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Extracting medicinal chemistry intuition via
preference machine learning

Oh-Hyeon Choung 1, Riccardo Vianello1, Marwin Segler2, Nikolaus Stiefl 1 &
José Jiménez-Luna 2

The lead optimization process in drug discovery campaigns is an arduous
endeavour where the input of manymedicinal chemists is weighed in order to
reach a desired molecular property profile. Building the expertise to suc-
cessfully drive such projects collaboratively is a very time-consuming process
that typically spansmany yearswithin a chemist’s career. In thisworkwe aim to
replicate this process by applying artificial intelligence learning-to-rank tech-
niques on feedback that was obtained from 35 chemists at Novartis over the
course of several months. We exemplify the usefulness of the learned proxies
in routine tasks such as compound prioritization, motif rationalization, and
biased de novo drug design. Annotated response data is provided, and
developedmodels and codemade available through a permissive open-source
license.

Drug discovery is a complex, multi-step process that operates at the
interface between many chemical and biological sub-disciplines. In
many stages of the pipeline, and specifically during lead optimization,
medicinal chemists—wet-lab or computational—play a central role, as
they are routinely tasked with identifying which compounds to syn-
thesize and evaluate over subsequent rounds of optimization1. In order
to do this, medicinal chemists often review data that includes com-
pound properties such as activity, ADMET2, or target structural infor-
mation, among many others. Therefore, for a campaign to be
successful it needs not only rely on the quality of the generated
experimental data, but ultimately also on the robustness and sound-
ness of the decisions made by the medicinal chemistry team working
on it3.

During their professional careers, medicinal chemists build an
expertise that enables them to make their decisions (e.g., compound
prioritization) more efficiently4. That is, they develop an intuition on
the factors relevant for a compound to be successful on following
iterations of the early drug discovery process. While attempts have
been previously made to formalize such knowledge with rule-based
approaches (e.g., structural alerts), or simple cheminformatics desir-
ability scores (e.g., drug-likeness), capturing the subtleties and intri-
cacies involved in the ranking ability of chemists remains a
fundamental challenge. With that motivation in mind, in this work we

investigate whether part of this knowledge can be distilled into
machine learning models. Such models can potentially then be
deployed as an aid in during the decision-making process in lead
optimization or other parts of the drug discovery pipeline, similar to
other recommendation systems already reported in the industry5–7.

Since medicinal chemistry is currently mostly a human endea-
vour, it is also inevitably prone to subjective biases8. Several studies9,10

have evaluated to what degree medicinal chemists tend to agree on
their own and the decisions made by their colleagues. Most tasks
explored in these works included presenting chemists with a list of
compounds to filter over several rounds, in order to evaluate whether
their choices overlapped with those of their peers, and if they were
self-consistent with their own prior selections. These studies reported
overall a weak agreement between and within each chemist—the dis-
parity in these results being associated to several psychological fac-
tors, such as loss aversion11. Another study12, closer in nature to what
we present in this work, evaluated whether a small group of chemists
could rate compounds according to properties such as drug-likeness
and synthetic accessibility via the use of a Likert-type scale13, to then
train a classical machine learning model on the obtained responses. A
more recent study byMerck14, used the same scaling strategy tomodel
an in-house crowdsourced proxy for molecular complexity. While
varying low to fair correlation degrees were found between the scores
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assigned by the chemists in the previous two studies, the reported
study designs could have been prone to the anchoring psychological
effect, inwhichdecisions are affectedby subject- and situation-specific
reference values11. A recent workwith a similar experimental setupwas
also described in the context of the design of porous organic cages15.

In this study we set to overcome those limitations by adopting a
strategy that is well-known in the context of multiplayer games. We
cast the goal of ranking a set of molecules as a preference learning
problem and show that individual preferences can be captured via
pairwise comparisons with a simple neural network architecture. A
basic schematic summarizing the idea behind the study is provided on
Fig. 1. Proof-of-concept data collection rounds were carried out to
evaluate whether the proposed study design and methodology suc-
cessfully overcame cognitive bias limitations that were present in
previous studies. 35 (wet-lab, computational, and analytical) chemists
at Novartis participated in the study, with over 5000 annotations
collected over several rounds driven by an active learning approach.
We show that the learned implicit scoring functions capture aspects of
chemistry currently not covered by other in silico chemoinformatics
metrics and rule sets, some of them derived from highly optimised
internal annotations over years of cumulative know-how. We further-
more exemplify their applicability in the context of hit-to-lead com-
pound prioritization and biased de novo machine-learning drug
design. We also show that the proposed learned scoring function can
capture the concept of drug-likeness more accurately than another
widely used metric (QED). We furthermore rationalize the learned
chemical preferences by means of fragment analyses on a large public
compound database. Finally, so as to facilitate reproducibility and
foster additional research on this topic, a software package (MolSkill),
containing production-ready models and anonymized response data,
is made available through a permissive license in an accompanying
code repository.

