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Remote inspection of adversary-controlled
environments
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Remotely monitoring the location and enduring presence of valuable items in
adversary-controlled environments presents significant challenges. In this
article, we demonstrate a monitoring approach that leverages the gigahertz
radio-wave scattering and absorption of a room and its contents, including a
set of mirrors with random orientations placed inside, to remotely verify the
absence of any disturbance over time. Our technique extends to large physical
systems the application of physical unclonable functions for integrity pro-
tection. Its main applications are scenarios where parties are mutually dis-
trustful and have privacy and security constraints. Examples range from the
verification of nuclear arms-control treaties to the securing of currency, art-
work, or data centers.

Remotely monitoring valuable items in adversary-controlled envir-
onments constitutes an intricate problem. Traditional inspection and
surveillance methods are not always possible to implement or may
fall short of meeting stringent security and privacy requirements. It
may be difficult and perhaps impossible to permit regular physical
inspections or placing CCTV cameras in such secure environments to
offer some level of confidence in the integrity of stored items.
Agreed managed-access inspections leave open the possibility of
inspectors gathering information. Providing confidence that relevant
surveillance data are originating from the correct location and have
not been pre-recorded could prove challenging when the environ-
ment is controlled by an adversarial party1,2. In this context, specia-
lized surveillance hardware and cryptographic tools are at risk of
hacking and spoofing.

An example for this problem can be found in the monitoring of
non-deployed strategic and tactical nuclear warheads as part of an
arms-control agreement. These warheads represent 70% of the global
nuclear arms stockpile and remain outside of existing agreements
because of the difficulties to monitor them. They are stored in dedi-
cated bunkers at sensitive military or nuclear sites3. The presence and
number of such weapons at any given site cannot be verified easily via

satellite imagery or other national technical means that are unable to
see into the storage vaults. To include them in future arms control
initiatives, there is a need to develop technologies and protocols to
reliably assess if weapons declared as being in storage are not
removed4.

Here we propose and demonstrate a new remote monitoring
approach based on a radio-wave measurement system to generate
fingerprints of a room and its content using an array of randomly
oriented mirrors to verify that nothing changes over time. This
approach only requires a single on-site visit to initialize themonitoring
protocol to install the mirrors and take an initial imprint of the room.
Our approach builds on the concepts of physical unclonable
functions5,6 (PUFs) and virtual proofs of reality7, for which data
authenticity, confidentiality, and integrity does not rely on digital keys
and algorithms but on the inherent material complexity of physical
systems to achieve privacy and security objectives. Our work shows
that large-scale systems such as an entire roomand its content can also
be turned into physical unclonable functions.

The basis of our monitoring scheme is fingerprint matching using
a challenge-response protocol between two parties (a prover and a
verifier) in two separate locations. Here, the prover owns a set of items
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stored inside a room and must provide answers (or responses) to
questions (challenges) asked by the verifier to demonstrate the
undisturbed character of the storage space and its contents. The
security of the protocol relies on the idea that the questions can only
be answered correctly if the spatial and material configuration of the
room remains unchanged.

Results
Verifying the integrity of valuable items in storage
To assess the integrity of items stored in a room, we rely on the
emissions and measurements of radio signals between a transmitting
and a receiving antenna (Fig. 1). The complexmultipath propagation of
the signal within the room provides a unique and reproducible fin-
gerprint of its spatial configuration. We complement this measure-
ment system with a challenge generation mechanism comprising a set
of radio-wave-reflecting mirrors that can be individually and repro-
ducibly rotated. Each channel response measurement between a pair
of antennas becomes a convolution of the pilot signal, the combina-
tion of individual mirror rotations (or challenge), and the static com-
ponents of the room. Any modification, such as the displacement or
the removal of an item, alters the multipath propagation of the pilot
signal resulting in a different measured response.

The inspection protocol consists of an on-site setup phase and a
remote proof phase (Fig. 1b). During the setup phase, the verifier
installs the challenge-response system in the room, which allows the
collection of challenge-response pairs both during the setup and
during the proof phase. Once the challenge-response system is
installed, the room is sealed. To complete the setup phase, the verifier
randomly chooses a sufficiently large set of challenges and collects the

corresponding responses. The prover must not learn this list of secret
challenges.

