
Article https://doi.org/10.1038/s41467-023-42321-3

Strain topological metamaterials and
revealing hidden topology in higher-order
coordinates

Florian Allein 1,6, Adamantios Anastasiadis 2,6, Rajesh Chaunsali 3,6,
Ian Frankel4, Nicholas Boechler4, Fotios K. Diakonos 5 &
Georgios Theocharis 2

Topological physics has revolutionized materials science, introducing topo-
logical phases of matter in diverse settings ranging from quantum to photonic
and phononic systems. Herein, we present a family of topological systems,
which we term “strain topological metamaterials”, whose topological proper-
ties are hidden and unveiled only under higher-order (strain) coordinate
transformations. We firstly show that the canonical mass dimer, a model that
can describe various settings such as electrical circuits and optics, among
others, belongs to this family where strain coordinates reveal a topological
nontriviality for the edge states at free boundaries. Subsequently, we intro-
duce a mechanical analog of the Majorana-supporting Kitaev chain, which
supports topological edge states for both fixed and free boundaries within the
proposed framework. Thus, our findings not only extend the way topological
edge states are identified, but also promote the fabrication of novel topolo-
gical metamaterials in various fields, with more complex, tailored boundaries.

The field of condensedmatter physics has soared to newheights with
the recent discovery of topological quantum matter. Topological
insulating and superconductingmaterials, with the ability to support
robust and defect-immune manipulation of electrons1–4, have
emerged as enabling candidates for the second quantum revolution5.
Numerous topological phenomena have also found their way from
the quantum realm to the classical6–8 despite the fundamental dif-
ferences between electrons (fermions) and photons or phonons
(bosons), and opened the way for new technologies relevant to
optical, phononic, and mechanical computing7,9,10, and autonomous
materials11.

An elegant combination of topological and band theory concepts
relates the topological class of the bulk (infinite, periodic) system to
the number of topologically robust, localized edge states on a finite

sample’s boundary. This connection between bulk topology and the
existence of boundary states is commonly termed “Bulk-Boundary
Correspondence” (BBC)12–14. In the standard framework, BBC is inter-
preted as a consequence of the fact that the symmetries necessary for
a topological classification of the infinite periodic system are not
broken by the boundary conditions applied to the finite system15.
However, this approachnaturally leads to a limited choice of boundary
conditions for the emergence of topological boundary states. For
example, in passive, finite-frequency topological mechanical
metamaterials16–18 or photonic approximations of chiral symmetric
topological tight-binding models19, only fixed boundaries have been
used to establish BBC19–22. It is, therefore, a fundamental question
whether topological states exist for other boundary conditions that
break the symmetries for topological classification. If yes, could BBC
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be established based on hidden symmetries? Hidden symmetries have
been widely shown to exist in virtually every branch of physics23–26.
They can be revealed after mathematical mappings, suitable coordi-
nate transformation27–31, or by isospectral reductions32,33 the so-called
latent symmetries.

In this article, we show that, indeed, systems with hidden chiral
and particle-hole symmetries exist, and these hidden symmetries are
revealed only after a choice of suitable higher-order coordinates and
boundaries. Specifically, we show that finite-frequency systems with
free boundaries belong to a different family of topological matter,
whose topological properties become apparent not in the standard
coordinates (u) but in higher-order (e.g., “strain”) coordinates (s). In
addition, such systems have the same level of protection against dis-
order as the usual passive, finite-frequency topological metamaterials.
We emphasize that herein we use a mechanical model to demonstrate
the possibilities enabled by the use of higher-order coordinates. Still,
our results are applicable to other physical systems, too, via the
appropriate mappings, as we show by an example from the photonics
setting in supplementary material. Given a linear compatibility matrix
C defined as s =Cu34, we derive equations of motion in terms of bond
extensions (strains) €s = � Dss, whereDs is the strain dynamical matrix.
Using this, we extend the BDI class of topological mechanical meta-
materials to include systems whose bulk topology is probed by the
winding number of the bulk Ds,bulk and show that BBC holds for free
instead of fixed boundaries (the subscript “bulk” in Ds,bulk denotes the
infinite—or equivalently periodic—system. If there is no such subscript,
we refer to the finite, bounded system with boundary conditions that
break translation invariance). We call these systems strain topological
metamaterials (STM). For finite-frequency metamaterials, the topolo-
gical invariants can be defined for the shifted dynamical matrix16,17. In
this work, we always imply—if not else noted—that thewinding number
is defined upon the shifted dynamical matrix. It is important to note
that second-order ordinary differential equations, such as those
describing spring-mass models, are universal models for all fields of

wave physics, frommechanical to optical19,35, acoustical36 systems, and
electrical circuits37, among many others.

