and GSE42026 (influenza)
and GSE128959, GSE83586 and the Cancer Genome Atlas (TCGA)
(UBC). The dataset of the AMD cohort generated and analyzed during
the current study are not publicly available due to data protection
reasons of sensitive clinical data. Access to the data could be granted
as part of scientific collaborations with the Department of Ophthal-
mology, Ludwig-Maximilians-University (Ben Asani, M.D., ben.asa-
ni@med.uni-muenchen.de). Data Sharing is restricted under data
protection law andwill be fully anonymized before sharing. A response
to any requests initiated generally might take up to 1 week. A time
frame for an agreement is dependent upon the parties’ respective legal
departments and possible contracting issues but can last up to
6 months.

Code availability
TimeAx is publically available as anRpackage atGithub: https://github.
com/shenorrLabTRDF/TimeAx (https://doi.org/10.5281/zenodo.
818851466). Source code for reproducing the UBC analysis and fig-
ures is available at Github: https://github.com/shenorrLabTRDF/
TimeAxPaperCode.

References
1. Velten, B. et al. Identifying temporal and spatial patterns of variation

from multimodal data using MEFISTO. Nat. Methods 19,
179–186 (2022).

2. Coifman, R. R. et al. Geometric diffusions as a tool for harmonic
analysis and structure definition of data: diffusion maps. Proc. Natl
Acad. Sci. USA 102, 7426–7431 (2005).

3. Chari, T., Banerjee, J. & Pachter, L. The Specious Art of Single-Cell
Genomics. BioRxiv https://doi.org/10.1101/2021.08.25.
457696 (2021).

4. Fischer, D. S., Theis, F. J. & Yosef, N. Impulse model-based differ-
ential expression analysis of time course sequencing data. Nucleic
Acids Res. 46, e119 (2018).

5. Spies, D., Renz, P. F., Beyer, T. A. & Ciaudo, C. Comparative analysis
of differential gene expression tools for RNA sequencing time
course data. Brief. Bioinforma. 20, 288–298 (2019).

6. Feng, D. F. & Doolittle, R. F. Progressive sequence alignment as a
prerequisite to correct phylogenetic trees. J. Mol. Evol. 25,
351–360 (1987).

7. Huang, Y. et al. Temporal dynamics of host molecular responses
differentiate symptomatic and asymptomatic influenza a infection.
PLoS Genet. 7, e1002234 (2011).

8. Killip, M. J., Fodor, E. & Randall, R. E. Influenza virus activation of the
interferon system. Virus Res. 209, 11–22 (2015).

9. Wu, W. & Metcalf, J. P. The role of type I ifns in influenza: antiviral
superheroes or immunopathogenic villains? J. Innate Immun. 12,
437–447 (2020).

10. Espinoza, J. A., González, P. A. & Kalergis, A. M. Modulation of
Antiviral Immunity by Heme Oxygenase-1. Am. J. Pathol. 187,
487–493 (2017).

11. Canesin,G., Hejazi, S.M., Swanson, K. D. &Wegiel, B. Heme-Derived
Metabolic Signals Dictate Immune Responses. Front. Immunol. 11,
66 (2020).

12. Sjödahl, G. et al. Molecular changes during progression from
nonmuscle invasive toadvancedurothelial carcinoma. Int. J. Cancer
146, 2636–2647 (2020).

13. Kamoun, A. et al. A Consensus Molecular Classification of
Muscle-invasive Bladder Cancer. Eur. Urol. 77, 420–433
(2020).

14. Sanli, O. et al. Bladder cancer. Nat. Rev. Dis. Prim. 3, 17022 (2017).
15. Kitamura, T. et al. CCL2-induced chemokine cascade promotes

breast cancer metastasis by enhancing retention of metastasis-
associated macrophages. J. Exp. Med. 212, 1043–1059 (2015).

16. Xu, L. et al. IGF1/IGF1R/STAT3 signaling-inducible IFITM2 promotes
gastric cancer growth and metastasis. Cancer Lett. 393,
76–85 (2017).

17. Nasiri, A. R., Rodrigues, M. R., Li, Z., Leitner, B. P. & Perry, R. J. SGLT2
inhibition slows tumor growth in mice by reversing hyper-
insulinemia. Cancer Metab. 7, 10 (2019).

18. Baumgart, E. et al. Identification and prognostic significance of an
epithelial-mesenchymal transition expression profile in human
bladder tumors. Clin. Cancer Res. 13, 1685–1694 (2007).

