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CLOOME: contrastive learning unlocks
bioimaging databases for queries with
chemical structures

Ana Sanchez-Fernandez1, Elisabeth Rumetshofer1, Sepp Hochreiter 1,2 &
Günter Klambauer 1

The field of bioimage analysis is currently impacted by a profound transfor-
mation, driven by the advancements in imaging technologies and artificial
intelligence. The emergence of multi-modal AI systems could allow extracting
and utilizing knowledge from bioimaging databases based on information
from other data modalities. We leverage the multi-modal contrastive learning
paradigm, which enables the embedding of both bioimages and chemical
structures into a unified space by means of bioimage and molecular structure
encoders. This common embedding space unlocks the possibility of querying
bioimaging databases with chemical structures that induce different pheno-
typic effects. Concretely, in this work we show that a retrieval systembased on
multi-modal contrastive learning is capable of identifying the correct bioimage
corresponding to a given chemical structure from a database of ~2000 can-
didate images with a top-1 accuracy >70 times higher than a random baseline.
Additionally, the bioimage encoder demonstrates remarkable transferability
to various further prediction tasks within the domain of drug discovery, such
as activity prediction, molecule classification, and mechanism of action iden-
tification. Thus, our approach not only addresses the current limitations of
bioimaging databases but also paves the way towards foundation models for
microscopy images.

Biological and chemical databases and their querying mechanisms are
at the heart of research inmolecular biology. Sequence databases, such
asRefSeq1 orUniProt2, containDNAorprotein sequences, and areoften
queried with a given sequence using BLAST3 or its variants. Genome
databases4 usually allow for multiple types of querying mechanisms,
such as genetic location, gene names, or accession numbers. Protein
structure databases, for example, the Protein Data Bank (PDB)5, offer a
range of querying mechanisms from sequence similarities to structural
queries based on 3D shape. The chemical databases ChEMBL6 and
PubChem7 are huge corpora of chemical structures that contain billions
of small molecules. The International Chemical Identifier (InChI)8 was
designed to facilitate searching for chemical structures in such

databases, which is difficult because of the graph matching problem.
While BLAST, the structural search in PDB, and the InChI-based queries
can be considered as associative or content-based querying, bioima-
ging databases still rely on manual annotation and text-based search.
However, querying large bioimaging databases with a chemical struc-
ture that induces the phenotypic effect captured by the image could
considerably empower biomedical research. Additionally, unlocking
chemical databases for queries with a microscopy image capturing the
phenotypic effects of a chemical structure could be equally important.
(see Fig. 1a, b).

Recently, contrastive learning has emerged as a powerful para-
digm to learn rich representations fromdata9. The contrastive learning
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methods CLIP and CLOOB embed natural language and images into
the same representation space10,11. Contrastive learning enforces that
images and theirmatched text captions are close to one another in this
embedding space, while un-matched images and captions are sepa-
rated. Therefore, text prompts can query an image database by
extracting nearby images in the embedding space and vice versa10.
These text-image embedding spaces enabled the generation of rea-
listic images from short text prompts and led to the recent emergence
of “AI art”12. In this work, we use these powerful contrastive learning
paradigms to enable querying or retrieval systems for bioimaging
databases.

Microscopy imaging has been used as an informative and time-
and cost-efficient biotechnology to characterize cell phenotypes, tis-
sues, or cellular processes13,14. Consequently, there have been sub-
stantial efforts by the scientific community to use high-throughput
microscopy imaging15 as informative read-out and characterization of
cellular systems and cell phenotypes under diverse perturbations14,16.
For instance, features computed from microscopy images17 have
already been proved useful to find sets of compounds with higher
diversity performance in high throughput screening assays than those
from chemical structures18. In addition to the wealth of information
that is comprehensible and informative for human experts, these

Fig. 1 | Overview of the CLOOME framework. a, b The CLOOME encoders can be
used to query a bioimaging database (a) by a chemical structure, and vice versa,
query a chemical database by a microscopy image (b). c Visualization of the
embedding space in terms of a t-SNE projection of image embeddings of new cell
phenotypes. Each point represents a microscopy image from a hold-out set. The
color indicates the cell phenotype, which was also withheld from training. The
CLOOME embeddings (left) are indicative of the cell phenotype (clustered colors).
CellProfiler features are less indicative of cell phenotypes (only a few colors cluster
together).dAmulti-modal setting for imaging cell phenotypes. Smallmolecules are
administered to cells which are then imaged to capture potential phenotypic

effects. In this way, matched image-structure pairs are obtained. e Schematic
depiction of the training procedure of CLOOME. During training, the similarity of
matched image-structure pairs is increased (black arrows), while the similarity of
un-matched image-structure pairs is decreased (gray arrows). f The encoders of
CLOOMEmap chemical structures andmicroscopy images to the same embedding
space using a structure and a microscopy image encoder. Both encoders are deep
neural networks. Matched pairs of chemical structures and microscopy images are
mapped to embeddings that are close together, whereas un-matched pairs are
mapped to embeddings that are separated. Source data are provided as a Source
data file.
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microscopy images also contain large amounts of biological informa-
tion inaccessible to humans, but which can be successfully extracted
by computational methods, such as Deep Learning19. The immense
amount of microscopy images are stored in large bioimaging data-
bases, many of which are publicly available. Their querying mechan-
isms, however, are still limited to queries by textual annotations. A
common embedding space of (a) microscopy images capturing phe-
notypic effects of perturbations, and (b) chemical structures inducing
those effects would allow for associative or content-based querying of
both imaging and chemical databases. Such an embedding space
would represent cellular processes both in terms of the chemical
structures that induce them and in terms of images that capture the
cell phenotypes caused by these processes. New applications such as
the detection of novel cell phenotypes are possible through such
embedding spaces (see Fig. 2a and Fig. 3).

