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Material-agnostic machine learning
approach enables high relative density in
powder bed fusion products

JaeminWang 1, SangGuk Jeong 1, EunSeongKim1,HyoungSeopKim 2,3,4,5&
Byeong-Joo Lee 1

This study introduces a method that is applicable across various powder
materials to predict process conditions that yield a product with a relative
density greater than 98% by laser powder bed fusion. We develop an XGBoost
model using a dataset comprising material properties of powder and process
conditions, and its output, relative density, undergoes a transformation using
a sigmoid function to increase accuracy. We deeply examine the relationships
between input features and the target value using Shapley additive explana-
tions. Experimental validation with stainless steel 316 L, AlSi10Mg, and
Fe60Co15Ni15Cr10 medium entropy alloy powders verifies the method’s
reproducibility and transferability. This research contributes to laser powder
bed fusion additivemanufacturing by offering a universally applicable strategy
to optimize process conditions.

Laser powder bed fusion (L-PBF), also known as selective lasermelting,
is a high-precision additive manufacturing (AM) method to produce
metal components that have superior mechanical properties, and that
can use a wider range of metal feedstock materials than other AM
methods1. During L-PBF, a layer of powdered metal is spread on a bed,
then a laser is used to fuse the powder layer. The molten layer is
allowed to cool rapidly, then another thin layer of powder is spread
over it. This process is repeated until the desired part is fully con-
structed layer-by-layer. This process permits creation of intricate
structures with high-quality material properties.

The material properties of parts created using L-PBF are heavily
influenced by process parameters, such as laser power P [W], scan
speed v [mm/s], hatch distance h [mm], and layer thickness t [mm].
Inappropriate combinations of these parameters can lead to keyhole
formation or lack of fusion, both of which result in parts that have
undesirable porosity and microstructure2. Pores can provide initiation
sites for cracks within the structure of AM-produced parts3, so high
porosity within the material can significantly compromise its

mechanical properties. Consequently, effective L-PBF requires use of
process parameters that yield parts with low porosity, i.e., high relative
density eρ. eρ depends on laser energy density Ed [J/mm3], calculated as4

Ed =
P

v � h � t ð1Þ

Pores can occur due to lack of fusion occur when Ed is insufficient,
or due to vaporizationwhen Ed is excessive. However, the optimal Ed to
achieve high eρ varies among materials, and the eρ of parts fabricated
using the same material and Ed can differ depending on the process
parameters used5 (Fig. 1). Because of this variability, the parameters
must be tailored to the material to ensure the best possible results.

Numerous prior studies6–14 have used ML as a tool to predict and
optimize part quality, such as eρ by using process conditions to predict
various properties of products. However, these studies have con-
sidered only one powder material for training, prediction, and model
validation.
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On the other hand, Cacace & Semeraro15 presented an intriguing
approach to calculate the lack of fusion probability by integrating
semi-analytical thermal model results with a geometric-based defect
model. Their research offered an innovative method of establishing
PBF process conditions for a variety of materials, with a focus on bal-
ancing porosity and productivity.

Despite the strengths of their approach, there are limitations in
terms of time-efficiency and adaptability. Obtaining process condi-
tions via their method can be time-consuming, and new regression
models for melt pool depth and width are required for each material.
Moreover, although Ed has been suggested as a simple criterion for
calculating optimal process parameters across different materials, it
has proven insufficiently reliable for this purpose5.

Our research aims to overcome these challenges bydeveloping an
ML model that optimizes eρ simply, time-efficiently, and regardless of
the material used. Our goal is to create an approach that enhances
both accuracy and applicability across a wide array of materials.

In the present study, we seek to establish an ML model as a
standard, aiming to replace Ed and the work of Cacace & Semeraro. To
accomplish this goal, we trained a model that can determine whether
the eρ of a product is sufficiently high, when manufactured under
specific process conditions using a particular powder. The model is
trained using the material properties of the powder and the process
parameters. We also developed a method that uses the model to
suggest process parameters to achieve high eρ in a product. To prove

the reliability of the model and method, we predicted the optimal
process conditions for STS 316 L, AlSi10Mg, and Fe60Co15Ni15Cr10
MEA, and experimentally verified the predicted process conditions.

This study presents three contributions. First, our method can
propose optimized process parameters for anymaterial, provided that
its physical properties are known. This material-agnostic approach
increases its applicability. Second, we modified the target values to
facilitate the training of the ML model, which in turn improved its
accuracy. Lastly, by using explainable AI (XAI) on the trainedmodel,we
analyzed the correlations among material properties, process para-
meters, and eρ, and obtained valuable insights into the relationships
that affect these factors.

