
Article https://doi.org/10.1038/s41467-023-42336-w

Identification of errors in draft genome
assemblies at single-nucleotide resolution
for quality assessment and improvement

Kunpeng Li1,2, Peng Xu 1,2, Jinpeng Wang1,2, Xin Yi1,3 & Yuannian Jiao 1,2,3

Assembly of a high-quality genome is important for downstream comparative
and functional genomic studies. However, most tools for genome assembly
assessment only give qualitative reports, which do not pinpoint assembly
errors at specific regions. Here, we develop a new reference-free tool, Clipping
information for Revealing Assembly Quality (CRAQ), which maps raw reads
back to assembled sequences to identify regional and structural assembly
errors based on effective clipped alignment information. Error counts are
transformed into corresponding assembly evaluation indexes to reflect the
assembly quality at single-nucleotide resolution. Notably, CRAQ distinguishes
assembly errors from heterozygous sites or structural differences between
haplotypes. This tool can clearly indicate low-quality regions and potential
structural error breakpoints; thus, it can identifymisjoined regions that should
be split for further scaffold building and improvement of the assembly. We
have benchmarked CRAQ on multiple genomes assembled using different
strategies, and demonstrated the misjoin correction for improving the con-
structed pseudomolecules.

Genome sequencing has vastly improvedour knowledgeof the genetic
bases underlying biological innovations and phenomena. Next-
generation sequencing (NGS) and the currently more popular
approach, long-read single molecule sequencing (SMS)1,2, are now
routinely used for genome assembly projects3–7. The quality of a de
novo assembly is influenced by various factors, including read quality,
sequencing depth, and the assembler program(s) used8,9. However, the
quality of a genome assembled de novo is often difficult to precisely
evaluate due to the lack of known data10.

Several approaches are currently used to evaluate the quality of
de novo genome assemblies from various perspectives. The N50
contig length is widely used to estimate assembly continuity, but this
statistic can be misleading if there are several mis-assemblies of rela-
tively long contigs11–13. The Benchmarking Universal Single-Copy
Orthologs (BUSCO) program14 is the state-of-the-art method for eva-
luation of genome completeness at this time. The approach uses the
presence or absence of numerous highly-conserved orthologous

genes as aproxy to estimate assembly completeness.However, BUSCO
assessments can be inaccurate when the genome in question is a
polyploid or recent paleopolyploid, because it is difficult to determine
whether part of a subgenome is truly missing or if the assembly is
simply incomplete. An arguably better approach to make an informed
assessment of assembly quality is to consider the number of real errors
in each assembly. QUAST11,15 compares genome assemblers by esti-
mating assembly errors in contig blocks. This approach requires a
known reference genome for the sequenced species or a close relative,
meaning that some of the mis-assemblies called by QUAST may be
genetic variations rather than assembly errors. Consensus quality
(QV)16maps short NGS readsmapping back to the de novo assembly to
detect errors such as single nucleotide polymorphisms (SNPs) or small
insertion-deletions (indels). However, like earlier methods17–19, this
approach is heavily reliant on short-read mapping, which is known
to lack alignment accuracy in repetitive or low-accuracy consensus
regions10,20. A reference-free program, long terminal repeat (LTR)
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Assembly Index (LAI)21, gauges assembly quality by estimating the
percentage of fully-assembled LTR retroelements (LTR-RTs). LTR-RTs
represent a challenge for current sequencing techniques and assembly
algorithms; a genomewith a low LAI scorewould be considered poorly
assembled. However, LAI underperforms in conducting precise error
calls and could be greatly influenced by the dynamic amplification and
removal of LTR-RTs in certain species. In addition, several k-mer based
approaches, such as JASPER22, ntEdit23, KAT24, Merqury10, and Merfin25,
have been developed to evaluate assembly accuracy based on differ-
ences in k-mers between original high-accuracy sequencing reads and
the corresponding assembled sequences. Although k-mer based
methods provide single base error estimates, they cannot distinguish
between base errors and structural errors.

Genome assemblies often contain errors that range from small
nucleotide changes to highly complex genomic rearrangements8,9,26,27.
Chen et al. developed Inspector9, which classifies assembly errors as
small-scale (<50bp) or structural collapse and expansion (≥50bp)
errors. Small-scale errors, such as local indels, affect genome accuracy
but are often located around repetitive regions, and have a relatively
moderate impact on downstream scaffold construction13. In contrast,
large-scale structural errors (suchasmisjoined contigs derived froman
improper connection of two unlinked fragments) may result in for-
mation of erroneous scaffolds and propagation of errors across mul-
tiple scaffolds; this can greatly affect downstream evolutionary or
comparative genomic studies13,28–30. A key step in resolving large-scale
structural errors is to find breakpoints in the problematic contigs and
split them at the mis-assembled junctions prior to pseudomolecule
construction. Although optical mapping31 and Hi-C32 can be used for
validation and correction of such errors13,29,33, both methods perform
similarly poorly in their ability to detect misjoins, because they rely on
rough inspection of alignments. This approach can only identify
approximate conflicting positions and fails to provide the precise
locations of misjoined regions.

In the present study,we introduce a new reference-free tool called
CRAQ for de novo assembly assessment. CRAQ uses clipping infor-
mation to reveal assembly errors and low-quality regions by mapping
the original sequencing reads back to the draft genome assembly. This
enables identification of assembly errors, heterozygous sites, and
structural differences between haplotypes at single-nucleotide reso-
lution. By integrating NGS and SMS mapping, CRAQ can identify
assembly errors at different scales and transform error counts into
corresponding assembly quality indicators (AQIs) that reflect assembly
quality at the regional and structural levels. In addition, CRAQ offers
the option to correct conflicting contigs by breaking them at relevant
error breakpoints; optical maps or Hi-C can then be integrated to fix
such errors and improve the assembly.