CLIP and CLOOB models have been constructed via contrastive
learning on large image-text datasets10. Analogously to these image-
text datasets, the Cell Painting dataset16 contains image-structure pairs
(see Fig. 1d). Therefore, we were able to use contrastive learning to
jointly train a microscopy image encoder and a chemical structure
encoder to construct a common embedding space of microscopy

images capturing cell phenotypes and chemical structures represent-
ing the perturbations. We propose a contrastive learning framework
for image-structure pairs that we call CLOOME (see Fig. 1d, e, f).Within
the CLOOME framework, a microscopy image encoder and a chemical
structure encoder are learned by contrasting representations of mat-
ched image-structure pairs against un-matched examples from other
pairs. Because our framework extends the contrastive learning meth-
ods CLIP10 and CLOOB11 to image-structure pairs, we call it Contrastive
Learning and leave-One-Out-boost for Molecule Encoders (CLOOME).

We introduceCLOOME as a novel tool that enables querying large
chemicaldatabaseswithmicroscopy images, and vice versa.Moreover,
the experiments conducted in this study show that our method is
useful beyond this cross-modal querying, because the encoders pro-
vide rich and transferable embeddings of bioimages. In many cases
these embeddings are more informative than high content imaging
platforms17, for example, for bioactivity prediction and mechanism of
action prediction (see the “Results” section). In summary, we illustrate
four use case scenarios that we envision for CLOOME.

1. A query molecule is known to cause an interesting biological
effect, and the goal is to find other chemical structures that show the
same biological activity. If a microscopy image of this query molecule

Fig. 2 | Two-dimensional downprojection of CLOOME embeddings and
CellProfiler features. t-SNE downprojection of the CLOOME learned embeddings
(a), the CellProfiler extracted features provided in ref. 24 (b), and the CellProfiler
extracted features using an updated pipeline, non-standardized and standardized

(c and d, respectively) of all microscopy images corresponding to 20 randomly
selected molecules from the test set. The colors represent different molecules.
Source data are provided as a Source data file.
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is available, CLOOME could be used to retrieve chemical structures
from large chemical databases. These chemical structures are candi-
dates to exhibit the same biological activity and to show an equivalent
phenotype as the one shown in the query molecules. Note that this
type of retrieval does not need any text or annotation and, to our
knowledge, has not been suggested in previous literature (see struc-
ture retrieval results in the section “A retrieval system for imaging and
chemical databases”).

Moreover, this application could also be of interest for biological
effects, for which no molecules are currently known. Assume that the
biological effect concerns the inhibition of a certain protein. A gene
knock-out procedure could be carried out for this protein (e.g., using
CRISPR-Cas9) and the resulting modified cells, captured with micro-
scopy.Using thismicroscopy image as a query, CLOOMEcouldbeused
to search for chemical structures that induce the inhibition of this
specific target. In contrast to target-based virtual screening, this pro-
cedure involves the full complexity of a biological system.

2. For a new chemical structure it is unknown which cellular
process it induces. The molecule’s chemical structure is used to query
a database of microscopy images of cells treated with different che-
mical compounds that have well-known biological effects. CLOOME
could be used to retrieve images showing the potential phenotype of
the query molecule, which could give an indication about the induced
cellular process. This type of querying mechanism has also not been
suggested before (see image retrieval results in the section “A retrieval
system for imaging and chemical databases”).

3. CLOOME could also be used to predict the activity of a com-
pound in a given assay. Even though this task has been previously
addressed by classical supervised learning methods19,20, the training
process was compute-intensive and slow. CLOOME’s pre-training
reduces this task to fitting a logistic regression model, which is
compute-efficient and fast. Aftermaking predictions with CLOOME for
a set of molecules, the results could be used to guide the initial
screening campaigns in the drug discovery process (see the section
“Bio-activity prediction as downstream task”).

4. As in the secondcase scenario,weassume that the goal is tofind
the cellular process that is induced by a certainmolecule. However, we
use image-image relations insteadof structure-image relations.We use
the image treated with the molecule of interest to query an image

database whose images capture well-studied mechanisms of action
(MoA). Then, CLOOME retrieves the most similar images from that
bioimaging database, and those are labeled by MoAs, such that the
MoAof themolecule of interest can be inferred (see the section “Zero-
shot image-to-image mechanism of action (MoA) classification”).

In the following sections, we:
(a) present a new contrastive learning approach for learning rich and

expressive representations of microscopy images and chemical
structures without the need for human annotation or
bioactivity data;

(b) we demonstrate that our framework yields a retrieval system
which allows to query bioimaging databases by chemical struc-
tures linked by the underlying captured or induced cellular pro-
cess, and vice versa; and

(c) show that the learned representations are highly transferable to
several relevant downstream tasks in drug discovery, such as
activity prediction, microscopy image classification, and
mechanism of action identification.

Results
First, we demonstrate the abilities of CLOOME as a retrieval system for
bioimaging and chemical databases (see Fig. 4a). Then, we use
CLOOME’s image embeddings to predict assay bioactivities by fitting
merely a logistic regressionmodel (see Fig. 4b). Lastly, we evaluate the
performance of CLOOME image embeddings in molecule and
mechanism of action classification tasks. Figure 4c and d depict the
experimental setting for these tasks.

A retrieval system for imaging and chemical databases
In this experiment, we assessed the ability of CLOOME to correctly
retrieve the matched chemical structure given a microscopy image of
cells treated with this molecule. Notably, this is an exceptionally
challenging task for human experts, even considered close-to-impos-
sible: given a microscopy image of cells, the task is to select the che-
mical structure with which they have been treated from a set of
thousands of candidate structures. Since cells often do not exhibit any
or only subtle phenotypic changes, this task is highly ambitious.

