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Autonomous and dynamic precursor
selection for solid-state materials synthesis

Nathan J. Szymanski 1,2,5, Pragnay Nevatia3,5, Christopher J. Bartel 4,
Yan Zeng 1 & Gerbrand Ceder 1,2

Solid-state synthesis plays an important role in the development of new
materials and technologies. While in situ characterization and ab-initio com-
putations have advanced our understanding of materials synthesis, experi-
ments targeting new compounds often still require many different precursors
and conditions to be tested. Here we introduce an algorithm (ARROWS3)
designed to automate the selection of optimal precursors for solid-state
materials synthesis. This algorithm actively learns from experimental out-
comes to determine which precursors lead to unfavorable reactions that form
highly stable intermediates, preventing the target material’s formation. Based
on this information, ARROWS3 proposes new experiments using precursors it
predicts to avoid such intermediates, thereby retaining a larger thermo-
dynamic driving force to form the target. We validate this approach on three
experimental datasets, containing results fromover 200 synthesis procedures.
In comparison to black-box optimization, ARROWS3 identifies effective pre-
cursor sets for each target while requiring substantially fewer experimental
iterations. These findings highlight the importance of domain knowledge in
optimization algorithms for materials synthesis, which are critical for the
development of fully autonomous research platforms.

Conventional high-temperature synthesis based on solid-state reac-
tions has long been used for the preparation of inorganic materials1.
This method involves the mixing and subsequent heating of solid
powders to facilitate reactions between them. Despite its apparent
simplicity, the outcomes of solid-state synthesis experiments are often
difficult to predict2,3. While density functional theory (DFT) calcula-
tions can be used to assess thermodynamic stability4, even materials
that are stable can sometimes be difficult to synthesize owing to the
formationof inert byproducts that competewith the target and reduce
its yield5–8. Further complicating matters is the prevalence of meta-
stable materials9 used in countless technologies including
photovoltaics10 and structural alloys11. Metastable materials are typi-
cally prepared using low-temperature synthesis routes, where kinetic
control can be used to avoid the formation of equilibrium phases12,

though recent work has shown thatmetastable phases can also appear
as intermediates during high-temperature experiments13–15. To opti-
mize the purity of a desired product, whether it be stable or only
metastable, requires careful selection of precursors and reaction
conditions. This selection process traditionally relies on domain
expertise, reference to previously reported procedures for similar
targets (if any exist)16,17, and the use of heuristics such as Tamman’s
rule18. However, there is no clear roadmap to optimize the solid-state
synthesis of novel inorganic materials, which can lead to many
experimental iterations with no guarantee of success.

A new opportunity exists to accelerate inorganic materials
development by leveraging computer-aided optimization to plan
solid-state synthesis experiments, learn from their outcomes, and
make improved decisions regarding the selection of precursors and
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conditions that enable the formation of desired phases. Such an
approach has found success in organic chemistry, where reactions can
often be described by the breaking and formation of individual
bonds19,20. This enables the use of retrosynthetic methods, which start
from the target and work backward through stepwise reactions until a
set of available starting materials is reached21. As many different
reactionpaths can lead to a given target, computer-aided optimization
techniques based on Monte Carlo tree search and reinforcement
learning have been successfully used to rapidly screen for promising
synthesis routes22–24. In contrast, inorganic materials synthesis has yet
to benefit from the widespread use of algorithms that can optimize
experimental procedures. Their development is hindered by the dif-
ficulty of modeling solid-state reactions, where the corresponding
phase transformations involve concerted displacements and interac-
tions among many species over extended distances2. Some progress
has been made in simplifying the analysis of solid-state reaction
pathways by decomposing them into step-by-step transformations
that take place between two phases at a time, hereafter referred to as
pairwise reactions6,15. However, it remains difficult to predict the
temperature at which a given pairwise reaction will occur, as well as
what phase(s) will form as a result of that reaction.

To determine which reaction outcomes are most plausible for a
given set of precursors and conditions, much of the existing work on
computer-aided planning for solid-state synthesis has relied on the
analysis of thermochemical data based on density functional theory
(DFT) calculations25,26. For example, McDermott et al. introduced a
graph-based approach that ranks various reaction pathways by a cost
function designed to account for changes in the Gibbs free energy of
reaction along each path27. A related approach developed by Aykol
et al. parameterizes reactions by two axes—one that approximates the
nucleation barrier of the targeted phase and another that accounts for
its competition with possible byproducts—from which optimal reac-
tants can be identified along the Pareto front28. Alternatively, machine
learning models can be trained on synthesis data from the literature
and applied to suggest effective precursors and conditions for a given
target by considering its similarity with previously reported
materials16,17. While these methods have been successfully applied in
some cases, their use remains limited as they only provide a fixed
ranking of synthesis routes for a given material, which is not readily
updated should the initial experiments fail.

In the place of fixed ranking schemes, active learning algorithms
have also been used for the optimization of synthesis procedures29,30.
These algorithms can adapt from failed experiments and decide which
parameters should be tested in later iterations. Bayesian optimization
and genetic algorithms have found success when coupled with
synthesis techniques based on flow chemistry31 and thin film
deposition32. However, these black-box approaches are often restric-
ted to handling continuous variables such as temperature and time,
while categorical variables aremore difficult to optimize. For example,
choosing which precursors to use for the synthesis of a novel material
is particularly challenging as it involves discrete selections from a vast
range of chemical compositions and structures, instead of simply fine-
tuning parameters on a continuous scale. Recent work has made
progress on this front by combining parallel synthesis experiments
with tensor decomposition analysis, which can be used to predict the
most effective startingmaterials and processing conditions from just a
subset of their possible combinations33.

In this work, we build upon existing methods to optimize solid-
state synthesis procedures by incorporating physical domain knowl-
edge based on thermodynamics and pairwise reaction analysis. This is
accomplished using Autonomous Reaction Route Optimization with
Solid-State Synthesis (ARROWS3), an algorithm designed to guide the
selection of precursors for the targeted synthesis of inorganic mate-
rials. Given a desired structure and composition, ARROWS3 uses
existing thermochemical data in theMaterials Project to forman initial

ranking of precursor sets based on their DFT-calculated reaction
energies34,35. Highly ranked precursors are suggested for experimental
validation throughout a range of temperatures, which are iteratively
probed and analyzedusingmachine learning algorithms to identify the
intermediates that form along each precursor set’s reaction pathway.
When such experiments fail to produce the desired phase, ARROWS3

learns from their outcomes and updates its ranking to avoid pairwise
reactions that consume much of the available free energy and there-
fore inhibit the formation of the targeted phase. To benchmark the
performance of ARROWS3, we conducted 188 synthesis experiments
targeting YBa2Cu3O6.5, forming a comprehensive reaction dataset that
critically includes both positive and negative results. Our approach is
shown to identify all the effective synthesis routes from this dataset
while requiring fewer experimental iterations than Bayesian optimi-
zation or genetic algorithms. We further demonstrate that ARROWS3

can be applied in line with experiments to guide the selection of pre-
cursors for two metastable targets, Na2Te3Mo3O16 and LiTiOPO4, each
of which were successfully prepared with high purity.