Results
Overview of CRAQ development
Ideally, a high-quality genome assembly should exhibit uniform raw
read coverage and few gapped regions or SNP clusters when the
original reads are mapped back to the assembly. However, it is
common for some assembled regions to show obvious signs of low
mapping depth and/or successive base-pair mismatches. The map-
ping characteristics of these erroneously assembled regions look
very similar to the results obtained when reads from individuals with
genomic variations are compared to a reference genome. Regions
with small-scale local errors typically have no mapped reads or low
coverage with typical SNP-cluster features. For regions with large
structural assembly errors, such as a misjoin of two genomic frag-
ments, the mapped reads often show characteristics of “clipped
reads”, a phenomenon in which only part of the read is aligned to the
reference. Thus, assessing the mapping status of the original reads
along a genome assembly allows assessment of the overall assembly
quality and can reveal errors.

We here developed CRAQ, an algorithm that utilizes mapping
information from the original NGS short reads or SMS long reads along
with the assembled sequences to pinpoint assembly errors at the
single-nucleotide level. CRAQcandistinguish between assembly errors
and heterozygous loci based on the ratio ofmapping coverage and the
effective number of clipped reads (Fig. 1, Supplementary Fig. 1). CRAQ
classifies putative errors as Clip-based Regional Errors (CREs) or Clip-
based Structural Errors (CSEs) depending on the coverage of read
mapping and whether there are clipped reads. If a region with clipped
NGS reads is spannedbySMS long readswithonlySNP cluster features,
it is designated as aCRE. If themapped SMS reads around a regionwith
errors exhibits clipping features (i.e., the NGS reads simultaneously
show clipping or no coverage), it is designated as a CSE. The presence
of a CSE implies the existence of a misjoin in the genome assembly,
which couldhave significant downstreameffects on the usability of the
assembly.

We also propose a new genome assembly quality index (AQI),
defined as follows:

AQI = 100e�0:1N=L ð1Þ

whereN represents the cumulative normalizedCRE orCSE count and L
indicates the total length of the assembly in mega-base unit. To avoid
excessive impacts of specific regions enriched in errors (e.g., peri-
centromeric regions) on the overall AQI values, we normalized error
counts within a sliding window of 0.0001 * (total assembly size)
(Supplementary Fig. 2), and applied the following equation:

Nw=
Xm

i= 1

i�1 ð2Þ

whereNw represents the normalized error number in a window andm
is the actual number of CRE/CSEs in the block. The assembly qualities
of small regions and large structural fragments could be calculated
separately as R-AQI and S-AQI.

Performance estimation with simulations
To benchmark CRAQ performance, we tested the recall and precision
on a simulated dataset and compared the results to those generated
with the reference-based evaluator QUAST-LG15 and the reference-free
assembly evaluators Inspector9 and Merqury10. We simulated a gen-
ome from the human reference assembly (GRCh38) by introducing a
total of 11,000 heterozygous variants and 8200 assembly errors
(Supplementary Data 2, Supplementary Fig. 3). Heterozygous PacBio
HiFi-like reads and Illumina-like reads were simulated using PBSIM34

and Wgsim35, respectively (see Methods for details).
With the default settings, the reference-based approach (QUAST-

LG) showed the highest F1 score (>98%) in detecting CREs and CSEs
among these tested assembly evaluators (Table 1). This ismainlydue to
we had a perfect reference assembly to comparewith. CRAQ identified
the simulated heterozygous variants with over 95% recall andprecision
(Supplementary Fig. 4, Supplementary Data 3); these variants could
not be identified by the other assembly evaluators. Notably, CRAQ
achieved the highest accuracy among these reference-free programs,
with an F1 score (harmonic mean of precision and recall) >97% for
simulated errors (Table 1). We also checked these 516 false-negative
errors (494 CREs and 22 CSEs) that were not detected by CRAQ, and
found that 83.0% CREs and 77.3% CSEs were located in repeat regions
(Supplementary Fig. 5a, b). Moreover, for these 516 CRAQ missed
errors, there are relatively low or even no reads mapped to these
regions (Supplementary Fig. 5c, d and Supplementary Data 4).
Inspector had an F1 score of ~96% in detecting CREs, but had low recall
(28%) for CSEs. Because Merqury could not distinguish between CREs
and CSEs, these errors were merged together, and Merqury had an
F1 score of 87.7%. It seems that Merqury failed to identify errors in
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over- or under-assembled repetitive elements due to the lack of
additional new k-mer types generated.

Benchmarking of CRAQ with real datasets
To test the performance of CRAQ on a genome with high hetero-
zygosity, CRAQ was applied to multiple assemblies of an F1 Drosophila
melanogaster hybrid from a cross of A4 with ISO136 (Table 2). The
parental genomes were used to distinguish between heterozygous
sites and assembly errors. In the HiCanu assembly of the D. melano-
gaster F1 individual, we identified a total of 3006 clipped positions
from Illumina reads only and 54 clipped positions from Illumina and
PacBio HiFi reads (Supplementary Data 5). After applying CRAQ,
we found that only 4.2% (127/3060) of the loci were true assembly
errors; 102 were CREs and 25 were CSEs. Moreover, 96% (2904/3006)

of the clipped positions from Illumina reads and 54% (29/54) of the
clipped positions from both types of reads were heterozygous
loci (Supplementary Fig. 6, Supplementary Data 5). For example,
CRAQ identified an assembly error and a heterozygous locus at
tig0000001:10,444,000-11,440,000. We compared this contig to the
orthologous regions in the parental genomes and examining their read
mapping statuses, which confirmed the assembly error in the position
x and the heterozygous variant in the position y (Fig. 2).