This image-based retrieval task can also be understood as a
bioisosteric replacement task21: bioisosteres are molecules with

Fig. 3 | t-SNE downprojection of the learned CLOOME image embeddings.
Samples corresponding to 20 randomly selected mechanisms of action (MoA) are
shown in different colors, while the remaining samples are shown in gray.

Embeddings of some images capturing the same MoA are close together in the
t-SNE plot, which indicates that the CLOOME embeddings could be useful for
identifying new MoAs. Source data are provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-42328-w

Nature Communications |         (2023) 14:7339 4



roughly the same biological properties or activities. Bioisoterism is
highly relevant in drug discovery when a molecule should be
replaced with another, but at the same time its biological activity
should be kept. An extreme case of bioisosteric replacement is
scaffold hopping, because molecules with highly different chemical
structures but still the same bioactivity should be found. With this
experiment, we evaluate the ability of CLOOME to correctly rank the
matched molecular structure given the corresponding image. Other
high-ranked structures could be potential bioisosteres, whichmakes
this experiment a proxy for the bioisteric replacement problems
(see Fig. 4a).

As a baseline, we included a bilinear model defined by y = xTWz,
where x and z are one image and molecule feature vectors, respec-
tively, and W is a trainable weight matrix. Analogously to the CLIP
method, the InfoNCE objective was symmetrically computed between
modalities. The exploredhyperparameters for thismodel canbe found
in Supplementary Table 6. Additionally, a random baseline is included

to demonstrate the performance improvement of the different
methods in comparison to selecting the correct image or molecule by
chance.

On hold-out data of 2115 image and molecule pairs, CLOOME
ranked the matched molecule in the first place for 3% of the cases. A
random method would achieve a value of 1/2115 ≈0.047%, which
indicates a ~70-fold improvement of CLOOME. For this task, different
hyperparameters and model were selected based on the appropriate
validation metric (see Supplementary Section 1.2). The top-1, top-5,
top-10 accuracy are given in Table 1 for retrieving from a database of
2115 instances in the random split, and 1398 in the scaffold split.
Additionally, we report the same metrics for a sampling rate of 1%, or
equivalently, 1matched example together with 99 un-matched ones—a
setting often used to evaluate retrieval systems, see Supplementary
Table 7. Further, some examples are displayed in Fig. 5. This is, to our
knowledge, the first system of cell-image-based retrieval of molecular
structures.
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Fig. 4 | Overview of the four different use-cases of CLOOME evaluated in
this study. An adaptive image encoder hx(.) and an adaptive structure-encoder hz(.)
map the microscopy images and chemical structures to their embeddings
xn =hx(xn) and zn =hz(zn), respectively. aMulti-modal retrieval task using CLOOME
image and molecule embeddings. The resulting embeddings can be used to rank
chemical structures that induce similar phenotypic effects, and vice versa. b Using
the CLOOME embeddings for activity prediction. A logistic regression model is
trained for activity prediction tasks. c Zero-shot image-to-image classification task

using CLOOME image embeddings for molecule prediction. A set of representative
images, one for each molecule, are used to infer which compound was applied in a
query image. d Zero-shot image-to-image classification task using CLOOME image
embeddings for mechanism of action (MoA) prediction. In this case, the set of
representative images depict each MoA. A query image is classified into the most
likely MoA category based on its similarity with a corresponding representative
image. Icons representing different MoAs were created with BioRender.com.
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Bio-activity prediction as downstream task
In this experiment, we tested whether the representations learned by
CLOOME are transferable by linear probing on 209 downstream
activity prediction tasks. The linear probing test22,23 on downstream
tasks is often performed for contrastive learning approaches to check
the transferability of learned features. In such experiments, the
representations of thepre-trained encoders areused, andonly a single-
layer network, such as logistic regression, is fit to the given labels for
the supervised task. If the linear probing test yields good predictive
quality, usually below a fully supervised approach23, the representa-
tions are considered transferable.

The prediction tasks that we employed for linear probing eva-
luation is the same as used in Hofmarcher et al.20. It is a subset of the
Cell Painting dataset, consisting of 284,035 images for which the
activity labels of the compound treatments were retrieved from
ChEMBL. The retrieved labels correspond to 10,574 compounds across
209 activity prediction tasks, which are binary classification problems.
However, activity data points are not available for all compounds in all
of the tasks, which results in a sparse label matrix. The data was split
into 70% training, 10% validation, and 20% test sets. This split had been
carried out by grouping views from samples treated with the same
molecule.

We use image features taken from the penultimate layer of the
image encoder, omitting the classification layer. We train a logistic
regression classifier, and report the corresponding metric for each
task. The L2 regularization strength λ was tuned individually for each
one of the tasks, considering the values {10−6, 10−5,…, 106}.

In order to evaluatemodel performance for this downstream task,
we use the area under the ROC curve (AUC), which is one of the most
prevalent metrics for drug discovery19,20, as it considers the order of
the molecules regarding their activity. We also show the number of
tasks for which this metric is higher than the thresholds 0.9, 0.8, and
0.7, respectively. These thresholds have been used in previous
studies19,20 because models within those categories lead to certain
levels of enrichment of hit rates in drug discovery projects.

As baselines, we consider methods reported in Hofmarcher
et al.20. They are the best-performing methods for bioactivity predic-
tion using microscopy images to date and consist of different con-
volutional neural network architectures, used in a fully supervised
setting, and a method ("FNN") that uses expert-designed cell
features17,19,24. The compared methods were trained in a multi-task
setting to predict activity labels for 209 tasks, extracted fromChEMBL.