Results
Design of ARROWS3

The logicalflowof ARROWS3 is summarized in Fig. 1 and detailed in the
Methods section. Given a target material specified by the user, in
addition to the precursors and temperatures that may be used for its
synthesis, ARROWS3 forms a list of precursor sets that can be stoi-
chiometrically balanced to yield the target’s composition. In the
absence of previous experimental data, these precursor sets are initi-
ally ranked by their calculated thermodynamic driving force (ΔG) to
form the target (Fig. 1a). While many factors influence the rates at
which solid-state reactions proceed36, those with the largest (most
negative) ΔG tend to occurmost rapidly15,16,37. However, such reactions
may also be slowed by the formation of intermediates that consume
much of the initial driving force7. To address this, ARROWS3 proposes
that each precursor set be tested at several temperatures, thereby
providing snapshots of the corresponding reaction pathway (Fig. 1b).
The intermediates formed at each step in the reaction pathway are
identified using X-ray diffraction (XRD) with machine-learned
analysis38. ARROWS3 then determines which pairwise reactions led to
the formation of each observed intermediate phase (Fig. 1c), and it
leverages this information to predict the intermediates that will form
in precursor sets that have not yet been tested (Fig. 1d). In subsequent
experiments, ARROWS3 prioritizes sets of precursors that are expected
to maintain a large driving force at the target-forming step (ΔG0), i.e.,
even after intermediates have formed (Fig. 1e). This process is repeated
until the target is successfully obtained with sufficiently high yield, as
specified by the user, or until all the available precursor sets have been
exhausted.

To validate the effectiveness of ARROWS3, new experimental
synthesis data is needed. Existing results from the literature tend to be
heavily biased toward positive results, which precludes the develop-
ment ofmodels that can learn from failed experiments39. We therefore
built a solid-state synthesis dataset for YBa2Cu3O6.5 (YBCO) by testing
47 different combinations of commonly available precursors in the
Y–Ba–Cu–O chemical space, which were mixed and heated at four
synthesis temperatures ranging from 600 to 900 °C. Importantly, this
dataset includes both positive and negative outcomes, i.e., reactions
that do and do not yield sufficiently pure YBCO. As such, it can be used
as a benchmark on which to test ARROWS3 and compare its efficacy
with alternative optimization algorithms. Two additional chemical
spaces are also considered, where we use ARROWS3 to actively guide
the experiments. The first set of experiments targeted Na2Te3Mo3O16

(NTMO), which is metastable with respect to decomposition into
Na2Mo2O7, MoTe2O7, and TeO2 according to DFT calculations40. The
second set of experiments targeted a triclinic polymorph of LiTiOPO4

(t-LTOPO), which has a tendency to undergo a phase transition into a
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lower-energy orthorhombic structure (o-LTOPO) with the same
composition41. The features of each space tested are summarized in
Table 1. Further details regarding the corresponding experiments are
provided in “Methods”.

YBCO
Before discussing the optimization of YBCO synthesis using ARROWS3,
we first summarize the outcomes from all 188 experiments to give
context regarding the difficulty of obtaining high-purity YBCO while
using a hold timeof 4 h. Such a short hold timewas used specifically to
make the optimization task more challenging, as longer heating
durations with intermittent regrinding are typically required to form
highly pure YBCO samples42. Indeed, only 10 of the 188 experiments
performed in the current work led to the formation of pure YBCO
without any prominent impurity phases that could be detected by
XRD-AutoAnalyzer38. Another 83 experiments gave partial yield of
YBCO, in addition to several unwanted byproducts. Figure 2a shows
the distribution of YBCO yield (wt. %) at each synthesis temperature
sampled in this work. Generally, the use of higher temperature leads to
increased yield of YBCO, likely due to enhanced reaction kinetics.
Precursor selection also has a marked effect on the target’s yield.
Figure 2b shows the success rate of each precursor, whichwe define as

the percentage of sets where that compound was included and resul-
ted in the formation of YBCO without any detectable impurities. This
plot suggests that the less commonly used binary precursors tend to
outperform their standard counterparts. For example, BaO and BaO2

have moderately high success rates of 46% and 22%, respectively,
whereas sets with BaCO3 always produce impure samples (0% success
rate). Precursor sets including Y2Cu2O5 and Ba2Cu3O6 also have com-
parably high success rates of 33% and 31%, respectively. We will later
show that these ternary phases enable the direct formation of YBCO
while circumventing inert byproducts such as Y2BaCuO5.

Figure 2c displays a pie chart containing the four most common
impurity phases that coexist with YBCO, or prevent its formation
entirely, at 900 °C. Each slice in the pie chart represents the fraction of
experiments where the specified impurity phase appears. Most of the
impure samples (28/44) contain BaCuO2 or Y2BaCuO5, which are
known to be relatively inert during the synthesis of YBCO, requiring
intermittent grinding to improve the sample’s purity42,43. CuO is
another frequent impurity, though it only ever appears with at least
one other byproduct that is Cu deficient. When such phases do not
form, CuO contributes to the formation of YBCO, as evidenced by its
success rate of 20%. The fourth most common impurity is BaCO3,
which is likely slow to react owing to its high decomposition tem-
perature in air (1000 °C)44,45. We note that such information could in
principle be leveraged when designing the search space, e.g., by
removing BaCO3 from the list of precursors since the proposed tem-
perature range lies below its known decomposition temperature.
Indeed, doing so reduces the number of experiments required to
identify all optimal synthesis routes from 87 to 70 (Supplemen-
tary Fig. 1).

To determine whether ARROWS3 can effectively distinguish
between successful and failed synthesis routes, we assessed howmany
iterations are required to identify all 10 optimal experiments that
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Fig. 1 | A schematic illustrating how ARROWS3 guides precursor selection.
aReactions based on different precursor sets (R1, R2, and R3) are initially ranked by
their driving force (4G) to form the target, which is obtained from density func-
tional theory (DFT) calculations. b Experiments are performed at iteratively higher
temperatures to identify reaction intermediates. The chemical formulae listed in
this panel represent the phases identified from X-ray diffraction (XRD) measure-
ments. c Pairwise reaction temperatures (Trxn) and products are gleaned from the

experimental data. d Using the identified pairwise reactions, intermediates are
predicted for other precursor sets and their remaining driving forces (4G0) are
updated accordingly. e The precursor ranking is updated based on the newly cal-
culated 4G0. All chemical formulae shown are placeholders for arbitrary com-
pounds, and in general there is no restriction on the compositions where ARROWS3

is applicable.

Table 1 | Information regarding three search spaces on which
ARROWS3 was tested

Target Nsets Temperatures (°C) Nexp

YBa2Cu3O6+x 47 600, 700, 800, 900 188

Na2Te3Mo3O16 23 300, 400 46

t-LiTiOPO4 30 400, 500, 600, 700 120

Nsets and Nexps represent the number of precursor sets and experiments, respectively.
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result in the formation of YBCO without any detectable impurities.
While in practice it would be sufficient to identify just one optimal
synthesis procedure for a given target, tasking the algorithm with
identifying all optimal procedures for YBCO allows us to showcase its
ability to learn over many experimental iterations (Supplementary
Fig. 2). It also reduces the likelihood that ARROWS3 discovers an
optimal synthesis route by chance, thereby increasing our confidence
in the performance of the algorithm.

As a baseline with which to compare the performance of
ARROWS3 on the YBCO dataset, we applied D-optimal design with
progressively larger sets of proposed experiments. This approach aims
to select the experiments whose outcomes will be maximally
informative46 to amodel thatmaps the input variables (precursors and
temperature) onto the output (YBCO yield). Here we assume a linear
relationship between the two (Supplementary Note 1). We also applied
two active learning algorithms, Bayesian optimization (BO) and a
genetic algorithm (GA), to the same task by using a one-hot repre-
sentationof each precursor (SupplementaryNote 2). These algorithms
are known to perform well on numerical inputs such as
temperature47,48; however, their effectiveness with respect to catego-
rical inputs is less well proven. To specifically probe the latter case, we
constrained BO and GA to optimize the selection of precursors while
sampling all temperatures for each precursor set. Both black-box
algorithms have stochastic elements andwere therefore applied to the
YBCO dataset 100 times, each with a random starting seed, and their
results were averaged. Because ARROWS3 and D-optimal design are
both deterministic algorithms, only a single run was performed to
validate each on the YBCO dataset.