For a complete topological characterization of a finite-frequency
system, it is necessary to compare this approach to the traditional
one, where topological edge states are probed via the dynamical
matrix Du defined in terms of lattice displacements where €u= � Duu.
For the set of fixed and free boundaries, three possibilities exist for
finite-frequency topological mechanical systems, as outlined in Fig. 1.
The first possibility is systems that exhibit edge states only for fixed
boundaries, where their topology is encoded in the winding number
of the bulkDu,bulk. Wewill call this the typical case. An example of this
is the mechanical Su-Schrieffer-Heeger (SSH) model8,16,38,39 shown in
Fig. 1a. The second is systems that exhibit edge states only for free
boundaries, where their topology is encoded in the winding number
of Ds,bulk. We use the mass dimer to demonstrate this case40,41. The
winding number of Du,bulk is not well-defined in displacement coor-
dinates, yet remarkably, Ds,bulk restores chiral symmetry, and the
value of its winding corresponds to the emergence of edge states as
we show in Fig. 1b. Experiments confirm the existence of edge states
for free boundaries. Finally, the third possibility is systems that
exhibit edge states for both free and fixed boundaries, such that their
topology is encoded in both Du,bulk and Ds,bulk, shown in Fig. 1c. The
model we use to demonstrate this is a mechanical analog of the
Kitaev chain. The Kitaev chain has drawn particular interest for its
support of Majorana modes, which have been suggested as promis-
ing candidates for quantum computing42,43. We introduce a
mechanical analog, which facilitates the topological transition
between trivial and non-trivial regimes. This system exhibits edge
states for both free (Fig. 1c(i)) and fixed boundaries (Fig. 1c(ii)), but
for different values of its parameters. Our experimental results verify
the “double BBC” predicted for this model, wherein we observe edge
states for both fixed and free boundaries associated with the para-
meter values predicted by the winding of Du,bulk and Ds,bulk, respec-
tively. While we examine one-dimensional systems belonging to the

Fig. 1 | Strain topological metamaterials. A comparison of strain topological
metamaterials (STM) to the typical case. In the top row, we present “mass-spring”
schematics, which are powerful tools to model topological systems across a
spectrum of physical settings, from mechanics to optics, electronic circuits, and
acoustics. In the middle row, we denote the appropriate boundary conditions for
the existence of BBC. In the bottom row,we showhow the spectrumof each system
evolves while a parameter changes adiabatically. This is compared to the predic-
tions of the bulk winding. The orange denotes trivial winding (w =0), and the
doughnut non-trivial (w = 1). a The stiffness dimer can be mapped to the finite-
frequency SSH model and is a typical case. Only fixed boundaries preserve the
chiral symmetry of the displacement bulk dynamical matrix Du,bulk. Edge states

appear according to the prediction of the latter’s winding number. b The mass
dimer is an STM. As a result, its chiral symmetry is revealed only in strain coordi-
nates, and edge states can exist only for free boundaries according to the winding
number of the bulk dynamicalmatrix in strain coordinatesDs,bulk. cThemechanical
Kitaev chain behaves both like an STMand a typical case, depending on the applied
boundaries. (i) For free boundaries, it behaves like an STM, and the winding of
Ds,bulk predicts the emergence of edge states correctly. (ii) For fixed boundaries, it
behaves like a typical case, and the winding of Du,bulk predicts the emergence of
edge states correctly. Remarkably, the topological phases of this system are
interchanged when different boundaries are applied.
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BDI class, other classes of strain topological metamaterials may also
exist, including nonreciprocal elements and in higher spatial
dimensions. Further, localized topological states are known to exist
at the interface between materials of two different topological pha-
ses, which raises the possibility of new classes of interface states.
Lastly, our results suggest that similar methods can be applied to
othermodels beyond themass-springmodel44 and tomore complex,
tailored boundary conditions with “higher-order” coordinates other
than strain.

Results
Mass dimer
We begin with the mass dimer shown in Fig. 1b. This system is a peri-
odic 1D mass-spring chain with two alternating masses, m1 and m2,
connected with a spring of stiffness k. The equations of motion of the
particle displacements (uA∣B,n) in the nth unit cell are given by:

m1€uA,n = kðuB,n � uA,nÞ � kðuA,n � uB,n�1Þ ð1Þ

m2€uB,n = kðuA,n+ 1 � uB,nÞ � kðuB,n � uA,nÞ, ð2Þ

where the first subscript denotes the sublattice within the unit cell and
the second subscript n denotes the unit cell number. We seek plane
wave solutions of the formψn(t) =u(q)eiΩt−iqn, where q is the normalized
wavenumber and Ω the angular frequency. This results in the eigen-
value problem D̂u,bulkðqÞûðqÞ=ω2ûðqÞ, where û= ½

ffiffiffi
P

p
uAðqÞ,uBðqÞ�

T
,

D̂u,bulkðqÞ is the Bloch dynamical matrix in displacement coordinates of
the following form