The predictive performance on the downstream activity predic-
tion tasks is reported in Table 2. CLOOME reached an average AUC of
0.714 ± 0.20 across prediction tasks, which indicates that the learned

representations are indeed transferable since no activity data had been
used to train the CLOOME encoders. CLOOME even outperformed
fully supervisedmethods, such asM-CNN25 and SC-CNN20, with respect
to AUC.

Zero-shot image-to-image molecule classification
The goal of this analysis is to evaluate the potential of image
embeddings of CLOOME to distinguish the specific appliedmolecule.
Note that, instead of using both molecule and image embeddings, as
in the retrieval task, only image embeddings were used in this case.
However, this task is not intended to be considered a real use-case
scenario, but more of a proxy task for technical validation. This
evaluation can also be regarded as a quantitative evaluation of how
closely clustered are image embeddings of cells treated with the
same molecule.

A zero-shot classification setting is considered, which means that
the test set contains new, i.e., “unseen", image classes that had not
been included in the training set. Concretely, one image for eachof the
molecules in a hold-out test set was randomly selected, which means
that eachunseenmoleculeclass is representedby a single image. Then,
samples from this set as well as samples corresponding to both the
same molecule and plate were removed from the full test set, in order
to ensure that the classification was not due to plate effects. We will
refer to the remaining samples as the “test set”. Finally, the set of
unseen classes consisted of 2115 images in the random split and 1398 in
the scaffold split. Overall, the test set comprised 43,778 samples for
the random split, and 28,248 for the scaffold split.

To obtain the embeddings, all samples were pushed through the
CLOOME image encoder and normalized. Then, cosine similarity was
computed between embeddings from the former and the latter, and
the softmax function was applied. The output from the softmax
function was then used to calculate the metrics shown in Table 3.

We compared the image embeddings of CLOOME to embeddings
of a microscopy image encoder trained in a supervised fashion and to
CellProfiler features computed as detailed in the “Methods” section.
Regarding the image embeddings of GapNet, the images were enco-
ded using the model weights provided by Hofmarcher et al.20,
removing the last layer of its classifier, which resulted in a 1024-
dimension embedding space.

As shown inTable 3, CLOOMEexhibits higher performance in top-
1, top-5 and top-10 accuracymetrics in comparison tobothGapNet and
CellProfiler-extracted features. Note that the number of classes in the
scaffold split is lower than in the random split, such that classifying the
correct molecule becomes an easier task, which explains the higher
accuracy in the former data split.

Table 1 | Results for the retrieval task among 2115 and 1398 candidates, in the random and scaffold split, respectively

Split Method Top-k accuracy (%)

Top-1 95%-CI Top-5 95%-CI Top-10 95%-CI

Random CLOOME (structure retr.) 3.78 [3.01, 4.69] 7.94 [6.83, 9.18] 9.46 [8.24, 10.8]

CLOOME (image retr.) 3.22 [2.51, 4.06] 8.42 [7.27, 9.68] 9.88 [8.64, 11.2]

Bilinear model (structure retr.) 0.473 [0.227, 0.868] 2.27 [1.68, 2.10] 3.92 [3.14, 4.84]

Bilinear model (image retr.) 0.804 [0.469, 1.28] 3.64 [2.51, 4.06] 5.53 [3.95, 5.82]

Random 0.0473 [0.0012, 0.263] 0.236 [0.0768, 0.551] 0.473 [0.227, 0.868]

Scaffold CLOOME (structure retr.) 2.79 [1.99, 3.79] 6.29 [5.08, 7.70] 7.58 [6.25, 9.10]

CLOOME (image retr.) 2.50 [1.75, 3.46] 6.58 [5.34, 8.01] 8.08 [6.71, 9.64]

Bilinear model (structure retr.) 0.787 [0.393, 1.40] 2.72 [1.93, 3.71] 4.36 [3.35, 5.57]

Bilinear model (image retr.) 0.930 [0.496, 1.58] 2.65 [1.87, 3.63] 4.51 [3.48, 5.73]

Random 0.0715 [0.00181, 0.398] 0.357 [0.116, 0.833] 0.715 [0.344, 1.31]

Given a molecule-perturbed microscopy image, the matched molecule must be selected from a set of candidates, and vice versa. Top-1, top-5 and top-10 accuracy in percentage are shown for a
hold-out test set, alongwith the upper and lower limits for a 95% confidence interval (CI) (n = 2115 for the randomsplit and n = 1398 for the scaffold split) on the resulting proportion. The bestmethod
in each category is marked in bold.

Article https://doi.org/10.1038/s41467-023-42328-w

Nature Communications |         (2023) 14:7339 6



Fig. 5 | Example results for the retrieval task. On a hold-out test set, the five
molecules for which representations are the most similar to the query image are
shown along with their corresponding images. Blue boxes mark the query image

and itsmatchedmolecular structure, i.e., thematchedpair. CLOOMEcanbe used to
retrievemolecules that couldproduce similarbiological effects on treated cells, i.e.,
bioisosteres.
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Zero-shot image-to-image mechanism of action (MoA)
classification
We now apply CLOOME to a challenging zero-shot MoA-classification
task. This task assesses how well distinguished these embeddings are
according to theirmechanismof action. In order to evaluate this, labels
were taken from the Drug Repurposing Hub26 of molecules that are
present in our validation and test sets.

The same procedure as in the zero-shot molecule classification
task (see Subsection above) was followed, with the difference that the
set of unseen classes consists of one image per mechanism of action.
Again, images corresponding to the samemolecule and plate as those
from the representative class set were removed in order to ensure that
the classification was not influenced by plate effects.