We further evaluated the performance of CRAQ in identifying
large structural errors, comparing its performance to that of the
reference-based evaluator Synteny and Rearrangement Identifier
(SyRI)37. We applied CRAQ and SyRI to publicly-available genome
assemblies for Solanumpennellii (LYC1722) generated froma single set
of Nanopore data with Canu, SMARTdenovo, and Canu combinedwith
SMARTdenovo (CaSM)38. The CaSM assembly had the highest assess-
ment score of the available assemblies based on multiple metrics,
including BUSCO completeness, LAI, QV score, and N50 contig length
(Table 2). We therefore investigated potential assembly errors in the
Canu assembly of S. pennellii by using CRAQ and SyRI, and the CaSM
assembly was used as the reference genome for SyRI. In total, we
detected 8029 error related breakpoints using CRAQ, including
7910CREs and 119CSEs (Supplementary Fig. 7, SupplementaryData 6),
and identified 20,877 SVs (after removing small-scale indels)
using SyRI (Supplementary Data 7). To compare these results, we
found that ~71.4% (5736/8029) of the errors reported by CRAQ
overlapped with 49.8% (6539/13,114) of the SVs identified by SyRI

Fig. 1 | An overview of CRAQ processing steps. (I) The original next-generation
sequencing (NGS) short reads and singlemolecule sequencing (SMS) long reads are
separately mapped to the assembly and the resulting two alignment files are gen-
erated after filtering out low-quality reads. (II) Regions with no NGS reads mapped
(i.e., gaps) and the positions where NGS/SMS reads are clipped are recorded. The
number of clipped reads and the total read coverage at each position are also
recorded. (III) For clipped positions from the NGS and SMS alignment, we define
heterozygous loci (suffix “h”) and the mapping breakpoints (suffix “b”) based on a
user-defined cutoff for the ratio of the number of clipped reads to the total reads
mapped at that position. Together with gaps (suffix “g”), such breakpoints are
defined as locations of putative assembly errors. (IV) Putative errors are further

classified as Clip-based Regional Errors (CREs) or Clip-based Structural Errors
(CSEs) based on read-mapping status. CREs are defined as those with NGS break-
points or gaps spanned by SMS long reads but enriched in base mismatches; CSEs
are defined as those with SMS clipping breakpoints near theNGS breakpoint or gap
region. Heterozygous regions are also classified as Clip-based Regional Hetero-
zygosity (CRH) or Clip-based Structural Heterozygosity (CSH) regions based on
similar criteria but considering the ratio of mapping coverage. (V) Identified CREs
and CSEs are visualized and further used in benchmarking the genome assembly
quality. CRAQoutputs awhole-genomesummary, regional AQI scores (track a), and
the precise location of CREs (trackb) andCSEs (track c) for each assembly fragment
(track d).

Table 1 | Benchmarking error identification of each evaluator
with simulation

QUAST-LG CRAQ Inspector Merqury

CREs CSEs CREs CSEs CREs CSEs Total

Recall % 98.061 98.123 95.266 96.207 95.507 28.219 84.616

Precision % 98.957 99.112 99.763 97.942 96.750 97.283 91.091

F1 scorea % 98.507 98.615 97.463 97.067 96.125 43.748 87.734
aF1 score was calculated as F1 score = (2*recall*precision)/(recall + precision). The F1 score was
used to measure the accuracy of each evaluator.
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(Fig. 3a, Supplementary Fig. 8). We further investigated the 2292 and
6575 errors uniquely identified with CRAQ and SyRI, respectively.
Among the 2292 errors uniquely identifiedwithCRAQ, 56.8% existed in
both the Canu and CaSM assemblies (Fig. 3, Supplementary Fig. 9),
which could be considered as false negatives for SyRI. Manual
inspection suggested that most of the others were also errors in the
Canu assembly (see exemplar cases in Fig. 3b, Supplementary Fig. 10).
For the 6575 errors uniquely identified with SyRI, there were five main
categories: errors in CaSM reference assembly, heterozygous sites,
noisy base-error clusters, errors in regions designated as low-
confidence by CRAQ, and others (Fig. 3).

To compare metrics produced by the assembly evaluators, we
further analyzed 40 publicly-available genome assemblies to char-
acterize the correlations between theR/S-AQI, LAI,QV, BUSCO, andN50
contig length scores (Supplementary Data 1). We found a moderate
correlation of R-AQI with other metrics, with LAI having the best cor-
relation (r2 = 0.419) with R-AQI (Supplementary Fig. 11a). Notably, all of
the othermetrics showed poor correlations with S-AQI (Supplementary
Fig. 11b). For example, the SMARTdenovo assembly of S. pennellii had
the highest S-AQI score (91.5), whereas the CaSM and Canu assemblies

had lower S-AQI scores (88.7 and 87.4, respectively). However, the
SMARTdenovoassemblywas classified as the assemblywith thepoorest
quality using the other metrics (Table 2). A comparison of the three
assemblies to the S. pennellii LA716 reference genome39, demonstrated
that the Canu and CaSM assemblies indeed exhibited more structural
discrepancies than the SMARTdenovo assembly (Supplementary
Fig. 12). Therefore, if the structural qualityof the assembly is theprimary
focus of evaluation, S-AQI values could be superior to other metrics.