Once the verifier has collected the challenge-response pairs, the
protocol enters the long-termproof phase. Fromnowon, the verifier is
remote and regularly sends challenges drawn fromher secret list to the
prover. He must then send back the corresponding responses within
an agreed short time interval. If a response is close to the original, the
verifier accepts the proof anddeletes the challenge-responsepair from
her list to prevent re-use. The timebetween twoqueries has to be short
enough, perhaps on the order of a minute, to avert tampering efforts
by the prover between queries. These efforts can be further hampered
by the introduction of fake queries, i.e., the verifier continuously sends
random challenges interspersed with those from the secret list. Only
the responses to the latter challenges can actually be verified. The
prover, however, cannot distinguish whether a particular challenge
belongs to the secret list because all challenges are drawn uniformly
random.

From a security point of view, the prover should (1) not be able to
alter the state of the room in amanner that cannot be detected, (2) not
be able to collect all the responses for the entire challenge space, and
(3) not be capable of predicting responses for arbitrary challenges by
either building a functionally identical room or producing a mathe-
matical model of the function mapping challenges to responses. We
address these security requirements one-by-one in the following,
leveraging experimental data and results.

Experimental realization
To provide a proof of principle, we built a prototype challenge-
response system installed in a metal storage container

Fig. 1 | Inspection protocol and experimental realization. a Complete experi-
mental setup housed in a steel container. b The protocol consists of an on-site
setup and a remote proof phase. c A challenge C consists of the rotational angle of

all 20 mirrors. d Radio-frequency responses for two random challenges. e The
measurement error (intra distance, red) over a 4-week measurement campaign in
comparison to the inter-challenge response diversity (red).
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(6m×2:2m×2:1m) housing a number of empty 55-gallon steel drums.
The challenge device consists of twenty small aluminum mirrors
mounted in different orientations on separate stepper motors (see
Fig. 1c and “Methods”). The mirrors can be rotated around one axis by
360° in 1.8° steps, yielding 200 possible positions per mirror. The
challenge C that can be applied to the system encodes the position of
the mirrors as a vector of 20 elements, where each element takes an
integer value between 0 and 199. This results in notionally large chal-
lenge space of 20020 ≈ 1046 different mirror configurations. For the
response measurement, we use a vector network analyzer to measure
the amplitude of the forward transmission parameter between two
antennas. This parameter describes the attenuation of a signal at a
specific frequency.

For a single response vector R, we collect the forward transmis-
sion parameter for 100 points that are evenly spaced between 3 and
9GHz, which corresponds to a wavelength between λmin ∼ 3:3cm and
λmax ∼ 10cm. Figure 1d shows sample responses for two different
challenges. Together, a challenge and a response form a challenge-
response pair (CRP).

The channel response is affected by measurement noise and
shifts in environmental variables such as temperature and humid-
ity, which means that a challenge does not map to a single discrete
response, but to a continuum of possible responses. It is important
that the intra distance, i.e., the variations between responses for
the same challenge, remains low enough so that responses still act
as fingerprints and uniquely reflect the applied challenge and the
configuration of the room. Additionally, the inter distance between
responses stemming from different, uniformly drawn challenges
must be much larger to guarantee discriminability. To measure the
distance between two response vectors a and b, we use the Eucli-

dean distance defined as d a,bð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i ai � bi

� �2
q

. Figure 1e shows

the clear difference between the intra distance distribution and
inter distance distribution based onmeasurements that were taken
over a period of 4 weeks (see Supplementary Figs. 1–3 for drift over
time and environmental variations in temperature and humidity).
This shows that it is highly unlikely that any two randomly-drawn
challenges will result in similar responses.

Security of the system
Our inspection system must be sensitive to adversarial physical
manipulations of the room and its content. In principle, our apparatus
allows us to capture changes on the order of the pilot signal wave-
length λ. To verify this property, weplacedoneof the drumsona linear

translation table (see Fig. 2b and “Methods”). Figure 2a shows that a
displacement of ∼ 1mm leads to a response mismatch greater than
three times the standard deviation from the mean of the long-term
intra distance distribution. Furthermore, after a small displacement of
around 7:5mm, corresponding to ∼ λmean=10, a first local maximum of
the decorrelation is reached which is equivalent to the removal of a
drum from the container.

For our system to be secure, the effective challenge spacemust be
large enough to prevent the prover from building an exhaustive list of
all existing challenge-response pairs. Such a brute-force attack would
allow the prover to present a response fromadatabase instead of a live
measurement during an inspection query. In the case of our experi-
mental setup, the rotation of a singlemirror by 44° leads to a response
change that is long-term detectable by the verifier (3σ from the intra
distance mean as shown in Supplementary Fig. 4). Hence, each mirror
has at least 360=44≈8 effective challenge positions. The number of
challenges increases exponentially with the number ofmirrors. For our
proof of principle comprising 20 mirrors, the total number of chal-
lenges is estimated to be greater than 820ð∼ 1018Þ, an amount that
cannot be exhaustively queried.