19. Franzen, C. A. et al. Urothelial cells undergo epithelial-to-
mesenchymal transition after exposure to muscle invasive bladder
cancer exosomes. Oncogenesis 4, e163 (2015).

20. Wang, X. & Lin, Y. Tumor necrosis factor and cancer, buddies or
foes? Acta Pharmacol. Sin. 29, 1275–1288 (2008).

21. Jorgovanovic, D., Song, M., Wang, L. & Zhang, Y. Roles of IFN-γ in
tumor progression and regression: a review. Biomark. Res. 8,
49 (2020).

22. Wang, H., Zhang, X., Teng, L. & Legerski, R. J. DNA damage
checkpoint recovery and cancer development. Exp. Cell Res. 334,
350–358 (2015).

23. Huang, D. et al. Optical coherence tomography. Science 254,
1178–1181 (1991).

24. Friedman, D. S. et al. Prevalence of age-related macular degen-
eration in the United States. Arch. Ophthalmol. 122,
564–572 (2004).

25. Resnikoff, S. et al. Global data on visual impairment in the year
2002. Bull. World Health Organ 82, 844–851 (2004).

26. Asani, B. et al. Evaluation of OCT biomarker changes in treatment-
naive neovascular AMD using a deep semantic segmentation
algorithm. medRxiv https://doi.org/10.1101/2022.06.16.
22276342 (2022).

27. Sjödahl, G., Eriksson, P., Liedberg, F. & Höglund, M. Molecular
classification of urothelial carcinoma: global mRNA classification
versus tumour-cell phenotype classification. J. Pathol. 242,
113–125 (2017).

28. Mao, Y. et al. Low tumor purity is associated with poor prognosis,
heavy mutation burden, and intense immune phenotype in colon
cancer. Cancer Manag. Res. 10, 3569–3577 (2018).

Article https://doi.org/10.1038/s41467-023-42354-8

Nature Communications |         (2023) 14:6840 10

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30550
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52428
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42026
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128959
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83586
https://github.com/shenorrLabTRDF/TimeAx
https://github.com/shenorrLabTRDF/TimeAx
https://doi.org/10.5281/zenodo.8188514
https://doi.org/10.5281/zenodo.8188514
https://github.com/shenorrLabTRDF/TimeAxPaperCode
https://github.com/shenorrLabTRDF/TimeAxPaperCode
https://doi.org/10.1101/2021.08.25.457696
https://doi.org/10.1101/2021.08.25.457696
https://doi.org/10.1101/2022.06.16.22276342
https://doi.org/10.1101/2022.06.16.22276342


29. Zhang, C. et al. Tumor purity as an underlying key factor in glioma.
Clin. Cancer Res. 23, 6279–6291 (2017).

30. Majidpoor, J. & Mortezaee, K. Steps in metastasis: an updated
review. Med. Oncol. 38, 3 (2021).

31. Pan, S., Zhan, Y., Chen, X.,Wu, B. & Liu, B. Bladder cancer exhibiting
high immune infiltration shows the lowest response rate to immune
checkpoint inhibitors. Front. Oncol. 9, 1101 (2019).

32. Boström, M. M. et al. Tumor-Associated Macrophages Provide Sig-
nificant Prognostic Information in Urothelial Bladder Cancer. PLoS
ONE 10, e0133552 (2015).

33. Šoipi, Š. et al. Reviewof the bladder cancermolecular classification
proposed: a new era - new taxonomy. Acta Clin. Croat. 60,
519–524 (2022).

34. Sjödahl, G. et al. Toward a molecular pathologic classification of
urothelial carcinoma. Am. J. Pathol. 183, 681–691 (2013).

35. Netto, G. J. & Tafe, L. J. Emerging bladder cancer biomarkers and
targets of therapy. Urol. Clin. North Am. 43, 63–76 (2016).

36. Cancer Genome Atlas Research Network. Comprehensive mole-
cular characterization of urothelial bladder carcinoma. Nature 507,
315–322 (2014).

37. Marzouka, N.-A.-D. et al. A validation and extended description of
the Lund taxonomy for urothelial carcinomausing theTCGAcohort.
Sci. Rep. 8, 3737 (2018).

38. Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to
its target promoters. Genes Dev. 16, 2593–2620 (2002).

39. Marshall, L. & White, R. J. Non-coding RNA production by RNA
polymerase III is implicated in cancer. Nat. Rev. Cancer 8,
911–914 (2008).

40. O’Hayre, M., Degese, M. S. & Gutkind, J. S. Novel insights into G
protein and G protein-coupled receptor signaling in cancer. Curr.
Opin. Cell Biol. 27, 126–135 (2014).

