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single-molecule imaging analysis of
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Single-molecule experiments have changed the way we explore the physical
world, yet data analysis remains time-consuming and prone to human bias.
Here, we introduce Deep-LASI (Deep-Learning Assisted Single-molecule Ima-
ging analysis), a software suite powered by deep neural networks to rapidly
analyze single-, two- and three-color single-molecule data, especially from
single-molecule Förster Resonance Energy Transfer (smFRET) experiments.
Deep-LASI automatically sorts recorded traces, determines FRET correction
factors and classifies the state transitions of dynamic traces all in ~20–100ms
per trajectory. We benchmarked Deep-LASI using ground truth simulations as
well as experimental data analyzed manually by an expert user and compared
the results with a conventional Hidden Markov Model analysis. We illustrate
the capabilities of the technique using a highly tunable L-shaped DNA origami
structure and use Deep-LASI to perform titrations, analyze protein con-
formational dynamics and demonstrate its versatility for analyzing both total
internal reflection fluorescence microscopy and confocal smFRET data.

Single-molecule spectroscopy has revolutionized how we investigate
the mechanism of processes on the nanometer scale. In particular,
optical fluorescence imaging allows contact-free investigations of
single, dynamicbiomolecules, one at a time, in cells,membranes and in
solutions. Single-molecule Förster Resonance Energy Transfer
(smFRET) in combination with confocal microscopy or Total Internal
Feflection Fluorescence (TIRF) microscopy probe distances on the
nanometer scale (2.5–10 nm). While solution measurements can pro-
vide information on sub-millisecond dynamics, measurements with
immobilizedmolecules give access to the temporal evolution of single
molecules on the timescale of microseconds tominutes1. By removing
ensemble averaging, it is possible to directly measure the underlying
conformational states and molecular dynamics of biomolecules. Its
ability to measure accurate distances and kinetics turned smFRET into
a powerful tool for decipheringmolecular interactionmechanisms and
structures of biomolecules1–3. Typically, FRET experiments are

performed using two colors and used to probe conformational dis-
tributions and distance changes. However, also other single-molecule
approaches can be used to investigate small distance changes or
interactions (e.g., Metal-Induced Energy Transfer (MIET)4, Graphene
Energy Transfer (GET)5, or Protein-Induced Fluorescence Enhance-
ment (PIFE)6–8).

When combining three- or more labels, multi-color FRET can
probe molecular interactions between different binding partners and
alsomeasuremultiple distances simultaneously, i.e. correlatedmotion
within the same molecule9–11. However, multi-color analyses remain
challenging. Quantitative smFRET data analysis is strongly hampered
by experimental restrictions due to, for example, a low number of
usable single molecule traces, data with a low signal-to-noise ratio
(SNR), or short traces due to photochemistry. Overcoming these lim-
itations requires large data volumes as very fewmolecules contain the
desired information with suitable quality, which significantly increases

Received: 9 February 2023

Accepted: 5 October 2023

Check for updates

1Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstr. 5-13, 81377 Munich, Germany.
e-mail: evelyn.ploetz@lmu.de; d.lamb@lmu.de

Nature Communications |         (2023) 14:6564 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9236-4762
http://orcid.org/0000-0002-9236-4762
http://orcid.org/0000-0002-9236-4762
http://orcid.org/0000-0002-9236-4762
http://orcid.org/0000-0002-9236-4762
http://orcid.org/0000-0001-8433-4494
http://orcid.org/0000-0001-8433-4494
http://orcid.org/0000-0001-8433-4494
http://orcid.org/0000-0001-8433-4494
http://orcid.org/0000-0001-8433-4494
http://orcid.org/0000-0001-7826-9147
http://orcid.org/0000-0001-7826-9147
http://orcid.org/0000-0001-7826-9147
http://orcid.org/0000-0001-7826-9147
http://orcid.org/0000-0001-7826-9147
http://orcid.org/0000-0003-4290-7770
http://orcid.org/0000-0003-4290-7770
http://orcid.org/0000-0003-4290-7770
http://orcid.org/0000-0003-4290-7770
http://orcid.org/0000-0003-4290-7770
http://orcid.org/0000-0003-0922-875X
http://orcid.org/0000-0003-0922-875X
http://orcid.org/0000-0003-0922-875X
http://orcid.org/0000-0003-0922-875X
http://orcid.org/0000-0003-0922-875X
http://orcid.org/0000-0002-0232-1903
http://orcid.org/0000-0002-0232-1903
http://orcid.org/0000-0002-0232-1903
http://orcid.org/0000-0002-0232-1903
http://orcid.org/0000-0002-0232-1903
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42272-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42272-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42272-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42272-9&domain=pdf
mailto:evelyn.ploetz@lmu.de
mailto:d.lamb@lmu.de


the efforts involved in sorting through the data when performed
manually. Low statistics result from various reasons including mole-
cular events exhibiting slow kinetics or rare transition probability,
insufficient labeling efficiency, low SNR, quick photobleaching or
spurious background. In addition, arbitrary fluctuations due to
unwanted interactions and/or aggregations between binding partners
hamper a concise analysis of the underlying state and kinetics.

Various approaches have been developed to overcome these
time-consuming burdens, employing user-defined thresholds on the
channel count rate, signal-to-noise ratio, FRET values, FRET lifetime,
and donor/acceptor correlation12–19. However, setting appropriate
thresholds requires a substantial amount of expertise. Depending on
the user, the data evaluation is prone to cognitive biases and poses a
challenge to reproducible analysis results. Recently, software packages
have been published that use deep-learning techniques to rapidly
automate trace classification and keep user bias to a minimum20–22. In
particular, Thomsen et al. comprehensively demonstrated that artifi-
cial neural networks could match manual classifications and even
outperform conventional methods of commonly used programs to
extract valid single-molecule FRET traces22. So far, deep learning has
been solely applied to single-channel and two-color FRET data to
categorize the time trajectories for downstream analysis. To study
structural dynamics, reflected by changes in intensity and FRET effi-
ciencies, the kinetics are then analyzed separately typically using
Hidden Markov Models (HMMs)23,24 approaches. Training an HMM
requires knowledge of the number of states and modeling of the
emission probabilities. Moreover, it assumes that the probability of a
transition to the next state only depends on the current state. While
the initial HMM settings are straightforward for simple systems,
obtaining the optimal parameters for multi-color FRET becomes a
challenging task. To date, only one software package, SMACKS13,
allows an ensemble HMM for three-color FRET data. As the complexity
of the datasets grows, the effort and the required knowledge about the
system also grow.

To alleviate the shortcomings of HMM analyses, the hybridization
of HMMswith Deep Neural Networks (DNN) has gained popularity25–29.
In contrast to HMMs, DNNs are capable of learning higher-order
dependencies without prior assumptions about the number and
properties of the states. A long-short-term memory (LSTM) neural
network was developed to automate stoichiometry determination via
photobleaching steps in fluorescence intensity traces30. However, the
use of DNNs for extracting quantitative kinetic information from
single-molecule data has not yet been explored.