In this paper, we calculate eρ as 100% minus area fraction of por-
osities, as measured using image analysis, aligning with the approach
adopted in previous studies16–18. The decision to use image analysis
over the Archimedes’method wasmade primarily due to the potential
inaccuracies associated with the latter. The Archimedes’ method cal-
culates eρ by dividing the product’s density, as measured by this
method, by the ideal density inferred from the powder’s composition.
However, this approach can lead to incorrect measurements of eρ due
to the evaporation of low-melting-point elements during product
manufacturing, which can subsequently alter the composition. Given
our focus on the porosity itself, we found image analysis, which
directly relates to porosity, to be the more appropriate method for
measuring eρ.
Results and discussion
Performance assessment of the developed ML model
To demonstrate that the presentmodel ismore accurate than both the
simple regression model and the simple classification model, we
compared their performance parameters, i.e., recall, precision, and
accuracy (Table 1). Recall represents the proportion of positive
instances that the model identifies out of all actual positive instances.
Precision quantifies theproportion of truepositive instances amongall
instances predicted as positive by the model. Accuracy represents the
proportion of correct predictions made by the model, considering

Fig. 1 | Scatter plot of relative density [%] vs laser energy density [J/mm³] for
STS 316 L, Ti-6Al-4V, and AlSi10Mg powders in L-PBF. Description: The scatter
plot highlights the variation in optimal energy density required to achieve high
relative density for eachmaterial, as well as the differing relative densities achieved

with the same energy density when different process parameters are used. The
references of the data are given in the supplementary materials. Source data are
provided as a Source Data file.

Table 1 | Comparison of recall, precision, and accuracy [all %]
for the simple regression model, the simple classification
model, and the present model

Model

Criterion Simple regression Simple classification Present

Recall 81.8 89.3 88.2

Precision 91.0 85.2 89.3

Accuracy 84.7 84.7 87.0
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both true positive and true negative instances in relation to the total
number of instances. The models were implemented using XGBoost19.

The present model is a regression model that uses a sigmoid
function to transform the target value, then predicts the transformed
value. In contrast, the simple regression model predicts the target
value directly, and the simple classification model predicts the target
value that is transformed by binary encoding.

The formula for transforming the target value in the present
model is

ypresent =
1

1 + e yoriginal�98ð Þ , ð2Þ

where ypresent represents the target value, and yoriginal denotes the
original target value. A eρ of 98% is high enough to ensure that product
material properties are not severely compromised20–22, so we estab-
lished 98% as our criterion for high eρ. When the eρ, which serves as the
target value, is transformed using Eq. 2, eρ ≥ 98% yield values between
0.5 and 1, and eρ < 98% result in values between0 and0.5. In the present
model, the predicted value is converted to 1 if it exceeds 0.5 and to 0 if
it does not when evaluating recall, precision, and accuracy. For the
regression model, the predicted value is transformed to 1 when it
surpasses 98% and to 0 when it falls below 98% for the purpose of
evaluating recall, precision, and accuracy.

The three models had differing strengths (Table 1). The simple
regression model had the highest precision, and the simple classifi-
cation model had the highest recall. The present model had higher
accuracy than the other two models, but only moderately high preci-
sion and recall.

The simple regression model’s strength in precision stems from
its tendency to underestimate the predicted value when dealing with
data that have eρ ≥ 98%. To substantiate this observation, we compared
the averaged raw value and averaged prediction of two data sets: one
with a eρ below the average and anotherwith a eρ above the average. The
average eρ of all data sets used was 96.17%. The below-average data set
had amean eρ = 88.4%, and a predictedmean eρ = 88.9%. In contrast, the
above-average dataset had a mean eρ = 98.8%, and a predicted
mean eρ = 98.6%.

The simple regressionmodel overestimated data that had eρ below
average, but underestimated data that had eρ above average. This
inclination to underestimate above-average eρ increases the likelihood
that the model will judge data with actual eρ ≥ 98% as being <98%.
Consequently, this tendency results in a decrease in recall and an
increase in precision.

The simpleclassificationmodel obtained results opposite to those
of the simple regression model due to the classification model’s
method of converting the target value to 1 when eρ ≥ 98% and 0
otherwise. With 57.78% of the data having eρ ≥ 98%, so more target
values were 1 than 0. This difference in frequency causes the model to
favor a judgment of 1, because it is more likely to be correct than a
judgement of 0. In fact, the proportion of data predicted with eρ ≥ 98%
in the simple classification model was 58.7%, confirming that the pre-
dictions are biased, leading to lower precision and higher recall.

However, the present model mitigates these flaws by using a sig-
moid function to normalize the target. The sigmoid-converted had an
average eρ =0.5019. Because the model is technically a regression
model, the problem of underestimating values when they are ≥ 0.5019
and overestimating them when they are <0.5019 persists. The dataset
with above-average eρ had average eρ =0.7654, and a predicted average
eρ =0.7369. The dataset with below-average eρ had average eρ = 0.1445,
and a predicted average eρ = 0.1864.

However, the average eρ of the entire dataset is close to the clas-
sification point of 0.5, so slight underestimations or overestimations
do not significantly affect the classification result. This result occurs
because not all data with eρ ≥ 98% are underestimated, unlike the

results of the regression model. In addition, the present model is not
strictly a classification model, so it does not suffer from bias due to
data frequency. Consequently, the present model achieves higher
accuracy than the other two models, despite only moderately high
recall and precision.