CRAQ identifies misjoined assembly errors for further
correction
Contig misjoins often cause severe barriers to scaffolding, and
inaccurately assembled scaffolds can lead to misinterpretations in
structural genomic studies. CRAQ can separate misjoined contigs at
CSE breakpoints, allowing users to reassemble new contigs into scaf-
folds using Bionano optical maps and/or Hi-C data for correction pur-
pose. For instance, we applied CRAQ to the previously-published
Aquilegia oxysepala genome40. First, draft contigs were generated from
the direct output of a de novo assembly of ~50× PacBio sequencing data
with Falcon41 (https://github.com/JiaoLaboratory/CRAQ_data). In total,

Table 2 | CRAQ metrics and quality statistics for the Drosophila melanogaster F1 individual and Solanum pennellii genome
assemblies

Assembler N50 BUSCO (%) LAI QV CRAQ

#CRH #CSH #CRE (R-AQI) #CSE (S-AQI)

D. melanogaster (~150Mb)

Peregrine 12.7 99.1 – 31.3 14.2 0.27 1.31 (87.7) 0.047 (95.4)

Canu 13.7 99.5 – 43.5 12.0 0.24 0.80 (92.3) 0.053 (94.8)

HiCanu 16.3 99.5 – 49.3 15.1 0.21 0.71 (93.1) 0.084 (91.9)

Hifiasm 24.6 99.3 – 37.8 13.8 0.25 0.66 (93.6) 0.043 (95.7)

S. pennellii (~950Mb)

Canu- SMARTdenovo 2.52 98.7 8.7 26.1 2.78 0.04 5.75 (56.3) 0.119 (88.7)

Canu 1.55 98.6 7.6 24.3 3.17 0.07 9.40 (39.0) 0.134 (87.4)

SMARTdenovo 1.06 98.5 7.4 22.8 3.21 0.05 10.98 (33.3) 0.089 (91.5)

N50 lengths are inmega-bases. “–” represents values that could notbe calculated because LAI can only becalculatedwhen the intact and total LTR-RTs contribute at least 0.1% and5%, respectively,
to the genome size. Consensus quality scores (QV) were computed by Merqury. “#CRE/CSE” and “#CRH/CSH” refer to the normalized counts of CRE/CSEs and CRH/CSHs per Mbp.

Fig. 2 | Identification of heterozygous loci and true assembly errors. a Example
of a syntenic comparison by NUCmer between the HiCanu assembly of a D. mela-
nogaster F1 individual and the corresponding chromosomes of the two parental
strains (paternal, ISO1; maternal, A4). Track x and y on the y-axis represent regions
associated with two clipped positions in the HiCanu assembly. Region x and region

y were identified by CRAQ as a CSE (b) and a CSH (c), respectively. The top panel of
each graph displays local alignments between the HiCanu contig and references.
The bottom panel shows the read mapping status within the CSE (a structural
contig misjoin) and the CSH (a heterozygous variant of ~35 kb). The mapping
breakpoints are marked with gray dashed lines.
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we detected 117 CSEs in these draft contigs of A. oxysepala (Supple-
mentary Data 8). Using Bionano optical maps and Hi-C data, we gener-
ated twoscaffold versions: onedirectly fromthedraft contigs (“original-
scaffold”, N50= 20Mb, R-AQI = 79.1, S-AQI = 39.0), and the other from
CRAQ-assisted split contigs (“corrected-scaffold”, N50= 28Mb, R-
AQI = 78.7, S-AQI = 58.1). We then compared the two versions.

An example case is shown in Fig. 4a, in which contig8 contained a
CSE (located at contig8:1,874,290, position y) and was assembled as
part of scaffold_3 in the original scaffold version.We referred to contig8
from the beginning position x to y as ctg8_1 and from position y to z as
ctg8_2 (Fig. 4a). To confirmwhether the contigwas an assemblymisjoin,
we aligned all of the draft A. oxysepala contigs to the assembled Bio-
nanoopticalmaps, and found that ctg8_1mapped toCMAP-1 and ctg8_2

mapped to CMAP-10 (Fig. 4b). Similarly, we observed a bi-partite
structure of contig8 (corresponding to ctg8_1 and ctg8_2) in the Hi-C
map. Furthermore, ctg8_1 exhibited no contact with the proximal
regions of scaffold_3, but a striking contact with scaffold_12 (Fig. 4c).
This evidence clearly suggests a mis-assembly of contig8 in the original
version. In the corrected scaffold, ctg8_1 and ctg8_2 were assembled in
scaffold_11 and scaffold_4, respectively. Ctg8_1 linked downstream of
contig30 and ctg8_2 linked upstream of contig70 (Fig. 4d). These con-
tigs were consistent with the optical maps and exhibited no alignment
overlap with adjacent contigs (Fig. 4d). There were no anomalous Hi-C
contact patterns at the linkage regions (Fig. 4e).

We further compared the genome-wide optical mapping results
between the draft and CRAQ-assisted contigs and the Hi-C contact

Fig. 3 | Comparison of errors detected with CRAQ and SyRI in selected S. pen-
nellii assemblies. a Distribution of error types among unique and overlapping
errors identifiedwith CRAQ and SyRI. If a SyRI-SV locus fell in a CRE/CSE region, we
classified the two errors as the same error. Each category of specific errors iden-
tifiedwith CRAQor SyRIwas labeled from ‘i’ to ‘vii’, corresponding to data shown in

b. b Examples of read mapping statuses for error regions of each category labeled
in a. Pileup plots and coverage from Illumina and Nanopore reads are shown. For
tracks ‘i’, ‘ii’ and ‘iii’ the upper panel shows a region in the Canu assembly and the
lower panel shows the orthologous region in the CaSM assembly. The mapping
breakpoints are marked with gray dashed lines.
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patterns between the original and corrected scaffolds of A. oxyse-
pala. There were 77 misjoin conflicts detected in the draft contigs
(Fig. 5a, Supplementary Data 9), indicating severe disagreements
between the draft contigs and the optical maps. Moreover, most of
the original scaffolds of the A. oxysepala assembly exhibited anom-
alous intra- and inter-scaffold Hi-C patterns (Fig. 5b, Supplementary
Data 10). After CRAQ correction, we observed a significantly
decreased number of conflicts between the CRAQ-assisted contigs

and the optical maps (Fig. 5c), and a remarkably reduced number of
noisy Hi-C signals compared to the original scaffolds (Fig. 5d, Sup-
plementary Data 10). These results indicated that certain genomic
regions remained difficult to sequence with high quality, and thus
tended to be incorrectly assembled based only on the sequencing
reads. It is important to identify, separate, and reassemble these
regions based on long-range linking data, such as optical maps or Hi-
C contact data.