Figure 3a shows the number of optimal synthesis routes (those
yielding pure YBCO) discovered with respect to the number of
experiments queried by each algorithm. ARROWS3 successfully iden-
tified all 10 optimal routes from87 experiments,which account for just
46% of the entire design space (spanning 188 experiments). D-optimal
design, on the other hand, required 165 experiments to accomplish the
same task. However, it is worth noting that D-optimal design was quick
to identify three optimal synthesis routes in the first 12 experiments.
ARROWS3, although slower to identify optimal routes in the early
stages of optimization, eventually surpassed D-optimal design once it
gathered sufficient information regarding the reactivity of various
phases in the Y–Ba–Cu–O chemical space.

Both active learning algorithms performed poorly on the YBCO
dataset, with BO andGA requiring on average 164 and 167 experiments
to identify all ten optimal synthesis routes. We suspect the ineffec-
tiveness of these algorithms is related to their use of one-hot repre-
sentations for the precursors, which treat each compound
independently and contain no physical information regarding their
composition or structure. In contrast, ARROWS3 encodes

compositional and thermodynamic information in its optimization
through its ranking by ΔG. It also learns from failed experiments to
avoid pairwise reactions that form inert byproducts such as BaCuO2

and Y2BaCuO5, instead prioritizing sets of precursors expected to
retain a strong driving force (ΔG0) to form YBCO.

Figure 3b displays the number of pairwise reactions learned by
ARROWS3 with respect to the number of experiments that were
queried. This plot includes pairs of phases that react within the tem-
perature range considered (≤ 900 °C), denoted reactive pairs, as well
as the phases that do not react within that range, denoted inert pairs.
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Fig. 2 | A summary of outcomes from the synthesis experiments targeting
YBa2Cu3O6.5 (YBCO). a Distributions of YBCO yield (wt. %) at different synthesis
temperatures represented using violin and box plots, where each boxextends from
the lower to upper quartiles. b The success rate of each precursor, defined as the
percentage of sets where that compound is included and forms YBCOwithout any

impurities. c Common impurity phases that prevent YBCO formation are shown by
a pie chart, where each slice represents the relative number of occurrences for each
compound at 900 °C. The small gray sliver includes two less commonly observed
impurities, YBaCu3O7 and YBa4Cu3O9.
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Fig. 3 | Optimization results on the YBa2Cu3O6.5 (YBCO) synthesis dataset.
a Number of optimal synthesis routes identified as a function of the experimental
iterations required by ARROWS3, Bayesian Optimization (BO), a Genetic Algorithm
(GA), andD-Optimaldesign (D-Opt). Thedashed line represents the total number of
optimal synthesis routes in the dataset. b Pairwise reactions discovered by
ARROWS3 with respect to the number of experiments queried.
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From 87 experiments, ARROWS3 gained information regarding 34
pairwise interactions, including 24 reactive and 10 inert pairs. We find
that the identification of new successful synthesis routes is often
preceded by the discovery of new pairwise reactions. For example,
ARROWS3 learned from experiments 30–34 that BaO reacts with CuO
to form BaCuO2 at 800 °C, which subsequently reacts with Y2O3 at
900 °C to form Y2BaCuO5. Because these pairwise reactions consume
much of the driving force that remains to form YBCO, the algorithm
decides to prioritize sets of precursors that do not contain such
reactive pairs (BaO|CuO or BaCuO2 | Y2O3). This decision leads to the
successful discovery of three new synthesis routes that produce YBCO
without any detectable impurities, as shown by the steep rise of the
green curve inFig. 3a between experiments 38-43.While previouswork
has shown that BaCuO2 can effectively contribute to YBCO formation
when it melts in combination with CuO6, there was no evidence of
melting in our samples owing to the use of low synthesis temperatures
(≤ 900 °C) that ensured all products could be easily extracted.

In addition to learning which pairwise reactions should be avoi-
ded, ARROWS3 also learns which reactions are beneficial to achieve
high target yield. During the optimization of YBCO synthesis, it learned
from experiments 72-80 that BaO2 reacts with CuO to 700 °C to form
Ba2Cu3O6, which upon further heating to 900 °C reacts with Y2O3 to
form YBCO. Accordingly, subsequent experimental iterations are
chosen based on precursor sets that either include Ba2Cu3O6 or are
expected to form it as an intermediate phase. As shown in Fig. 3a, this
leads to the rapid identification of all remaining experiments that
successfully form YBCO shortly after the 80th experimental iteration.

To showcase the pairwise reactions learned by ARROWS3, we
present in Fig. 4 a heatmap where each square represents a pair of
phases. If any information was learned regarding the reactivity of that
pair, the square is colored a light shade of blue according to the
temperature at which a reaction proceeds. If a pair was instead found
to be inert at all temperatures ≤ 900 °C, a dark shade of blue is used.
We also denote reactions that produce YBCO (yellow star) or its

competing phases, BaCuO2 (orange circle) and Y2BaCuO5 (red cross).
This heatmap reveals that YBCO forms at 900 °C when Ba2Cu3O6

reacts with Y2O3 or Y2(CO3)3. It is separately observed that Ba2Cu3O6

reacts with Y2Cu2O5 when both are present at 800 °C, resulting in a
mixture of YBCO and CuO. The direct formation of YBCO from
Ba2Cu3O6 and Y2Cu2O5 provides an explanation as to why both phases
have high success rates when used as precursors (Fig. 2b). In contrast,
the 0% success rates associated with BaCO3 and BaCuO2 can be traced
to the limited reactivity of each phase with many of the precursors
tested here. This is illustrated in Fig. 4 by the dark-blue shading that
signifies inert reaction pairs in the rows corresponding to BaCO3 and
BaCuO2. Even when BaCO3 does react, it often produces BaCuO2 or
Y2BaCuO5, which are both common impurity phases that preclude the
formation of YBCO. The presence of Y2BaCuO5 is particularly detri-
mental to the synthesis of YBCO as it does not reactwith any precursor
in the allotted hold time of 4 h, which ARROWS3 learns over the course
of the 87 experiments we performed. For amore detailed visualization
of the information gleaned from each stage in the experimental pro-
cess, we plot in Supplementary Fig. 3 an evolution of the heatmap
displaying which pairwise reactions were learned after 30, 60, and 90
experiments.

There also exist some pairs of compounds whose reactivity was
not learned by ARROWS3 during its optimization of YBCO synthesis.
These 23 pairs are denoted by the white (unshaded) squares in Fig. 4.
We observe two factors that prevent ARROWS3 from learning pairwise
reaction information. First, when two phases (e.g., A | B) react in a
three-phase set (A, B, and C), the algorithm is unable to learn how the
remaining phase (C) interacts with the already reacted compounds
(A and B). Separate experiments based on the individual pairs (A | C
and B | C) would be required to determine their reactivity. Second,
when multiple pairwise reactions take place within the specified tem-
perature interval (ΔT = 100 °C), the algorithm cannot determine the
precise reaction sequence between the lower and upper temperatures
(e.g., between 600 and 700 °C). In principle, the second limitation can
be overcome by using a smaller temperature interval; however, doing
so would also require more experiments.