Furthermore, the reason that the present model is more accu-
rate than the simple regression model and the simple classification
model can be explained as follows. The simple regression model is
somewhat inefficient to minimize the prediction error per training
iteration to precisely match the process conditions that have
eρ ≥ 99.5% or ≤ 96%, when accurate matching of values is not neces-
sary. The simple classification model has a different problem: for
example, eρ = 97.9999 is classified as 0, but eρ = 98 is classified as 1,
despite the negligible difference of 0.0001. In addition, both 100
and 98 are classified as 1, whereas both 97 and 80 are classified as 0.
This binning into 1 or 0 loses information or trends that could be
gleaned from the true values of eρ. This loss reduces the model’s
accuracy and diminishes the accuracy when analyzing the model.
Hence, the present model effectively overcomes these limitations of
the other models and is therefore more reliable than they are for
predicting eρ.
SHAP analysis of the input features
Shapley additive explanations (SHAP)23,24 analysis was conducted to
uncover the correlations among process parameters (Ed, P, v, h, t),
material properties of powder (thermal conductivity k [W/(m ⋅K)],
material density ρm [g/cm3], melting point TM [˚C], reflectivity R [%],
and specific heat capacity Cp [J/(g ⋅K)]), and eρ. The SHAP score quan-
tifies the extent and direction of each feature’s contribution to the
model’s prediction. The SHAP score enables detection of whether a
particular feature increases or decreases the predicted value and the
magnitude of its effect. The average of the absolute values of the SHAP
score quantifies the effect of each feature on the model’s prediction;
i.e., the importance of a given feature within the model.

The input features in the present model were composed of pro-
cess parameters andmaterial parameters of the powder. SHAP analysis
(Fig. 2a) ranked the importance of process parameters as v > P > t > h,
and the importance of material properties as k > ρm > TM>R >Cp.
Although the degree of importance varied among the features, this
analysis indicates that they all contribute to the prediction to some
extent.

The SHAP score can be divided into a main effect and an inter-
action effect. A main effect represents the isolated contribution of a
single feature to the prediction, and signifies the individual impact of
that feature. An interaction effect accounts for the combined influence
of two features on the prediction, highlighting the contribution
resulting from their interaction.

The contribution of each feature’s main effect on the model’s
prediction eρ was visualized by calculating the SHAP main values
(Fig. 2b–k). The overall trend of these SHAPmain values is represented
by lines calculated using locally weighted regression, to clarify the
tendencies.

Each process parameter had a distinct effect on eρ. When Ed was
less than ~50 J/mm³, eρ decreased significantly (Fig. 2b), possibly
because energy delivered to the powder was insufficient to complete
its fusion. When scan speed was excessively high or excessively low eρ
decreased (Fig. 2c), possibly because inappropriate scan speed leads
to increased porosity caused by lack of fusion or vaporization. High P
increased eρ (Fig. 2d); at very low P, eρ dropped substantially due to lack
of fusion. Increasing t reduced predicted eρ (Fig. 2i), because powders
below the laser-irradiated areamay not receive enough thermal energy
melt. h reduced eρ if h is too small or too large (Fig. 2j); we speculate
that too-small h causes heat concentration and keyhole formation,
whereas too-large h results in lack of fusion and increasedporosity due
to unmelted areas between scan tracks.

Article https://doi.org/10.1038/s41467-023-42319-x

Nature Communications |         (2023) 14:6557 3



Material parameters also had distinct effects. As k decreased, eρ
increased (Fig. 2e). Low k means that thermal energy remains con-
centrated in the laser-irradiated area, so melting can be homogeneous.
Increase in k causes increase in the Ed that is required to achieve
homogeneous melting25. ρm had a threshold effect (Fig. 2f): above a

certain level it reduced thepredictedeρ. This result implies thatρmaffects
the model’s prediction by interactions with other inputs; this possibility
will be analyzed later. TMdid not seem to have a significant effect on the
predicted eρ (Fig. 2g), except that a very low TM did decrease the pre-
dicted eρ. Materials that have low TM also have low boiling points, so they

Fig. 2 | Feature importance and SHAP analysis of input features without con-
sidering interactions. Description: a Average absolute SHAP scores of input fea-
tures, highlighting the relative importance of process parameters and material
properties of powder. Visualization of the SHAP main scores for b energy density,

c scan speed, d laser power, e thermal conductivity, f density, g melting point,
h reflectivity, i layer thickness, jhatch spacing, andk specific heat capacity and their
effects on the model’s output, relative density. Source data are provided as a
Source Data file.
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are likely to vaporize; this process causes keyhole formation and
reduced eρ. Increase in R decreased the predicted eρ (Fig. 2h), because
high R reduces energy transfer from the laser to the powder, so homo-
geneousmelting is difficult to achieve.Cp also showed a threshold effect
(Fig. 2k): above a certain level it reduced thepredicted eρ. The effect ofCp

is influencedby interactionswithother inputs, andwill be analyzed later.