For the randomsplit, the representative set consisted of 126MoAs
and 202molecules. For the scaffold, this set contained 68MoAs and 93
molecules. Regarding the test set, it has 8826 samples for the random
split and 4056 for the scaffold split. We employed the same baselines
as in the zero-shot molecule classification task.

Results displayed in Table 4 show that CLOOME presents better
performance than GapNet and CellProfiler features in mechanism of
action prediction.

Statistics and reproducibility
All confidence intervals reported in this study were calculated using
the Clopper-Pearson interval. To compute these intervals, the number
of test samples in each task were used and have been reported in their
specific subsections in “Results”.

Discussion
We have introduced a contrastive learning method for learning
representations ofmicroscopy images and chemical structures. On the
largest available dataset of this type,wedemonstrate that the encoders

of CLOOME can be used as a powerful cross-modal retrieval system
between chemical structures and bioimages. Additionally, we
demonstrated that the CLOOME embeddings are both rich and
transferable representations. This opens the possibility to re-use the
learned representations for activity or property prediction and for
other tasks, such as retrieval tasks frommicroscopy image or chemical
databases, which we demonstrate in a series of challenging down-
stream tasks.

Limitations. Our method currently has several limitations. Our
trained networks are restricted to a particular type of microscopy
images, which are acquired with the Cell Painting protocol16. This
protocol has been published and currently there are community
efforts27 to increase the amount of available data. Large and more
diverse datasets of molecule-perturbed cells or internal pharmaceu-
tical company datasets will likely improve the learned representations,
both image and structure encoder28, making them more transferable
to images from other sources. However, we show in Supplementary
Tables 8, 9, 10, 11, and 12 that our method is robust to various distor-
tions (see Supplementary Figure 1) that were not considered during
pre-training. Due to the computational complexity, the hyperpara-
meter and architecture space is currently under-explored such that we
expect ourmethod to further improvewith better hyperparameters or
encoder architectures. Furthermore, it has not escaped our notice that
the learned structure encoder could also be used for transfer learning
on molecular activities and properties. Also, it is worth noting that,
although linear probing has been extensively used for the purpose of
evaluating the quality of representations10,11, if the latter are very high
dimensional, this method presents the risk of overfitting22. While the
main focus of this study is a system that retrieves images from a
bioimaging database, an alternative line of research on deep gen-
erative models exists. Deep generative models focus on generating,
rather than retrieving, images or molecules based on an input. Some

Table 2 | Comparison of the linear probing evaluation of the learned representations against fully supervised methods20

Type Method AUC F1 AUC>0.9 AUC>0.8 AUC>0.7

Linear probing CLOOME 0.714 ± 0.20 0.395 ± 0.32 57 84 109

CellProfiler 0.655 ±0.20 0.273 ±0.32 35 63 84

Supervised ResNet 0.731 ± 0.19 0.508± 0.30 68 94 119

DenseNet 0.730 ±0.19 0.530 ±0.30 61 98 121

GapNet 0.725 ± 0.19 0.510 ±0.29 63 94 117

MIL-Net 0.711 ± 0.18 0.445 ±0.32 61 81 105

M-CNN 0.705 ±0.19 0.482 ±0.31 57 78 105

SC-CNN 0.705 ±0.20 0.362 ±0.29 61 83 109

FNN 0.675 ±0.20 0.361 ± 0.31 55 71 90

For eachmethod theperformancemetrics area under the receiver operating characteristic curve (AUC) andF1-score are shown, alongwith their standarddeviation (n = 209 tasks), and thenumber of
taskswithanAUChigher than0.9, 0.8, and0.7.Note that theCLOOMEencoders donothave access toanyactivity data. The featuresproducedby theCLOOMEencoder are still predictive for activity
data as shownbyfittinga logistic regressionmodel, consideredas linear probing. CLOOME reaches theperformance of the several supervisedmethods,which indicates transferability of the learned
representations23. The best method in each category is marked in bold.

Table 3 | Results for the zero-shot image-to-image molecule classification task

Split Method Accuracy [%]

Top-1 95% CI Top-5 95% CI Top-10 95% CI

Random CLOOME 18.4 [18.1, 18.8] 41.5 [41.1, 42.0] 56.2 [55.8, 56.7]

GapNet 0.361 [0.307, 0.422] 1.07 [0.973, 1.17] 1.78 [1.66, 1.91]

CellProfiler 2.68 [2.53, 2.84] 8.24 [7.99, 8.51] 12.6 [12.3, 12.9]

Scaffold CLOOME 22.3 [21.9, 22.9] 50.8 [50.2, 51.4] 67.1 [66.6, 67.7]

GapNet 0.517 [0.437, 0.608] 1.62 [1.47, 1.77] 2.56 [2.38, 2.75]

CellProfiler 3.64 [3.42, 3.86] 10.4 [10.0, 10.7] 15.6 [15.1, 16.0]

Given a molecule-perturbed microscopy image, the image corresponding to thematched moleculemust be selected from a set of candidates. Top-1, top-5, and top-10 accuracy in percentage are
shown for a hold-out test set, alongwith the upper and lower limits for a 95% confidence interval (CI) (n = 43,778 for the randomsplit and n = 28,248 for the scaffold split) on the resulting proportion.
The best method in each category is marked in bold.
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examples of methods already developed for this purpose are gen-
erative adversarial networks conditioned on CellProfiler feature
vectors29 and generative flow methods conditioned on molecules30.
Having addressed these limitations, we nevertheless believe that both
the retrieval system and representations obtainedwith CLOOME could
be highly useful for both the community using bioimaging as well as
for drug discovery.