Fig. 4 | Illustration of CRAQ correction performance on the draft contigs of A.
oxysepala. a Mapping status of the Illumina and PacBio reads in a large-scale
structural error (CSE) region located on contig (ctg) 8 (3.6 Mbp). The CSE break-
point (as determined with CRAQ) is marked with a dashed line, which splits the
original ctg8 into twoparts, ctg8_1 and ctg8_2.bOpticalmapping-based alignments
of ctg8 with two optical consensus maps (CMAP-1 and CMAP-10). The position of
the error is indicated with a black arrow. c Local Hi-C contacts of the original

scaffolds (scaf). An abrupt depletion of the Hi-C contact signal is observed at
position y in ctg8. The gray circle indicates anomalous Hi-C contacts between scaf3
and scaf12. hic.cov (read coverage ofHi-C pairs) and hic.mis (mis-assembly regions)
detected with 3D-DNA were also shown at the top tracks. d Improved alignments
between CRAQ-corrected contigs and optical maps. Ctg8_1 and ctg8_2 are outlined
in red. e Local Hi-C contacts of the corrected scaffolds. The CRAQ-corrected con-
tigs were re-anchored based on the Hi-C contact data.
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Discussion
A highly contiguous, accurate, and complete genome assembly is
essential for genomic studies, including investigations into chromo-
some structural variations and evolution of key nucleotides, syntenic
analyses, and cis-element predictions. Several well-known tools have
been developed to assess genome assembly quality and are widely
used to evaluate various parameters of genome assemblies. Tradi-
tionally, length metrics (N50/L50 values) provide a standard measure
of assembly contiguity. BUSCO14 and CEGMA42 are state-of-the-art
methods for evaluation of completeness at the gene level.
LTR_retriever43, Merqury10, and Inspector9 can be used to evaluate
consensus assembly accuracy using LAI and QV values. However,
previous evaluators lack consideration of heterozygous loci and pro-
vide only a single metric for assembly quality without distinguishing

between regional errors and structural misjoins. In the present study,
we developed CRAQ, a reference-free genome assembly evaluator, to
assess assembly accuracy while considering the heterozygous features
of diploid genomes and provide detailed information about assembly
errors. These data include the precise locations of CREs/CSEs and both
regional and overall AQI metrics for assembly validation.

The inherently heterozygous features of a genome may have
strong effects on accurate evaluation of the corresponding assembly
when using reads mapping information. However, several previously-
developed tools have not implemented heterozygous site removal.We
heredistinguishedbetween assembly errors and heterozygous regions
based on read-mapping coverage data and effective clipping ratio
thresholds. Thresholds for these parameters could be defined based
on multiple scenarios. We applied CRAQ to highly heterozygous

Fig. 5 | Overview of optical mapping and Hi-C contacts before and after CRAQ
correction. a Alignment of in silico genomic maps, including draft contigs of A.
oxysepala and the five largest Bionano DLE-1 maps. Collinear DLE-1 markers on the
twomaps are linked with gray lines. Regions in yellow exhibit breaks in collinearity
between the twomaps.bHi-C contacts of the original scaffolds ofA. oxysepala. The

order of contigs and scaffolds are presented with green and blue squares,
respectively, along the diagonal. The top tracks show the AQI (local AQI score),
hic.cov, and hic.mis detected with 3D-DNA. c Alignment of in silico genomicmaps,
including CRAQ-corrected contigs and optical DLE-1 maps. d Hi-C contacts of the
corrected scaffolds for A. oxysepala.
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diploid genomes, demonstrating the accuracy of this tool and the
importance of removing heterozygous loci during assembly assess-
ment (Table 1, Supplementary Data 1). The only previously-published
tool that considers heterozygosity status is Inspector9. In a comparison
to Inspector, CRAQ showed much higher performance in distinguish-
ing between heterozygous regions and true assembly errors (Table 1,
Supplementary Fig. 13). Identification of heterozygous loci, including
CRHs and CSHs, could also help users to better understand the status
of an organism at specific loci. In the future, the availability of
numerous haplotype-resolved genome assemblies could further
resolve such complexity.

Small-scale assembly problems, such as base calling errors or
indels, can strongly influence assembly quality. Algorithms such as
Racon44, Nanopolish45, Medaka (https://github.com/nanoporetech/
medaka), and Pilon46 have been developed to correct inconsistencies
associated with base errors or indels with multiple rounds of post-
assembly polishing using raw signal data or/and more accurate NGS
short reads. Rapid advances in long-read sequencing technologies
have greatly improved read accuracy. For example, the availability of
PacBioHiFi reads,which arederived frommulti-pass sequencing of the
same circularized fragment, have achieved per-base accuracy of over
99.9%, comparable to the accuracy of short reads and Sanger
sequencing47. Assemblies generated from HiFi reads often show high
consensus accuracy and do not require read correction6,47–49. High-
accuracy HiFi long reads can largely eliminate the small-scale incon-
sistencies discussed above; we therefore primarily focused on assem-
bly errors detected from clipped alignments.