D̂u,bulkðqÞ=
1

ð1 +PÞ
2 �

ffiffiffi
P

p
ð1 + e�iqÞ

�
ffiffiffi
P

p
ð1 + eiqÞ 2P

 !
, ð3Þ

and ω =Ω/Ω0 the normalized frequency with respect to the mid-gap
frequency Ω2

0 = kð1=m1 + 1=m2Þ. It is well known that the edge states of
the mass dimer appear for free edges when the ratio P≔m1/m2 is
varied40,41. However, their topological nature has been unknown since
the dynamical matrix lacks the necessary symmetries for a topological
classification. This is evident when D̂u,bulk is written in terms of the
complex Pauli matrices σi (i = x, y, z), such that D̂u,bulk = I +dxσx +
dyσy +dzσz , where dx =

ffiffiffi
P

p
ð1 + cosqÞ=ð1 +PÞ, dy =

ffiffiffi
P

p
sinq=ð1 + PÞ, and

dz = (1 − P)/(1 + P). The presenceof all the σi indicates that the D̂u,bulk (up
to a constant shift in the diagonal) does not anti-commute with any of
these matrices. This implies the absence of chiral symmetry as in the
standard SSH model45,46.

We argue that the edge states in themassdimerhave a topological
origin that can be revealed using strain coordinates. The strain coor-
dinates for thenth unit cell are sA,n = un,B − un,A and sB,n = un+1,A − un,B. By
rearranging the equations of motion (see Methods) and assuming
plane wave solutions, we arrive at the following eigenvalue problem:
Ds,bulk(q)s(q) =ω2s(q), where sðqÞ= ½sAðqÞ, sBðqÞ�T , and Ds,bulk(q) is the
Bloch dynamical matrix in strain coordinates:

Ds,bulkðqÞ=
1

ð1 +PÞ
1 +P �ðP + e�iqÞ

�ðP + eiqÞ 1 + P

 !
: ð4Þ

ThematrixDs,bulk(q) can bewritten in terms of Pauli matrices σx, σy,
and σz, such that Ds,bulk(q) = I +dxσx +dyσy with dx = ðP + cosqÞ=ð1 +PÞ
anddy = sinq=ð1 + PÞ. As a result, thematrix anti-commuteswith σz after
a constant shift in the diagonal: σz ðDs,bulkðqÞ � IÞσ�1

z = � ðDs,bulkðqÞ � IÞ.
In otherwords, the shiftedDs,bulk(q) is chiral. Thus, the systemhas awell-
defined winding number on the dx-dy plane, as is shown in Fig. 2a. The
winding number predicts a topological phase transition at P= 1, with
P > 1 and P < 1 corresponding to trivial and non-trivial phases,

respectively. Therefore,weexpect BBC for themassdimer—but in strain
coordinates.

Figure 2b shows the spectrum of a finite chain with free bound-
aries and an odd number of particles (whichmeans an even number of
bonds). We witness the emergence of edge states inside the band gap
for P < 1 (corresponding to the lighter mass on the boundaries), as
expectedby the strainwinding number.Wenote thatBBCdictates that
the finite dynamical matrix, Ds, should also preserve the underlying
chiral symmetry. This preservation is validated by the chiral operator
for the finite matrix, which is defined as Γ = σz⊕ σz⊕…⊕ σz (see
Methods).

We contrast these findings with the interpretation of the chain
in the typical displacement coordinates. In displacement coordi-
nates, the chain has a zero-frequency mode, which corresponds to
the rigid body motion of the free chain and breaks chirality. The
strain-description predicts all the non-zero eigenvalues of the sys-
tem as is shown in Fig. 2c. We witness the chiral symmetry of the-
se non-zero eigenfrequencies with respect to the mid-gap
frequency ω2 = 1. Furthermore, in Fig. 2d, we show the profiles of
the edge states at P = 0.25 in both displacement and strain coordi-
nates. Once again, strain coordinates reveal the chiral nature of the
chain, where the vanishing amplitude of the topological edge states
at alternating bonds is akin to the mechanical SSH (stiffness
dimer)46.