41. Yu, F.-X. et al. Regulation of the Hippo-YAP pathway by G-protein-
coupled receptor signaling. Cell 150, 780–791 (2012).

42. Senft, D., Qi, J. & Ronai, Z. A. Ubiquitin ligases in oncogenic trans-
formation and cancer therapy. Nat. Rev. Cancer 18, 69–88 (2018).

43. Birsoy, K. et al. An essential role of the mitochondrial electron
transport chain in cell proliferation is to enable aspartate synthesis.
Cell 162, 540–551 (2015).

44. Tanaka, K. Regulatory mechanisms of kinetochore-microtubule
interaction in mitosis. Cell. Mol. Life Sci. 70, 559–579 (2013).

45. Cheeseman, I. M. & Desai, A. Molecular architecture of the
kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9,
33–46 (2008).

46. Hanisch, A., Silljé, H. H. W. & Nigg, E. A. Timely anaphase onset
requires a novel spindle and kinetochore complex comprising Ska1
and Ska2. EMBO J. 25, 5504–5515 (2006).

47. Welburn, J. P. I. et al. The human kinetochore Ska1 complex facil-
itates microtubule depolymerization-coupled motility. Dev. Cell 16,
374–385 (2009).

48. Kops, G. J. P. L. et al. ZW10 links mitotic checkpoint signaling to the
structural kinetochore. J. Cell Biol. 169, 49–60 (2005).

49. Chatel, G. & Fahrenkrog, B. Nucleoporins: leaving the nuclear pore
complex for a successful mitosis.Cell. Signal. 23, 1555–1562 (2011).

50. Zuccolo,M. et al. The humanNup107-160nuclear pore subcomplex
contributes to proper kinetochore functions. EMBO J. 26,
1853–1864 (2007).

51. Lee, H.-S. et al. The chromatin remodeller RSF1 is essential for PLK1
deposition and function at mitotic kinetochores. Nat. Commun. 6,
7904 (2015).

52. Pereira, A. L. et al. Mammalian CLASP1 and CLASP2 cooperate to
ensure mitotic fidelity by regulating spindle and kinetochore
function. Mol. Biol. Cell 17, 4526–4542 (2006).

53. Goshima, G., Mayer, M., Zhang, N., Stuurman, N. & Vale, R. D.
Augmin: a protein complex required for centrosome-independent

microtubule generation within the spindle. J. Cell Biol. 181,
421–429 (2008).

54. Ganem, N. J., Upton, K. & Compton, D. A. Efficient mitosis in human
cells lacking poleward microtubule flux. Curr. Biol. 15,
1827–1832 (2005).

55. Alpert, A., Moore, L. S., Dubovik, T. & Shen-Orr, S. S. Alignment of
single-cell trajectories to compare cellular expression dynamics.
Nat. Methods 15, 267–270 (2018).

56. Gregan, J., Polakova, S., Zhang, L., Tolić-Nørrelykke, I. M. & Cimini,
D. Merotelic kinetochore attachment: causes and effects. Trends
Cell Biol. 21, 374–381 (2011).

57. Bakhoum, S. F.,Genovese,G.&Compton, D. A. Deviant kinetochore
microtubule dynamics underlie chromosomal instability. Curr. Biol.
19, 1937–1942 (2009).

58. Foley, E. A., Maldonado, M. & Kapoor, T. M. Formation of stable
attachments between kinetochores and microtubules depends
on the B56-PP2A phosphatase. Nat. Cell Biol. 13, 1265–1271
(2011).

59. Frishberg, A. et al. Mature neutrophils and a NF-κB-to-IFN transition
determine the unifying disease recovery dynamics in COVID-19.
Cell Rep. Med. 3, 100652 (2022).

60. Alpert, A. et al. A clinically meaningful metric of immune age
derived from high-dimensional longitudinal monitoring. Nat. Med.
25, 487–495 (2019).

61. Woods, C. W. et al. A host transcriptional signature for pre-
symptomatic detection of infection in humans exposed to influenza
H1N1 or H3N2. PLoS ONE 8, e52198 (2013).

62. Herberg, J. A. et al. Transcriptomic profiling in childhood H1N1/09
influenza reveals reduced expression of protein synthesis genes. J.
Infect. Dis. 208, 1664–1668 (2013).

63. Newman,A.M. et al. Robust enumerationof cell subsets from tissue
expression profiles. Nat. Methods 12, 453–457 (2015).