We argue that structural errors in genome assemblies should be
attended to and corrected by more researchers, because whole
genome-level comparisons will be carried out with increasing fre-
quency in the future to understand chromosome structural evolution,
including segmental inversions, translocations, and duplications
between or among lineages. Several methods were previously devel-
oped to identify these types of errors using reference genomes of
closely-related species or several versions of a single assembly11,15,30.
However, various types of falsepositives and false negatives likely exist
in these circumstances, and it is difficult to distinguish between
assembly errors and true structural variations in comparing a newly-
assembled genome to a reference assembly. For example, when
comparing the CSEs identified with CRAQ to SVs identified in another
study38, we found some CSEs that existed in both the Canu and CaSM
assemblies; these errors were therefore overlooked by SyRI37 when the
CaSM assembly was used as a reference to identify SVs in the Canu
assembly (Supplementary Fig. 9). In addition, when using a closely-
related genome as a reference, false-positive structural errors are likely
to occur in the evaluation process due to true structural differences.
Therefore, using the original sequencing data from the same species
will allow more accurate evaluation of the number of misjoins.

Optical maps and Hi-C contact data have previously been used to
detect and correct CSEs13,33,50. Bionano optical mapping includes an
error correction process, inspecting apparent alignment conflicts
between the contig sequence and Bionano maps51. Hi-C-based meth-
ods split genomic regions for which the contact map exhibits anom-
alous patterns52,53. However, these two approaches often lack the
resolution required to precisely identify and split misjoined regions.
The Hi-C-based correction approach sometimes yields a higher num-
ber of debris fragments due to the aggressive splitting process used52.
In contrast, CRAQ utilizes read clipping information to conduct error
calling, which allows for pinpointing and splitting misjoined regions
with single-nucleotide resolution. This method shares a similar
underlying philosophy with variant-calling tools such as GATK54,
Freebayes55, and Deepvariant56, which were designed primarily for
detection of mutational variants using reads from population-scale
samples. Further scaffolding these split contigs using optical maps or
Hi-C data results in much higher-quality genome assemblies. For

instance, after CRAQ correction, the newly-constructed scaffolds of A.
oxysepala assembled with Hi-C showed fewer CSE features and thus
higher S-AQI values than the original scaffolds (Supplementary Fig. 14,
Supplementary Data 10).

We found that misjoined regions were often caused by a very
small number of SMS reads that inaccurately bridged two unlinked
segments together. These SMS reads frequently showed low sequence
complexity or repetitive features and could be multi-mapped back to
the misjoined regions (Supplementary Fig. 15). Moreover, specific
homopolymer repeats were enriched in CRE and CSE regions (Sup-
plementary Fig. 16). Notably, such multi-mapped reads were filtered
out when CRAQ was applied to identify CSE breakpoints by default.
Therefore, the current version of CRAQ will perform well for species
withmonoploid or diploid genomes; evaluation of genome assemblies
for species with higher ploidy levels may not be as accurate as the
benchmarked cases presented here. Although accurate assessment of
polyploid genomes remains a challenge, CRAQ could be expanded for
use with polyploid species in the future.

Precise identification of assembly errors remains of paramount
importance in accurately assessing genome quality. Our newly devel-
oped tool, CRAQ, is a reference-free evaluation method that uses
alignment characteristics of the original NGS short reads and SMS long
reads mapped back to a genome assembly to validate the assembly
quality. After screening out heterozygous sites and structural differ-
ences between haplotypes, CRAQ provides precise breakpoint infor-
mation, assembly error types, and summarized quality scores. In
addition, CRAQoffers a correctionprocess to splitmisjoined contigs at
CSEs to aid in accurate scaffold construction. These features of CRAQ
facilitate a better understanding of the quality of new genome
assemblies and complements existing genome assembly assessment
softwares. This tool could be applied to various genome assembly
projects to improve assembly quality.

Methods
Details of the CRAQ algorithm
Read mapping and filtering. The complete framework for CRAQ is
shown in Supplementary Fig. 1. CRAQ combines alignment informa-
tion from NGS short reads (typically from a short insert Illumina
library) with SMS long reads (typically from a PacBio CLR/HiFi or ONT
library) for genome quality assessment. The pipeline is easy to run,
using assembly input files in FASTA format and NGS and SMS
sequences in FASTQ/A format. Alternatively, the user canmap reads to
the assembly in advance and provide two Binary Alignment/Map
(BAM) formatfiles as input. InMinimap2 (version2.18)57, the ‘-ax sr’ and
‘-ax map-pb/hifi/ont’ options were employed for genomic short-read
and different types of long-read mapping, respectively, in CRAQ.
SAMTools (version 1.9)35 was used to convert the alignment files to
BAMand to sort the aligned reads. Readmapping is currently themost
resource-intensive step of CRAQ. Users could split query sequences
into multiple fragments and perform multitasking alignments that
would decrease the time required, especially for long-read mapping.
Any read alignments with low mapping quality (MAPQ< 20) or that
were unmapped, secondary,QC-failed, or PCR-duplicatedwerefiltered
out using the ‘-F 1796 -q 20’ parameters in ‘samtools view’35. If a region
in assembly with no or limited coverage after themapping filter, CRAQ
will report these regions as low-confidence regions.

Extraction of clipped alignments. The concept of using sequences
with clipped alignments has previouslybeen explored for predictionof
SVs58,59. Here, we adopted this idea by calling genome assembly errors
as SV types. CRAQ first extracts all clipped reads, coded as “S” or “H” in
the Compact Idiosyncratic Gapped Alignment Report (CIGAR) string
from the twofiltered BAM (NGS and SMS alignment) files, respectively.
CRAQ then identifies the precise base coordinateswhere clipped reads
are mapped and calculates the coverage from clipped reads and total
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reads at that position. These data are then used for downstream
identification of CRE/CSE breakpoints and heterozygous loci.