Methods
Contrastive Learning and leave-One-Out-boost for Molecule
Encoders
We propose contrastive learning of representations from pairs of
microscopy images and chemical structures to obtain a common
embedding space of these two modalities, a retrieval system and
highly transferable encoders (see Fig. 6). In contrast to previous
approaches, in which chemical structure encoders learned repre-
sentations using activity data19,20 or microscopy image encoders used
hand-crafted representations17,24 or learned on manual annotations,

CLOOME optimizes representations without activity data or human
expertise.

The training dataset consists of N pairs of microscopy images of
molecule-perturbed cells and chemical structures of molecules
{(x1, z1),…, (xN, zN)}. We assume that an adaptive image encoder hx(.)
and an adaptive structure-encoder hz(.) are available that map the
microscopy images and chemical structures to their embeddings
xn =hx(xn) and zn =hz(zn), respectively. Note that the original image is
denoted as xn, which is mapped to an image embedding xn by a neural
network hx(.), e.g., a ResNet. The stacked microscopy image embed-
dings are denoted as X = (x1,…, xN) and the stacked structure
embeddings as Z = (z1,…, zN). The embeddings are normalized such
that ∥xn∥ = ∥zn∥ = 1 ∀ n as in other contrastive learning approaches23.
For notation, see also Supplementary Table 1.

In a contrastive learning setting, methods aim at increasing the
similarity of matched pairs and decrease the similarity of un-matched
pairs. This task has often been approached by maximizing the mutual
information of the embeddings using the InfoNCE loss9,10,23, which is

Table 4 | Results for the zero-shot image-to-image mechanism of action (MoA) classification task

Split Method Accuracy [%]

Top-1 95% CI Top-5 95% CI Top-10 95% CI

Random CLOOME 13.0 [12.3, 13.7] 35.3 [34.3, 36.3] 48.0 [46.9, 49.0]

GapNet 1.09 [0.882, 1.33] 4.68 [4.25, 5.14] 8.63 [8.06, 9.24]

CellProfiler 2.87 [2.53, 3.24] 9.46 [8.86, 10.1] 14.9 [14.2, 15.7]

Scaffold CLOOME 18.5 [17.3, 19.7] 47.9 [46.4, 49.5] 61.3 [59.7, 62.8]

GapNet 1.92 [1.52, 2.39] 9.00 [8.14, 9.92] 17.2 [16.1, 18.4]

CellProfiler 4.54 [3.92, 5.22] 15.3 [14.2, 16.4] 24.5 [23.2, 25.8]

Given a molecule-perturbed microscopy image, the image corresponding to thematched moleculemust be selected from a set of candidates. Top-1, top-5, and top-10 accuracy in percentage are
shown for a hold-out test set, alongwith the upper and lower limits for a 95% confidence interval (CI) (n = 8826 for the randomsplit and n = 4056 for the scaffold split) on the resultingproportion. The
best method in each category is marked in bold.
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Fig. 6 | Schematic representation of CLOOME. Contrastive pre-training of
embeddings of the two modalities, microscopy image and chemical structure, of a
molecule using the CLOOB11 or CLIP10 approach. The training dataset consists of N
pairs ofmicroscopy images ofmolecule-perturbed cells and chemical structures of
molecules {(x1, z1),…, (xN, zN)}. We assume that an adaptive image encoder hx(.) and
an adaptive structure-encoder hz(.) are available that map the microscopy images
and chemical structures to their embeddings xn =hx(xn) and zn =hz(zn),

respectively. In the CLIP approach, these embeddings are directly used to compute
the InfoNCE loss. In the CLOOB approach, image and structure embeddings are
retrieved from stored image embeddingsU and structure embeddingsV, such that
Ux denotes image-retrieved image embeddings, Uz structure-retrieved image
embeddings, Vx image-retrieved structure embeddings and Vz structure-retrieved
structure embeddings. In this case, the InfoLOOB loss is computed with the latter
embeddings.
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also used in the CLIP approach10. The InfoNCE objective function has
the following form:

LInfoNCE = � 1
N

XN

i= 1

ln
expðτ�1xT

i ziÞPN
j = 1 expðτ�1xT

i zjÞ
� 1

N

XN

i= 1

ln
expðτ�1 xT

i ziÞPN
j = 1 expðτ�1 xT

j ziÞ
, ð1Þ

where τ−1 is the inverse temperatureparameter,which scales the cosine
similarity of embedding pairs. This parameter can be regarded as a
penalization of un-matched samples that are highly similar to the
matched one. The lower this parameter is, the more the un-matched,
but similar samples influence the loss. Conversely, as this value
increases, all pairs will tend to contribute equally to the loss31.

The contrastive learning method CLIP has the problem of
“explaining away”11,32,33. Explaining away describes the effect in which
few features are over-represented while others are neglected. This
effect can be present (a) when learning focuses only on few features
and/or (b) when the covariance structure in the data is insufficiently
extracted. Explaining away can be caused by saturation of the InfoNCE
objective11,34,35. To ameliorate these drawbacks, CLOOB11 has intro-
duced the InfoLOOB objective together with continuous modern
Hopfield networks36 as a promising method for contrastive learning.
Our contrastive learning framework CLOOME comprises both meth-
ods CLIP10 and CLOOB11.