Results
We first focus on the evaluation of the results provided by two pre-
liminary rounds for the study (seeMethods), whichultimately led us to
pursue the subsequent production-level runs. This is followed by a
quantitative evaluation of predictive model performance over the
production rounds. We then proceed to explore several areas where
we believe the proposed scoring function can be practical. We study
the relationship of the learned scoring function to other common in
silico metrics in chemoinformatics and evaluate whether it can

distinguish between chemical sets of different nature. We further
investigate whethermore precise learned chemical preferences can be
rationalized viameans of a fragment analysis and,finally, exemplify the
usage of the proposed scoring function in biased molecular
generation.

Preliminary analysis rounds
Results for the two preliminary rounds are summarized in Table 1. As a
measure for inter-rater agreement, we consider the Fleiss’ κF
coefficient16 among the responses provided by the chemists in both
preliminary rounds. We measured κF1 = 0.4 and κF2 = 0.32 for the first
and second round, respectively, and concluded that there was a
moderate agreement between the preferences expressed by the che-
mists. One likely reason for the observed level of agreement is the fact,
that especially in cases where there was no clear-cut preference,
decisionsweredriven by prior personal experiences. Still, these results
suggested that there was a pattern to be learned by the responses to
the posed question. Using the redundant pairs present in both pre-
liminary rounds, we also evaluated per-chemist intra-rater agreement
using the Cohen’s κC coefficient. With κC1 = 0.6 and κC2 = 0.59 for the
first and secondpreliminary round, respectively, we conclude that that
in most cases, chemists displayed a fair degree of response con-
sistency. In addition, no specific positional bias on the screen where
the questions were posed was detected for any of the preliminary
participants, with preferences reasonably close to the expected ran-
dom 50% baseline. Additional two-by-two inter-rater agreement coef-
ficients are presented in Fig. S1, from which we draw similar
conclusions.

Overall, the results on the preliminary rounds suggested that
therewas indeed a signal to be learned from the opinions expressed by
the chemists that had participated in the study up to that point. These
findings convinced us to extend the study and continue with the
subsequently presented, larger production-level runs.

Predictive pair preference performance
In order to evaluate whether the trained model had successfully
learned the preferences expressed by the chemists, we iteratively
measured its predictive performance via the area under the receiver-
operating characteristic (AUROC) curve under different scenarios
(Fig. 2). Specifically, we kept the data from the preliminary rounds as
external sets for validation that are not used for model training or
uncertainty quantification during the active learning rounds. In
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Fig. 1 | Overall schematic of the main idea behind the study. a Molecules are
treated as players in a competitive game, with the probability of one winning over
the other provided by feedback supplied by chemists. For this, the chemists are
asked to select one of twomolecules upon presented with a pre-specified question
prompt on a web application. b An implicit score model is learned based on this
feedback. A two-legged feed-forward neural network with fixed weights in each leg
is supplied with pairs of molecules featurized with common cheminformatics

descriptors. During training, its parameters are optimized via a binary cross-
entropy loss (BCE) loss that depends on a latent score difference computed on the
molecule pairs and feedback supplied by the chemists. c Once trained, scores can
be inferred for any arbitrary molecule, which can then be used for downstream
cheminformatics tasks. Symbols: si, sj: scores computed for moleculesmi and mj,
respectively. σ: sigmoid function. θ: model parameters.
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addition, we also evaluated model performance via randomized five-
fold cross-validation after each labelled batch of 1000 samples. From
the cross-validation results, a steady pair classification performance
improvement can be observed asmore data became available, starting
from 0.6 and surpassing 0.74 AUROC values at the 1000 and 5000

available pairs thresholds, respectively. Interestingly, cross-validation
results did not display reaching a performance plateau even when
evaluated at the last available batch of responses, hinting that per-
formance could further be improved if more data had been collected.
In addition, performance increased during the first three collected
batches but stayed relatively stable around the 0.75 AUROC mark
when models were evaluated on the preliminary round data, which
could be explained by the limited amount of pairs available in these
sets. Overall, these results suggest that the model is able to correctly
learn preferences as expressed by medicinal chemists in the current
experimental setup. For completeness, we also evaluated to what
degree different commonmolecular representations had an impact on
model overall performance (Fig. S2).