Identification of error breakpoints and heterozygous features.
CRAQ distinguishes error breakpoints and heterozygous loci based on
read-mapping coverage data and effective clipping ratios. The clipping
ratio thresholds are the fundamental criteria and are calculated as the
number of clipping reads divided by the local coverage. Theoretically,
heterozygous loci can show an alternative allele in ~50% of clipped
reads. However, true assembly error regions lead to a clipping ratio
near 100%. The ratio for assembly errors can be lower than 100% in
practice due to sequencing errors or inaccurate readmapping, but are
still higher than heterozygous regions. By default, a locus is classified
as heterozygouswhen the clipping ratio ofNGS/SMSmapping iswithin
a cutoff region h (default = 0.4–0.6). A region is classified as amapping
breakpoint when the ratio exceeds a stringent cutoff value f
(default = 0.75). If the assembly regions exhibited coverage over the
upper level of h and below the f value, CRAQ reported these regions as
ambiguous heterozygous or error region. Together with gaps, such
breakpoints are defined as the locations of candidate assembly errors.
The filter also excludes candidates with extremely low coverage (m,
default = 2) and high coverage (M, default = 5 * average coverage) or
poor read mapping quality (SMS clipped length <0.1 * total length) to
ensure high confidence of the identified error breakpoints and
heterozygous loci.

Classification of assembly errors. Assembly errors were classified as
CREs or CSEs. CREs are defined as errors in which the SMS long-read
spans theNGSbreakpoint but hasunevenor irregular coverage around
the breakpoint. The cutoff for coverage differences is set with the ‘-d’
parameter, which compares the discrepancy in coverage of SMS reads
to the 200-bp regions upstream and downstream of the NGS break-
point with a 20-bp sliding window. CSEs are defined as errors in which
the 100-bp region flanking the SMS breakpoint contains an NGS
mapping breakpoint or no NGS read coverage. This ensures the cor-
rectness of CSE breakpoints because some long reads still suffer from
relatively high base error calling and thus incorrect mapping. Addi-
tionally, regions adjacent to clipped bases are usually noisy in SMS
reads, especially for CSEs. CRAQ can identify the error breakpoint
within the noisy region (if the NGS data show amapping gap) with the
option ‘--error_region’.

CRE andCSE count normalization. Some genomic areas, such as peri-
centromeric regions, are often incorrectly assembled and are enriched
in CREs/CSEs. The presence of such regions could greatly decrease the
overall AQI value of an assembly. To reduce the weight of such error-
prone regions on the overall assembly quality, we normalized CRE/CSE
counts by applying Eq. (2): Nw=

Pm
i= 1i

�1, where Nw represents the
normalized number of CREs or CSEs within a sliding window of
0.0001* (total assembly size) andm is the true number of CREs/CSEs in
the block. For example, if three CREs/CSEs were found within one
block, the Nw value for that block would be 1/1 + 1/2 + 1/3 = 1.83. The
normalized CRE and CSE numbers were then transformed into the
R-AQI andS-AQI scores, respectively. Thepresence of aCSE implies the
existence of a misjoin in the assembly, which could have significant
downstream effects on the usability of the assembly. We therefore
penalize CSE Nw at a rate 10 times higher than that of CRE Nw.

Quality metric reporting. CRAQ exports the following output files: (i)
a report file that contains the coverage rate of the assembly, the
number of CREs/CSEs and CRHs/CSHs, regional AQI scores for each
fragment, and summary R-AQI and S-AQI values for thewhole genome;
(ii) a file with the exact breakpoints of CREs/CSEs andCRHs/CSHs, with
supported clipped reads and read coverage information for that error
breakpoint or heterozygous locus to facilitate visual inspection in a

genome browser such as IGV60 or JBrowse61; and (iii) a folder that
contains identifiedmisjoined fragments (and a newly corrected FASTA
file if the user selects the ‘correct’ function).

Analysis of simulated heterozygous variants and assembly
errors
To benchmark the evaluation accuracy of CRAQ, we simulated struc-
tural and small-scale local assembly errors, as well as heterozygous
regions, in the human reference genome hg38 (containing 22 auto-
somes and an X chromosome)(https://www.ncbi.nlm.nih.gov/datasets/
genome/GCF_000001405.26/). Assembled contigs were generated by
splitting the genome at“N” bases, excluding fragments shorter than
500kb.We randomly selected 18,000 genomic loci on the hg38 contigs
to simulate heterozygous variants and assembly errors. A total of
11,000 sites were first selected to introduce simulated heterozygous
variants, including 10,000 small-local indels and 1000 structural var-
iants. These embedded variants could be considered heterozygous
variants. We referred this simulated genome as hg38_sim1. HiFi-like and
Illumina-like readswereproduced fromtheoriginal hg38 andhg38_sim1
genomes using PBSIM34 and Wgsim35 with the options ‘--depth 40
--method qshmm --length-mean 10000 --length-sd 2000 --accuracy-min
0.95’ and ‘-e 0.0001 -r 0.0001 -R 0.0001 -s 1 -1 150 -2 150’, respectively.
These simulated reads would serve as input reads for CRAQ and other
assembly evaluators.

To simulate a genome containing assembly errors, we introduced
6000 regional indels and 1000 structural errors (200 fragment indels,
400 contig misjoins, and 400 inversions) at the other previously
selected 7000genomic loci in hg38. Repeat units usually represent the
significant impediment to assembly of a new genome, which often
cause problems for assembly. Therefore, besides the above 7000 loci,
we further introduced 1200 repeat errors, including 1100 small repeat
collapses/extensions and 100 large fragment repeats. These repeat loci
were randomly selected from the repeat database of hg38 (hgdown-
load.soe.ucsc.edu/hubs/RepeatBrowser2020/hg38/) and occupied
~10% of the satellite array in hg38. Finally, we generated a simulated
error-containing hg38 assembly (referred to as hg38_sim2).