The results presented in Figs. 3 and 4 were obtained by querying
experiments in a serial (one-by-one) fashion. This allowedARROWS3 to
continually learn from each experimental outcome and update its
ranking of precursor sets accordingly. However, traditional experi-
ments are often parallelized. For example, multiple sets of precursors
with a shared synthesis temperature may be tested simultaneously by
loading them into one furnace33. Such an approach is also compatible
with ARROWS3, for which a batch size can be specified to control how
many experiments are suggested at each iteration. As shown in Sup-
plementary Fig. 4, the use of a larger batch size reduces the number of
iterations (i.e., batches) required to identify all the optimal synthesis
routes for YBCO. This also leads to shorter hold times required in the
furnace. However, because a larger batch size limits the opportunities
where ARROWS3 can learn and update its ranking, it also leads to a
larger number of individual samples that must be queried to identify
the optimal routes. The efficiency with which samples are queried
becomes particularly affected at later stages in the experiments, where
the algorithm has sufficient knowledge of the chemical space to make
frequent updates to its ranking of different precursor sets. Hence,
there exists a tradeoff between the number of batches and individual
samples required to complete the optimization process, and the batch
size acts as a hyperparameter to adjust this tradeoff depending on the
user’s objectives and experimental setup.

NTMO
ARROWS3 was next tasked with optimizing the yield of Na2Te3Mo3O16

(NTMO) by choosing from 23 different precursor sets and two synth-
esis temperatures (300 and 400 °C), which were kept low to avoid
melting of the samples49. In the toppanel of Fig. 5a,we show theweight

600
700

Pairwise Reactions

Y2BaCuO5 

BaCuO2 

YBCO

800
900

Inert

Fig. 4 | Pairwise reactions in the Y–Ba–Cu–O chemical space, illustrated by a
heatmap where the color of each square represents the temperature (°C) at
which a reaction is observed. Inert pairs correspond to phases that do not react
within the temperature range considered. White squares (unshaded) represent
pairs of phases whose reactivity was not learned by ARROWS3. Yellow stars denote
pairs that react to produce YBa2Cu3O6.5 (YBCO). Orange circles and red crosses
denote pairs that form impurities, Y2BaCuO5 and BaCuO2, respectively.
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fraction of NTMO obtained at 400 °C for each precursor set that was
tested. The solid dots represent experimentally observed weight
fractions, whereas the hollow dots represent predictions made based
on the intermediates formed at 300 °C. As detailed in the Methods
section, a precursor set occasionally produces identical intermediates
phases to a previously explored set. In this case, higher temperatures
do not require sampling since their outcomes can already be predicted
based on previous synthesis outcomes.

None of the four initial precursor sets, which were selected based
on their DFT-calculated reaction energies (ΔG), produced any detect-
able amount of the target. Their failures can be attributed to the for-
mation of an intermediate phase, Na2Mo2O7, that consumes much
of the available free energy and precludes the formation of NTMO.
This is confirmed by the thermodynamically unfavorable driving force
(i.e., positive reaction energy) associated with NTMO formation based
on the hypothetical reaction between Na2Mo2O7 and two commonly
used precursors, TeO2 and MoO3:

Na2Mo2O7 + 3TeO2 +MoO3 ! Na2Te3Mo3O16ðΔG0 = + 13meV=atomÞ

To further illustrate the limiting effect that Na2Mo2O7 has on the
formation of NTMO, we plot in the bottom panel of Fig. 5a the weight
fraction of Na2Mo2O7 obtained at 300 °C for each precursor set,
revealing a clear tradeoff between the yield of this phase and that of
the target at 400 °C.

From the six initial experiments targeting NTMO, ARROWS3

acquired knowledge regarding four different pairwise reactions
(involving MoO2 and various Na precursors) that led to the formation
of Na2Mo2O7 at 300 °C. To maintain a strong thermodynamic driving
force to form the target, the algorithm selected all remaining experi-
ments based on precursor sets expected to avoid pairwise reactions
that formed Na2Mo2O7 and therefore reduced ΔG0. This change in
priority from ΔG (based on the precursors) to ΔG0 (based on the pre-
dicted intermediates) is highlighted by the vertical dashed line in
Fig. 5a. The updated prioritization based on ΔG0 led to a clear increase
in the yield of NTMO, as all experiments after the sixth iteration gave
≥ 30% yield of NTMO. This improvement is largely attributed to
reducedNa2Mo2O7 formationwhenmore stable Na precursors such as
Na2CO3 or Na2TeO3 are used. ARROWS3 further discovered from the
outcome of the 16th experiment that it is even more effective to use
precursors (Na2O, MoO3, and TeO2) that avoid Na2Mo2O7 entirely by
instead forming Na2MoO4. This was the only precursor set for which
Na2Mo2O7 was not detected at any temperature, and as a result, it
successfully produced a sample containing 62% NTMO by weight. It
did so by forming Na2MoO4, which retains a favorable driving force
(negative reaction energy) to react with the remaining precursors and
form the target:

Na2MoO4 + 3TeO2 + 2MoO3 ! Na2Te3Mo3O16 ðΔG0 = � 8meV=atomÞ

Given that the updated reaction energy is relatively small, we
suspect that longer hold times could be used to improve the purity of
the synthesis product. To confirm this, we prepared a new sample
containing the same precursors (Na2O, MoO3, and TeO2) and held
them at the optimized synthesis temperature 400 °C for a longer hold
time of 8 h. The XRD pattern of the resulting product is shown in
Fig. 5b, revealing that the use of a longer hold time led to substantially
improved purity. The sample contained 94% NTMO by weight, in
addition to a 6% TeO2 impurity. For comparison, we carried out an
identical synthesis procedure using a precursor mixture where MoO3

was replaced with MoO2, for which the resulting product did not
contain any detectable amount of NTMO (Supplementary Fig. 5). This
contrasting result highlights the importance of precursor selection
and its effect on the reaction pathways that proceed during synthesis.
By replacing a single precursor and thus altering which intermediate
phase forms first (Na2Mo2O7 or Na2MoO4), the target yield can vary
from 0% to >90%.

LTOPO
As a final demonstration, ARROWS3 was used to direct a series of
experiments targeting the triclinic polymorph of LiTiOPO4 (t-LTOPO)
based on a search space consisting of 30 different precursor sets and
two synthesis temperatures (400, 500, 600, 700 °C). To achieve this
target, the algorithm must learn to avoid the formation of a lower-
energy polymorph that exists at the same composition but adopts an
orthorhombic structure (o-LTOPO)41. In the top panel of Fig. 6a, we
plot the weight fraction obtained for each polymorph with respect to
the number of precursor sets that were sampled by ARROWS3 during
its optimization of the synthesis process. These weight fractions are
taken from experimental outcomes at 700 °C, which is the only tem-
perature where either polymorph of LTOPO formed. The solid dots in
Fig. 6a represent experimentally observed weight fractions, whereas
the hollow dots represent predictions made based on the inter-
mediates formed at 400 °C. A total of eight precursor sets were tested
before identifying an optimal synthesis route for t-LTOPO, though
many of these sets produced identical intermediates and therefore did
not require sampling of temperatures >400 °C.

A key distinguishing feature between the precursor sets tested by
ARROWS3 is the amount of LiTi2(PO4)3 formed as an intermediate in
each case. The weight fraction of this phase contained in each sample
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TeO2Na2O MoO3

Na2MoO4 $�%�
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300 °C
400 °C

Exp. Pred.