Relationship to other in silico metrics
One of the main assumptions of the main question presented to the
participants in this study is that, over the course of their careers,
medicinal chemists develop an expertise that is hardly quantifiable by
other existing in silicometrics. In order to evaluate whether such is the
case, we measure to what degree the learned compound scores cor-
relate with other ligand-based properties that are commonly used
during optimization (e.g., drug-likeness, topological surface area,
number of saturated rings). All properties considered were computed
with the RDKit software package17. A summary of the highest corre-
lated properties (on an absolute scale) in the training data is presented
in Fig. 3. With Pearson correlation coefficients overall not surpassing
the r = 0.4 threshold, we conclude that the learned scores are in fact
providing a perspective onmolecules that is orthogonal towhat can be
currently computed with other cheminformatics software routines.
Among the most correlated properties we can find: drug-likeness18,
fingerprint density, the fraction of allylic oxidation sites, atomic con-
tributions to the van der Waals surface area19, or the Hall-Kier kappa
value20. Not surprisingly, the most correlated descriptor in these ana-
lyses is QED, which also attempts to capture drug-likeness. Interest-
ingly, the fact that different flavours of fingerprint density are also
present within this list suggests that chemists seem to display a slight
preference towards richermolecules feature-wise. To somedegree this
is not surprising, as onemain example of features that would result on
low fingerprint density are repeatingmotifs of similar atom types (e.g.,

Table 1 | Intra-rater agreement, as measured by the percen-
tage of times chemists agreedwith their previous choice on a
pair and by the Cohen’s κ coefficient

Intra-rater
Ag. (%)

Intra-rater Ag.
(Cohen’s κ)

Left-right
bias (%)

Chemist Id. R1 R2 R1 R2 R1 R2

1 100.0 100.0 1*** 1*** 48.2 47.7

2 92.1 84.2 0.68*** 0.37* 47.2 54.5

3 86.8 78.9 0.49* 0.16 48.6 55.5

4 79.8 84.2 0.27 0.35* 54.6 48.2

5 85.1 92.1 0.37* 0.69*** 47.2 48.6

6 89.5 – 0.55** – 47.2 –

7 84.2 92.1 0.33 0.65*** 48.6 47.7

8 94.7 92.1 0.79*** 0.69*** 46.8 51.8

9 95.6 89.5 0.89*** 0.58*** 50.9 48.2

10 – 81.6 – 0.28 – 52.7

11 – 92.1 – 0.69*** – 53.2

12 – 92.1 – 0.69*** – 56.8

13 – 92.1 – 0.69*** – 50.9

14 – 89.5 – 0.58** – 51.8

15 – 94.7 – 0.79*** – 54.1

Left-right bias measured as the percentage of times a rater chose the compound presented on
one side of the screen.
R1/R2 First/second preliminary round of the study.
***p < 0.01, **p <0.05, *p <0.1.

Fig. 2 | Model benchmarking at different training set sizes. Predictive perfor-
mance of the proposed latent score ranking model when evaluating which com-
pounds are preferred within each pair. Results presented at different train set sizes
corresponding to the associated active learning batches considered during the
study. AUROC area under the receiver-operating-characteristic curve, CV cross
validation.

Fig. 3 | Relationship between learned scores and other cheminformatics
metrics.Average absolute correlation coefficients (±1 standard deviation) between
several in silico descriptors computed via RDKit and learned compound scores
(lower is better) in the training set (n = 5276). Results shown for the 20 most cor-
related in silico metrics (in absolute value) over five different training seeds.
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long aliphatic chains), which are difficult to optimize or prone to
overall unspecific binding. In contrast, a small positive correlationwith
the SA scoremeasure21 canbe observed, which hints that the proposed
score slightly prefers synthetically simpler compounds. Another
noteworthy fact is that the SMR VSA3 descriptor, a measure of mole-
cular surface area that is aggregated according to Wildman-Crippen
MR value limits22, is slightly correlated negatively. This could hint that
chemists have a liking towardsmolecules that feature neutral nitrogen
atoms. We however stress that the magnitude of these correlations is,
in our opinion, insufficient to make any strong claims. Nevertheless,
for completeness, an extensive list of all of the properties computed as
well as their correlations to the learned scores is also provided
in Fig. S3.