Building on the idea of BBC for strain coordinates and revealing
topological modes, we construct a mechanical analog of the Kitaev
chain (the prototypical model for a topological superconductor) with
two degrees of freedom (DOFs) per site. Specifically, particle dis-
placement and rotation lead us to choose generalized strain coordi-
nates involving both DOFs and probe the topological nature of the
Kitaev chain. We demonstrate that this design not only obeys BBC for
fixed boundaries (right column of Fig. 1c), but also shows a topological

Fig. 2 | Mass dimer. a The chiral symmetry of mass dimer—revealed on strain
coordinates—leads to a well-defined winding number. Nonzero winding makes the
configurations with P < 1 topologically non-trivial. b Evolution of the spectrum of a
finite chain with an odd number of particles (21) and free boundaries as we change
the parameter P. Edge states emerge for P < 1. Colormap confirms localization of
states inside the band gap. c Spectrum of a finite chain in displacement and strain
coordinates at P =0.25. Except for the zeromode, the spectrum is the same in both
coordinates and shows chiral symmetry about the mid-gap frequency ω2 = 1.
dProfiles of the edge states inc. Their chiral nature is revealed in strain coordinates.
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edge mode for free boundaries that can be explained by BBC in strain
coordinates (left column of Fig. 1c).

Mechanical Kitaev chain
In Fig. 3a, we show a mechanical structure whose dynamics are gov-
ernedby two in-planeDOFs at each site (transversedisplacementu and
rotation Φ). Each site is connected with the next via two bonds cor-
responding tobending and shear stiffness (KB andKS, respectively).We
set P =md2/I, the ratio of the generalized masses (particle mass m,
lattice constantd, andparticlemassmoment of inertia I) andη = KB

KS
, the

ratio of generalized stiffnesses (with KB and KS the bending and shear
stiffnesses, respectively).

InMethods and Supplementary Note 2, we analytically show that
if we impose the fine-tuning: η = 1 − (1/P), the dynamical matrix on
displacement coordinates ~Du maps to a Kitaev chain42 (the “ ~ ” sign
refers to the fine-tuned system). Parameter P is mapped to the che-
mical potentialμ, the coupling τ, and the superconducting constantΔ
in the following manner: μ = 2(P − 1), τ = 1, and Δ=

ffiffiffi
P

p
. As a result,

transverse displacements u and the normalized rotations Φ=
ffiffiffi
P

p
can

be seen as particle and hole DOFs (Fig. 3a). This mapping allows us to
switch between trivial and non-trivial topological phases by con-
tinuously altering the value of Pwhile retaining the fine-tuning. Since
we vary P in our design, we trace a 1D path in the phase space of the
Kitaev chain, as is shown in Fig. 3b, wherein transitions between
topologically trivial and non-trivial phases are possible. In Fig. 3c, we
show the dispersion curves obtained for values of P corresponding to
systems in different topological phases. We observe two branches in
the dispersion diagram due to the lumped-mass model having two

DOFs, i.e., u and Φ, per mass. We also observe that the entire spec-
trum (ω2) is symmetric about a mid-axis, which isω2 = 1. This is due to
the time-reversal and particle-hole symmetry, such that
σxð~Du,bulkðqÞ � IÞσT

x = � ð~Du,bulkðqÞ � IÞ. Since ~Du,bulkðqÞ maps to the
Kitaev chain BdG Hamiltonian, a finite chain with boundaries that
preserve the symmetry of the bulk (i.e., a chain with fixed bound-
aries) will exhibit topological edge states.

Therefore, the shifted ~Du,bulkðqÞ has a well-defined winding
number in the dy-dz plane as shown in Fig. 3d. This suggests the
existence of edge states for P < 2. Indeed, for a fixed chain consisting
of 200 particles, two localized states emerge in the band gap for P < 2
as one can see in Fig. 3e. In Fig. 3f, we plot these two eigenstates,
which are localized on the left and the right end of the chain. The
particle-hole symmetry of the model dictates that the particle and
hole DOFs of the edge mode eigenstates either exactly match (sym-
metric) or have opposite phases (antisymmetric)43. In contrast to the
edge states appearing in the SSH model39, these topologically-
protected edge states have mixed polarization in terms of displace-
ment and rotation.

We now investigate the Kitaev system in strain coordinates,
which have a more complex form due to the coupling of rotational
degrees of freedom with the transverse displacements. By applying
the strain coordinate transformation, we obtain the bulk strain
dynamical matrix ~Ds,bulkðqÞ, which surprisingly maps again to a Kitaev
chain (as long as the fine-tuning is preserved) but with a different
parameter dependence. In strain coordinates, P is now replaced by
P/(P − 1) (see Methods). In Fig. 4a, we show the winding of ~Ds,bulkðqÞ
predicts the inverse topological phases from those predicted by