Na2Mo2O7
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Fig. 5 | Optimization of Na2Te3Mo3O16 (NTMO) synthesis using ARROWS3. a The
top panel shows the weight fraction of NTMO obtained from each precursor set
when tested at 400 °C. The bottom panel displays the weight fraction of a com-
peting phase, Na2Mo2O7, obtained at 300 °C. Solid (hollow) dots represent
experimental (predicted) values. b X-ray diffraction (XRD) pattern measured from
the product of the optimized precursor set, Na2O + TeO2 +MoO3 after an 8 h hold
at 400 °C. For comparison, a reference pattern is shown for NTMO (ICSD #171758).
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made at 400 °C is plotted in the bottompanel of Fig. 6a. Precursor sets
1–2 both formed >40% wt. of LiTi2(PO4)3, consuming much of the
driving force left to form the target. This effect is illustrated by the
chemical reactions below, representing the phases contained in pre-
cursor set 1 before and after annealing at 400 °C:

Before : LiOH+TiO2 + ðNH4Þ2HPO4 ! LiTiOPO4

+ 2NH3 + 2H2OðΔG= � 58meV=atomÞ

After : Li4P2O7 + 3TiO2 + LiTi2ðPO4Þ3
! 5LiTiOPO4ðΔG0 = � 6meV=atomÞ

As outlined in recent work50, preferential nucleation of o-LTOPO
tends to occur when preceded by reactions with small changes in the
Gibbs free energy. This is confirmed by the synthesis outcome of
precursor set 1 annealed at 700 °C, which produces a sample con-
taining 35% o-LTOPO and only 17% t-LTOPO, in addition to leftover
LiTi2(PO4)3 and TiO2 impurities.

To avoid the reactions that form LiTi2(PO4)3 and thereby retain
larger ΔG0 to form the target, ARROWS3 suggests precursors where
such reactions have not yet beenobserved. As shownby thedata to the

right of the dividing line in Fig. 6a, which separates experiments
selected using ΔG from those selected using ΔG0, this decision suc-
cessfully reduced LiTi2(PO4)3 formation and led to increased yield of
t-LTOPO. The plateau in the amount of each phase formed with pre-
cursor sets 3–7 is associated with the use of less reactive Li sources –
including Li2CO3, Li2TiO3, and Li4Ti5O12—which tend to persist until
higher temperature and reduce the amount of LiTi2(PO4)3 that forms
as an intermediate. While this led to increased yield of the target, o-
LTOPO still accompanied its formation at 700 °C. In contrast, the
eighth precursor set proposed by ARROWS3 (Li2O, TiO2, and P2O5)
resulted in 54% target yield and no detectable amount of o-LTOPO.
Notably, this was also the only precursor set that did not form any
LiTi2(PO4)3 at 400 °C. It instead formed a set of intermediates that
maintained a stronger driving force to form the target as shown by the
chemical reaction below:

Li3PO4 + 2TiO2 +TiP2O7 ! 3LiTiOPO4ðΔG0 = � 24meV=atomÞ

Because ARROWS3 identified a synthesis route that gave 54% yield
for t-LTOPO, exceeding our pre-defined objective of 50%, the optimi-
zation process was complete. Nevertheless, to verify that the target
could made with higher purity using these optimized precursors, we
separately performed a synthesis procedure where Li2O, TiO2, and
P2O5were ballmilled prior to heating themixture at 700 °C for 4 h. The
XRD pattern of the resulting product is shown in Fig. 6b, revealing the
formation of t-LTOPO without any detectable impurity phases. For
comparison, the same procedure was also applied to a precursor
mixture of LiOH, TiO2, and P2O5. As shown in Supplementary Fig. 6, the
resulting synthesis product contained LiTi2(PO4)3 and o-LTOPO
impurities, which limited the yield of t-LTOPO to 46%when using these
non-optimized precursors.

Although t-LTOPO was successfully optimized, we advise careful
application of ARROWS3 for synthesizing metastable polymorphs. Our
algorithm worked effectively with LTOPO, as its desired (metastable)
polymorph is favored at large reaction energies, primarily due to its
stable surface energy at small particle size50. This makes it well-suited
for ARROWS3, which learns to prioritize synthesis pathways with large
reaction energy at the target-forming step. However, if the stable
polymorph instead had low surface energy, its formation would be
enhanced by the recommended precursor sets. Therefore, our general
recommendation is to use ARROWS3 for the following cases: (1) targets
that are inherently stable; (2) targets that are metastable with respect
to phase separation; and (3) targets that aremetastablewith respect to
polymorphic transition but have lower surface energies than the
ground states.

Discussion
Precursor selection often has a marked effect on the outcomes of
solid-state synthesis experiments, dictatingwhether they form desired
products or unwanted impurities6,7. The importance of choosing
optimal precursors is demonstrated by our syntheses targeting YBCO,
for which only 10 precursor sets (out of 47 total) are successful in
forming YBCOwithout any detectable impurity phases. Similarly, both
NTMO and LTOPO were found to require the use of specific precursor
sets that circumvent the formation of competing phases that other-
wise limit the yield of the metastable targets. Changing just one pre-
cursor can lead to a completely different synthesis outcome, as shown
by the 94% wt. increase observed in the yield of NTMO when MoO2 is
replaced by MoO3. Understanding the origin of such large changes
requires a detailed inspection of their associated reaction pathways.
While this would typically be accomplished by using in situ char-
acterization techniques, wehave shown that information regarding the
intermediate phases formed during solid-state synthesis can be gath-
ered by probing different annealing temperatures with fixed hold
times. For example, the low-temperature (400 °C) synthesis
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Fig. 6 | Optimization of triclinic LiTiOPO4 (t-LTOPO) synthesis using ARROWS3.
a The top panel shows the weight fractions obtained for the target and its com-
peting polymorph (o-LTOPO) based on each precursor set that was tested at 700
°C. The bottom panel displays the weight fraction of a common impurity phase,
LiTi2(PO4)3, obtained at 400 °C. Solid (hollow) dots represent experimental (pre-
dicted) values. b X-ray diffraction (XRD) pattern measured from the synthesis
product of the optimized precursor set, Li2O + TiO2 + P2O5, which was ball milled
and subsequently heated to 700 °C for 4 h. For comparison, a reference pattern for
t-LTOPO (ICSD #39761) is also shown.
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experiments targeting LTOPO reveal whether LiTi2(PO4)3 forms as an
intermediate, which subsequently controls the yield of the metastable
polymorph at higher temperature (700 °C).

ARROWS3 effectively uses intermediate-phase information
gleaned from low-temperature experiments to determine where a
given reaction pathwaygoeswrong. It does so by rationalizing each set
of experimental outcomes using pairwise reaction analysis, which
assumes that amixture of solid precursors reacts two phases at a time.
This assumption is justified by several previous studies6,15,51, where
in situ XRD was used to verify that solid-state reactions often proceed
in pairs owing to the limited diffusion lengths of species in the solid
medium. In the current work, systematic pairwise reaction analysis is
used to identify which precursors react to consume much of the
available free energy, thereby reducing the driving force (ΔG0) that
remains to form the target. Once this information is known, ARROWS3

prioritizes experiments based on precursor sets that are expected to
avoid such unfavorable pairwise reactions. Our tests on the YBCO
dataset showed this to be an effective approach for the rapid identi-
fication of optimal synthesis routes, as ARROWS3 identified all ten of
the best experimental procedures while sampling less than half of the
entire search space. Similarly, it identified successful procedures for
the synthesis of two metastable phases, NTMO and LTOPO, while
requiring only 35% and 14% of their search spaces to be sampled,
respectively.