Another important requirement for the security of the protocol is
that the room and its content cannot be cloned. This means that it
mustbehard to create aphysical replica that couldbeused to generate
valid responses, even after the integrity of the original room has been
violated by a malicious prover. Creating an exact copy of any envir-
onment that produces the same radio-frequency fingerprint as the
reference is an inherently difficult task that can be made even harder
by introducing unique objects into the room. Such complex objects
could be brought by the inspector to the host facility and could even
be produced in their final form shortly before the setup phase begins
and the room is sealed. The latter could be realized, for instance, by
crumpling aluminum foil into spheres or by bending stochastic
metallic foam panels. For some applications, it could also be possible
to set up a “room within a room”8, for example by using a dedicated
storage container with unique features prepared in a staging area and
installed in a location of the prover’s choice.

As opposed to a physical copy, an attacker could try to generate a
digital clone of the room to predict responses during the proof phase.
Here, we are concerned with two types of attacks. First, the possibility
of running a full-scale electromagnetic (EM) simulation of the room
within the time allotted to provide a response to a given challenge.
Second, the possibility of breaking the protocol using an accurate
machine-learning-based representation of the function mapping
challenges to responses.

Axis of
displacement

Drum

Linear translation
table

CR Generator

bDrastic changes in environment

Drum displacement

Region where the effects of displacement
do not exceed longterm intra variation

and manipulations cannot be detected with confidence

a

Fig. 2 | Detectingminute physical changes in the room. a Solid gray curve shows
the mean effect of drum displacement on responses. Black dashed line shows the
mean effect of removing a drum from the container. Mean and standard deviation
(shaded area) were obtained frommeasurements over 100 challenges. Red dashed

line shows the mean plus three times the standard deviation of the long-term intra
distance. b Overview of experimental setup, translation table in the front, and
challenge-response (CR) apparatus in the back.
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In the first case, the prover would need to develop a 3D model of
the room capturing both its spatial configuration and material prop-
erties (i.e., permittivity, permeability, and conductivity). EM simula-
tions of our “room” would require meshes with size ∼ λ=100 to
guarantee stability and accuracy of the solutions (including near field
effects close to the antennas)9. Even for the relatively small-sized room
used for our experiment ð60λmax × 22λmax × 20λmaxÞ, the attacker
would need to solve, within a few seconds, a problem involving ∼ 1
trillion of unknowns, which is three orders of magnitude larger than
current state-of-the-art large-scale EM simulations run on
supercomputers10,11. While mesh optimization and domain decom-
position techniques could be used to speed up calculations, they
would be inherently limited by the complexity of the problem. For
example, the boundary conditions could be made arbitrarily complex
by introducing aperiodic metallic structures (e.g., stochastic foams12)
in the room, making this attack vector impractical.

Ray tracing techniques13 pose analternative to full EM simulations.
In our environment, we have determined a coherence bandwidth of
∼ 1 MHz (see Supplementary Figs. 7 and8), which is indicative of a high
reflectivity and the dominance of small-scale fading effects. A major
use case of ray tracing is the approximate prediction of path loss in
large outdoor14 and indoor15 environments with simplified geometry,
which does not readily transfer to our highly reflective environment
and its varied frequency response.

In the second case, the attacker’s goal is to derive a mathematical
model that accurately maps challenges to responses on the basis of a
given training set of challenge-response pairs. The attacker model is
the same as in the case of Strong PUFs16–19 while the concrete learning
problem that needs to be solved differs in our scenario. Here we
consider that the system is compromised if the mean prediction error
falls under the threshold of the intra distance mean plus 3σ. This
conservative definition favors the attacker. In practice, the distribution
of the prediction error would need to be much closer to the intra
distance to consistently fool the verifier into accepting forged
responses for the duration of the proof phase.

