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Visible light-triggered selective C(sp2)-H/
C(sp3)-H coupling of benzenes with aliphatic
hydrocarbons

Qian-Yu Li1, Shiyan Cheng1, Ziqi Ye1, Tao Huang1, Fuxing Yang1, Yu-Mei Lin 1 &
Lei Gong 1,2

The direct and selective coupling of benzenes with aliphatic hydrocarbons is a
promising strategy for C(sp2)-C(sp3) bond formation using readily available
starting materials, yet it remains a significant challenge. In this study, we have
developed a simplified photochemical system that incorporates catalytic
amounts of iron(III) halides as multifunctional reagents and air as a green
oxidant to address this synthetic problem. Undermild conditions, the reaction
between a strong C(sp2)-H bond and a robust C(sp3)-H bond has been
achieved, affording a broad range of cross-coupling products with high yields
and commendable chemo-, site-selectivity. The iron halide acts as a multi-
functional reagent that responds to visible light, initiates C-centered radicals,
induces single-electron oxidation to carbocations, and participates in a sub-
sequent Friedel-Crafts-type process. The gradual release of radical species and
carbocation intermediates appears to be critical for achieving desirable reac-
tivity and selectivity. This eco-friendly, cost-efficient approach offers access to
various building blocks from abundant hydrocarbon feedstocks, and demon-
strates the potential of iron halides in sustainable synthesis.

The direct and selective coupling of benzenes and low reactive ali-
phatic hydrocarbons, including alkanes and cycloalkanes, has garnered
significant attention in the field of organic synthesis as an ideal strategy
for C(sp2)-C(sp3) bond formation1–5. This method offers advantages in
terms of both atoms and steps, while also benefiting from the abun-
dance of starting materials. However, achieving desirable reactivity,
chemo- and site-selectivity during the C-H cleavage and subsequent
C-C formation is a challenging task due to the intrinsic inertness
of various C-H bonds in these hydrocarbon feedstocks, as well as
their high similarity in bond strength and chemical environment. For
instance, benzene possesses a bond dissociation energy (BDE) of
110 kcal/mol, while (cyclo)alkanes typically have BDEs exceeding
96 kcal/mol6,7. Reactions of substituted benzenes involve ortho-,
meta- and para-selectivity, whereas branched (cyclo)alkanes contain
various primary, secondary, and tertiary C-H reaction sites (Fig. 1a)8–11.

Side reactions such as polyalkylations, rearrangements, and self-
couplings are also critical issues that must be taken into account12–15.
Consequently, developing efficient systems to facilitate selective
coupling reactions of unactivated C-H bonds, beyond those relying
on directing groups or Minisci-type alkylation of heteroarenes16–22,
represents an insurmountable challenge requiring a deep under-
standing of the complex interplay between reactivity, selectivity, and
reaction conditions.

Despite significant efforts, very few strategies relying on func-
tional catalysts, such as metal-modified zeolite, montmorillonite and
heteropoly acid catalysts23,24, have shown potential in this aspect
(Fig. 1b). For example, Goldman et al. demonstrated that the combi-
nation of pincer-ligated iridium catalysts and zeolites enabled an
intramolecular reaction at 205 °C of an alkyl-H and an aryl-H bond
in n-pentylbenzene, yielding 1-methyl-1,2,3,4-tetrahydronaphthalene
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in up to 32% yield25. Motokura et al. reported a direct C-H alkylation of
benzene with alkanes and cycloalkanes at 150 °C for 64 h in the pre-
sence of montmorillonites as solid acid catalysts, which provided with
6–22% conversions and regioselectivities of 51–87%26,27. Chang et al.
developed a copper-catalyzed C-H alkylation of polyfluoroarenes,
a class of specific arenes of extremely electron-deficient features,
with (cyclo)alkanes or other alkylating sources, delivering alkylben-
zene products in 23–87% yields and with moderate to good
regioselectivity28. Newapproaches topromote such transformations in
a more sustainable and general way are strongly demanded.