SHAP analysis of interactions between input features
The contribution of input feature interactions to the model’s predic-
tion was visualized by calculating the SHAP interaction values (Fig. 3).
All computed SHAP interaction values are grouped based on whether
oneof the input features used in each interaction calculationhas a high
or low value. To clearly identify the trends within each group, a line to

Fig. 3 | SHAP analysis of the interactions between input features. Description:
Visualization of the SHAP interaction values for a interaction between laser power
and scan speed, b interaction between laser power and thermal conductivity,
c interaction between scan speed and thermal conductivity, e interaction between
hatch spacing and scan speed, f interaction between density and scan speed, and
g interaction between heat capacity per volume and scan speed. d Visualization of

the combined SHAP scores, representing the sum of SHAP interaction scores for
scan speed and thermal conductivity, and the SHAP main scores for scan speed.
h Visualization of the combined SHAP scores, representing the sum of SHAP
interaction scores for scan speed and heat capacity per volume, and the SHAPmain
scores for scan speed. Source data are provided as a Source Data file.
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represent the tendency of the SHAP interaction scores was calculated
using locally weighted regression.

The SHAP interaction values between P and v are illustrated in
Fig. 3a. The SHAP interaction score was negative when low P was
combined with high v; i.e., this interaction decreases predicted eρ. A
lack-of-fusion phenomenon, which leads to a drop in eρ, occurs under
these conditions. However, the SHAP interaction score was also
negative when high P was combined with low v; i.e., this interaction
also decreases predicted eρ. Under such conditions, keyhole formation,
which reduces eρ, occurs. When P and v are appropriately balanced,
their interaction increases eρ.

This analysis demonstrates that the trained ML model effectively
recognizes the lack-of-fusion and keyhole-formation phenomena,
which cause a drop in eρ. Consequently, the model’s deep under-
standing of the processes occurring in L-PBF enables insights through
this analysis of interactions between input features. However, not all
SHAP interaction scores exhibit a clear correlation. Only relationships
between two features can be analyzed, so changes in the SHAP inter-
action score due to the influence of other features cannot be fully
explained.

The interactions between input features and their corresponding
averaged absolute SHAP scores were sorted in descending order
(Table 2). Interaction analyses were performed only for interactions
that had average absolute SHAP interaction scores ranking in the top 5.
Interactions that involved Ed, a dependent input featuredeterminedby
other input features, are not displayed in Table 2 and are not included
in the analysis.

The SHAP interaction values between k and P are displayed in
Fig. 3b. For materials with high k, increasing P contributes to an
increase in eρ, because a material with high k demands a higher P to
achievehomogeneousmelting, asheat dissipatesmore rapidly into the
surroundings than with materials of low kwhen subjected to the same
P. In contrast, for materials with low k, use of a low P increased the
predicted eρ, possibly because adequate heat energy for melting is
attained even at low P, because heat is retained near the irradia-
tion site.

k and v showed a complex interaction (Fig. 3c), which is challen-
ging to analyze using only the SHAP interaction scores. Consequently,
an analysiswas conducted using the sumof the SHAP interaction score
for both features and the SHAPmain score for v (‘SHAP Value’, Fig. 3d).
For materials with high k, the range of appropriate v to increase eρ is
broader than the range for the materials with low k. In materials with
low k, heat remains concentrated in the laser-irradiated area, and we
suggest that lack of fusion may occur if v is too fast, and vaporization
mayoccur ifv is too slow. In contrast,materials thathavehigh k are less
prone to these effects, and therefore less sensitive to variation in v,
than materials that have low k.

The SHAP interaction values between v and h are presented in
Fig. 3e. At high v, increasing the h increased eρ, whereas at low v,
reducing the h increased eρ. This finding contradicts the Ed equation

(Eq. 1). If a certain material allows for a range of Ed, then reducing h to
stay within that range would increase eρ as v rises. However, the SHAP
interaction value analysis suggests that the eρ would be lowered in
this case.

The reason for this discrepancy is that the SHAP score represents
the contribution of the corresponding input feature or interaction to
each predicted value. If both v and h are excessively large or small, Ed
will be outside the appropriate range and will contribute to a sig-
nificant decrease in eρ. For instance, when STS 316 L has process con-
ditions with h =0.15mm and v ≥ 1200mm/s, the Ed is outside the
appropriate range, so the SHAP score of the Ed parameter rapidly
decreases (Supplementary Fig 1).

As long asEd remainswithin an appropriate range, increasing both
v and h can increase eρ. In situations where P must be increased,
increasing only one of v and h tomaintain an adequate Edmay result in
a slight decrease in eρ.