trivial

nontrivial

trivial

Fig. 3 | Mechanical Kitaev chain. a A mechanical monomer chain with transverse
and rotational degrees of freedom maps to the Kitaev chain after fine-tuning.
b Topological phase diagram of the Kitaev chain. The path of the fine-tuned
mechanical chain follows the curved solid line (colorbar from yellow to black
representing the value of the parameter P). Two cases experimentally tested herein
(P = 1.5 and P = 2.5) are marked with triangles. c Dispersion diagrams for P = 1.5 and
P = 2.5 are obtained in two ways: Analytically, via the lumped-mass model, and

numerically, using the finite element method. H and s are the varying dimensions.
Colorbar denotes modal dominance. d The winding number of ~Du,bulk suggests a
topologically non-trivial phase for P < 2. e Evolution of the spectrum of finite chain
with an even number of particles (200) and fixed boundaries as we change P. Edge
states emerge for P < 2. f Profiles of the edge states in e for P = 1.5. Due to particle-
hole symmetry, the profiles of effective particles u and holesΦ=

ffiffiffi
P

p
are either

identical or differ by phase.
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~Du,bulkðqÞ. While a finite chain with fixed boundaries preserves
particle-hole symmetry in displacement coordinates, we need a finite
chain with free boundaries in order to preserve particle-hole in strain
coordinates (see Supplementary Note 2 for details). As a result, we
expect the emergence of edge states for a Kitaev chain with free
boundaries but for the opposite parameter regimes compared to the
system with fixed boundaries (topologically non-trivial regimes
become trivial and vice versa).

In Fig. 4b, we show the spectrum of the Kitaev chain with free
boundaries with varied P. Remarkably, we witness the emergence of
two edge states inside the band gap for P > 2, as predicted by the
winding of the strain dynamical matrix ~Ds,bulkðqÞ. These hidden topo-
logical edge states exhibit the profile dictated by particle-hole sym-
metry when expressed in the strain coordinate system (Fig. 4c), while
their form appears distorted when expressed in displacement coor-
dinates (Fig. 4d). Building off our unique definition of generalized
strain in the Kitaev chain may also open the door for establishing
symmetries based on other coordinates paired with the appropriate
boundaries.

Experimental results
To verify our predictions, we prepared two test setups to experimen-
tally probe both the mass dimer and the mechanical Kitaev chain.

For amass-dimer chain, we expect the emergenceof an edge state
only at the boundary terminated by the smaller particle, as dictated by
BBC. We use such a configuration for our experiments, as shown in
Fig. 5a, in the form of an additively manufactured chain composed of
14 masses with free boundaries. Particle #1, located on the left of the
chain, is a light mass. The mass ratio is thus to P =0.4 (or P = 2.5 if
considering the end with the larger mass as m1). Elastic waves are

excited by striking a selected particle (#1 or #14), and the velocity of
each particle is measured using a laser Doppler vibrometer. See
Methods and Supplementary Note 1 for more details on fabrication,
experimental setup, and data acquisition.

Figure 5b presents measured frequency response at particle #8
when the chain is excited from the left end (small mass end) or from
the right side (large mass end). We observe a band gap (highlighted
region). We also observe a peak inside it, but only when the particle
#1 is excited, demonstrating the existence of an edge state only on
the left edge, as theoretically predicted. Furthermore, we recon-
struct the edge state from the experimental data in Fig. 5c. We
observe excellent agreement between predictions and experiments,
where amplitude decay is seen as one goes away from the left
boundary.

We turn now to the experimental investigation of the mechanical
Kitaev system having fixed-free boundary conditions so that both
types of edge states can be observed in the system. We expect the
emergence of an edge state at the fixed end, as dictated by the BBC of
the fixed-fixed chain. Similarly, we expect an edge state at the free end
as well, albeit for different P-values than the fixed chain. As such, the
fixed-free chain should always have an edge state at one edge for all
values of P except P = 2 (where the band gap closes). For systems with
P < 2 and P > 2, they would support an edge state on the fixed and free
end, respectively.

We additively manufacture chains of 13 masses (large cuboids)
and suspend them vertically bymounting particle #1 to a fixed surface,
as shown in Fig. 5d. Therefore, the system represents afixed-free chain.
We consider two chains with different P and excite them with an
automaticmodal hammer by striking particle#2 or #13, corresponding
to the fixed or free sides. Again using a laser Doppler vibrometer, we
measure the velocity at multiple points along the chain. See Methods
and Supplementary Note 2 for more details on fabrication, experi-
mental setup, and data acquisition.

Figure 5e shows the experimentallymeasured frequency response
at particle #7 when the chains with P = 2.5 and P = 1.5 are excited from
different ends. Once again, we witness a band gap (highlighted region)
and a peak inside it, which appears for a given chain and side of exci-
tation, corresponding to the edge state. The state inside the band gap
exists at the fixed end for P = 1.5 and at the free end for P = 2.5, as
theoretically predicted.