Efficient data collection in vast experimental domains is a
longstanding challenge. Traditional approaches based on design of
experiments52,53, including the D-optimal design algorithm tested
here, can aid in the selection of experiments that are most infor-
mative to model a quantity such as target yield. However, these
methods can fall short when dealing with a particularly large search
space or when the quantity of interest is sparsely valued. Both chal-
lenges exist in solid-state synthesis, where many precursor combi-
nations are often available for a given target, most of which fail to
produce that target in any measurable amount. This warrants the use
of active learning algorithms that can efficiently navigate the search
space by adapting from failed experiments. Here we evaluated the
performance of two such methods, Bayesian optimization and
genetic algorithms, when applied to optimize the synthesis of YBCO.
While each is known to perform well on continuous variables such as
time or temperature54,55, our tests show that they fail on the discrete
task of precursor selection. We suspect their ineffectiveness is
caused by using one-hot encodings to represent each precursor set,
which fails to capture the similarities and differences between var-
ious chemical compounds. Recent work on organic synthesis has
shown that black-box optimization techniques can perform well in
the selection of molecular precursors when they are represented
using physical descriptors such as SMILES strings54; however, no such
universal representation exists for crystalline materials. Further
complicating matters is the fact that precursor sets used in solid-
state synthesis often have varied lengths—i.e., some sets contain
more precursors than others—whichmake themdifficult to represent
using a fixed-length input vector for optimization.

ARROWS3 systematically explores the search space associated
with solid-state synthesis by actively learning from failed experiments.
To overcome the limitations outlined in the previous paragraph,
ARROWS3 relies on a singlemetric (the remaining reaction energy) that
can be updated is it reconstructs the path a given synthesis procedure
takes. Previous work has demonstrated that reaction energies (ΔG)
often dictate the selectivity of competing phases in solid-state
synthesis6,15, and reactions with larger ΔG tend to occur more
rapidly16,37. Initially, when no intermediates are known, the available
reaction energy corresponds to the free energy difference between the
target and precursors, thus motivating our choice to first prioritize
experiments based on precursor sets with the largest reaction ener-
gies.Once intermediates becomeknown, ARROWS3 re-ranks precursor

sets based on their updated reaction energies (ΔG0) remaining to form
the target. Using this approach, the algorithm can discard reaction
pathways that become trapped in metastable states close in energy to
the target.

Notably, a unique feature of ARROWS3 is that it becomes more
efficient at identifying optimal experiments as it builds the size of its
pairwise reaction database. This was demonstrated by the correlation
between the frequency at which optimal synthesis routes were dis-
covered on the YBCO dataset and the number of pairwise reactions
that were collected (Fig. 3b). Further improving the utility of the
pairwise reactions learned by ARROWS3 is their transferability across
materials in related chemical spaces. For example, our analysis of the
YBCO experiments revealed 34 unique pairwise reactions involving
commonprecursors for Y, Ba, andCu. Should any of these compounds
be used for the synthesis of a new material, ARROWS3 would operate
more effectively by predicting their reaction outcomes a priori. Pre-
dictions of this nature will in general become more abundant as the
overlap between chemical spaces increases, specifically when con-
sidering target materials with two or more shared elements. As the
decisions made by ARROWS3 require minimal human input, the algo-
rithm is well-suited to act as the brain behind autonomous platforms
that are currently being developed25. With years of continuous and
autonomous experimentation, such platforms could lead to the
development of a standardized pairwise reaction database that covers
much of the periodic table, enabling accurate predictions regarding
optimal synthesis routes for new materials without requiring addi-
tional experiments. Researchers across the field of solid-state chem-
istry could also contribute to this database and refer to it for their own
synthesis design.

There exist several opportunities to further improve the effi-
ciency and interpretability of ARROWS3. The algorithm currently
relies on thermodynamic arguments to optimize a target’s yield,
specifically by assuming that synthesis reactions with large driving
force will be most effective. Future work may additionally consider
the influence of kinetic factors such as diffusion and nucleation rates,
though these are currently challenging to assess in a quantitative
fashion due to both computational limitations and a lack of clarity on
the relevant conditions under which each process should be eval-
uated. Related efforts have developed approximate models for
nucleation rates that consider the structural similarity between pre-
cursor and target materials, in addition to their associated reaction
energy28. Such factors could be incorporated into ARROWS3 and its
precursor ranking scheme by using structural descriptors based on
matminer statistics56 or graph-based representations57–59. Descriptors
related to particle morphology and sample density could also be
included in the optimization process, as both have been reported to
affect synthesis outcomes60,61.

Beyond the selection of optimal precursors, synthesis planning
often requires the heating profile to be carefully designed. Previous
work has addressed this challenge by using standard optimization
techniques55, which perform well as the heating profile can be descri-
bed in terms of continuous variables (e.g., temperature and time).
However, our findings show that a more physics-informed approach
may also be viable. For the synthesis of each target material studied in
this work, ARROWS3 used a short hold time (4 h) to identify the pre-
cursors and temperature that give maximal target yield. If necessary,
manual decisions were made to increase the hold time if (1) the target
yield was lower than desired, and (2) the leftover reactions needed to
grow the target were thermodynamically favorable. In doing so, >90%
yield was obtained for all three target materials we considered.
Moreover, it was shown that such high yield was possible only for the
precursor sets optimized by ARROWS3 at short hold time, thereby
demonstrating that long hold times need not be used when testing
various precursors. Decisions regarding when to extend the hold time
after identifying an optimal set of precursors could later be
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incorporated into ARROWS3, enabling further progress toward com-
plete autonomy in solid-state synthesis.

While we have shown that ARROWS3 performs well on three
benchmarks, there may still be room for improvement. To aid in
the development of new algorithms for decision-making in solid-state
synthesis, all data reported in this work is made publicly available. In
particular, the YBCO dataset contains experimental outcomes from all
the available precursor combinations. This critically includes both
positive (successful) and negative (failed) synthesis outcomes, and as
such, can be used to train and validate algorithms that require both
types of data.We anticipate that such algorithmswill not only facilitate
a more systematic approach to the planning of synthesis experiments
performed by human researchers, but also enable the development of
fully autonomous platforms for materials development25. An addi-
tional benefit of ARROWS3 specifically, when applied in conjunction
with automated synthesis platforms, is that multiple successful
synthesis routes can be learned for a given target. Such information on
alternate experimental procedures will be valuable when more prac-
tical considerations become important, such as the optimization of
morphology, synthesis cost, or the ability to industrially scale up the
synthesis of a novel compound.