Here, we present the Deep-Learning Assisted, Single-molecule
Imaging (Deep-LASI) approach, an ensemble of DNNs with archi-
tectures specifically designed to perform a fully automated analysis of
single-color traces aswell as two-color and three-color single-molecule
FRET data. Deep-LASI begins with raw intensity traces and provides
corrected FRET efficiencies, state determination, and dwell times
without any prior knowledge or assumptions about the system. It
classifies each time trace into different categories, identifies which
fluorophores are active in each frame, which is then used for deter-
mining FRET correction factors for spectral crosstalk, direct acceptor
excitation and detection efficiency, and performs a state transition
analysis of the different states in dynamic traces. Deep-LASI also
includes optional number-of-state classifiers to estimate the actual
number of observed states within one trace. Since the pre-trained
neural networks operate locally on each trace, they do not neglect rare
events, which would be missed in global analysis approaches. We
benchmark the performance of Deep-LASI using ground truth simu-
lations and experimental one-, two- and three-color data using an
L-shapedDNAorigami structurewith tunable dynamicbehavior5,31. The
results are further compared to the manual evaluation of the data and
the extracted dwell times obtainedwithHMM. Finally, we demonstrate
the power of Deep-LASI with multiple applications: (1) titration

experiments, which would be unfeasible without Deep-LASI; (2)
smFRET on a mitochondrial Hsp70 to extract substrate-specific dwell
times and conformational states; and (3) the applicability of Deep-LASI
to another experimental setup.

Results
The Deep-LASI approach
Deep-LASI utilizes an ensemble of pre-trained deep neural networks
designed for the fully automated analysis of one-, two- and three-color
single-molecule data includingmulti-color FRET correction and kinetic
analyses (Fig. 1; Supplementary Note 1). The designed input for Deep-
LASI is a single-molecule fluorescence intensity trace or traces mea-
sured directly using confocal microscopy or extracted from movies
using wide-field or TIRF microscopy. In the case of two-color fluores-
cence data, continuouswave excitation or Alternating Laser EXcitation
(ALEX) modalities can be analyzed. For three-color smFRET measure-
ments, ALEX data is required. All available channels are fed into a
combination of aConvolutionalNeural Network (CNN) using the omni-
scale feature learning approach and a Long Short-Term Memory
(LSTM) model (Supplementary Fig. 1.1).

Deep-LASI extracts spatial and temporal sequence features
simultaneously and classifies every frame into a specific category
(Fig. 1a). Building upon Deep-FRET for two-color FRET analysis22, we
separate the traces into six categories: dynamic, static, noisy, artifact,
aggregate as well as photobleached (see Supplementary Note 2 for
details). The total number of categories depends on the number of
input channels, i.e. the number of dyes (and alternating light sources)
used in the experiment. Traces containing random artifacts, aggre-
gates, or high noise are excluded from further analyses. The final
output of the state classifier provides an estimation of the probability
for each category. The summed probabilities over all non-
photobleached frames serve as confidence levels for each trace.
Here, user-defined thresholds can be set to increase or decrease the
tolerance towards non-ideal traces to be included in further analyses.
In contrast to previous networks, Deep-LASI detects photobleaching
events of individual dyes and, therefore, allows the calculation of
correction factors obtainable for that molecule. Traces showing no
apparent state transition are classified as static and can be included,
e.g. in the final corrected FRET histograms.

All sections in each trajectory identified as dynamic are trans-
ferred to the state classifier network (Fig. 1b), which is designed to
detect transitions basedonly on the intensity data and not via the FRET
efficiency. The state classifier assigns every frame to one of the mul-
tiple states present in a dynamic trace section and again provides a
confidence value of state occupancy that can be used for additional
thresholding. Given the state transition classifications, a Transition
Density Plot (TDP) is calculated and the kinetic rates of all identified
states can be extracted by fitting the corresponding dwell-time dis-
tributions (Fig. 1c). Starting from trace extraction, the TDP marks the
first necessary point of human intervention, i.e., the manual selection
of state transitions and the fitting procedure. Thus, user bias is kept to
a minimum. No assumptions are needed regarding the number of
states, state-specific emission probabilities, or other settings required
for conventional methods such as Hidden Markov Models (HMM). Of
course, as for any deep-learning algorithm, the output of the analysis is
dependent on the quality and appropriateness of the training data
used.Dependingon (1) the total number of frames, (2) the yield of valid
frames, (3) the computer performance, and (4) the desired confidence
threshold, a given dataset can be fully categorized on a time scale of
20–100ms per trace.

Training of Deep-LASI
To use Deep-LASI for analyzing single molecule data, we first trained
the trace-classifier network on datasets appropriate for the corre-
sponding network (i.e., one-color data, two-color data without ALEX,
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two-color data with ALEX or three-color data with ALEX). As the noise
sources in single-molecule fluorescence intensity data are well
understood, simulated traces are well suited for training the neural
network. In addition, it has the advantages of being able to minimize
biases and quickly retrain neural networkmodels to adjust for specific
circumstances. The training datasets were designed to cover a wide
range of experimental conditions and FRET efficiencies. Hence, no
initial estimation of the number of states and expected FRET effi-
ciencies are needed. A detailed description of the program archi-
tecture, simulations, training datasets and benchmarking canbe found
in the Methods section as well as in Supplementary Notes 1−4.

Deep-LASI contains a total of 16 pre-trained deep neural networks
for state classification. Four models account for the classification and
segmentation of time trajectories obtained frommeasurements using
single-channel data acquisition, two-color FRET with continuous-wave
excitation, two-color FRETwith ALEX, and three-color FRETwith ALEX.
For each type of experiment, we provide three state-transition-
classifiers trained on either two, three or four observed states, which
take the output category dynamic as the input. Note that the acceptor
intensity after direct excitation does not contain relevant kinetic

information and is not used in the state classifier networks. In addition,
a deep neural network is provided that has been optimized for
detecting the actual number of observed states and can be utilized for
model selection.Onenetworkhasbeen trained for each typeof dataset
(one-, two- and three-color data). The number-of-states neural net-
works are not essential in the automated analysis process but can serve
as a safeguard against trajectories that may be out of the scope of the
state transition classifiers.

Performance of Deep-LASI
A common approach to benchmark classifier models is using ground
truth labeled data and calculating confusion matrices, which sum-
marize the correct and incorrect predictions. For every trained model
(using ~ 200,000 traces), we generated approximately 20,000 new
traces for testing, which were not part of the training dataset. Each of
the validation datasets was then fed into the corresponding model.
The output predictions were compared to the ground truth labels for
every frame to obtain the percentage values of true positive, false
positive and false negative classifications. All trace classifier models
achieve a minimum combined precision of 97% in predicting smFRET

Fig. 1 | Overview of data extraction, evaluation, and analysis using Deep-LASI.
a Single-molecule data of up to three separate channels after direct and alternating
laser excitation are identified, extracted, and presorted for further analyses. Each
frame within the time traces is classified into categories using a hybrid CNN-LSTM.
b A second hybrid CNN-LSTM evaluates the kinetics and state information in the

presorted data. The photobleaching information can be used for determining the
correction factors to obtain accurate FRET values between two and three fluor-
ophores. cNext, the interconversion rates between underlying states and absolute,
distance-related FRET values are extracted from multi-color datasets.
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categories, i.e. static or dynamic, and 96% in predicting non-smFRET
categories (Supplementary Figs. 3.1 and 3.2).

Our number-of-states and state-transition classifiers were bench-
marked analogously. For the number-of-state classifiers, two states can
be distinguished from multi-state trajectories with at least 98% preci-
sionwhereas four states are predictedwith the lowest precision of 86%
for the single-channel model (Supplementary Fig. 3.3). For the state-
transition classifiers, the states can be identified with accuracies of
≥ 98%,≥ 90%and≥ 78% for two-state, three-state and four-statemodels
respectively (Supplementary Fig. 3.4). The comparison between all
state-transition classifiers reveals a clear trend of decreasing accura-
cies with an increasing number of states and increasing accuracy with
an increasing number of available channels. This is expected since a
higher number of states have a larger probability of lower contrast, and
a higher number of channels improves the robustness towards
uncorrelated noise. Since confusion matrices do not reveal any
underlying dependencies, we additionally benchmarked the
state transition classifierswith HMMby calculating the precisionof the
state label prediction for a broad range of noise levels, FRET state
differences and dynamic time scales (Supplementary Fig. 3.5). Overall,
the performance of state classifiers is at least on par with HMM at low
noise levels and outperforms HMM at high noise levels by up to 30%.
To investigate the advantage of using the information in the entire
dataset for the HMM analysis, we also compared the performance of
Deep-LASI with a local and a global HMM on idealized synthetic data
(Supplementary Fig. 3.6). Global HMM performs significantly better
than local HMM in this case and is on par with Deep-LASI.