Discriminating between chemical sets
As awayof quantitatively evaluatingwhether the learned scores can be
used to deprioritize compounds that could be seen as undesirable, we

consider an approach similar to one reported in the original QED
study18. Specifically, we scored different sets of molecules: (i) a set of
2386 ChEMBL compounds not present in our training sets with at least
an annotated maximum phase of development over 0.5, (ii) a set of
FDA-approved drugs as made available by the DrugBank23 database,
and (iii) a random subset of 10,000 compounds extracted from each
the GDB13 and GDB17 databases24,25. Furthermore, we used the latter
GDB compounds as a control, since they were originally generated in a
combinatorial fashion and should in practice contain molecules that
do not exhibit drug-like properties. To ensure that the molecules
considered in these analyses did not fall outside of the applicability
domain of the trainedmodel, wemade sure to apply the same filtering
procedures as those detailed in the Methods section (see Data retrie-
val, cleaning, and pair generation). This resulted on 732, and 8616
analyzed molecules for the FDA-approved drugs and GDB sets,
respectively. As a baselinemethod to compare the learned scoreswith,
we considered the standard QED implementation as available on the

Fig. 4 | Using the learned scores to discriminate between different chemical
sets. a, b Distribution of MolSkill scores and QED values over three different
molecular sets: ChEMBL, a set of FDA-approved drugs as made available by Drug-
Bank, and a random sample of the combinatorially generated GDB sets. c, d ROC

AUC curves for both MolSkill scores and QED values when tasked to discriminate
between molecules from either ChEMBL or FDA-approved drugs from GDB-
extracted molecules.
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RDKit package. On Fig. 4a, it can be observed that the distribution of
learned scores is clearly well separated between sets better repre-
senting drug-like space (in other words those more apealing to med-
icinal chemists, i.e., Drugbank FDA-approved drugs and ChEMBL)
against theGDB set. QED scores (Fig. 4b) on the other hand, struggle at
making such separation between the three sets. While an one-way
ANOVA test was performed and the null hypothesis of equal mean
values between the three sets was rejected for both methods with
virtually zero p-values (FMolSkill = 546.88, FQED = 22.83), receiver oper-
ating characteristic curves todistinguish the drug-like sets against GDB
showed that only the proposed learned scores were predictive enough
in practice for this task (Fig. 4c, d).

However, and while not explicitly trained to do so, it should be
noted that one major factor on why the proposed scoring function is
able to distinguish between these two sets could be related to overall
molecular size. Specifically, the molecules in both the ChEMBL and
FDA-approved sets are significantly larger than those present in the
GDB sets. When adjusting for molecular size (i.e., filtering out mole-
cules larger thana certain amountof heavy atoms in thedrug-like sets),
we can observe that QED can be used to efficiently discriminate
between both ChEMBL and the FDA-approved from the control set
(Fig. S4) at smaller molecular size ranges. For the ChEMBL set, we
mainly attribute these differences to the fact that QED scores are very
negatively correlated with the number of heavy atoms whereas
MolSkill is not (Fig. S5). Performance dependence on molecular size
for the FDA-approved drugs set is close to random for very small
molecules (i.e., ~17 heavy atoms) for both methods, albeit, as in the
case for the ChEMBL molecules, MolSkill scores become more per-
formant when considering molecules featuring more than 30 heavy
atoms. Another remark is that some of the smaller molecules con-
tained in the drug-like sets would be nowadays more accurately
described as a fragment or a lead rather than a drug (e.g., acet-
ylsalicylic acid).

Exploring fragment preference
As means for model interpretability, in this section we aim to disen-
tangle whether the learned scores exhibit a bias towards specific
molecular motifs. In order to do so, we make use of the BRICS
algorithm26, as implemented in the RDKit software, and compute all
available leaf fragments and associated model scores for each mole-
cule present in the training set. Since the fragments contained an
attachment atom type not seenduring training, fragmentswere scored
according to the average scores of the compounds they were sub-
structures of in the training set. In addition, to avoid biases related to
uncommon motifs or unexplored areas of chemical space, only frag-
ments appearing a minimum of 5 times in the training set were con-
sidered in this analysis. A small selection of the highest and lowest
ranked fragments is presented in Fig. 5. Among the worst-ranked
fragments we can observe undesirable groups such as phenols, free
acids, ketones, thioureas, allyls, long alkyl chains, naphtyls, cumarines,
Hantzsch esters, quaternary amines, sugar-like structures or highly
substituted rings. On the other hand, among the best-ranked groups
we can find many commonly used medicinal chemistry motifs such as
pyrazines, pyrimidines, sulfones, imidazoles, oxadiazoles, phenyls, or
bicyclic heteroaromatics. Qualitatively, this experiment suggests that
the proposed score has learned patterns that are in line with motifs
present in existing drug-like molecules. The full set of fragments, their
frequency in the data, as well as their associated MolSkill scores are
provided in the accompanying code repository to this work.