To verify that thesemodes are indeed localized at different edges,
we reconstruct the mode shapes from the experimental data in Fig. 5f,
g. As for themass-dimer experiments, we observe excellent agreement
between predictions and experiments, where amplitude decay can be
seen asone goes away from the boundaries.We alsonote that the edge
state is localized at the free end [Fig. 5g] is different in its shape
compared to its counterpart for the fixed edge, as discussed earlier,
corroborating the inversion of topological phases predicted for our
mechanical system.

In summary, we demonstrate theoretically and experimentally
herein the existence of a different family of mechanical topological
metamaterials in which bulk-boundary correspondence is realized
through higher-order coordinates (e.g., strain) and suitable boundary
conditions. Such topological states are also robust against several
types of disorder in the system, as shown in Supplementary Note 3.We
suggest that this is a general finding beyond mechanical metamater-
ials, as our framework can be applied to any physical system thatmaps
to “mass-spring” systems, including, e.g., electrical or superconducting
circuits, optics, and acoustics, among others. In Supplementary
Note 4, we provide a supporting example via a photonic setting. Our
approach enables the detection of topological edge states for
boundary conditions that at first glance break topology-protecting
symmetries. Furthermore, it paves the way to design topological
metamaterials exploiting the interplay between boundary conditions
and higher-order coordinates.

Fig. 4 | Analysis of the Kitaev chain with free boundaries. a The winding number
of ~Ds,bulk predicts a non-trivial phase for P > 2 contrary to the winding of ~Du,bulk

which predicted a non-trivial phase for P < 2 (see Fig. 3d for comparison). b Spec-
trum of a finite chain (N = 200) with both boundaries free as a function of P.
Localized edge states emerge in the band gap for P > 2. c Profiles of the localized
states on the free edges on strain coordinates. The bending (b) and shear (s) strain
coordinates follow the pattern dictated by particle-hole symmetry. d Profiles of the
localized states on the free edges on displacement coordinates. Their profiles
appear distorted.
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Methods
Mass-dimer equations of motion on strain coordinates
We define the strain coordinates as sA,n = uB,n − uA,n, sB,n = uA,n+1 − uB,n.
We can then rearrange Eqs. (1) and (2) to get the following equations of
motion in strain coordinates:

€sA,n =
k
m2

ðsB,n � sA,nÞ �
k
m1

ðsA,n � sB,n�1Þ ð5Þ

€sB,n =
k
m1

ðsA,n + 1 � sB,nÞ �
k
m2

ðsB,n � sA,nÞ: ð6Þ

Mass-dimer free boundaries preserve chiral symmetry on strain
coordinates
A finite chain in strain coordinates, with an even number of entries,
preserves chiral symmetry for the following boundary conditions:
sB,0 = sA,N+1 = 0. In other words, the finite dynamical matrix,Ds, follows:
Γ(Ds − I)Γ−1 = − (Ds − I) where Γ = σz⊕ σz⊕…⊕ σz. Such boundary con-
ditions in strain coordinates resemble a chainwith freeboundaries, i.e.,
uA,N+1 − uB,N =0.After settingP =m1/m2 andnormalizingwith respect to

the mid-gap frequency, the eigenvalue problem reads as follows:

1
ð1 + PÞ

1 + P �P 0 . . . 0

�P 1 + P �1 . . . 0

0 �1 1 +P �P :: 0

..

. . .
. ..

.

0 . . . �1 1 +P �P

0 . . . �P 1 +P

0
BBBBBBBBB@

1
CCCCCCCCCA

2N ×2N|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ds,free

sA,1
sB,1
sA,2

..

.

sA,N
sB,N

0
BBBBBBBBBB@

1
CCCCCCCCCCA

=ω2

sA,1
sB,1
sA,2

..

.

sA,N
sB,N

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð7Þ

Clearly, strain coordinates reveal the chiral symmetry of a finite
chain with free boundaries, which is absent in the displacement
coordinates (see Supplementary Note 2 for more details).