To better understand the interaction between v and ρm, a new
input feature was created as heat capacity per volume Cp ⋅ ρm =Cv [J/
(K∙cm3)] and anewmodelwas trainedwithCv andwithoutCporρm. Use
of Cv and removal of Cp and ρm led to a slight loss of information
represented by each input feature, so the model’s accuracy decreased
to 85.6%. Furthermore, the complex trend of the SHAP interaction
between v andCv impedes the identification of the interactionby using
only the SHAP interaction score. Therefore, analysis was conducted
using the SHAP value obtained by adding the SHAP interaction value
between v and Cv, and the SHAP main score of v.

The interactions between v and ρm (Fig. 3f) and between v and Cv

(Fig. 3g) showed similar tendencies. This observation suggests that in
the present model, ρm rather than Cp could be representing Cv. This
effect can occur because ρm has a larger normalized distribution width
than Cp. Variation in Cp across the materials in the dataset is relatively
minor, so the suggestion that Cv is predominantly determined by ρm is
plausible.

The SHAP main scores of ρm (Fig. 2f) and Cp (Fig. 2k) show that
values above a certain threshold degrade eρ. This effect occurs because
both ρm and Cp represent heat capacity per volume. A ρm or Cp implies
a high Cv, so the necessary high temperature for melting in the
required area cannot be easily achieved. Consequently, if ρm or Cp

surpasses a certain level, lack of fusion is likely to occur, and this effect
decreases eρ.

Increase in Cv indicates an increase in the amount of energy that is
required to raise the temperature of a certain area (Fig. 3h); as a con-
sequence, asCv increases, the time required for the temperature to rise
around the laser-irradiated area increases. Likewise, decrease in k
slows the rate of increase in surrounding temperature. These effects
suggest that the interaction between k and v when k is low shows a
similar tendency to the interaction between Cv and v when Cv is high.
Similarly, when k is high and Cv is low, the interaction between each
feature and scan speed displays a similar tendency. In summary, the
interactions between Cv and v exhibit opposite trends to the interac-
tions between k and v, because the temperature rise behavior around
the laser-irradiated area is contrary to each other.

Prediction of process conditions and experimental validation
We have developed a method to predict process parameters for a
particular powder, which are expected to yield a product that has
eρ ≥ 98%, by inversely predicting the present model. The goal of this
method is to suggest process parameterswith the highest likelihoodof
yielding products that have eρ ≥ 98%, as determined by the ML model.
We introduced a fitness function

Certainty = ðypresent � 0:5Þ×2 ð3Þ

to evaluate the reliability of predictions made by the present model,
which produces prediction values between 0 and 1.

Table 2 | Interactions between input features ranked by their
averaged absolute SHAP values

Interaction between input features Average absolute SHAP score

#1 Laser Power – Scan Speed 26.82

#2 Laser Power – Thermal Conductivity 16.48

#3 Scan Speed – Thermal Conductivity 15.67

#4 Hatch Spacing – Scan Speed 14.27

#5 Scan Speed – Density 11.59

#6 Scan Speed – Reflectivity 10.54

…

#36 Melting Point – Specific Heat Capacity 1.96
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To perform inverse prediction of the present model, we per-
formed random search (details in Methods section), which is an
advantageousmetaheuristic technique to findmultiple optimal values.
This approach is preferable, because the goal of our method is to
suggest several high-certainty process parameters, rather than only
the parameter that has the highest certainty. All process condition
predictions in this studywere conductedwith a fixed layer thickness of
0.05mm, because it was the most suitable for the size of the powder
used in this study (d50 = 46 μm).

The validation was conducted using STS 316 L and AlSi10Mg,
which are alloys included in the database used for model training. The
process condition prediction and experimental verification for STS
316 L and AlSi10Mg (Tables 3 and 4) serve as tests to verify the model
and method’s reproducibility. Optical micrographs (Fig. 4a, b) were
obtained of the cut surfaces for the six STS 316 L specimens and the six
AlSi10Mg specimens that had the highest eρ.

All 12 STS 316 L specimens had eρ ≥ 98%; 11 had eρ ≥ 99%. This
result demonstrates the reliability of our model and method. The
dataset for training the present model, including the test dataset,
contains seven STS 316 L powder data entries26–28 with process
conditions (141 ≤ P ≤ 398W, 620 ≤ v ≤ 1540mm/s, t = 0.05mm, and
0.08 ≤ h ≤ 0.188mm) (Supplementary Table 1), which are the ranges
of process conditions in Table 3. Process condition No. 5 in Table 3 is
similar to those in Supplementary Table 1, but the remaining con-
ditions in Table 3 represent new, distinct process conditions. This
result illustrates that our model and method effectively reproduce
existing optimal processing conditions for the powder in use, and
also generate novel optimal processing conditions.

On the other hand, compared to Fe-based alloys like STS 316 L,
AlSi10Mg, anAl-based alloy, ismorechallenging for PBFprocessing. To
get a more accurate reading of its relative density, we prepared mul-
tiple samples and averaged the values. The relative densities shown in
Table 4 represent these average values. For more detailed information
on each process and the exact relative densities, refer to Supplemen-
tary Table 2.