Methods
Formulation of the search space
Targeted materials synthesis can be framed as an optimization pro-
blem forwhich the objective is tomaximize the yield of a desiredphase
with respect to several experimental variables including the choice of
precursors, synthesis temperature, hold time, and atmospheric con-
ditions. Here we assume a fixed hold time and set of atmospheric
conditions (e.g., pO2

and pCO2
) which are supplied by the user for a

given target, hence constraining the search space to account only for
the selection of precursors and synthesis temperature. To define this
search space, ARROWS3 requires that the user provide a list of com-
pounds that are available to be used as precursors. From this list, all
unique precursor combinations are enumerated and those that can be
stoichiometrically balanced with the target are recorded as possible
precursor sets for it. The number of precursors included in each set is
limited to the number of elements in each target. For example, only
sets containing ≤4 precursors will be considered for the synthesis of a
quaternary oxide containing three cations. Because carbonates,
hydroxides, and high-valent oxides are often used as precursors in
solid-state synthesis, ARROWS3 accounts for the possibility of CO2,
H2O, and O2 byproducts when balancing each chemical reaction.
Additional byproducts can be specified when necessary. To determine
which synthesis temperatures may be tested, ARROWS3 requires that
the user supply bounds (Tmin,Tmax) and a sampling interval (ΔT). In
combination with the total number of balanced precursor sets (Nsets),
this information defines the search space containing Nexp points over
which optimization is performed for a given target:

Nexp =Nsets
Tmax � Tmin

ΔT
+ 1

� �
ð1Þ

Any prior knowledge regarding the chemical system should be
used when designing the search space. For example, the lower tem-
perature bound (Tmin) may be chosen to exceed the known decom-
position temperatures of all carbonates and hydroxides being
considered as precursors. Similarly, the upper temperature bound
(Tmax)may be chosen below themelting points of the precursors if the
user wishes to retain a product consisting of solid powder. With
respect to precursor selection, it may often be beneficial to exclude
compounds that are known to be inert in the temperature ranged
being considered; however, this can also be learned by ARROWS3

through experimentation. The algorithm’s self-learning capabilities

become critical in chemical systems where the precursor properties
are largely unknown.

Initial ranking by ΔG
The thermodynamic driving force behind a chemical reaction is set by
the change in the Gibbs free energy (ΔG) between its products and
reactants. Under constant temperature and pressure, reactions can
occur spontaneously only if they reduce the Gibbs free energy (ΔG<0)
of the system. ARROWS3 initially ranks all the available precursor sets in
order of their reaction energies (ΔG) to form the target. Those with the
largest (most negative) ΔG are prioritized, whereas those with ΔG ≥ 0
are excluded from consideration. For each set, ΔG of the solid com-
pounds is determined using DFT-calculated 0K formation energies
from the Materials Project34, along with temperature-dependent free
energies approximated using the machine-learned descriptor devel-
oped by Bartel et al.35. In cases where a novel phase (not available in the
Materials Project) is considered, we use the DFT-calculated energy of
the convex hull at that phase’s composition. For gaseous phases, ΔG is
obtained from the experimental NIST database62. All reaction energies
are normalized per atom of the product phase(s) formed to ensure a
consistent comparison between different precursor sets.

The initial ranking by ΔG is intended to prioritize sets of pre-
cursors that are expected to react under short timescales; however,
such precursors are not necessarily the most effective at forming the
target. In addition to having a strong thermodynamic driving force to
form the target, precursor sets with large ΔG often have similarly large
driving forces to form unwanted impurity phases7. We have therefore
designed ARROWS3 to learn from the outcomes of failed experiments
by determining which reactions led to the formation of such impurity
phases. Details on this process are given in the next two sections.

Our consideration of ΔG is a simplification of the factors that
dictate solid-state synthesis. In addition to selecting optimal pre-
cursors, the particle morphology and heating rate can also have a
substantial influence on reaction outcomes60,61. Furthermore, certain
compounds may react with the atmosphere prior to heating, e.g., to
form carbonates or hydroxides. Such factors are currently not
accounted for but could in principle be included by studying the
evolution of each individual precursor as a function of temperature
and time. Because this information is not generally available for all
compounds and precursor powders, the current implementation of
ARROWS3 focuses only on ΔG, which is more readily calculated using
the methods described in the previous few paragraphs. Future work
may consider incorporating additional properties into the algorithm’s
ranking scheme, and further details on this possibility are provided in
the Discussion section of the main text.

Temperature selection for intermediate identification
To pinpoint the origin of any impurity phases that caused a synthesis
procedure to fail, it is necessary to identify the intermediate phases
that formed while heating. Previous work has demonstrated that pre-
cursors used in solid-state synthesis typically do not transformdirectly
to the final products, but instead proceed through a series of pairwise
reactions that form transient intermediate phases and incrementally
reduce the free energy of the sample6,15. Characterizing these inter-
mediates would traditionally require the use of in situ X-ray diffraction
(XRD); however, we propose that similar information can be obtained
by testing a range of synthesis temperatures for a given precursor set.
Assuming that a fixed hold time is used at each temperature, the XRD
patterns gathered from the resulting samples provide discrete snap-
shots of the reaction pathway, fromwhich intermediate phases can be
identified in a high-throughput and automated fashion using recently
developed machine learning algorithms38.

By inspecting the temperature-dependent synthesis outcomes for
a given precursor set, ARROWS3 determines which pairwise reactions
occurred while heating. To this end, we assume that any phases
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detected at a specific temperature (T) may act as reactants that lead to
the formation of new phases at the next highest temperature (T +ΔT).
Accordingly, when XRD measurements reveal a new phase that is not
present in the associated precursor set nor identified as an inter-
mediate phase at lower temperature, ARROWS3 is tasked with identi-
fying the precise combination of phases responsible for its formation.
If a new phase is detected at Tmin, the algorithm evaluates which two-
phase combination(s) from the precursor set have the appropriate
compositions (i.e., can be stoichiometrically balanced) to produce that
phase. In cases where there exists only one suchpossible combination,
it is recorded as an observed pairwise reaction with an onset tem-
perature less than Tmin. A similar procedure is followed when new
phases are detected at T>Tmin, except that ARROWS3 considers the
intermediate phases detected at the next lowest temperature (T � ΔT)
as possible reactants.

Oftentimes, different sets of precursors can react to form iden-
tical sets of intermediates at low temperature, which subsequently
result in the same products upon further heating63. To avoid testing all
temperatures for such redundant synthesis routes, ARROWS3 suggests
that experiments first be performed at Tmin for each precursor set. It
then checks whether the observed products and their associated
weight fractions differ from thoseobtainedusingother precursors sets
that were previously tested at Tmin. Differences as large as 10% are
allowed between two sets of products while still considering them to
be identical as there is often limited precision in the refinements per-
formedusing XRDpatterns frommulti-phasemixtures. If the observed
products for a precursor set are indeed unique, the next highest
temperature (T +ΔT) is proposed for that set. This process is repeated
until the target is successfully obtained with sufficiently high yield, as
specified by the user, or until Tmax is reached for the specified
precursor set.

By default, ARROWS3 operates under the assumption that a linear
heating ramp is used to reach the specified hold temperature (T). In
practice, however, a preheating step is occasionally used to decom-
pose certain precursors at a temperature lower than the specifiedhold.
For example, nitrate precursors such as LiNO3 and NaNO3 are often
preheated to avoid rapid evolution of gases at higher temperature64.
To handle such cases, expected decomposition temperatures and
products canbe incorporated into thepairwise reactiondatabaseprior
to running ARROWS3.Without the user providing this information, the
algorithm will still identify the decomposition product except in cases
where that product reacts with another phase prior to XRD measure-
ments, which would otherwise preclude its detection.

Updated ranking by ΔG0

ARROWS3 learns frompreviously identified pairwise reactions tomake
informed decisions regarding optimal synthesis routes. It does so by
predicting which intermediates will form upon heating precursor sets
that have not yet been tested. An example of this process is given
below for an arbitrary target (AB2C):

Precursor set not yet tested : A+2B+C ðΔGinitialÞ

Previously identified pairwise reaction : A+2B ! AB2 ðΔGintermÞ

Reaction using anticipated intermediates : AB2 +C ðΔG0 =ΔGinitial � ΔGintermÞ

In this example, the anticipated intermediate phases were deter-
mined based on previous synthesis outcomes that involved a reaction
between A and B. The updated reaction energy (ΔG0) to form the target
(AB2C) is then calculated based on the intermediates (AB2 +C) that
result from this pairwise reaction. Similar analysis is applied to all pre-
cursor sets that have not yet been tested and their reaction energies are

updated accordingly. In caseswhere no intermediates can bepredicted,
the reaction energy remains unchanged (ΔG0 =ΔG). Following these
changes, precursor sets are ranked to prioritize reactions with themost
negativeΔG0, i.e., thosewith the largest thermodynamic driving force at
the presumed target-forming step. ARROWS3 uses the updated ranking
to continually suggest new precursor sets until an experiment is found
that gives sufficiently high yield of the target phase (as specified by the
user) or until all precursor sets have been tested.