Biased molecular design
As a way of exemplifying how the implicitly learned scoring function
may be applied in a realistic setting, in this section we use it to bias a
generative model towards favourable regions of chemical space. We
make use of the GuacaMol baselines27 package and implemented a

submodule with the proposed scoring function trained on all available
rating data. We then chose the pretrained SMILES-based LSTM gen-
erativemodel and the hill-climbing optimization strategy28 to generate
500 molecules both maximizing and minimizing the learned scoring
function. Some generated molecule examples are presented in Fig. 6.
Visually inspecting some of the examples maximized by the scoring
function, we can appreciate that the model is assigning high (i.e.,
unfavorable) scores to compounds that feature long flexible chains,
atypical groups such as phosphates or azides, conjugated double
bonds, reactive pieces, or overall higher number of carboxylates and
alcohols, among many other non-drug like properties. On the other
hand, minimizing the learned scoring function results in a reasonable
mix of aromatic rings and aliphatic sp3 carbons, reasonably sized
fragments as well as several typical groups featured in drug-like
molecules. From these qualitative analyses we conclude that the
scoring function has successfully captured a reasonable degree of
chemical intuition.

One caveat that we had experimentally observed during mole-
cular generation is that it was useful to constrain or stop optimization
of the scoring function once it had reached values close to the limits of
the empirical distribution of learned scores (jŝj≈ 9 using the reported
regularization strategy applied during training in our sets). Not doing

Fig. 5 | Model fragment preference. Some fragment examples evaluated by the
learned scoring function. Fragments representative at each end of the score dis-
tribution (lower is better).

Article https://doi.org/10.1038/s41467-023-42242-1

Nature Communications |         (2023) 14:6651 5



so resulted in a certain degree of quirkiness and molecular invalidity,
which we attribute to the generative algorithm overexploiting the
scoring function on regions of chemical space that it had not pre-
viously observed during training. Additional details on the generative
model and optimization hyperparameters are made available in the
accompanying code repository to this work.

Qualitative score assessments on ChEMBL
While the quality of the generatedmolecules indicate a high relevance
of the proposed scoring function for de novo drug design, we

furthermore qualitatively evaluated its usefulness to filter out unde-
sirable compounds. This was studied especially in the light of existing
rule-based approaches, such as the NIBR filters29, which are routinely
used to deprioritize and flag problematic compounds before con-
sideration. Ideally, our goal was to rationalize compound features not
necessarily captured by suchmethods currently, and at the same time
considered as undesirable by medicinal chemists. Towards this goal,
wemanually reviewedmolecules from the initial pool, which had been
already filtered with simple properties as well as with the aforemen-
tioned rules, and then visually inspected those that were assigned a
high score by the proposed function. Figure 7 shows four of such
compounds. While there are some features that could be described as
unattractive and can be captured with a generic SMARTS pattern (e.g.,
the terminal alkene in compound b, or the aromatic nitro group in
compound c), the overall unattractiveness seems to be driven bymore
general properties. Based on our subjective opinion, among others
these seem to include compound complexity (c and partially a), a mix
of flexibility and feature-richness (b and d), or the distribution of fea-
tures (b). While theoretically possible, defining such rules explicitly is a
difficult task and is unlikely to capture all undesirable cases.

Discussion
In this work, we have described the development of amachine-learned
scoring function of human preference in the context of early drug
discovery campaigns. We have done so by adapting the well-known
framework of player ratings to a pairwise learning-to-rank experi-
mental design betweenmolecules. In order to do so, wehave internally
deployed a large user study at Novartis, where the expertise of 35
medicinal chemistswas taken into account. Inmore detail, in this study
we show that such expertise can be successfully learned by a latent
score machine-learning model. Such scores have been shown to be
providing additional or orthogonal information to what can be
obtained by other common in silico ligand-based properties or
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Fig. 6 | Biaseddenovodesignvia predicted scores. Somemolecular examples prioritizedby theproposed implicit scoring functionwhenpairedwith a generativemodel.
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Fig. 7 | Deprioritizing unwanted compounds with the score model. Example
compounds not flagged by the NIBR filters but effectively deprioritized by the
learned scores (9 or higher). a Displays complex features, b shows a mix of flex-
ibility and feature richness coupled with undesired distribution of features,
c displays complex features, and d exhibits both flexibility and feature richness.
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substructure-based fragment definitions. We also exemplified the uti-
lity of such modelling approach in several routine cheminformatics
tasks, such as the deprioritization of compounds currently not flagged
bywell-known rule-based approaches, or biasedmolecular design via a
generative ML model. We furthermore rationalized and motivated
what themodel has learned bymeans of a fragment analysis on a large
set of compounds and show that it outperforms a popular quantitative
measure of drug-likeness at distinguishing chemical sets of different
nature.