The results in Table 4 are promising: all 12 tested process condi-
tions achieved an average eρ over 98%. Impressively, 11 out of these 12
had average eρ ≥ 99%. The dataset contains eight data entries29–31 for
AlSi10Mg powder under specific process conditions (236 ≤ P ≤ 398W,
980 ≤ v ≤ 2150mm/s, t = 0.05mm, and 0.08 ≤ h ≤0.148mm) (Supple-
mentary Table 3), which are the ranges of process conditions in
Table 4. While process condition No. 9 in Table 4 is similar to those in
Supplementary Table 3, the remaining conditions spotlight new and

distinctprocess parameters. This reaffirmsourmodel’s efficacy in both
mirroring existing optimal conditions and pioneering novel ones.

To substantiate the transferability of our model and method, we
conducted an experimental verification using Fe60Co15Ni15Cr10MEA,
which was not included in the database used to train the model. The
prediction results of process conditions for Fe60Co15Ni15Cr10 MEA
powder and the experimental verification of these conditions were
arranged in order of decreasing eρ of the manufactured specimens
(Table 5). Optical micrographs (Fig. 4c) were obtained from the six
Fe60Co15Ni15Cr10 MEA specimens had had the highest eρ.

To increase the reliability of our experimental results, we fabri-
cated several specimens for each process condition, measured their eρ
(SupplementaryTable 4), then averaged thesevalues. For all 12 process
conditions, specimens made with each process condition exhibited
average eρ ≥ 99%, which exceeds our established threshold of 98%. This
result confirms the reliability and transferability of our model and
method, and that they are applicable to generate several optimal
process conditions that yield products with high eρ, regardless of the
material used.

Our experimental results confirm that the method effectively
generates process conditions that yield products with high eρ for STS
316 L, AlSi10Mg, and Fe60Co15Ni15Cr10 MEA. However, our method
does not assure optimal material properties, such as surface quality,
other than eρ, because the primary focus of our model and method
was to achieve high eρ. Consequently, although a specimen may
achieve the desired eρ under process conditions recommended by
our method, other properties may be suboptimal. In future work,
this limitation can be addressed by developing newmodels for other
properties such as surface quality, and incorporating these models
into our method.

In summary, we have successfully developed a method that can
identify process parameters that yield a product that has eρ ≥ 98%, in
accordance with the properties of the powder used. This success
was made possible by training a model that determines whether a
product that was fabricated under specific process conditions and
utilizing a particular powder has the eρ ≥ 98%. By applying a sigmoid
function to transform output, we mitigated bias in the dataset, and
thereby increased the accuracy of our ML model. SHAP analysis
provided insight into the model’s decision-making process, and
reproduced well-understood interactions such as that between scan
speed and laser power, while also uncovering knowledge regarding
the effects of input features or interactions between these features
on the eρ.

Table 3 | Process condition prediction results for STS 316 L
powder and their respective relative density of the manu-
factured specimens measured through experiments

# Laser
power [W]

Scan
speed
[mm/s]

Layer thick-
ness [mm]

Hatch spa-
cing [mm]

Relative den-
sity [%]

1 341 1000 0.05 0.103 99.9

2 273 830 0.05 0.1 99.9

3 234 900 0.05 0.08 99.9

4 335 860 0.05 0.148 99.9

5 358 730 0.05 0.124 99.9

6 340 1540 0.05 0.084 99.8

7 395 740 0.05 0.155 99.8

8 398 1010 0.05 0.118 99.8

9 390 650 0.05 0.188 99.5

10 275 690 0.05 0.152 99.5

11 141 620 0.05 0.082 99.4

12 381 1320 0.05 0.093 98.9

Table 4 | Process condition prediction results for AlSi10Mg
powder and their respective average relative density of the
manufactured specimens measured through experiments

# Laser
power [W]

Scan
speed
[mm/s]

Layer thick-
ness [mm]

Hatch spa-
cing [mm]

Relative den-
sity [%]

1 398 2150 0.05 0.081 99.93

2 343 1600 0.05 0.105 99.9

3 314 1370 0.05 0.119 99.88

4 391 1540 0.05 0.083 99.87

5 322 1320 0.05 0.08 99.78

6 397 1470 0.05 0.118 99.71

7 272 1260 0.05 0.143 99.7

8 368 1250 0.05 0.097 99.57

9 236 990 0.05 0.131 99.48

10 278 1230 0.05 0.098 99.43

11 321 980 0.05 0.104 99.3

12 362 1270 0.05 0.148 98.12
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Our method, designed to generate process conditions con-
ducive to high eρ, operates by using random search to inversely
predict the present model. We substantiated the reproducibility and
transferability of our model and method by predicting 12 process
conditions for STS 316 L and AlSi10Mg powders of which data were

included in the training dataset and Fe60Co15Ni15Cr10MEA powder
of which data were not included in the training dataset, respectively.
Experimental validation affirmed that products fabricated using
each powder and condition had eρ ≥ 98%, and thus provided
empirical evidence that our method can generate process

Fig. 4 | Opticalmicrographs of the cut surfaces for the specimenswith the highest relative density.Description: Optical micrographs showing the cut surfaces of the
top six specimens with the highest relative density for a STS 316 L, b AlSi10Mg, and c Fe60Co15Ni15Cr10 MEA.
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conditions that lead to products with high eρ, even for previously
unlearned alloys.