We acknowledge that it is generally difficult to ascertainwhether a
given reaction energy is large enough for the associated transforma-
tion to occur within a reasonably short timeframe. The reaction rate is
determined not only by the energy change, but also by several factors
related to diffusion and nucleation These rates are highly non-trivial to
predict and strongly dependent on the specific chemistry being con-
sidered. Given these considerations, ARROWS3 is designed to rank
various precursor sets basedon their relative reaction energies to form
a target phase, whether from the initial precursors (ΔG) or from the
intermediates that form during synthesis (ΔG0). While this affects the
order in which different precursor sets are tested, none are excluded
for having a low reaction energy. Instead, such precursors will be tes-
ted at a later stage in the optimization process, if necessary.

YBCO synthesis
The synthesis of YBCO is most commonly performed using Y2O3, CuO,
and BaCO3

42. This combination of precursors requires >12 h of anneal-
ing at 950 °C, in addition to intermittent regrinding, to eliminate the
unwanted impurity phases that often appear. In contrast, recent work
has shown that by replacing BaCO3 with BaO2, YBCO can be obtained
with high purity while using a shorter anneal time of 30 min6,43. These
findings highlight the importance of precursor selection and its effect
on the yield of YBCO under limited hold time, making it a suitable test
case for ARROWS3. To this end, we considered 11 common precursors
from the Y–Ba-Cu–O space: Y2O3, Y2(CO3)3, BaO, BaCO3, BaO2, CuO,
CuCO3, Cu2O, BaCuO2, Ba2Cu3O6, andY2Cu2O5. These compoundswere
combined to form 47 different precursor sets, listed in Supplementary
Table 1, thatwere each tested at four synthesis temperatures (600, 700,
800, and 900 °C) using a fixed hold time of 4 h.

All binary phases listed in the above paragraph (including the
carbonates) were purchased from Sigma-Aldrich, whereas the tern-
aries (Y2Cu2O5, BaCuO2, and Ba2Cu3O6) were synthesized in-house. For
each ternary phase, stoichiometric amounts of the starting materials
weremixed in ethanol with six 10-mm stainless steel balls using a high-
energy SPEX mill (SPEX SamplePrep 8000M) for 9min. The resulting
slurry was dispensed into a crucible and dried at 80 °C, followed by a
high-temperature anneal at the specified synthesis temperature for
each sample. Y2Cu2O5 was made from Y2O3 and CuCO3 using a 12 h
hold at 1050 °C. BaCuO2 was synthesized from BaCO3 and CuO using a
24 h hold at 910 °C. Ba2Cu3O6 was prepared from BaO2 and CuO using
a 24 h hold at 600 °C. The corresponding XRD patterns, shown in
Supplementary Fig. 7, point to successful synthesis outcomes as each
sample contains the desired ternary phase with minimal impurities.

To assess the phase purity for each synthesis product, XRD
measurements were performed with an Aeris diffractometer from
Panalytical. We used XRD-AutoAnalyzer38 to analyze the resulting XRD
patterns and identify any crystalline phases present. This algorithm
relies on a convolutional neural network to map each pattern onto a
set of constituent phases. Here we trained the network on all phases
reported in the ICSDwithin the space of Y–Ba–Cu–Ochemistries. After
identifying the phases in each pattern using XRD-AutoAnalyzer, their
weight fractions were evaluated through analysis of relative peak
intensities. A more careful approach based on Rietveld refinement,
which accounts for properties such as grain size and texture, would be
required to obtain precise weight fractions. However, this work only
requires that we compare relative weight fractions between different
experiments, enabling ARROWS3 to identify the most effective
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synthesis route for a given target. For YBCO specifically, all experi-
mentswere performedprior to optimization, and therefore it wasused
to evaluate theperformanceof several algorithms includingARROWS3,
Bayesian optimization, genetic algorithms, and D-optima design.

NTMO synthesis
The initial discovery of NTMO was enabled by the use of a hydro-
thermal synthesis procedurewhereby anaqueous solutionofNa2TeO3,
TeO2, and MoO3 was held at 220 °C for 48 h40. More recently, a solid-
state synthesis route was also reported: Na2CO3, TeO2, andMoO3 were
mixed and held at 430 °C for 48 h with intermittent regrinding49. We
suspect that ARROWS3 can handle the synthesis of phases such as
NTMO, which are metastable with respect to decomposition, as it
should learn to avoid the formation of any competing phases that
result in an unfavorable driving force (ΔG>0) to form the target. For
the experimental campaign targeting NTMO, eleven precursors were
purchased from Sigma-Aldrich: Na2O, Na2CO3, NaOH, Na2O2, MoO2,
MoO3, TeO2, Na2TeO3, Na2MoO4, Na2Mo2O7, and (NH4)2MoO4. A total
of 23 precursor sets were considered (Supplementary Table 2), for
which synthesis temperatures of 300 and 400 °Cwere tested at a fixed
hold timeof 4 h.We avoided the useof higher temperatures asmelting
is expected to occur near 450 °C, making the product difficult to
extract40. In contrast to the YBCO campaign, where all possible
experiments were performed and ARROWS3 was only applied post
hoc, the LTOPO experiments were carried out under the guidance of
ARROWS3 until NTMO was obtained with a weight fraction exceeding
50%. No black-box optimization techniques were used to explore this
dataset as only part of the design space was sampled by ARROWS3.

LTOPO synthesis
The tendency for LTOPO to crystallize in its triclinic polymorph, as
opposed to its orthorhombic ground state, is highly sensitive to the
choice of precursors and synthesis temperature41,65. Recent work has
proposed that the t-LTOPO nucleates first owing to its more stable
surface energy, which dictates the relative nucleation rate of each
polymorph when ΔG is large50. Therefore, although ARROWS3

encodes no structural information and is not designed for the
synthesis of metastable polymorphs in general, we believe it is well-
suited for t-LTOPO (and similarly stabilized metastable polymorphs)
since it aims to identify reaction pathways that maintain large ΔG.
Ten commercially available phases were purchased from Sigma-
Aldrich and used as precursors: Li2O, Li2CO3, LiOH, TiO2, P2O5,
NH4H2PO4, (NH4)2HPO4, Li3PO4, Li2TiO3, and Li4Ti5O12. A total of 30
precursor sets, listed in Supplementary Table 3, were considered.
Four synthesis temperatures (400, 500, 600, and 700 °C) were
sampled for each set at fixed a hold time of 4 h. Synthesis experi-
ments were performed under the guidance of ARROWS3 until t-
LTOPOwas obtained with a weight fraction exceeding 50%. No black-
box optimization techniques were applied.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The phase information associated with the experimental outcomes in
the YBCO, NTMO, and LTOPO synthesis datasets can be found in the
ARROWS3 repository. Source data for all graphs are also provided as a
Source Data file with this publication. Source data are provided with
this paper.

Code availability
ARROWS3 can be accessed in the public repository, https://github.
com/njszym/ARROWS, which is archived at https://doi.org/10.5281/
zenodo.8331001.
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