Iron salts and complexes have long been recognized as attractive
reagents and catalysts in organic synthesis, owing to the abundance of
iron element on earth and its biocompatibility29–31. Recent studies have
revealed the potential of iron salts in photochemical reactions, with
the ability to activate and break aliphatic C-Hbonds32–36. Building upon
our experience with visible light-driven photochemical synthesis37–39,
we aimed to develop an economical and environmentally friendly
approach for the direct coupling of low-reactive C(sp2)-H and C(sp3)-H
bonds under mild conditions (Fig. 1c). Our mechanistic hyphosis
involves the use of a catalytic amount of an iron(III) halide (X =Cl, Br)
to initiate the formation of alkyl radicals derived from C(sp3)-H
precursors. The resulting radicals are then oxidized by FeIII, generating
carbocation intermediates that undergo the subsequent Friedel-
Crafts-type process to furnish alkylarene products. Air, acting as a

mild oxidant, can oxidize the reduced iron species and regenerate FeIII

for the next cycles. The gradual release of radical species and carbo-
cations, along with the low concentrations of active intermediates,
allow for useful reactivity and selectivity. Here, we show an iron(III)
halide-enabled photochemical aerobic dehydrogenative coupling
reaction between C(sp2)-H precursors (e.g., benzenes, phenols, phenol
ethers, indoles, and pyrroles) and C(sp3)-H donors (e.g., benzylic,
allylic C(sp3)-H derivatives, and cycloalkanes). This method provides
straightforward access to valuable alkylarenes with high chemo- and
site-selectivity under extremelymild reaction conditions, and offers an
appealing strategy for constructing complex organic molecules using
low-cost starting materials and environmentally benign iron salts.

Results and discussion
Initial experiments
With the aim of investigating iron-promoted photochemical cross-
coupling between low reactive C(sp2)-H and C(sp3)-H bonds, we
selected anisole (1a) and 4-ethylbiphenyl (2a) as model substrates and
utilized air as an environmentally friendly oxidizing agent. Various
metal salts, including CoCl2, NiCl2, CuCl2, Fe2(SO4)3, Fe(NO3)3, FeCl3 or
FeBr3, were tested as initiators in catalytic amounts. The results indi-
cated that only iron halides displayed activity in this transformation
(Fig. 2, entries 1–9). Specifically, when 1a and 2awere reacted in 1,1,2,2-
tetrachloroethane (TCE) with 20mol% FeCl3 · 6H2O under an air
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Fig. 1 | Overview of this work. a Challenges associated with cross-coupling
between aC(sp2)-H bond in arenes and aC(sp3)-H bond in alkanes.bRepresentative
studies oncross-coupling between aC(sp2)-Hbond in arenes and aC(sp3)-Hbond in
alkanes. c This work: iron(III) halide-enabled photochemical selective coupling of
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atmosphere and irradiation with a 50W LED lamp (λmax = 410 nm), the
alkylbenzene product (3) was obtained in a good yield of 76% (entry 9).
Solvent screening experiments were performed, and it was found that
the yields were found to decrease when using other solvents such as
CH3OH, CH3CN, C6F6, dichloroethane (DCE), or dichloromethane
(DCM) (entries 10–14). Different light sources, such as a 50WLED lamp
with maximum wavelength at 395 or 455 nm, provided yields of 56%
and 24%, respectively (entries 15, 16). Moreover, the reaction did not
proceed in the dark at either 25 °Cor 70 °C (entries 17, 18), highlighting
the critical role of light irradiation with a suitable wavelength for the
transformation to occur. External additives, including an amine base, a
carboxylic acid, a chloride source and oxygenwere also examined, but
none of them enhanced the yield (entries 19–22).