As a last test, we compared the performance of Deep-LASI with
other kinetic analysis routines that have been recently published in a
multi-laboratory study32. We chose to analyze the two-state datasets as
these require no user input and the analysis can be performed without
bias. Deep-LASI returned values corresponding to the ground truth for

the simulated dataset and close to the average values obtained for the
experimental dataset (Supplementary Fig. 3.8).

Deep-LASI analyses of DNA origami structures
Next, we benchmarked the potential of Deep-LASI to automatically
analyze experimental data obtained from DNA origami structures.
DNA origami is extensively used in bio-nanotechnology and has the
advantage of being programmable with high precision and controll-
ability. In particular, we choose an L-shaped DNA nanostructure with a
dynamic, fluorescently labeled 19 nucleotide (nt) single-stranded DNA
pointer. The geometry of the DNA structure was originally designed
for measuring energy transfer to a graphene surface5,31. The single-
stranded DNA pointer, along with two or three exchangeable docking
strands of different complementary sequences, allows the number of
states, position of the dyes, and kinetic rate to be programmed as
desired. Hence, it is an ideal test system for measuring and extracting
kinetic information from smFRET traces. FRET efficiencies and kinetic
rates could be tuned by varying the position and complementary
sequence length of binding strands on the DNA origami platform. We
designed various DNA origami structures with one-, two-, and three-
color labels and measured them on the single-molecule level.

In the first assay, we assessed Deep-LASI’s capability to evaluate
single-color data. For this, we probed one-color single-molecule
kinetics where the flexible pointer was labeled with Cy3B at the 3’-end.
Two complementary binding sites with 8 nt complementary nucleo-
tides containing a 1 nt mismatch at the 5’-end (referred to as 7.5 nt)
were placed about 6 nmbelow and above the pointer position (Fig. 2a).
Binding occurred by spontaneous base-pairing to single-stranded
protruding strands. A single red dye, Atto647N, acting as a quencher,
was attached about 3 nm aside from the upper binding site (state 1).
Figure 2b shows an exemplary intensity trajectory of Cy3B classified as
dynamic until photobleaching was detected by the trace classifier with

Fig. 2 | State analysis of single-color single-molecule data. a Sketch of the used
L-shaped DNA origami structure with a single fluorophore (Cy3B) attached to a
flexible tether, which changes position from state 1→ 2 at the rate k12 and from state
2 → 1 at the rate k21. The zoom-in shows the two single-stranded binding sites
(orange) in close and distant proximity to a quencher dye (Atto647N) bound to the
DNAorigami structure.bRepresentative time transient for aDNAorigami structure
with 7.5 nt binding strands after classification and kinetic evaluation by Deep-LASI.
c Transition-density plots depicting the interconversion events between the two
detected states 1 and 2 after trace kinetics evaluation byDeep-LASI (left, number of
transitions n = 25,948) and by Hidden-Markov Modeling (HMM) analysis (right,

number of transitions n = 19,390). Both approaches identify identical states.
d Cumulative probability Distribution functions (CDFs) of the dwell times: The
mono-exponential fits obtained by both methods reveal equivalent dwell times of
approximately 1.75 and 2.65 s for the upper (State 1) and lower (State 2) binding
sites, respectively. The errors in the dwell times are the 95% confidence intervals
returned by the fitting procedure (estimated from the Jacobian matrix). e A com-
parison of the CDFs was determined using Deep-LASI and HMM. Deep-LASI is
already sensitive at time scales on the order of the acquisition time. The average
difference is less than 1% between both methods. Source data are provided as a
Source Data file.
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two corresponding states determined by the state classifier as the
linker moves up and down.

We compared the results from Deep-LASI with a Hidden-Markov-
Model analysis (HMM) trained on the same dataset. Since the state
classifier does not directlypredict a pre-trained intensity value for each
state, the TDP was generated by averaging the normalized intensity
between transitions. Both methods yield identical TDPs (Fig. 2c). The
residence time of the DNA tether in both states was determined by
fitting the cumulative dwell-time distribution functions (CDFs) derived
from the state-classifier of Deep-LASI with a mono-exponential fit and
compared to the results from HMM. The dwell times of 1.76 s versus
1.78 s (State 1) and 2.68 s versus 2.65 s (State 2) for Deep-LASI and
HMM, respectively, are in excellent agreement (Fig. 2d). The differ-
ences between the CDFs obtained by Deep-LASI and HMM (Fig. 2e)
indicate that Deep-LASI identifies fast transitions close to the frame
timemore frequently thanHMM.The overall difference at longer dwell
times remains well below 1%, which proves that Deep-LASI obtains
identical results to HMM with negligible differences in the extracted
rates. Interestingly, although the DNA binding strands are identical in
sequence and length, there are clear differences in the dwell times. We
attribute this to an inherent bias in the equilibriumposition of theDNA
pointer and non-symmetric, non-specific dye-origami interactions. In

addition, it is unlikely that the distance to each docking strand and
potentially induced stress upon binding are identical for the two
binding sites, even though the binding sequence is the same. We note
that the kinetics wemeasure here are not directly comparable to other
DNA-hybridization experiments due to both interacting DNA strands
being tethered to the DNA origami platform. This leads to a high local
concentration of the binder strand, and multiple dissociation and
rebinding events can occur before the tether switches binding sites.

In the next step, we studied Deep-LASI’s ability to deal with two-
color data. We investigated two-color FRET assays with two states and
compared the results with a pure manual evaluation of the same data.
Here, both donor and acceptor signals from the same DNA origami
sample system as shown in Fig. 2a were analyzed (Fig. 3a). TIRF mea-
surements were performed using msALEX33 yielding donor signal
(Cy3B, Channel DexDem), sensitized emission (Channel DexAem) and
acceptor signal (Atto647N, Channel AexAem) to obtain information
about acceptor photobleaching and direct excitation. Figure 3b shows
a fully classified example trace with the signals on top and the derived
FRET trace below. From the trace classifier, Deep-LASI identified
dynamic sections and individual photobleaching events (Fig. 3b; bot-
tom). The dynamic section was further classified in the state transition
classifier according to their state occupancy using only the two