Mechanical Kitaev equations of motion of on displacement
coordinates and fine-tuning
The equations of motion governing the linear dynamics of the
mechanical chain considering the transverse-rotational waves
are derived using the Lagrangian formalism47,48 and are described by

Fig. 5 | Experimental observation of edge states in the mass dimer and
mechanical Kitaev chain. a Schematic of the experimentalmass-dimer setupwith
free boundary conditions. bMeasured frequency response at particle #8 when the
chain is excited from the left side (#1, smaller mass) or from the right side (#14,
larger mass). The shaded area corresponds to the band gap. c Measured ampli-
tudes of the edge state (displayed in displacement coordinates) localized at the
boundary ending with small mass and P =0.4. d Schematic of the mechanical
Kitaev chain, suspended vertically by fixing particle #1. Three points are probed on

each particle to characterize the transverse displacement and rotation. eMeasured
frequency response at particle #7 when the chains with P = 1.5 and P = 2.5 are
excited at the fixed end (particle #2) or at the free end (particle #13). The shaded
areas correspond to the band gap. Measured amplitudes of the edge state (dis-
played in displacement coordinates) localized at the fixed boundary for P = 1.5 (f),
and at the free boundary for P = 2.5 (g). Error bars denote the variation (one
standard deviation from averaged value) in experimental measurements.
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the following set of differential equations:

mn€un =KS,n un�1 � un

� �� KS,n+ 1 un � un+ 1

� �
+dKS,n ϕn +ϕn�1

� �� dKS,n+ 1 ϕn +ϕn + 1

� �
,

ð8Þ

In €ϕn =dKS,n un � un�1 � d ϕn�1 +ϕn

� �� �
+dKS,n + 1 un + 1 � un � d ϕn +ϕn+ 1

� �� �
+d2KB,n ϕn�1 � ϕn

� �� d2KB,n + 1 ϕn � ϕn+ 1

� � ð9Þ

where n is the particle index,m is the mass, I is the moment of inertia,
and un and ϕn are the transverse displacement (along the y-axis) and
rotation (around the z-axis), respectively, from the equilibrium posi-
tion of the nth particle. Substituting the plane wave solutions of the
formψn(t) = v(q)eiΩt−iqn into the set of Eq. (8)–(9) leads to the eigenvalue
problem:

Du,bulkðqÞvðqÞ=ω2vðqÞ, ð10Þ

where vðqÞ= ½uðqÞ,ΦðqÞ=
ffiffiffi
P

p
�T is a column eigenvectors with

ΦðqÞ=
ffiffiffi
P

p
=dϕðqÞ=

ffiffiffi
P

p
and P =md2/I. The superscript T denotes the

transposed vector and Du,bulk(q) is the dynamical matrix on displace-
ment coordinates. Ω is the angular frequency, and ω =Ω/Ω0 is the
normalized frequencywithΩ2

0 = 2PKS=m. The dynamicalmatrixDu,bulk

can be read as:

Du,bulkðqÞ=
1
2P

4sin2ðq=2Þ �2i
ffiffiffi
P

p
sinðqÞ

2i
ffiffiffi
P

p
sinðqÞ 4P cos2ðq=2Þ+η sin2ðq=2Þ

h i
2
4

3
5, ð11Þ

where η =KB/KS. Under the condition:

η= 1� ð1=PÞ, ð12Þ

this matrix can be fine-tuned to a new form of the dynamical matrix:

~Du,bulkðqÞ=
1
2P

2P + �2ðP � 1Þ � 2 cosðqÞ½ � �2i
ffiffiffi
P

p
sinðqÞ

2i
ffiffiffi
P

p
sinðqÞ 2P + 2ðP � 1Þ +2 cosðqÞ½ �

" #
, ð13Þ

which resembles to the BdGHamiltonianwhen taking out the constant
term 2P of the diagonal. Comparing with the BdG Hamiltonian43, we
find that Δ !

ffiffiffi
P

p
, τ ! 1,μ ! 2ðP � 1Þ. The matrix ~Du,bulk can be writ-

ten in terms of the complex Pauli matrices σx, σy and σz such that:

~Du,bulkðqÞ= I +
1
2P

2
ffiffiffi
P

p
sinðqÞ

� �
σy + �2 cosðqÞ � 2ðP � 1Þð Þσz

h i
: ð14Þ

Mechanical Kitaev equations of motion on strain coordinates
Weare interested in the in-planedegrees of freedom that are decoupled
from the longitudinal displacements. Strains are related to the trans-
verse displacement un and rotation ϕn DOFs in the following manner:

sn =un+ 1 � un � dðϕn + 1 +ϕnÞ ð15Þ

bn =dðϕn + 1 � ϕnÞ, ð16Þ

where sn and bn stand for the nth shear and bending strain, respec-
tively. To express the dynamical matrix in these coordinates, we utilize
Newton’s equation for transverse displacements and rotations:

m€un =KSsn � KSsn�1 ð17Þ

I €ϕn =d KSsn +KSsn�1 +KBbn � KBbn�1

� �
: ð18Þ

We take the second derivative with respect to time in Eqs. (15) and (16)
and substitute the corresponding expressions from Eqs. (17) and (18).
The resulting dynamical equations for the strains are:

€sn =
KS

m
sn + 1 + sn�1 � 2sn �

md2

I
ðsn+ 1 + sn�1 + 2snÞ

 