Substrate scope
Underoptimal conditions,we conductedanassessmentof the substrate
scope of C(sp2)-H precursors in the iron halide-enabled photochemical
reaction (Fig. 3). Our study included a range of phenyl ethers (products
3–6), substituted phenyl ethers (7–11), 2,3-dihydrobenzofuran (12),
benzo[d][1,3]dioxole (13), 2,3-dihydrobenzo[b][1,4]dioxine (14), phenyl
sulfides (15–17), phenol and its derivatives (18–25), all of which were
found to be compatible. The corresponding products were obtained
with yields ranging from 43% to 76%, typically with only a single
regioisomer observed. This process demonstrated high regioselectivity
towards competitive C(sp2)-H sites. For example, during the formation
of compound 25, the 4- and 5-position of Guaiacol were selectively
benzylated in a satisfactory ratio of 6.0:1. Additionally, product 26,
bearing three reactive sites in the substrate, was formed in a 66% yield
and displayed exclusive regioselectivity. It is worth noting that benzene
was successfully converted into the desired product (27) in a 45% yield.
Alkyl benzenes containing competitive benzyl C-H bonds acted as
C(sp2)-H precursors instead of C(sp3)-H donors in this reaction. The
reaction of toluene or tert-butyl benzene with 1-bromo-4-ethylbenzene
gave the desired products (28, 29) with para:ortho ratios of 3.0:1 and
4.0:1, respectively, while those of biphenyls yielded the corresponding
products (30–32) as single regioisomers in 45–53% yield.

Aromatic N-heterocycles are widely present in bioactivemolecules
and natural products, with their benzylated derivatives attracting sig-
nificant attention due to the potential therapeutic applications40. Under

standard conditions, reactions of 1H-indole, 7-bromo-1H-indoles or
5-bromo-1-methyl-1H-indole resulted in the formation of 3-benzylated
indoles (33–36) with yields ranging from 49% to 61%. N-acyl protected
indoles, such as 1-(1H-indol-1-yl)ethanone (product 37) and its deriva-
tives (38–42), were found to give typically higher reaction yields
(64–73%). The reaction of an N-tosyl protected pyrrole selectively
occurred at 2-position, furnishing the product (43) in a 45% yield. These
findings indicate a high tolerance of this method towards indole- and
pyrrole-based heterocycles.

In terms of C(sp3)-H precursors, we first explored various electro-
nically and sterically diverse ethylbenzene derivatives (Fig. 4). These
reactions, under standard conditions, produced coupling products
(44–57) with yields of 55–74%. Additionally, alkyl benzenes with a long
side chain (58, 59), fused aliphatic rings (60–62), fused aromatic rings
(63), as well as tertiary or primary benzylic C-H bonds (64–67), were
found to be compatible, delivering products with yields of 49–65%.
To demonstrate the precise C-H recognition of this method, several
substrates containing competitive primary, secondary, and tertiary
benzylic C-H bonds were tested. For instance, 1-(p-tolyl)adamantane, a
compound with both benzyl and adamantanyl C-H bonds, was selec-
tively arylated at the adamantanyl C-H site of higher bond strength,
affording the corresponding product (68) in a 52% yield and with 10:1
r.r.. The Hirshfeld charge analysis revealed that the carbocation on the
alkyl group had more positive charges, which could be advantageous
for further alkylation steps (see more details in Supplementary Infor-
mation Section 6.2). The reaction with 1-ethyl-4-methylbenzene exhib-
ited a site-selectivity of 4.8:1 r.r. (product 69), whereas 1-ethyl-4-(4-
isopropylphenoxy)benzene or 1-cyclohexyl-4-ethylbenzene provided
with 3.0:1 and 10:1 r.r. (products 70, 71), respectively. In these instances,
the C(sp3)-H arylation was observed to predominantly take place at
secondary C-H bonds, rather than primary or tertiary ones. This selec-
tivity can be attributed to a delicate balance between steric hindrance
and electronic preferences41, as well as the influence of iron salts in
other steps of the process.