A main limitation of the study relates to the simplicity of the
question asked during data collection, which was left intentionally
vague to capture chemical intuition on a timely manner. In addition,
while the proposed studydesign results in a higher agreement between
participants than when compared to previous works, the pairwise
comparison approach is not free from criticism. There is a growing
body of evidence from behavioural psychology pointing that the cog-
nitive bias research tradition11, which claims that rationality is based on
preference consistency, paints an incomplete picture of intelligence.
Several authors30,31 have instead pointed out that humans can flexibly
behave in different contexts and can use emotions to achieve personal
goals, which could be interpreted as rational cognitive biases32. It is also
well known that humans have a tendency to simplify high-dimensional
problems (such as the oneproposedhere, choosing amolecule out of a
pair) into a handful of variables that they can keep track of cognitively
(i.e., the so-called Flatland fallacy33), which likely depend on each
individual chemist. Accounting for factors such as these is, to our
knowledge, still an unexplored question in the field.

We see the utility of the proposed model to go beyond what is
proposed in the current study. Specifically, we believe that there is
potential to extend the discussed setup for other observables in drug
discovery that are inherently quantifiable but expensive to obtain
experimentally (e.g., compound stability calculations). In addition, we
believe it could provide insights into unexplored regions of chemical
space currently ignored when applying simpler mnemonics such as
Lipinski’s rule of five34,35. With that in mind, we believe that soft ver-
sions of some popular rule-based filters can be learned by artificially
generating training pairs alongside a similar architecture as the one
proposed. Such models could potentially overcome the main limita-
tion of having to pre-filter compounds before inference so as to avoid
out-of-distribution risks. Along those same lines, the proposed score
can also be used to prioritize combinatorially generated chemical
libraries, whose inherent novelty makes them hard to filter with
existing rule-based methods. Another venue of further research is
examining the utility of the study setup in prospective, target-specific
lead optimization scenarios, where information frommultiple sources
(e.g., biological profiles, ADMET) need to be taken into account as a
whole to successfully deliver a drug to the market.

Finally, from a hands-on experience from several ongoing med-
icinal chemistry projects at Novartis, MolSkill is currently being
applied in several routine tasks. Specifically, in an era where machine-
learning methods can design tens of thousands of compounds, or
technologies such as high-throughput screening can highlight a large
number of hits at early stages of the drug discovery process, the pro-
posed score is being used to implicitly incorporate chemists’ intuition
for compound filtering without the requirement of manual examina-
tion. This usage will, hopefully, accelerate both the adoption and trust
on generative approaches in the upcoming years.

Methods
User composition and question design
A total of 35 medicinal chemists from different sites at Novartis par-
ticipated in the presented study. These included chemists from dif-
ferent geographical sites, at different levels of seniority/expertise, and
from either a medicinal, organic, analytical, or computational chem-
istry background.

In regards to the question posed, and in the belief that chemists
develop an inherent sense of what constitutes a desirable compound
over their careers, we set out to present a fairly simple, and inten-
tionally ambiguous prompt asking them which of two presented
compounds they preferred. We asked chemists to imagine an early
virtual screening campaign setting (accounting for simple aspects such
as oral availability and small molecular profile, but no other modalities
such as covalency or bifunctionality) where they needed to decide
which compound to follow up between two. The question was
designed so that participants did not spend a significant amount of
time evaluating each presented pair of compounds, while being gen-
eric enough so that one of the compounds could be discarded
according to a non-defined gut feeling chemical preference. This could
include drug-likeness, synthetic accessibility, or other criteria inherent
to the pair of the compounds presented in each choice. We note that
the question choice can be seen as an oversimplification of the pro-
blem, and that in other drug discovery scenarios, additional details on
the presented prompt would be needed for clarification. In real-life
setups, these details would typically include aspects like existing
ADMET or activity data, or bespoke predictive models for those
endpoints.