For our extension of the CLOOB method, first image- and
structure-embeddings are retrieved from stored image embeddings U
and structure embeddings V. Uxi

denotes an image-retrieved image
embedding, Uzi

a structure-retrieved image embedding, Vxi
an image-

retrieved structure embedding and Vzi
a structure-retrieved structure

embedding. In analogy to CLOOB, these retrievals from continuous
modern Hopfield networks are computed as follows:

Uxi
=U softmaxðβUTxiÞ, ð2Þ

Uzi
=U softmaxðβUTziÞ, ð3Þ

Vxi
=V softmaxðβVTxiÞ, ð4Þ

Vzi
=V softmaxðβVTziÞ, ð5Þ

where β is a scaling parameter of the Hopfield network which is con-
sidered a hyperparameter. A β value of 0 corresponds to retrieving the
average of the stored embeddings. Conversely, when β is set to a large
value, the stored embeddings that are most similar to the query
embeddings xi and zi are retrieved. The retrieved embeddings
Uxi

,Uzi
,Vxi

,Vzi
are normalized to unit norm. By default, we store the

current mini-batch in the continuous modern Hopfield networks, that
is, U =X and V =Z. Note that X contains the image embeddings (Z the
structure embeddings) andweuseN ambiguously both as dataset size,
but also as mini-batch size to keep the notation uncluttered. The
choice that U =X and V =Z is mostly taken because of computational
constraints, while U and V could hold the whole dataset or,
alternatively, exemplars. Then, the InfoLOOB objective11,37 for the
retrieved embeddings is used as objective function:

LInfoLOOB = � 1
N

XN

i= 1

ln
exp τ�1 UT

xi
Uzi

� �

PN
j≠i exp τ�1 UT

xi
Uzj

� �� 1
N

XN

i= 1

ln
exp τ�1 VT

xi
Vzi

� �

PN
j≠i exp τ�1 VT

xj
Vzi

� � :

ð6Þ

Microscopy image encoder. Microscopy images differ from natural
images in several aspects, for example the variable number of chan-
nels that depends on the staining procedure15,20. Although standard

image encoders, such as Residual Networks38 could be in principle
used with minor adjustments, alternative approaches, such as multi-
ple instance learning, could be required for very high-resolution
datasets39.

Molecule structure encoder. Since the advent of Deep Learning, a
large number of architectures to encode molecules have been
suggested40–44. In contrast to computer vision and natural language
processing, in which only few prominent architectures have emerged,
there is yet no standard choice for chemical structure encoders.
Because of their computational efficiency and good predictive per-
formance, CLOOME uses a descriptor-based fully-connected
network45,46 with 4 hidden layers of 1024 units with ReLU activations
and batch normalization (for further details see Supplementary Sec-
tion 1.2). However, also any graph43,47–49, message-passing50, or
sequence-based51 neural network with an appropriate pooling opera-
tion can be used as structure encoder.

Dataset and preprocessing. Cell painting. We use matched pairs of
microscopy images and molecules from the Cell Painting16,24 dataset.
This dataset is a collection of high-throughput fluorescence micro-
scopy images of U2OS cells treated with different small molecules16.
The dataset consists of 919,265 five-channel images corresponding to
30,616 differentmolecules. The experiment to obtain themicroscopy
images was conducted using 406 multi-well plates, and each one of
the before mentioned individual images are views from a sample
spanning the space in the corresponding well, so that six adjacent
views belong to one single sample. After disregarding erratic images
(out of focus or containing high fluorescence material) as well as
images of untreated cells that were used as controls, our final dataset
comprises 759,782 microscopy images treated with 30,404 different
molecules.

Preprocessing. We followed the preprocessing protocol of Hof-
marcher et al.20, which consisted of converting the original TIF images
from 16-bit to 8-bit, simultaneously removing the 0.0028% of pixels
with highest values.

Moreover, the images were normalized using the mean and
standard deviation calculated for the training split. Concerning mole-
cules, two types of preprocessing yielded the best results. For the
bioactivity prediction and zero-shot tasks, the SMILES strings were
transformed to 1024-bit Morgan fingerprints with a radius of 3, taking
chirality into account52,53. For the retrieval task, a max-pooling combi-
nation of Morgan and RDKit count-based fingerprints, with a final
length of 8192 bits, provided better results.

Data splits. We split our dataset into training, validation, and test
set, using the splits of Hofmarcher et al.20. Samples that have not been
used in the previous study due tomissing activity data, are assigned to
the training split. Note that all images belonging to the samemolecular
structure are moved into the same set. Finally, training, validation and
test set consist of 674,357, 28,632, and 56,793 image and molecule
pairs, respectively.

Pre-training, architecture, and hyperparameters. We use the sug-
gested hyperparameters of OpenCLIP54 and CLOOB11 wherever
applicable, and tuned a few critical hyperparameters, such as learning
rate and the β parameter of the Hopfield layer on the validation set.
The architecture of the structure encoder was inspired by previous
successful models46 and was not subject to substantial hyperpara-
meter optimization. We used the Adam optimizer55 with decoupled
weight decay regularization56. The value for weight decay was 0.1. For
the learning rate scheduler, we used cosine annealing with a warm-up
of 20,000 steps and hard restarts every 7 epochs57. We set the
dimension of the embedding space to d = 512, which determines the
size of the output of both encoders. We use a batch size of 256 as
default due to computational constraints.
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For the retrieval and zero-shot image classification tasks, a higher
validationperformancewasachievedby aCLIP-like architecturedirectly
using the embeddings returned from the image and structure encoders
and the InfoNCE loss. In this case, the inverse temperature parameter τ−1

was set to 14.3 and images were cropped to a pixel resolution of
520 × 520, based on performance in the validation set.

For activity prediction as downstream task, the inverse tempera-
ture parameter τ−1 = 30 was used. For the Hopfield layers, the scaling
hyperparameter β = 22 was selected, and the model was trained for 63
epochs based on linear probing results in the corresponding validation
set. For data augmentation and to allow large batch sizes, for the
bioactivity prediction task, the images were cropped and re-scaled
from the original 520 × 696 pixel resolution to 320 × 320 during
training, whereby the original aspect ratio was mostly maintained.