Fig. 3 | Single-molecule analysis of two-color FRET data. Experiments were
performedwithDNAorigami structures exhibiting twoFRETstates.aZoom-in of an
L-shaped DNA origami structure labeled with Atto647N and Cy3B and corre-
sponding kinetic scheme. The donor is attached to the flexible tether with a 7.5 nt
overhang between the pointer and two single-stranded binding sites. FRET is
expected between a high FRET state 1 (12 o’clock) and a low FRET state 2 (6 o’clock)
interconverting at rates k12 and k21. b Representative single-molecule and apparent
FRET trace after alternating red-yellow (RY) laser excitation. Deep-LASI classifies
the trace and determines the underlying state for each frame. D: donor; A:
Acceptor; ex: excitation; det: detection. c TDPs determined using Deep-LASI (left)
and HMM (right) are shown revealing two interconverting states with apparent
FRET values of 0.8 and 0.2. The two states are labeled in white. Total number of
transitions: nDeep-LASI = 15,958, nHMM= 21,243. d CDFs extracted from the TDPs

shown in (c) and mono-exponential fits yield dwell times of 1.76 s and 2.64 s,
respectively. The errors in thedwell timesare the 95%confidence intervals returned
by the fitting procedure (estimated from the Jacobian matrix). e A comparison of
the cumulative dwell-time distribution determined using Deep-LASI - HMM for τ1
(gray) and τ2 (cyan). f Histograms of trace-wise determined correction factors for
direct excitation, crosstalk anddetection efficiency, eitherderived automatically by
Deep-LASI (gray histograms, median in black) or determined manually (blue lines,
median in cyan) (see SupplementaryNote 5).gApparent (left) and corrected (right)
frame-wise smFRET efficiency histograms for 1499 dynamic traces from a total of
6100 traces. The states have corrected peak FRET efficiencies of 0.07 and 0.81. The
histograms from traces selected by Deep-LASI are shown in gray and by manual
selection in blue. Source data are provided as a Source Data file.
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channels of the donor and acceptor intensity after donor excitation
(Fig. 3b; middle). The channel of acceptor excitation and detection
does not serve as input for the state transition classifier since it does
not contain valuable kinetic information. From a total of 6100 recor-
ded traces in the dataset, 1499 traces were classified as dynamic
smFRET trajectories with at least one transition.

The same traces were also sorted manually and the 1731 selected
dynamic traceswere analyzedusingHMM34 (see SupplementaryNote 5
for details). TDPs from the state transition classifier and from theHMM
analysis are nearly identical (Fig. 3c). Also, the corresponding dwell
times, determined via mono-exponential fits to the CDFs, are similar
(Fig. 3d) and correspond to the expected dwell times of the one-color
sample shown in Fig. 2 ( ~ 1.75 s for state 1 and 2.68 s for State 2). A
comparison of the CDFs from Deep-LASI and HMM indicates that
manually selected traces contained more fast transitions than the
traces selected by Deep-LASI in this case (Fig. 3e). We looked into the
differences between manually selected traces and traces selected by
Deep-LASI. The most common classification discrepancies between
the two are discussed in Supplementary Note 4.1. Based on individual
example traces, we observed a stronger influence of the non-ideal
behavior of the traces outside the regions of interest (e.g. a noisy ALEX
signal or nonconstant signal intensities in photobleached regions of
the trace) on Deep-LASI’s classification compared to that of manual
selection. We also compared the output of Deep-LASI with that of a
global HMM analysis executed on the same dataset (Supplementary
Fig. 4.2). As expected, the global HMM was prone to miss transitions
due to slight heterogeneities in the dataset.

Next, we investigated how sensitive Deep-LASI is to the training
dataset. Hence, we trained two additional classifier networks using
newly simulated datasets. Details are given in Supplementary Note 4.2.
The consistency between the differently trained neural networks is
~90%, similar to what would be expected from analysis run on the
validation datasets (Supplementary Fig. 3.1c). Interestingly, the con-
sistency between the different neural networks is higher than between
two independent users (Supplementary Fig. 4.3b).

To determine the distance between both dyes in the two FRET
states, the smFRET data needs to be corrected. Deep-LASI uses the
frames classified as photobleached to automatically derive the cor-
rection factors necessary for an accurate FRET calculation1,35,36. In the
manual analysis, the relevant regions are selected by hand (Fig. 3f,
Supplementary Note 5). The correction factors agree within ~3%. Using
the derived correction factors, the correct FRET efficiency is deter-
mined. The apparent (left) and corrected FRET histograms (right) of
the Deep-LASI (gray histograms) and manually (blue lines) selected
traces are shown in Fig. 3g. There is excellent agreement between the
Deep-LASI and manually analyzed apparent FRET histograms. The
difference between the corrected histograms is due to the difference
in the correction factors determined and applied from the two ana-
lyses. In this case, as Deep-LASI classifies photobleaching on a per-
frame basis, more frames can be used for determining the correction
factors and are, thus, most likely, more accurate here. The corrected
peak FRET efficiencies are 0.81 and 0.82 (State 1) and 0.08 and 0.14
(State 2) for Deep-LASI and manual evaluation, respectively, and cor-
respond to distances of 53 and 53 Å, and 103 and 92Å (assuming an R0

of 68 Å7).
In the last step, we then tested the performance of Deep-LASI for

analyzing three-color data by labeling the DNA origami structure with
an additional blue dye, Atto488, at ~3 Å distance to the binding site for
State 2 (Fig. 4a). The labeling sites of the yellow (Cy3b) and red
(Atto647N) dyes were left unchanged to provide consistency with the
previous two-color experiments. The use of three FRET pairs provides
three distances simultaneously and allows the resolution of states that
are degenerate for two-color FRET.

Using the six available intensity traces, each frame is categorized
by the fluorophores that are active and whether the trace is static,

dynamic or should be discarded. As the acceptor intensity after
acceptor excitation (RexRem) does not contain valuable kinetic infor-
mation, the other 5 intensity channels for dynamic traces (before
photobleaching) are given as input for the state transition classifier
(Fig. 4b). Movement of the flexible tether results in an anti-correlated
change in the FRET efficiency of blue to yellow (BY) and yellow to red
(YR), visible in the apparent FRETpanel of the example trace in Fig. 4b.
For each FRET pair, a TDP can be calculated, which allows the assign-
ment of the state number to the actual FRET populations (Fig. 4c).
Note, the apparent FRET efficiency of blue to red (BR) varies with the
YR FRET efficiency due to the different energy transfer pathways taken
upon blue excitation. Deep-LASI classifies a state regardless of which
dye is undergoing a transition, i.e. the extracteddwell timedistribution
of a given state is the same for all FRET pairs when there is no overlap
of multiple states in the TDP. The dwell times for states 1 and 2 match
with those for the one-color and two-color samples, which indicates
that the transition rates are not influenced by the acceptor dyes close
by (Figs. 2d, 3d, Supplementary Fig. 6.1). From a total of 2545 recorded
molecules, 581 were classified as valid, dynamic three-color FRET tra-
ces. The uncorrected, framewise smFRET histograms of BY, BR and YR
FRET pairs are very similar to those from the 694 manually selected
traces (Supplementary Fig. 4.4a). A detailed comparison between the
manual analysis of the results from Deep-LASI is given in Supplemen-
tary Notes 4.3 and 4.4.

As for two-color FRET, Deep-LASI automatically determines all
correction factors obtainable per trace depending on which dyes are
photoactive. The results of the automated extraction of correction
factors are summarized and compared tomanually derived correction
factors in Supplementary Fig. 4.4b. The corresponding apparent und
state-wise, corrected FRETefficiencyhistograms for each FRETpair are
shown in Fig. 4d. While the YR FRET efficiency can be directly calcu-
lated, the corrected BY and BR FRET efficiencies are subjected to
higher uncertainties due to the large number of correction factors
involved (see Supplementary Note 5). In particular, their dependency
on the YR FRET efficiency leads to the broadening of the distributions.
To minimize this influence, we perform the correction using the state-
averaged FRET efficiencies. After correction, the FRET efficiencies of
State 1 (0.81) and State 2 (0.08) for the YR FRET pair are virtually
identical as for the two-color system. For the BY FRET pair, State 1 and
State 2 correspond to peak FRET efficiencies of 0.36 and 0.81,
respectively. As expected, the two populations of the apparent BR
FRET efficiency merge into one static population in the corrected
histogram with a peak FRET efficiency of 0.36.