Evolution of the study
Over the course of the presented study, several rounds were con-
ducted. Two preliminary analysis rounds consisting of 220 molecular
pair evaluations, and with feedback requested from 9 and 14 chemists
at Novartis, respectively, were carried out. Specifically, we mainly
focused on measuring:

• To what degree the choices made by one chemist agree with
those made by their peers (i.e., inter-rater agreement). This was
evaluated with 200 different compound pairs. Intuitively this a
direct measure of whether there is a signal to be learned by a
machine-learning model.

• Whether chemists choices are self-consistent (i.e., intra-rater
agreement). In order to do so, we included an additional
redundant 20 compound pairs, albeit in a random order and
position on the screen.

In addition, we also studied whether there was a bias towards
choosing a compound depending on its position on the screen (left/
right) during annotation. After the first initial preliminary round was
completed, we had received qualitative feedback from the chemists on
some of the presented pairs. Specifically some criticismwas expressed
in regards to some pairs being inherently hard, as both compounds
contained clearly problematic motifs (e.g., plague vs. cholera pairs
where both compounds featured known toxicophores). These were
then removed (seeData retrieval, cleaning, and pair generation section
for details on the protocol). A second round with identical number of
pairs was subsequently carried out. Note that in the first and second
preliminary rounds, all chemists were handed out the same pairs (i.e.,
we performed inter-rater repetitions), so as to adequately evaluate the
points presented above. After both preliminary rounds had yielded
satisfactory results, we set out for a production runwherewe obtained
over 5000 responses over the course of several months. Furthermore,
since a reasonable degree of agreement between the chemists in the
preliminary rounds was observed, we forwent the pair repetition
requirement in the production runs and considered all participating
chemists as a single labelling oracle.

Data retrieval, cleaning, and pair generation
For all purposes of the study, we use compounds extracted from the
publicly available ChEMBL database36 (version 31). Specifically, all
compounds considered in this study come from a pool where the
following filterswere applied: theirmolecularweight was between 200
and 1000 g mol−1, their drug likeness (QED)18 between 0.2 and 0.9,
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and allowing up to 2 rule-of-five violations37. In addition, all retrieved
compounds were checked so that they could successfully be read
by the RDKit package17, and subsequently standardized, which
included removal of salts, tautomer normalization38, and atom neu-
tralization via O’Boyle’s nocharge code39. For the second preliminary
study round and subsequent production rounds, the NIBR sub-
structure filters were also applied29, which resulted in a final pool of
1,831,052 molecules.

For the two preliminary study rounds, and for the first round of
the production stage, compounds present in the initial pool were
grouped in 1000 clusters via the k-means algorithm, as implemented in
scikit-learn40, and using binary extended-connectivity fingerprints as
molecular features. Pairs were then selected by ensuring that their
associated clusters were not repeated within the same batch of ques-
tions. In addition, pairs with both compounds featuring either more
than 10 rotatable bonds or 3 fused rings were removed. This was done
to avoid comparisonswhere chemistsmay rejectone compoundor the
other without a clear preference for either. We note that these filters
were mostly informed by early informal discussions with the partici-
pating chemists, but are fairly arbitrary—less stringent boundaries
could be chosen for future studies.

Psychometric study setup
We considered a user study where interviewees were presented with
pairs of choices (i.e., compounds) to select from. There were several
reasons to consider a pairwise experimental design in contrast to
simpler alternatives such as obtaining direct feedback on individual
samples. One of such advantages is that there is abundant evidence
from psychometric studies and decision theory suggesting that
humans find it inherently hard to sort items according to their
preferences41, whereas making binary decisions is a task that is in
general considered easier42–44. In addition, it also avoids user or
situation-specific baseline biases: humans are known to start labelling
from an anchor value that is then adjusted towards a final decision
in situations of uncertainty or stress, which had been demonstrated to
be an issue in other user studies45–49. In the specific context of drug
discovery applications, it shouldbeobserved that this labeling strategy
ismarkedly different fromones used in previous studies14, where it was
found that a large number of repetitions per compound was crucial to
obtain a reliable proxy for the crowd-sourced endpoint of interest.
This was mostly due to the overall low reported agreement between
chemists, as also confirmed by another studies10. We partially attribute
this difference in agreement to the human anchoring effect when
rating items in a sequential manner.