Hence, different pre-training settings have been found to yield
best results for bioactivity prediction and for both the retrieval and
zero-shot image classification task, respectively. However, the large
majority of hyperparameters were shared in both strategies. Because
of the limited exploration of the vast hyperparameter space, we expect
potential improvements from further investigations.

For further details on the hyperparameter selection, see Supple-
mentary Tables 2, 3, 4 and 5.

CellProfiler features calculation and preprocessing. The CellProfiler
software17 can also be considered as a microsopy image encoder that
supplies image embeddings. These features were calculated using the
latest CellProfiler pipelines provided in the CellPainting gallery58. The
resulting embeddings consist of 1240 features aggregated in one vector
per image. Features were aggregated to allow comparability across all
methods’ results. Afterfilteringout featureswith a standarddeviationof
zero across all samples as well as trivial features (e.g., file paths), these
embeddings consist of 1081 features. Before training, these features
were standardized using the mean and standard deviation calculated
for the embeddings corresponding to the training set.

Related work
Contrastive learning has had a strong impact on computer vision
and natural language processing. Over the last decade, supervised
deep learningmethodshave achieved important advances in thefieldof
computer vision38,59. These supervised methods require large amounts
of labeled data, which may be very costly or unfeasible to obtain, and
they have limited generalization abilities60,61. This has led to the
exploration of new methods that are able to learn robust representa-
tions of the data which can be transferred to different downstream
tasks23,62. With contrastive learning methods63 and self-supervision
thesemeaningful representations can be obtained without the need for
large amounts of expensive manually-provided labels23,64–66. While uni-
modal methods typically use pre-text tasks23, for multi-modal methods
the self-supervision arises from the availability of two modalities of an
instance, such as image and text10,67. Both uni-modal and multi-modal
contrastive learning methods have recently had a substantial impact in
computer vision and natural language processing68.

CLIP for multi-modal data yields remarkable performance at zero-
shot transfer learning and has recently been improved by CLOOB.
A well-established multi-modal approach is Contrastive Language-
Image Pre-training (CLIP)10, which learns both image- and text-
representations simultaneously. CLIP shows comparable perfor-
mance to methods that are solely image-based and yields highly
transferable representations, which is shown by its high performance
at zero-shot transfer learning. However, CLIP has recently been shown
to suffer from the “explaining away” effect11,32,33 (details in “Methods”).
Considering this caveat, the “Contrastive Leave One Out Boost”
(CLOOB) method has been proposed11. CLOOB uses a different
objective, the “InfoLOOB” (LOOB for “Leave One Out Bound”)

objective37, which does not include the positive pair in the denomi-
nator to avoid saturation effects11. Moreover, continuous modern
Hopfield networks36 are used to reinforce the covariance structure of
the data. As a result, CLOOB has further improved zero-shot transfer
learning. The ability to learn transferable representation from multi-
modal data makes CLOOB the prime candidate for learning repre-
sentations of molecules in drug discovery.

Contrastive learning for molecule representations in drug dis-
covery. In drug discovery, the effect of the limited availability of data
on molecules is even more severe, since the acquisition of a single
bioactivity data point can cost several thousand dollars and take sev-
eral weeks or months69,70. Therefore, methods that can learn trans-
ferable representations from unlabeled data are highly demanded.
Thus, several contrastive learning approaches have been recently
developed for different tasks in drug discovery. MolCLR71 uses con-
trastive molecule-to-molecule training by augmenting molecular
graphs. Stärk et al.72 contrastively learn 3D and 2D molecule repre-
sentations to inform the learned molecule encoder with 3D informa-
tion. Lee et al.73 and Seidl et al.74 use contrastive learning formolecules
and chemical reactions, and Vall et al.75 utilize text representations of
wet-lab procedures to enable zero-shot predictions. However, none of
these methods have exploited the wealth of information contained in
microscopy images of molecule-perturbed cells16 and demonstrated
strong transferability of the learned molecule encoders.

Image-based profiling of small molecules has strongly improved
the drug discovery process. Characterizing a small molecule by the
phenotypic changes it induces to a cell, is considered promising for
accelerating drug discovery16,19,76,77. The advantages of this bio-
technology are that it is time- and cost-effective as compared to
standard activity measurements. Measuring the effects of a mole-
cule on a biological system early in the drug discovery processmight
be useful to improve clinical success rates78. Particularly, micro-
scopy image-based profiles of small molecules have been suggested
to be effective together with deep learning methods77. However, the
current efforts are still in standard supervised learning settings
based on extracted features19 or deep architectures20. The amount of
labeled images is in the range of few tens of thousands, although
international efforts are currently building datasets which are mag-
nitudes larger27. Instead of the currently used activity measurements
as labels19,20, we propose a self-supervised contrastive learning
strategy of image- and structure-based molecule encoders: Con-
trastive Leave One Out boost for Molecule Encoders (CLOOME).
CLOOME extends recent successful contrastive learning methods to
the fields of biological imaging and drug discovery. Our approach
intends to overcome the limited transferability of current molecule
encoders79,80.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The model weights are publicly available in the HuggingFace reposi-
tory: https://huggingface.co/anasanchezf/cloome/tree/main. The
dataset for training is available at: http://gigadb.org/dataset/10035124.
A script with the functions used to preprocess data as in this study can
be found at: https://github.com/ml-jku/cloome/blob/main/src/
preprocess/preprocess_image.py. Source data are provided with
this paper.

Code availability
Code is available at: https://github.com/ml-jku/cloome (https://doi.
org/10.5281/zenodo.834496481).
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