Methods
Dataset preparation
We collected 2167 process conditions for 50 metal powders and their
corresponding eρ from previous studies (references in supplementary
materials) in which products were produced using respective process
conditions and powders. The data include powder properties R, k, Cp,
ρm. TM; process conditions P, v, t, h; and eρ.

In compiling our dataset, we favored eρ data measured via image
analysis but also included some data measured via the Archimedes
method. This approach was adopted for two main reasons: firstly, the
discrepancy between the two methods is typically minor within our
low-porosity region of interest32,33, and the errors of relative densities
far from 98% are disregarded as the relative density is normalized by
the sigmoid function. Secondly, as supported by Halevy et al.34, larger
datasets with somemeasurement errors are generally more beneficial
for training and generalization than smaller, flawless datasets. It is
important to note that that even data measured solely by image ana-
lysis might not be entirely free from experimental errors.

While other conditions includingmachine type and laser diameter
could potentially serve as meaningful input features, we consciously
decided to limit the number of input features due to the size of our
dataset. Addingmore input featureswould increase thedimensionality
of the dataset’s input space, which, without a corresponding increase
in data quantity, can lead to the “curse of dimensionality“35. This
phenomenon can hinder effective learning and decrease the inter-
pretability of the model36. As such, we focused on major process
conditions, P, v, t, and h, as our model’s input features.

Our data compilation strategy ensures the dataset is complete,
with no missing values. The powder properties were predominantly
sourced from existing literature. When direct collection was not fea-
sible, we computed the properties, as we will discuss in further detail
later. The process conditions, P, v, t, and h, are typically reported in
most PBF-related research publications. We ensured data quality by
excluding any studies that did not provide these crucial details, thus
maintaining the integrity of our dataset.

As we mentioned above, most powder properties were obtained
from the literature37–54. But for some powders, Cp and TM were not
available, so we estimated them by thermodynamic calculation using
the TCFE2000 thermodynamic database and its upgraded version55–59

with Thermo-Calc software60. R of almost all alloy powders could not
be found in the literature, we calculated R as a weighted arithmetic
average of the composition, assuming that the alloy powder reflec-
tivity followed the rule of mixture. R of pure elements for laser with a
wavelength of 1 μm was also collected from literature61–68. For
Fe60Co15Ni15Cr10 MEA, we calculated its properties or measured
them experimentally. ForMEA, we used thermodynamic calculation to
determine its TM= 1461.75 °C, and computed its R = 66.15% as the
weighted arithmetic average of the composition.

We further calculated the thermal conductivity of the MEA as

k =αρmCp = 13:66W=ðm � KÞ, ð4Þ

where α = 3.739 mm2/s is thermal diffusivity, as measured using the
laser flash technique (ASTM E1461, LFA 467, NETZSCH, Germany),
ρm= 7.91 g/cm3 was determined using Archimedes’ principle (XP205,
Mettler Toledo, USA), and Cp =0.462 J/(g ⋅K) was measured using a
Differential Scanning Calorimeter (DSC, DSC8000, PerkinElmer, USA).
The collected dataset is provided in Supplementary Data 1.

ML Model
In this study, we aimed to develop themost accuratemodel to address
our problem; for this purpose, we selected the most suitable among a
range of ML algorithms. We trained regression models with sigmoid-
transformed outputs using several algorithms, all operating on the
same training and test datasets. The highest test set accuracies were
obtained using the Random Forest (86.2%) and XGBoost (85.8%)
algorithms (Table 6).

To further improve these results, we optimized the hyperpara-
meters of the Random Forest and XGBoost models, by using the
hyperparameter optimization framework, Optuna69. We then trained
100 versions of eachmodel, with shuffled training, validation, and test
datasets. Comparing the average test set accuracy of the models, the
Random Forest model achieved an accuracy of 85.7% and XGBoost
achieved 87%. Consequently, we selected the XGBoost algorithm to
train our final model. More details about the XGBoost model and the
others are in the supplementary materials.