Learning to rank
Our setting resembles that of preference learning by pairwise
comparisons50. One naïve approach to tackle the challenges raised by
the proposed pairwise design is to try and induce a utility function
based on how many times a compound has been preferred over
others (or its proportion), and then frame this problem as a regular
supervised regression task. The main disadvantage of this procedure,
however, is that it requires the same compound to be present in
several comparisons in order to accurately estimate a preference,
which severely limits howmuch chemical space we can explore given
a finite amount of time provided by the volunteer chemists. Instead,
we take inspiration from the ELO skill-based systems that were
popularized by the rating schemas for zero-sum games such as chess
or backgammon51, or more recently by the TrueSkill algorithm52,53 as
used by the Xbox Live multiplayer videogame service. In the original
setting, the difference in ratings between two players served as a
function of the probability of one player winning over the other. In
our case, we consider the presented molecules to the chemists as
the players participating in our game, the main goal being to rank
them54.

Mathematically, given a (possibly incomplete) set of molecules
m1,m2, . . . ,mn 2 M, and training data consisting of k pairs of exam-
ples with binary preference relations of the typemi≻mj (meaning that
miwas preferred overmj in a specificmatch), our task is to infer a total
ordering over allmolecules inM. Furthermore, such pairs do not need
to specify a complete ranking of the training data or be consistent (i.e.,
satisfy transitivity). In order to do so, we consider a function
s : M ! R, where we assume that each molecule can be para-
meterized by a latent score that can be learned by a sufficiently
expressive model55. Once this function has been approximated, it can
be then used to impose a complete order over already seen or new
molecules. Denoting by δij : = ŝðmiÞ � ŝðmjÞ the learned latent score
difference between molecules mi and mj, we estimate
p̂ mi � mj

� �
: = σ δij

� �
, where σ is a sigmoid function. To learn s, we

then simply use standard stochastic gradient descent and minimize a
binary cross-entropy loss between the probability estimates and the
preference values in the trainingdata. Since this loss is a functionof the
learned δ values only, to ensure identifiability of the scores s, and to
guarantee that these are centered around the real origin, we use a
regularization term Lregðŝ; λÞ : = λ ŝ

�� ��2, where �j j is the Euclidean norm
and λ is a user-defined hyperparameter. Empirically, we found that
setting small values λ≃ 10−6 is enough to encourage the desired score
behaviour for our use case.

We chose to parameterize s as a standard feedforward neural
network that uses 2048-bit count-based extended connectivity
fingerprints56 and a list of two-dimensional descriptors computed via
RDKit as input features.We train allmodels using theAdam57 optimizer
with an initial learning rate of 3 × 10−4. Additional molecular featur-
ization and architectural details are available in the accompanying
code repository to this study.

It is important to note that the proposed methodology is mark-
edly different in design from previous studies, which directly model
thehuman-provided feedback as a regressionobjective.Our approach,
on the other hand, infers these scores automatically based on the
preferences expressed,which, due to the study design aremore robust
between and within chemists. This in practice allows us to prioritize
the exploration of a wider chemical space rather than having to rely on
repeated feedback from different chemists.

Active learning
To achieve the set goal of 5000 user responses in the study, and to
ensure we covered sufficient chemical space, we considered a simple
batched active learning approach58,59. Specifically, every 1000
responses we randomly sampled a large number of pairs from the
initial pool of compounds. These pairs were then ranked according to
their uncertainty, as estimated by the variance of their predicted δij
values using theMonte Carlo dropoutmethod60 with a fixed rate of 0.2
and 100 predicted samples. In addition, to ensure that comparisons
were not drawn between too many compounds belonging to similar
regions of chemical space, we used a clustering strategy (see Data
retrieval, cleaning, and pair generation section) and allowed up to one
comparison between any two clusters in each batch.

Platform deployment
A platform for questionnaire delivery was internally developed at
Novartis. Users were asked to select between pairs of compounds
presented upon a predefined question. The front-end was developed
using an intuitive ReactJS (reactjs.org) web GUI that could be operated
either via a computer or a touchscreen device. A screenshot of the
deployed interface is shown on Fig. 8. Special care was taken to ensure
that the same pair was not presented to different users. Results were
internally stored in a remote PostgreSQL database61 instance through a
custom REST API developed with FastAPI (fastapi.tiangolo.com). The
database was then periodically exported to perform model training
and run analyses.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study, including survey responses as well as
training and generated molecules have been deposited in Zenodo
under accession code https://doi.org/10.5281/zenodo.821490362. Par-
ticipants in the study opted-in and informed consent was obtained
from all participating chemists by Novartis.

Code availability
Production-ready trained models and all related code are made avail-
able via a MIT-licensed repository github.com/microsoft/molskill62. A
conda package is also provided for integration convenience within
downstream cheminformatics tasks. Neural network models were
trained using the PyTorch automatic differentiation library (ver-
sion 1.11).
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