Allylic C-H donorswere identified as suitable substrates and could
be selectively coupled with benzenes. For example, (2-methylprop-1-
en-1-yl)benzene, which bears two closely related allylic C-H bonds,
exhibited a preference for undergoing C-H arylation of the (Z)- over
(E)-methyl group. This resulted in the formation of the product (74)
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with a yield of 58% and > 20:1 r.r.. Despite having higher bond dis-
sociation energies of C-H bonds compared to toluene derivatives and
allylic C-H precursors, various cycloalkanes and their substituted
derivatives were shown to be applicable in the reaction. Adamantane,
1-methyl adamantine, cyclopentane, cyclohexane, cycloheptane and
1,1-dimethyl cyclohexane, were successfully converted into the cou-
pling product (75–80) in 40–49% yield under slightly modified con-
ditions. Notably, adamantane and its derivatives have stronger tertiary
C-H bonds than secondary C-H bonds (BDE of ~99 kcal/mol vs ~96 kcal/
mol), but their reactions exhibited exclusive selectivity towards ter-
tiary C-H bonds, yielding products 75 and 76.

Mechanistic studies
To investigate the reaction mechanism, several control experiments
were designed and conducted (Fig. 5). The addition of 2,2,6,6-tetra-
methylpiperidine-1-oxyl (TEMPO) or 2,6-di-tert-butyl-4-methylphenol
(BHT) to the photochemical reaction of 1d and 2a resulted in complete
inhibition the formation of product 6 (Fig. 5a, left). Instead, HRMS
analysis detected aTEMPO- and aBHT-benzyl radical couplingproduct

(81, 82). When the reaction was carried out in darkness in the presence
of TEMPO, compound 81 was not observed. These findings strongly
support thehypothesis of a pathway thatproceeds throughC-centered
radicals. The participation of chlorine radicals was confirmed by the
reaction of N-tosyl diallylamine (83) and stoichiometric FeCl3 · 6H2O
under standard conditions, which gave a cyclization product (84) with
a yield of 61% (Fig. 5a, right)42. Moreover, the reaction of 1d and 4-
(cyclopro-pylmethyl)−1,1′-biphenyl (85) under standard conditions
yielded a ring-opened alkyl chloride (86) with a yield of 66%. The
reaction between 1d and cyclopropylbenzene (87) under standard
conditions with the addition of nucleophilic sodium acetate also
afforded a ring-opening product (88) in a 77% yield (For an in-depth
understanding of the formation mechanism of product 88, please
refer to page S79 of the Supplementary Information). These results
suggest that the free radical chain reaction occurs between the
chlorine radical and aryl cyclopropane, and the cation is subsequently
captured by the nucleophilic reagent, further demonstrating
the involvement of chlorine radicals in the photochemical coupling
reaction (Fig. 5a, right)43,44.
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The reaction of 1d + 2a→ 6 exhibited a light-dark interval
response, indicating the essential need for continuous light irradiation
was essential for the transformation to occur (Fig. 5b). X-ray photo-
electron spectroscopy (XPS) analysis was performed on the residue
obtained from the reaction of 1d and 2a, in the presence of 2.0
equivalent of FeCl3 · 6H2O under argon. An evident signal at 709.8 eV,
corresponding to Fe2+ species, was detected. In contrast, the residue
obtained from the reaction under standard conditions showed a sig-
nificant signal at 711.0 eV, assigned to Fe3+ species. These observations
imply a possible pathway involving Fe(III)→Fe(II)→Fe(III) and air oxi-
dation, as depicted in Fig. 5c45. UV-Vis absorption spectra of the indi-
vidual components and their various combinations revealed that the
substrates (1d, 2a), the product (6), and different mixtures ([1d + 1a],
[1d + 1a +6]) displayed absorption only at λ < 330 nm. Meanwhile, the
iron salt exhibited evident absorption at λ > 400nm. These results
suggest that the species responsive to visible light could be derived
from iron species present within the system (Fig. 5d and Supplemen-
tary Fig. 3).