To explore the viability of this attack and how the prediction error
scales with the number of input mirrors, we trained multiple machine
learning models, including linear regression, k-nearest neighbors,
gradient-boosted trees, and neural networks (see Supplementary
Fig. 5). We used training sets of up to 1,280,000 challenge-response
pairs each corresponding to a number of activemirrors ranging from4
to 20, requiring continuous measurements for up to seven days. We
obtained the best predictions with a densely connected neural net
(consisting of 8 hidden layers with 3072 neurons each) beating among
others gradient boosted trees20,21. Our results show that the neural net
ability to defeat the system is both a function of the numbers of mir-
rors and the training set size. For a number of mirrors in the 16–20
range and a 106-CRPs training set, our neural net could not fool the
verifier in accepting synthetic responses.

To better understand how security scales up, we computed
learning curves that show the dependency between the training set
size and the learning error (Fig. 3). Fromour experimental data, we find
that the learning error follows a power-law type dependency. Using
this scaling law, we find that breaking systems of 16 and 20 active
mirrors would require training set sizes of ∼ 3,000,000 and
∼ 11,000,000 acquired over ∼ 2 weeks and ∼8 weeks of continuous
measurements, respectively. Similar power laws can be observed in
other deep learning domains and it is assumed that advances in neural
net design only improve the scaling by a constant factor22,23.

Our experimental data also suggests that the required training set
size scales polynomially with the number of active mirrors following a
power law (Supplementary Fig. 6). The attacker is fundamentally lim-
ited by the fact that the training set acquisition cannot be parallelized
and the maximum amount of data that can be collected is determined
by the per-response acquisition speed and the total duration of the

protocol. The number of mirrors thus acts analogously to a security
parameter in classical cryptographic applications that needs to be
tuned to provide an acceptable security margin, taking potentially
improved machine learning models into account. We would like to
stress that the number of mirrors is not limited to 20.

Discussion
We have experimentally demonstrated key aspects of a radio-wave-
based inspection system designed to remotely confirm that valuable
items located in an adversary-controlled environment are kept in
storage. Our proof of principle does neither require secure com-
munication channels nor tamper-resistant sensor hardware at the
inspected site. Our inspection system yields reproducible results in
an extensive measurement campaign for a notional storage facility,
can detect physical changes on the order of a few millimeters, and is
robust againstmajor physical and computational attacks. In addition,
important security parameters such as the number of input mirrors,
the wavelength of the probing signal, and the complexity of the room
can be scaled to the disadvantage of potential attackers. The baseline
scenario forwhich we intend this concept addresses long-established
concerns with the verification of non-deployed nuclear weapons,
where parties are mutually distrustful, have privacy and security
constraints, and want to keep the interval of on-site visits at sensitive
facilities to a bare minimum. Beyond nuclear arms control verifica-
tion, our inspection system could find application in the financial,
information technology, energy, and art sectors. The ability to
remotely and securely monitor activities and assets is likely to
become more important in a world that is increasingly networked
and where physical travel and on-site access may be unnecessary or
even discouraged.

Methods
Experimental setup
The complete experimental system is housed in a flat pack steel con-
tainer that has a length of 6m, a width of 2.2m and a height of 2.1m,
located indoors at the Bochum Max Planck Institute. The challenge-
response system is mounted on an aluminum strut frame. The frame
has an octagonal base with a side length of 36 cm and a height of
150 cm.An aluminum-plated hollow cubewith anedge length of 40 cm
is attached at the center and houses electronic control and data
acquisition equipment. Two Taoglass FXUWB10.07.0100C wideband
antennas are mounted on opposing sides of the cube such that no
direct line of sight exists between them. Twenty mirror assemblies are

2016

Region where the test error falls below
longterm intra-variation and learning succeeds

(Expected)

12

1087654

Number of
active mirrors

Fig. 3 | Robustness against machine learning attacks. Solid curves show the
mean prediction error for 1000 test samples for our neural network architecture
over the number of training samples. Dots and triangles mark training set size at
which the system is broken. Both axes are log-scaled. Gray dashed lines are log-log
extrapolated. Gray shaded areas mark standard deviation. Red dashed line shows
the mean plus three times the standard deviation of the long-term intra distance.
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attached to the frame and surround the cube. Each mirror assembly
comprises a NEMA 17 steppermotor, an infrared end switch to identify
the zero position, and a Σ-shaped aluminummirror that has a height of
16.5 cm, a width and length of 8 cm and a plate thickness of 1mm. The
motors are controlled via STMicro L6470 chips and allow for 360°
rotation in 1.8° incremental steps.

The two antennas are connected to a Keysight P9372B Vector
Network Analyzer (VNA).