To probe the performance of the kinetic analysis fromDeep-LASI,
we used the tunability of the L-shaped DNA origami structure to vary
the timescale of the dynamics. In addition to the 7.5 nt binding sites
(Fig. 4a–d), we measured three samples using binding sites of length
7 nt with a 1 nt mismatch (referred to as 6.5 nt), 7 nt, and 8 nt (Fig. 4e).
The summary of all extracted dwell times (Fig. 4f, Supplementary
Figure 6.1) shows an exponential increase in the dwell times of both
states with increasing binding site lengths ranging from 0.33 s to 9.5 s.
Considering the camera exposure times of 32ms (6.5 nt), 50ms (7 nt
and 7.5 nt datasets) and 150ms (8 nt dataset) and frame shift time of
2.2ms, a dwell-time to frame-time ratio ranges from9 (6.5 nt State 1) to
62 (8 nt, State 2).

To test Deep-LASI with more complex dynamics with multiple
states, we constructed a three-state system with three-color labels
using 7 nt binding strands at positions 6 and 12 o’clock and an addi-
tional 7.5 nt complementary binding strand at 9 o’clock (Fig. 5a). An
example trace containing all possible transitions identified by Deep-
LASI is shown in Fig. 5b. TheTDPof the BY FRETpair (Fig. 5c, left panel)
yields clearly distinguishable populations, while the TDP of the YR
FRET pair (Fig. 5c, right panel) shows a degeneracy of state 3 transi-
tions. Using the BY TDP, we determined the dwell time distributions
with residence times between 0.65 s and 1.43 s (Supplementary
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Figure 6.2). The three states are well-resolved in the framewise
apparent BY FRET histogram, while state 2 and state 3 are degenerate
for the BR and YR FRET pairs (Fig. 5c). Applying all correction factors
yields peakYR FRET efficiencies of 0.81 (state 1), 0.08 (state 2) and0.19
(state 3). Upon correction, States 1 and 3 in the BY FRET histogram
merge into a broad degenerate FRET population. However, using the
state information for all three fluorophores allows us to separate out
the BY FRET histograms of the individual states.

For three-color FRET, the corrected BY and BR FRET efficiencies
depend on the YR FRET efficiency, and the additional corrections
broaden the population. However, even though the data may be noi-
sier, three-color experiments contain additional information, which
typically allows one to resolve states that are degenerate in two-color
experiments. This is exemplified in two-color FRET experiments on the
same construct missing the blue fluorophore near the 6 o’clock bind-
ing site (Supplementary Note 6.3). For distinguishable states, the
determined corrected FRET efficiencies and kinetic rates from two-
and three-color experiments are the same. However, three-color FRET
experiments enable the lifting of this degeneracy between states 2 and
3. To minimize the influence of the increased noise in three-color
experiments, it is advantageous to analyze the data in proximity ratio
and only convert it to corrected FRET efficiencies when necessary10.
Deep-LASI can rapidly classify a large number ofmolecules and quickly

provide an overview of multi-state dynamics with easy access to the
kinetic information.

Further applications of Deep-LASI
After extensive benchmarking, we appliedDeep-LASI to various single-
molecule datasets originating from biophysical assays, protein sam-
ples and experimental systems beyond TIRF microscopy. With the
speedup in analysis time from days to minutes, experiments become
possible that would have been unthinkable when performing
the analysismanually. One example is a titration experimentwhere the
biochemical conditions are varied. Here, wemeasured the influence of
glycerol concentrationon thedynamics of the 3-colored L-shapedDNA
origami introduced in Fig. 4a with 7.5 nt overhangs. Interestingly, we
observed a decrease in residence time in both states with increasing
glycerol concentrations (Fig. 6a, b). Dwell times start at 1.75 s (state 1)
and 2.69 s (state 2) for pure imaging buffer and decrease down to
0.62 s and 0.85 s in buffer containing 30% (v/v) glycerol. Themulti-fold
increase in binding kinetics can be explained by a reported destabili-
zation of base-pairing due to changes in the ssDNA hydration shell37

and concomitantly disturbed hydrogen bonding due to the osmolyte-
DNA interaction. The melting enthalpy and melting temperature
decreases linearly with glycerol concentration at about 0.2 °C per % (v/
v)38,39 in line with our observations (Fig. 5b). With Deep-LASI at hand,

Fig. 4 | Single-molecule analysis of three-color FRET data. Experiments were
performed on two-state DNA origami structures that were labeled with Atto647N,
Cy3B and Atto488. While Cy3B is attached to a flexible tether, Atto647N and
Atto488 are positioned close to the top (12 o’clock; state 1) and bottom (6 o’clock;
state 2) binding sites, respectively. a Zoom-in of the L-shaped DNA origami struc-
ture and corresponding kinetic scheme. b Representative single-molecule intensity
and FRET trajectories for binding sites with 7.5 nt overhang after alternating red-
yellow-blue laser excitation. First panel: Intensities after blue excitation. Second
panel: intensities after yellow and red excitation. Third panel: corresponding three-
color FRET efficiencies. Fourth and fifth panels: Deep-LASI output for state transi-
tion and trace classification. B: blue; Y: yellow; R: red; ex: excitation; det: detection.
c TDPs of the apparent FRET efficiency states reveal an apparent distance change
for all three FRET pairs (BY (left), BR (middle), and YR channel (right) with dwell
times of 1.75 s and 2.69 s for the upper and lower binding site, respectively, nearly

identical to the two-color DNA origami structures (Fig. 3c). Total number of tran-
sitions: 5,013. d Frame-wise weighted state-wise apparent (gray) and corrected
(color) smFRET efficiency histograms of the BY (left), BR (middle), and YR (right)
FRET pairs. As expected, the accurate FRET efficiency of the BR pair is static
(E = 0.36). As the position of Cy3Bchanges from state 1 to state 2, the accurate FRET
efficiency changes from 0.36 to 0.81 (BY pair) and from 0.81 to 0.08 (YR pair).
e Upper panel: Representative three-color smFRET traces for binding sites with 6.5
nt (7 nt with 1 nt mismatch), 7 nt and 8 nt overhangs after alternating RYB laser
excitation. Bottom Panel: The corresponding state determined by Deep-LASI.
f Extracted dwell times from mono-exponential fits for the lower (blue) and upper
positions (black) for 6.5 nt (τ1: 0.31 s, τ2: 0.4 s), 7 nt (τ1: 0.66 s, τ2: 1.05 s), 7.5 nt (τ1:
1.75 s, τ2: 2.69 s) and 8 nt overhangs (τ1: 6.41 s, τ2: 9.54 s) (see Supplementary
Figure 6.1 for more details). nt: nucleotides. Source data are provided as a Source
Data file.
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local screening and time-consuming parameterization of imaging
conditions become feasible.

Next, we applied Deep-LASI to smFRET measurements on pro-
teins. We previously used dual-color FRET studies to probe the
nucleotide-dependent conformational states40 of Ssc1, a mitochon-
drial heat-shock protein Hsp70 in yeast. By fluorescently labeling both
the nucleotide-binding domain and the substrate-binding domain, we
investigated the influence of ADP on the inter-domain separation via
smFRET. As the proteins were immobilized by incorporation in vesi-
cles, a photostabilizationbuffer couldnot be used for the experiments.
Hence, the signal-to-noise ratio in these experiments is lower than
those exhibited by the photostabilized DNA origami structures. A
comparison of traces selected manually and/or by the Deep-LASI
analysis is discussed in Supplementary Note 6.5. For the different ADP
concentrations, Deep-LASI identifies the underlying FRET states in line
with the manually evaluated data40 (Fig. 6c). It correctly identifies
transitions between twodistinct states, a loosely docked conformation
with high FRET efficiency (E = 81%) and a separated undocked state
(E = 50%), as shown in Fig. 6d). The automated data analysis of Deep-
LASI confirmed the ADP-dependent kinetics of the domain sensor in
good agreement with previous, manually evaluated results40 (Fig. 6e,
f). This demonstrates the proficiency of Deep-LASI for unsupervised
data evaluation of smFRET data on proteins.