By mapping the above simulated reads to hg38_sim2 genome, we
detected errors using CRAQ and other assembly evaluators. These
reported errors were further compared with our simulated error type
and loci to evaluate the performance of these assembly evaluators

Genome benchmarking with other metrics and evaluators
Sources of the sequencing and assembly data used in this study are
summarized in Supplementary Data 1. The N50 contig length, BUSCO,
QV, and LAI values were calculated separately for each genome.
BUSCO completeness was assessed by comparing each genome to a
corresponding gene database using BUSCO (version 5.4.6)14 with the
parameters ‘-lineage path odb10 -mode geno’. For LAI, all LTR-RT
candidates were first obtained using LTRharvest62 with the parameters
‘-mintsd 4 -maxtsd 6 -motif TGCA -motifmis 1 -similar 85 -vic 10 -seed
20’ and LTR_FINDER63 with the parameters ‘-D 15000 -d 1000 -L 7000 -l
100 -p 20 -C -M 0.85’. LAI scores were computed based on the identi-
fied LTR-RTs using LTR_retriever43 with default parameters.

Merqury (version 1.3)10 was used to calculateQV scores and detect
errors. Meryl databases were first generated with relevant Illumina
reads using a k-mer size of 21 bp. Merqury was then used with each
meryl database to evaluate all assemblies with default settings. Merq-
ury identifies erroneous k-mers that are only present in the assembly
but not in the input reads. A series of overlapping k-mersweremerged
into a single error region for benchmarking. An Merqury error was
considered validated if the boundary or 21-bp flanking region (one
k-mer length) overlapped with the simulated error locus.

Inspector is designed to detect assembly errors with long
sequencing reads. This program was used with raw or simulated long
reads and the relevant assembly sequences as input and the default
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parameters. Inspector identified errors including single SNPs, small
indels, regional collapse/expansion, switch errors, and fragment
inversions. Small variants (<40bp) were ignored.

Detecting structural variations with SyRI
SVs were identified by comparing the reference genomes generated
with different assemblers using SyRI37. TheCanu assemblies (>500k) of
S. pennellii were input as the query genome and the CaSM assembly
was input as the reference due to its higher quality. SyRI output
includes SNPs, highly divergent regions (HDRs), deletions (DELs),
insertions (INSs), and large fragment misjoins (MJs), all of which were
considered to be putative errors in assemblies. Low-quality and SNPs,
HDRs, INSs, DELs <40bp were ignored. Overlapped SV regions were
merged. MJ events were further validated through manual inspection.
An CRE/CSE was considered to overlap with a SV if the breakpoint fell
in the boundary of the SV or within the adjacent 50-bp region.

Optical mapping for the A. oxysepala assembly
BionanoGenomics Direct Label and Stain (DLS) optical consensusmaps
of A. oxysepala were used to identify potential chimeric errors in the
draft assembly of A. oxysepala. We first performed in silico digestion of
the initial A. oxysepala draft contigs using the restriction enzyme DLE-1
to produce genomic maps. Subsequently, we applied “RefAligner”
(using default parameters) in the Bionano Solve pipeline (version 3.3)
(https://bionanogenomics.com/support/software-downloads/) to con-
duct mis-assembly detection by aligning the optical consensus maps to
the in silico maps of the initial A. oxysepala contigs. All cuts that
conflicted with the optical mapping data were visualized in Bionano
Access (version 1.3.0) (https://bionanogenomics.com/support/software-
downloads/). The optical mapping-based approach could only infer the
approximate genomic locations of misjoins. A CSE breakage was clas-
sified as a chimeramisjoin if it fell within 20 kbp adjacent to a conflicting
optical site; thedistancebetween twonickingenzyme labelswas ~10 kbp
in our optical molecules. New contigs obtained after breaking these
misjoins were re-aligned to the Bionano maps using “RefAligner” as
described above.

De novo scaffolding for the A. oxysepala assembly based on Hi-
C data
The original and CRAQ-corrected A. oxysepala contigs were used as
input for the Hi-C scaffolding process. We first employed Juicer (ver-
sion 1.7.6)64 to transform the raw Hi-C data into a list of Hi-C contacts
with the following parameters: ‘-s MboI -d juicer -p chrom.sizes -y cut-
sites.txt’, where file ‘cut-sites.txt’ was generated using the gen-
erate_site_positions.py script. We then performed de novo scaffolding
using 3D-DNA (version 180114)52 based on the generatedHi-C contacts.
This program was run without error correction in 3D-DNA using the
following parameters: ‘-m haploid -r 0’. The generated mega-scaffold
was only split into scaffolds at large-scale discrepancies in the Hi-C
signal near the diagonal. The order and orientation of the generated
scaffolds and all anchored input contigs were visualized with Juicebox
Assembly Tools (JBAT version 1.8.8)65.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The investigated genome assembly data were downloaded from public
database, and these corresponding links are provided inSupplementary
Data 1. The example data for running CRAQ has been deposited to the
repository of GitHub at https://github.com/JiaoLaboratory/CRAQ/tree/
main/Example. The human reference genome hg38 were download at
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/.
The simulated hg38 genomes used in our project have been deposited

in the Zenodo database under accession code https://doi.org/10.5281/
zenodo.8383281.

Code availability
The CRAQ program is available on GitHub at https://github.com/
JiaoLaboratory/CRAQ, and at https://doi.org/10.5281/zenodo.8352570,
which is free for academic research use.
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