64. Lee, H. W. et al. Single-cell RNA sequencing reveals the tumor
microenvironment and facilitates strategic choices to circumvent
treatment failure in a chemorefractory bladder cancer patient.
Genome Med. 12, 47 (2020).

65. Chen, B., Khodadoust,M. S., Liu, C. L., Newman, A.M. &Alizadeh, A.
A. Profiling Tumor Infiltrating Immune Cells with CIBERSORT.
Methods Mol. Biol. 1711, 243–259 (2018).

66. Frishberg, A. et al. Reconstructing disease dynamics for mechan-
istic insights and clinical benefit. Zenodo https://doi.org/10.5281/
zenodo.8188514 (2023).

Acknowledgements
We thank Y. Abraham for help with designing and creating figure illus-
trations and Martin Lukacisin, Rebecca Bendayan and Tim Cooper for
their valuable feedback and discussion. This research was supported by
the ISRAEL SCIENCE FOUNDATION (grant No. 1626/20), within the Israel
Precision Medicine Partnership program. This work was supported in
part by the German Research Foundation (DFG) to J.L.S. under Ger-
many’s Excellence Strategy (DFG)—EXC2151—390873048); the HGF
grant sparse2big, the EU H2020 projects SYSCID (Grant Agreement No.
733100) and ImmunoSep (Grant Agreement No. 847422). J.L.S. was
further supported by the BMBF-funded excellence project
Diet–Body–Brain (DietBB) (grant number 01EA1809A), iTREAT (FKZ:
01ZX1902A), and by NaFoUniMedCovid19 (FKZ: 01KX2021, project
acronym “COVIM”). This study was funded in part by the European
Union’s Horizon 2020 Research and Innovation Program under the ERA-
Net Cofund action no. 727565; the Joint Programming Initiative, A
Healthy Diet for a Healthy Life (JPI-HDHL; project 529051018) and under
the ERA-CVD non-cofunded action JTC2017 (Mechanisms of early
atherosclerosis and/or plaque instability in Coronary Artery Disease))
awarded to J.L.S. The results here are in part based upon data generated
by the TCGA Research Network: https://www.cancer.gov/tcga.

Article https://doi.org/10.1038/s41467-023-42354-8

Nature Communications |         (2023) 14:6840 11

https://doi.org/10.5281/zenodo.8188514
https://doi.org/10.5281/zenodo.8188514
https://www.cancer.gov/tcga


Author contributions
S.S.O. conceived the idea, A.F. and S.S.O. developed the TimeAx
method, N.M. led the biological interpretation, A.A. and F.J.T. con-
tributed tomethoddevelopment, A.F. performed the analysis. H.S., B.A.,
J.B.S., S.G.P., and F.J.T. contributed to the image analysis. E.B. and K.R.B.
contributed to the simulation analysis. J.L.S. helped with biological
interpretation. A.F., N.M., and S.S.O. wrote the paper and all authors
reviewed and revised it.

Competing interests
S.S.O. holds equity and is a consultant of CytoReason. A.F., E.B., andK.R.B.
are employees and hold equity in CytoReason. F.J.T. reports receiving
consulting fees from ImmunAI and CytoReason and ownership interest in
Dermagnostix. S.P. receives speaker and consultant honoraria from and
has served on advisory boards for Abbott, Alcon, Geuder, Oculus,
Schwind, STAAR, TearLab, Thieme Compliance, Ziemer, Zeiss and
research funding from Abbott, Alcon, Hoya, Oculentis, Oculus, Schwind
and Zeiss. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42354-8.

Correspondence and requests for materials should be addressed to
Shai S. Shen-Orr.

Peer review information Nature Communications thanks Mark
Cameron, YaelGurevich-Schmidt and theother, anonymous, reviewer(s)
for their contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42354-8

Nature Communications |         (2023) 14:6840 12

https://doi.org/10.1038/s41467-023-42354-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Reconstructing disease dynamics for mechanistic insights and clinical benefit
	Results
	TimeAx reveals shared disease dynamics across multiple patients
	Disease pseudotime captures disease progression dynamics better than chronological�time
	TimeAx uncovers an advanced tumor state with unfavorable clinical outcomes
	Disease pseudotime captures variation undetectable by current stratification frameworks
	Disease pseudotime uncovers molecular mechanisms promoting�UBC progression

	Discussion
	Methods
	The TimeAx algorithm
	Public datasets
	The age-related macular degeneration (AMD)�cohort
	Cell type deconvolution and single cell analysis
	Gene associations with disease pseudotime
	Pathway enrichment
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