Finally, we tested the automated analysis of Deep-LASI applied to
a different microscopy approach for smFRET, i.e. confocal single-
molecule data on immobilized molecules that can be collected with
microsecond time resolution. We chose the same double-labeled DNA
origami structure introduced in Fig. 2a butwithdifferent combinations
of docking strands. For these constructs, the measured FRET effi-
ciencies will be the same but with different dynamics. By changing the
hybridization length or by adding mismatched bases in the docking
strand, the interaction time of each binding site can be tuned indivi-
dually from ~ 1ms to 10 s of seconds by adjusting the stabilization
energy of DNA hybridization. As expected, shorter hybridization
sequences lead to fast dynamics. Figure 6g shows a representative

intensity trajectory of a DNA origami structure (containing 6 nt com-
plementary overhangs) that was classified as dynamic and the corre-
sponding predictions of the state classifier. Although the unquenched
state (state 2) shows a high variance in intensity, the state classifier
predicts transitions with high accuracy and confidence. In the case of
the 5 nt complementary overhangs, the dwell times approach 1ms
(Fig. 6h), and the output probability, p, of the state classifier decreases
significantly due to the low signal-to-noise ratio of the trace. Thus, the
probability value is an important parameter indicating the confidence
the state classifier has in the assignment of the state and can be used as
a threshold. Figure 6i (colored symbols) compares the mean dwell
times extracted by Deep-LASI for all the confocal datasets with the
results obtained by a newly developed shrinking-gate fluorescence
correlation spectroscopy (sg-FCS) approach41. In sg-FCS, a pulsed light
source is used such that the fluorescence lifetime information can be
incorperated into the analysis. By shrinking the analysis window of
photons based on their detected arrival time after excitation, we vary
the relative brightness of two species with different fluorescence life-
times (e.g. the low FRET and high FRET states). This leads to a robust
extraction of the kinetic rates between the two states from the auto-
correlation analysis of the FCS data. For all binding site combinations
with 6 nt to 7 nt complementary overhangs, dwell times obtained by
both methods are in excellent agreement. The largest deviation was
found for the 6 nt binding sites in the asymmetric 6 nt/7 nt sample
(Fig. 6i, purple) (a factor of 2) where there is large heterogeneity and
limited statistics41. The dwell times for the sample with 5 nt com-
plementary overhangs follow the exponential trend observed for
longer binding sites but the binning of 0.6ms, together with the
resulting low signal-to-noise ratio, reach the current limit of Deep-
LASI’s state classifier. For completeness, we have included the results
from Fig. 4e, f in Fig. 6i (gray triangles). There is a shift in dwell times
between TIRF and confocal data due to the different temperatures of
the two laboratories ( ~ 19 °C confocal, ~22 °C TIRF, see Supplementary
Note 6.4). Lower temperatures lead to a higher standard free energy
and concomitantly longer binding time42,43. In the case of the 6.5 nt

Fig. 5 | Single-molecule analysis of three-state, three-colorFRETdata. aZoom-in
of the L-shapedDNAorigami structurewith an additional binding site for the tether
(state 3 at 9 o’clock) and corresponding kinetic scheme. b A representative single-
molecule three-color FRET trace and apparent FRET for the 3-state system. The
upper panel shows the intensity in the blue, yellow and red channels after blue
excitation. The second panel shows the intensity in the yellow and red channels
after yellow excitation and the red intensity after red excitation. The middle panel
shows the corresponding FRET efficiencies for the three dye pairs. The fourth and
fifth panels show the output of the Deep-LASI analysis for state transition and trace
classification, respectively. B: blue; Y: yellow; R: red; ex: excitation; det: detection.

c Transition density plots of the apparent FRET efficiency states are shown for each
FRET pair revealing an interconversion between 3 binding sites. Total number of
transitions: n = 17,136. d Frame-wise weighted, state-wise corrected smFRET effi-
ciency histograms. Corrected, distance-related FRET values are best resolved for
the YR pair, showing three populations at 0.81, 0.19 and 0.09. The BY FRET shows
one population at 0.8, corresponding to state 2, and a broad population at 0.3 for
states 1 and 3. Individually-corrected states are indicated with the highlighted lines,
showing the actual BY FRET efficiencies of state 1 (0.4) and state 3 (0.21). The
apparent FRET states for the BR channel merge into one broad, static state with a
value of 0.35. Source data are provided as a Source Data file.
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binding sites sample (Fig. 6i, yellow), lower dwell times are consistently
observed for the TIRF data. This discrepancy is due to the difference in
temporal resolution of the two measurements (2ms for confocal vs
30ms for TIRF). The lower temporal resolution of the TIRF measure-
ments led to a higher probability of fast transitions being averaged out
and an underestimation of the actual transition time. This is a limita-
tion of the real experimental data and is not attributable to Deep-LASI.
On the contrary, Deep-LASI can back-trace shortcomings of either
technique, identify rare events and monitor conformational changes
over several time scales in an unsupervised manner.

Discussion
Deep-LASI is a deep-learning algorithm for the rapid and fully auto-
mated analysis of one-, two- and three-color single-molecule assays.
Employing state-of-the-art neural network architectures optimized for
time series data, we extended the classification of two-color FRET
trajectories to include single- and three-color data, analyzed the

photobleaching information and incorporated a full state transition
classification.

The utilization of deep-learning approaches for single-molecule
analysis comes with both advantages and potential pitfalls. One major
advantage is the ability of neural networks to capture intricate tem-
poral dependencies and complex patterns in time-series data. This
allows for improved classification accuracy and the identification of
subtle transitions or states that may be challenging to discern using
traditional analysis methods. Additionally, deep-learning models can
learn from large amounts of data, reducing the dependence on prior
assumptions that may introduce user bias.

It is essential to consider potential pitfalls when using deep neural
networks for single molecule analysis. One challenge is the interpret-
ability of the neural networks’ decisions. While mathematical models
and simpler thresholding techniques introduce user bias, they provide
explicit confidence levels or probabilities derived from the user’s
modeling choices. In contrast, the output generated by neural

Fig. 6 | Use of Deep-LASI on titration experiments, protein data, and confocal
data. a, b 3cFRET: Tuning the dissociation thermodynamics between protruding
ssDNA strands by osmolytes. a CDFs of the dwell times, assessed through mono-
exponential fits, for state 1 (left) and state 2 (right) of the L-shaped DNA origami
structure from Fig. 4a decrease with increasing glycerol concentration. b Depen-
dence of dwell times for both states versus glycerol concentration. c–f 2cFRET:
Probing domain-domain interactions in Ssc1, a mitochondrial Hsp70. c Frame-wise
smFRETdistributions of Hsp70molecules in the presence of 1mMADP classified as
dynamic by Deep-LASI (gray) and evaluated manually (blue) from a total of 3534
traces. d The TDP generated by Deep-LASI aligns with the data plotted in (c),
illustrating the interconversion between the undocked ( ~ 0.5) and docked ( ~ 0.8)
conformations. Total number of transitions, n = 3914. eCDFs of the dwell times and
mono-exponential fits to the dwell time distributions derived by Deep-LASI for
domain docking (left panel) and domain undocking (right panel) depending on the
ADP concentration. f Comparison between average dwell times extracted by Deep-