The XGBoost model was developed using the XGBoost library19,
an open-source software library providing a gradient boosting

Table 6 | Various ML algorithms and the corresponding
accuracies achieved by each model

Algorithms Accuracy [%]

Random forest 86.2

XGBoost 85.8

K-Neighbors neighbors 81.7

Decision tree 81.4

Milt-layer perceptron 80.5

Support vector machine 79.5

Stochastic gradient descent 67.8

Ridge 67.8

Linear regression 67.8

Ridge CV 67.7

Bayesian ridge 67.7

Lasso CV 67.7

Elastic net CV 67.7

Gaussian process regression 66.1

Partial least squared regression 65.5

Lasso 51.2

Elastic net 51.2

Kernel ridge 41.9

Table 5 | Process condition prediction results for Fe60Co15-
Ni15Cr10 MEA powder and their respective average relative
density of the manufactured specimens measured through
experiments

# Laser
power [W]

Scan
speed
[mm/s]

Layer thick-
ness [mm]

Hatch spa-
cing [mm]

Relative den-
sity [%]

1 302 980 0.05 0.103 99.97

2 365 1010 0.05 0.118 99.90

3 282 780 0.05 0.122 99.90

4 349 1070 0.05 0.087 99.90

5 367 740 0.05 0.156 99.86

6 399 840 0.05 0.102 99.86

7 244 790 0.05 0.098 99.84

8 397 920 0.05 0.14 99.83

9 289 540 0.05 0.151 99.78

10 373 530 0.05 0.183 99.69

11 392 550 0.05 0.219 99.65

12 385 1380 0.05 0.094 99.06
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framework. All othermodels were developed using scikit-learn70 a free
software ML library for Python. The input data for all models was
standardized usingmean and standard deviation values. To accurately
evaluate the models’ performances, we applied the holdout validation
method. This technique randomly partitions the dataset into training,
validation, and test sets. In our application, we allocated 70% of the
data for training purposes, while the remaining 30% was equally par-
titioned between validation and testing, each constituting 15%.

Our primary model is an XGBoost model, which uses a tree
structure, so we used tree SHAP (tree explainer)24 to calculate the
SHAP23 scores. We analyzed our model by extracting the SHAP main
scores and SHAP interaction scores by using the tree explainer func-
tion, which enables calculation of SHAP interaction values.

Method for prediction of process conditions
The method detailed here outlines how to identify process conditions
that are expected to yield products that have eρ ≥ 98%, considering the
specific powder used, by inverse prediction of the present model. This
technique incorporates a form of random search that involves three
primary steps: random input generation, prediction, and selection.

The process initiates with the input of powder properties and the
determination of process parameters, including which are fixed, and
their values. Then the random-input-generation step produces even
number of sets of inputs within the range of existing data for each
input in the dataset. Subsequently, during the prediction step, these
sets of inputs are standardized using themean and standard deviation
used during training, then fed into the model that had been trained to
predict eρ.

The present model outputs values between 0 and 1, which are
relative densities transformed by the sigmoid function, so they can be
converted toCertainty (Eq. 3). The following step selects the half of the
input sets that have the highest predicted value. However, any input
sets that have process conditions that are deemed too similar to others
are discarded before this selection process. The criterion for similarity
is defined as:

X
ai � bi

�� ��<1, ð5Þ

where ai and bi represent the standardized process parameters of two
input sets.

To replace discarded sets, new random input sets are generated.
By repeating this process, we can identify process conditions that are
expected to yield products that have high eρ. The iteration stops when
the sets of inputs selected remain consistent for a certain number of
iterations.

This method to predicts optimal process conditions considering
the powder used, has been incorporated into a GUI program. This
program, along with its user manual, is available for download at
https://doi.org/10.5281/zenodo.838289071. For optimal printing
results, we recommend using a layer thickness that exceeds the d50

size of the powder used in the process.

Experimental procedure
Toevaluate the accuracy of our predictionmethod,weprinted coupon
samples of 316 L stainless steel, AlSi10Mg, and Fe60Co15Ni15Cr10
MEA, thenmeasured their porosities. Themetallic powder used for the
L-PBF process was gas-atomized spherical powder with a size dis-
tribution of d50 = 46 μm (MK Inc., Republic of Korea). Using a com-
mercial L-PBF machine (Concept Laser M2, GE Additive, USA), we
printed cubic coupons of dimensions 10 × 10 × 10mm³. Process
parameters were selected for model validation (Tables 3, 5). Other
process parameters: layer thickness of 50 μm, a laser spot size of 50
μm, a layer-by-layer rotation angle of 90°, and printing in N2 atmo-
sphere, were maintained across all experiments.

The porosity of the samples was analyzed from the XZ-plane
(where X denotes the powder coating direction and Z represents the
building direction). The coupons were cut along this plane and sub-
sequently polishedmechanically to a 1200meshwith emery paper.We
then captured opticalmicroscopic images of the polished sections and
used ImageJ software to analyze and measure the porosity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawdata generated in this study are availablewithin the article and
its supplementary materials. The same dataset has been deposited in
the Figshare repository under the https://doi.org/10.6084/m9.
figshare.2420379972. There are no restrictions on data access. Source
data are provided with this paper.

Code availability
The codes generated in this study, along with the GUI program
designed to predict process conditions for various metallic powders,
are available for download at https://doi.org/10.5281/zenodo.
8382890.71
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