�md2

I
KB

KS
ðbn+ 1 � bn�1Þ

!
,

ð19Þ

€bn =
KS

m
md2

I
ðsn + 1 � sn�1Þ

 

+
md2

I
KB

KS
ðbn+ 1 +bn�1 � 2bnÞ

!
:

ð20Þ

We then define: sðqÞ= ½sðqÞ,bðqÞ=
ffiffiffiffiffiffiffi
P

P�1

q
�
T
, and assume solutions of

the form ψn(t) = s(q)ei(Ωt−qn) to arrive at the eigenvalue problem:

Ds,bulkðqÞsðqÞ=ω2sðqÞ, ð21Þ

where Ds,bulk(q) denotes the “strain” dynamical matrix and ω is again
the normalized frequency Ω/Ω0 with Ω2

0 = 2PKs=m. Since we keep the
constraint η = 1 − 1/P, the strain dynamical matrix reads as:

~Ds,bulkðqÞ =
P � 1
2P

2P
P�1 +

2
P�1 + 2 cosðqÞ �2i

ffiffiffiffiffiffiffi
P

P�1

q
sinðqÞ

2i
ffiffiffiffiffiffiffi
P

P�1

q
sinðqÞ 2P

P�1 � 2
P�1 � 2 cosðqÞ

0
B@

1
CA: ð22Þ

We verify that apart from a constant shift 2P
P�1 in the diagonal, the

matrix possesses particle-hole symmetry.

Localization index calculation
Figures 2b, 3e, and 4b display a colormap (from yellow to blue), which
represents a localization index. For an eigenvector with N masses, we
use the localization index (i.e., inverse participation ratio) defined as:

IPR=
PN

n = 1 An
4

PN
n = 1 An

2
� �2 , ð23Þ

where An =
ffiffiffiffiffiffi
u2
n

p
or An =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
n +

Φ2
n
P

q
for the mass dimer and Kitaev ana-

lyses, respectively. The inverse participation ratio (IPR) is equal to zero
(yellow color) when all particles are moving (delocalized mode) and is
near to one (blue color) when only a few particles are moving com-
pared to the total length of the chain as in the case of a spatially
localized mode.

Finite element method simulations
Numerical dispersion curves are calculated via FEM using COMSOL
Multiphysics software, which is presented in Fig. 3c. These results are
computed by modeling the unit cells (shown in the insets of Fig. 3c) in
three dimensions and applying periodic boundary conditions on the
sides of the two parallel beams. The following mechanical parameters
are used for the material adopting a linear elastic constitutive law:
density ρ = 1180 kg/m3, Young’s modulus E = 2.74GPa, and Poisson
ratio ν =0.38. Three-dimensional domains are meshed by means of
three-dimensional 8-node hexahedral quadratic elements ofmaximum
size LFE =0.5mm,which is found toprovide accurate eigensolutions up
to the frequency of interest. The colormap reported in Fig. 3c
describes the dominant component of themotion of themass (such as

juf j
juf j+ jϕf j, where the index f denotes themode index). It varies frompure
rotation (yellow) to pure transverse displacement (dark blue).
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Fabrication
The experimental samples are fabricated through additive manufactur-
ing (Stratasys Objet350 Connex3). Thermoplastic polymer (VEROTM),
with the following nominal properties: density ρ= 1180 kg/m3, Young’s
modulus E= 2.74GPa, and Poisson ratio ν=0.38.

Mass-dimer experiments
The mass-dimer sample is composed of 14 masses, having a total
length of 35.7 cm. Themasses are in the shape of a cube of sides 8mm
and 10.8mm for the “small” and “large” masses, respectively. The
beams connecting themasses are cylinders of length 15mmand radius
1 mm. The complete design of the mass-dimer sample is presented in
Supplementary Note 1. The sample is suspended on thin nylon strings
to achieve free boundary conditions for all the particles. The velocity
of each particle is measured on one point on each cube and averaged
over 20 repetitions. The laser sensitivity was set to 100mm/s/V.

Mechanical Kitaev chain experiments
The specimens consist of two classes of chains hosting 13 masses for a
total length of 32.2 cm. The complete design of the fine-tuned manu-
factured samples is presented in Supplementary Note 2. The experi-
mental wave velocities are measured (and averaged over 10
repetitions) at three points on each particle to decompose the trans-
lational and rotational motions. The laser sensitivity was set to 50mm/
s/V. The experimentally measured spectra for all particles and addi-
tional measurements are presented in Supplementary Note 2.

Data availability
The data generated in this study are provided in the manuscript and
Supplementary Information. All other data that support the plots
within this paper and other findings of this study are available from the
corresponding authors upon request.
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