LASI (triangles) andbymanual evaluation (crosses) usingHMM.Deep-LASImatches
the published trend with similar dwell times40. g–i 1c-FRET: Deep-LASI analysis of
ssDNA binding kinetics observed via confocal microscopy. g Confocal trace (with
2ms binning) of the DNA origami structure from Fig. 2a with 6 nt binding sites and
corresponding statespredictedwith high confidence.hConfocal trace (with0.6ms
binning) of a DNA origami structure with 5 nt binding sites and predicted states.
Due to the low SNR of the data, the confidence output of Deep-LASI reaches its
lower limit. iMean dwell times obtained from confocal data for various binding site
lengths analyzed by sg-FCS41 (circles) and Deep-LASI (triangles). The results align
well, except for dwell times extracted from the 5 nt sample, which was predicted
with a low confidence distribution due to low SNR and a limited amount of infor-
mation in theone-channel input. Dwell timesobtained fromTIRFdata are displayed
in light gray for comparison. nt: nucleotides. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-42272-9

Nature Communications |         (2023) 14:6564 9



networks can be viewed as an artificial confidence level, minimizing
user bias and increasing the consistency of the analysis. However,
potential unknown biases inherent in the network itself may be
introduced. Although neural networks can demonstrate high accuracy
on validation datasets, understanding the underlying features and
mechanisms influencing their predictions can be more challenging
compared to conventional methods with explicit assumptions.

Ideal single-molecule traces are straightforward to model, and
Deep-LASI is trained to be stringent when encountering non-ideal
traces at a high confidence threshold. Hence, the default output of
Deep-LASI when analyzing data with poor SNR is to discard the
majority of the traces. By adjusting this threshold, users can instanta-
neously modify the accepted traces and monitor changes in the final
results. This approach ensures a very low false positive classification
rate when using a high confidence threshold and allows for gradual
threshold reduction to increase statistical coverage. However, the
outcome should be continuously monitored by the user. This iterative
process effectively balances stringent classification and the need for
increased statistical robustness in the analysis of new datasets.

Furthermore, Deep-LASI offers an advantage in terms of inter-
pretability as it is trained solely on editable and extendable simula-
tions. This characteristic provides users with greater control and
knowledge over potential biases and enables them to tailor Deep-LASI
to a wide range of experimental conditions. It is important to note that
neural networks are data-drivenmodels and heavily rely on the quality
and representativeness of the training data. Therefore, careful con-
sideration must be given to curating the training dataset to avoid
biases and ensure the generalizability of the model to diverse experi-
mental conditions. Regular validation and testing using independent
datasets are crucial steps to assess the robustness and reliability of the
model’s performance. In addition, when measuring an unknown
experimental system for the first time, it is helpful to visually inspect
the traces that are being discarded to verify that the classification is
still reasonable. By following these practices, researchers can enhance
the trustworthiness and applicability of Deep-LASI in real-world
scenarios.

In conclusion, Deep-LASI addresses the need for rapid, high-
throughput screening of fluorescence intensity trajectories. This
opens newpossibilities for single-molecule assays and enables a timely
analysis of complex experimental approaches thanks to the efficient
and retrainable neural network architecture of Deep-LASI. It has a high
potential for applications in a myriad of fields including biother-
anostics, sensing, DNA barcoding, proteomics and single-molecule
protein sequencing.We envision that deep-learning approaches, along
with single-molecule sensitivity, will dramatically assist and accelerate
analytics and be indispensable in the future.

Methods
Chemicals
Chemicals were purchased from Sigma-Aldrich and used without fur-
ther purification, if not statedotherwise. Chemicals include acetic acid,
agarose, ammonium persulfate, (3-aminopropyl-) triethoxysilane
(APTES), biotin-poly(ethylene glycol)-silane (biotin-PEG, MW3000,
PG2-BNSL-3k, Nanocs, NY; USA), bovine serum albumin (BSA; New
England Biolabs, Ipswich, MA, USA), Blue Juice gel loading buffer
(ThermoFisher Scientific), ethylene-diamine-tetraacetic acid sodium
salt dehydrate (EDTA-Na2 × 2H2O), glycerol, magnesium chloride
(MgCl2 × 6H2O), 2-[methoxy(polyethyleneoxy)propyl]trimethoxy-
silane (mPEG, #AB111226, abcr; Germany), phosphate-buffered saline
(PBS), protocatechuate 3,4-dioxygenase from Pseudomonas sp. (PCD),
protocatechuic acid (PCA), streptavidin, sodium chloride, Tris base,
Tris HCl, and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
(Trolox) and beta-mercaptoethanol (βME).

All unmodified staple strands (Supplementary Note 7, Supple-
mentary Table 7.2) used for DNA origami structure folding are

commercially available and were purchased from Integrated DNA
Technologies®. Staple strands with modifications (Supplementary
Tables 7.3 and 7.4) were obtained from Biomers (Supplementary
Table 7.3: Biotin; Supplementary Table 7.4: Atto488) and Eurofines
Genomics (Supplementary Table 7.4: binding sites, Cy3b and
Atto647N).

DNA origami structures: assembly, purification and
characterization
Preparation of the L-shaped DNA origami structures follows the pro-
cedures described previously by Tinnefeld et al.5,31. In brief, the
L-shaped DNA origami structures were folded with a 10-fold excess of
252 different, unmodified and labeled oligonucleotides to the com-
plimentary 8064 bp scaffold strand in folding buffer, which contained
40mMTris base, 20mM acetic acid, 20mMMgCl2 × 6 H2O, and 1mM
EDTA-Na2 × 2 H2O. A complete list with sequences of oligonucleotides
used for producing the DNA origami structure is given in Supple-
mentary Note 7. For folding, a nonlinear thermal annealing ramp over
16 hours was used44.

After folding, the DNA origami solution was cleaned via gel
electrophoresis in 50mL 1.5% agarose-gel containing 1× gel buffer
(40mM Tris base, 20mM acetic acid, 12mM MgCl2 × 6 H2O, and
1mM EDTA-Na2 × 2 H2O). The gel pockets were filled with a solution
of 1× Blue Juice gel loading buffer and the DNA origami solution. The
ice-cooled gel was run for 2 h at 60 V. When samples were to be
recovered from the gel, the staining step was omitted and the Cy3b
fluorescence was used instead to identify the correct DNA origami
structures. Gel extraction was performed via cutting with a scalpel
and squeezing the gel with a Parafilm® (Bernis®) wrapped glass slide.
The concentration was determined by absorption spectroscopy on a
NanoDrop 2000 device (ThermoFisher Scientific). Purified DNA ori-
gami structures were kept in storage buffer, i.e. in 1× TAE buffer
(40mM Tris base, 20mM acetic acid and 1mM EDTA-Na2 × 2H2O)
with 12.5mM MgCl2 × 6 H2O (pH= 8.4).

The correct folding of the DNA origami structures was confirmed
using atomic force microscopy and transition electron microscopy
(see Supplementary Figure 7.2).