With the VNA, wemeasure themagnitude of the complex forward
transmission coefficient (scattering parameter S21) for 100 equally
spaced points in the frequency range from 3 to 9GHz, using an IF
bandwidth of 30 kHz, unless otherwise stated. Setting a challenge and
collecting its corresponding response takes in total ∼0:4 s.

Acquisition of challenge-response pairs
In all our experiments,we sample challenges using a uniformly random
distribution (unless stated otherwise). For the drum displacement and
removal experiments (Fig. 2b), we used a set of 100 individual chal-
lenges. We started by setting the linear translation table to its zero
position and acquiring a reference measurement for each challenge.
Then we moved the drum in 0.25-mm increments using the linear
translation table. We doubled the step size to 0.5mm after reaching a
displacement of 5mm. After 10mm, wemoved the drum inmillimeter
steps until reaching a total displacement of 15mm. At each step, we
measured new responses for each challenge. Once the final position
was reached, the linear table returned to its zero position. Finally, we
removed the drum from the container and collected one last set of
responses. To study the effect of mirror rotation (Fig. 2d), we selected
100 challenges and a single active mirror. For each challenge, the 19
inactive mirrors remained in position, while the active mirror was
rotated in 1.8° steps up to 90°. This process was repeated for each of
the 20 mirrors.

To train our machine learning models (Fig. 3), we collected
challenge-responsepairs for increasingnumbersof activemirrors (4, 5,
6, 7, 8, 10, 12, 16, and 20). In each case, we collected a test set and a
training set, whose sizes range from 20,000 to 1,280,000. In total, we
collected more than 5,000,000 challenge response pairs. All inactive
mirrors were kept at a static default position during the durationof the
experiment.

Additionally, a smaller set comprising of 25 challenges was mea-
sured in an interleaved fashion with the training set and test set
(measured once every 1000 challenges of the training set). The room
was not disturbed in between experiments and we use this data from
all ML sets to compute the intra distances.

Determination of coherence bandwidth
For the results shown in Supplementary Figs. 7 and 8, we have col-
lected responses for 100 random challenges at 60,000 equally spaced
points in the frequency range from 3 to 9GHz, i.e., sampled points lie
100 kHz apart from each other. Here, we collected the full complex
scattering parameter S21 instead of only the amplitude.

We have computed the autocorrelation for the set of 100
responses, i.e., the correlation between the response and a frequency-
shifted version of itself 24.

Machine learning models
For our proof of principle, a machine learning attack is a multi-output
regression problem, i.e., the prover uses a learning algorithm to pro-
duce a function thatmaps challenges (up to 20mirror rotations) to the
real amplitudes of the response vector (each response vector having
$100$ elements). In this work, we evaluated four types of algorithms
including linear regression, k-nearest neighbors, neural networks, and
gradient-boosted trees.

Linear regression serves as a baseline to rule out the applicability
of a simple linear model. The k-nearest neighbors algorithm works

conceptually similar to building a look-up table of examples and its
ineffectiveness supports our analysis of the effective challenge space
size. With gradient-boosted trees and neural networks, we have
explored two techniques that are very successfully used on many
diverse real world data sets. The evaluation included a hyper-
parameter exploration for each algorithm. Among the four candi-
dates, neural networks performed the best.

For each model, we used the mirror rotation angles in Cartesian
coordinates as the function input. For linear regression, we used the
Linear regression implementation from Scikit-learn25 (Version 0.23.1),
with default parameters. For k-nearest neighbors, we used the
KNeighborsRegressor implementation from Scikit-learn (Version
0.23.1). We used default parameters and varied the number of neigh-
bors parameter in the range from 2 to 250. The best result was
achieved for 31 neighbors.

The neural network was implemented in PyTorch26. For the
architecture, we chose a series of densely connected layers, rectified
linear activation function (ReLU), and layer normalization. We set the
number of hidden layers to 8 and the number of neurons per layer to
3072. The networks were trained with the Adam optimizer and a
learning rate of 0.0002, for 400 epochs and with a batch size between
64 and 4096. For gradient-boosted trees, we used the XGB imple-
mentation (Version 1.1.1). We used early stopping to determine the
optimal number of estimators and exhaustively tested for the optimal
tree depth between 2 and 8.

Data availability
The raw data (challenge and responses) have been deposited in the
open research data repository of theMax Planck Society at https://doi.
org/10.17617/3.UNYGGC. Source data are provided with this paper.

Code availability
All code supporting the findings of this article are available from the
corresponding authors upon request.
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