Samplepreparation formulticolor prism-typeTIRF experiments
Labeled DNA origami molecules were immobilized in flow channels
formedbetween a coverslip and a surface-functionalized quartz prism.
The surfaces were sandwiched on top of each other and sealed by a
molten, pre-cut Nesco film (Nesco) channel. The employed prism
surface was functionalized before with a biotin-PEG/mPEG coating to
achieve surface passivation and prevent unspecific binding. Before the
TIRF experiments, the prisms were first flushed with PBS and then
incubated with a streptavidin solution (0.2mg/mL) for 15min. After-
wards, the sample holder was washed 3× with PBS to remove free
streptavidin and then with storage buffer (1× TAE, 12.5mM MgCl2,
pH = 8.4). Next, the DNA origami sample was diluted to 40 pM in sto-
rage buffer, added to the flow chamber and immobilized to the prism
surface via the biotin-streptavidin linkage. After 5min, untethered
DNA origami structures were removed by rinsing the chamber 3× with
storage buffer. Next, the attached fluorophores on the DNA origami
structure were photostabilized by a combination of ROXS and an
oxygen scavenging system based on PCA/PCD45. The photostabiliza-
tion buffer was mixed as follows: 1 µL of 100mM Trolox/Ethanol
solution was added to 97 µL storage buffer. The sample was then aged
using a UV Lamp (M&S Laborgeräte GmbH, UVAC-6U, 2 × 6W; 254 and
366 nm) until an equal ratio of Trolox and Trolox-quinone was formed
(typically 6minutes)46. Immediately before starting the TIRF experi-
ments, 1 µL of 100mM PCA in methanol and 1 µL of 100mM PCD
solution (50% glycerol, 50mMKCl, 100mMTris HCl, 1mMEDTA-Na2 ×
2H2O, pH8) was added to the total volume. In the case of samples
containing Atto488, 1 µL of 14.3M βME was added to the
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photostabilization buffer. The sample chamber was flushed with
photostabilization buffer and sealed to allow for enzymatic oxygen
depletion. A minimum of 5minutes waiting time preceded the
experimental recordings. The photostabilization buffer was refreshed
every 45minutes until the end of the experiment.

All two- and three-color FRET experiments were carried out using
msALEX33, i.e. two- or three excitation lasers were alternated frame-
wise. The lasers of different excitation wavelengths were synchronized
using an acousto-optical filter (OPTO-ELECTRONIC, France) with the
camera frame rate using an FPGA that synchronizes the excitation and
simultaneous detection on the EMCCD cameras at 32ms, 50ms or
150ms exposure times (depending on the sample) for 2000 (two-
color) and 2400 (three-color) frames. The laser powers were set to
28mW (0.022mm2, 491 nm), 16mW (0.040mm2, 561 nm) and 10mW
(0.022 mm2, 640nm) for B-Y-R excitation.

Multi-color TIRF setup
Single-pair FRET experiments on surface-immobilized DNA origami
structures were carried out on a home-built TIRF microscope with
prism-type excitation as previously published47. Three laser sources
(Cobolt, Solna; Sweden) at 491 nm, 561 nm and 640nm are available,
and used for triple-color TIRF experiments with an alternation rate of
27Hz (including a 2.2ms frame transfer rate) between the B-Y-R laser
excitation. The resulting emission was collected by a 60×water
immersion objective (60×/1.27WI Plan Apo IR, Nikon), cleaned upwith
a notch filter (Stopline® Notch 488/647, AHF), and the red emission
was separated from the blue/yellow emission by a dichroic mirror
(630DCXR AHF; Germany) followed by separation of the blue and
yellow emission (560DCXR AHF). The emission was spectrally filtered
(AHF Analysentechnik, Tübingen, Germany) for the blue (ET525/50),
yellow (HQ595/50) and red (ET685/40) collection channels and after-
wards detected on three EMCCD cameras (Andor iXon (1×)/iXon Ultra
(2×), Andor Technologies, Belfast; UK) via the supplier’s software
Andor Solis (Version 4.29.30005.0; Oxford Instruments). Synchroni-
zation and alternation of the exciting laser sources, as well as the
frame-wise data acquisition on three separate cameras, were achieved
using a LabView-written program that controls a field programmable
gate array (FPGA; NI cRIO-9073). While the program starts the mea-
surement, the FPGA synchronizes the execution of the hardware via
TTL pulses, i.e. it controls switching on/off the excitation sources by
direct modulation of the AOTF (491, 561, 640 nm), while simulta-
neously starting the data acquisition by the three cameras. The videos
were analyzed afterward by a custom-written MATLAB program (Ver-
sion 9.13.0.2166757; Mathworks, Massachusetts, USA).

Single-molecule data analysis, data evaluation and
representation
Time traces of individual,fluorescently labeledDNAorigami structures
were extracted from measurements using one, two or three cameras
for one-, two- and three-color experiments, respectively, using Deep-
LASI. Deep-LASI is written in MATLAB (Version 9.13.0.2166757; Math-
works, Massachusetts, USA) and uses neural networks trained with the
Python library TensorFlow (Version 2.8.0). All raw data were recorded
by EMCCD cameras (iXon 897, i.e. frames with 512 × 512 pixels con-
taining fluorescence intensity information) and stored as TIFF stacks
using the supplier’s software Andor Solis. The resulting traces are then
analyzed either using the pre-trained neural networks (Supplementary
Notes 2, 3) or manually (Supplementary Note 5). The regions of single-
molecule traces that were classified as dynamic with photoactive
fluorophores were selected for downstreamanalysis. In the automated
analysis procedure, the state transitions and state dwell times were
predicted by a neural network model. All manually selected traces
were analyzed using Hidden Markov Models, locally fit to each inten-
sity trace (1-color data) or FRET trace (2-color data) assuming two
states with Gaussian emission distribution functions and using the

Baum-Welch algorithm. The Gaussian emission distribution functions
serve as the prior for the HMM, which are iteratively updated during
the analysis. The convergence threshold was set to 10−9 and the max-
imum number of iterations was set to 108. All predicted transitions
were extracted from a transition density plot and the corresponding
dwell times were fit to an exponential function. All correction factors
for calculating the corrected FRET efficiency were determined using
the manual or automated classification of photobleaching steps. All
employedmethods, automated andmanual, were performedusing the
Deep-LASI user interface. Final panels were all presented using
MATLAB 2022b (Version 9.13.0.2166757; Mathworks, Massachusetts,
USA), exported as vector graphics, and assembled into figures using
Adobe Illustrator CS2022 (Adobe Inc.; USA). 3D representations of the
DNAorigami structureswere rendered in Blender (Version 2.93.6), and
further assembled and labeled in Illustrator. The AFM images were
plotted using JPK Desktop Software (Version 6.1.200A).

Statistics & reproducibility
For training the neural network, we used a simulated dataset with ~
200,000 traces as it is sufficient to cover an extensive range of rea-
listic experimental parameters and thereby avoid any bias in the
analysis. This includes FRET efficiencies between0.01 and 0.99, dwell
times of 1 to 100 frames and SNR of ~0.3 to 50. Experimentally, we
typically measured 100 movies for each condition, as this usually
generates several thousand acceptable traces. The full datasets were
analyzed. The program, as part of its function, determines which
intensity traces are suitable for further analysis. The computer
selection was tested against simulated traces as well as compared
with human analyses.

The Deep-LASI software was trained on three independently
generated datasets. Deep-LASI was also compared with two users who
manually analyzed the same datasets. The number of states, FRET
efficiency histograms and kinetic rates extracted from the different
analyses are consistent and, when available, are within the confidence
intervals from the fits. Experiments were not randomized. The
researchers were not blinded as knowledge regarding the sample did
not influence the manual selection or analysis of the data. For the
neural network, the advantage is that it operates only based on the
data that it has been trained with. Hence, blinding is not applicable.

For analysis of the dwell-time distributions, a mono-exponential
function was fit to the cumulative distribution function in MATLAB
2022b. The optimal fit values, along with the 95% confidence intervals,
are given in the text and figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data for all figures and all supplementary figures have been
deposited in the Zenodo database48 [https://zenodo.org/record/
7561162], with the exception of previously published data (HSP70
SSC1 and DNA origami confocal data in Fig. 6). Source data are pro-
vided with this paper.

Code availability
The program is available on GitLab [https://gitlab.com/simon71/
deeplasi]. Extensive documentation for the Deep-LASI software pack-
age can be found at https://deep-lasi-tutorial.readthedocs.io/en/latest/
index.html.
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