Incorporating nucleophilic sodium acetate or sodium thiocyanate
into this photochemical reaction resulted in 1-([1,1’-biphenyl]−4-yl)
ethyl acetate (89) or 4-(1-thiocyanatoethyl)−1,1’-biphenyl (90) in yields
of 47% and69%, respectively, indicating a potential pathway via carbon
cations (Fig. 5e). Irradiating 4-ethyl-1,1’-biphenyl (2a) with 2.0 equiva-
lent of FeCl3 ∙ 6H2Ounder argon yielded a chlorinatedproduct (91) in a
yield of 44% and a self-coupling product (92) in a yield of 49%. It is
worth mentioning that these products did not form in the dark. In the
presence of 1d, a C(sp2)-H precursor, (1-chloroethyl)benzene or its
bromide analog could be easily converted to the cross-coupling pro-
duct (44) in a good yield (Fig. 5f). These findings suggest that the
reaction can proceed through C-H chlorinated intermediates, but light
irradiation is essential for their generation. Furthermore, kinetic iso-
tope effect (KIE) experiments estimated the KH/KD ratio of the reaction

1d + 2b→ 44 as 2.62, confirming that the hydrogen atom abstraction is
the rate-determining step (Fig. 5g).

Based on these mechanistic experiments and reported
literatures34,36,46, we proposed a plausible mechanism (Fig. 5h). Initi-
ally, visible light induces a ligand-to-metal charge transfer (LMCT)
of the iron salt (FeCl3·6H2O or FeBr3), generating FeCl2 and a chlorine
radical. This active radical abstracts a hydrogen atom from an ali-
phatic C-H bond, affording HCl and a C-centered radical. Aerobic
oxidation of the iron(II) species regenerates the iron(III) salt, which
can further oxidize the C-centered radical to a carbon cation47–49.
Subsequently, the C(sp2)-C(sp3) cross-coupling coupling of the
alkyl carbon cation, or a corresponding chloride derivative from
nucleophile attack, with arenes leads to product formation. The final
step can be viewed as a Friedel-Crafts-type process promoted by an
iron-based Lewis acid.

Synthetic applications
With a more comprehensive understanding of the reaction mechan-
ism, we conducted an evaluation of the synthetic utility of thismethod
(Fig. 6). Our investigation revealed that a diverse array of derivatives
from natural products and medicinal relevance were compatible
with this protocol. For instance, 2-(phenoxymethyl)tetrahydrofuran
(product 93), 1-(phenoxymethyl)adamantane (94), sesamol (95), a
L-menthol derivative (96), a (+)-fenchol derivative (97), a L(-)-borneol
derivative (98) and a derivative of epiandrosterone (99) all effectively
reactwith2a to yield coupling products (93‒99) as single regioisomers
in yields ranging from 35% to 73%. Additionally, methoxybenzene (1a)
smoothly react with a derivatized difluoro-benzodioxole, a canagli-
flozinderivative, or triclosan under standard conditions, leading to the
formation of products (100‒102) in yields of 40‒70%. These results
further illustrate the high functionality compatibility and selectivity of
the reaction.
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Finally, several bioactive molecules were prepared on the basis of
the photochemical cross-coupling reaction. For instance, Nafenopin is a
potent hypolipidemic drug ($ 435.5/100mg, Alichem Inc.)50, and its
ester derivative (105) can be easily synthesized in just two steps. The

reaction of phenol ($ 121/2.0 kg, Alfa Aesar) and 1,2,3,4-tetra-
hydronaphthalene ($ 41.9/1.0 kg, Alfa Aesar) was conducted under
standard conditions, furnishing 4-(1,2,3,4-tetrahydronaphthalen-1-yl)
phenol (103) in a 69% yield. Compound 103was then treated with ethyl
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2-bromo-2-methylpropanoate (104, $ 69.6/250g, Alfa Aesar) for 24 h in
the presence of K2CO3, and gave the nafenopin ester (105) in a 98%
yield. This cost-efficient two-step procedure can also be utilized to
synthesize a beclorbrate derivative (107). When cyclohexane was sub-
jected to the same conditions and reacted with 4-methoxyindole,
it resulted in the arylated product (108) in a 38% yield. This compound
could be subsequently converted into the derivative of an anti-hepatitis
drug (110) in an 82% yield. Notably, the reaction of 4-methoxyindole
(5.5mmol) with cyclohexane can be easily scaled up, providing a com-
parable isolated yield (0.44 g, 34% yield).

We have developed a simplified strategy that utilizes multiple
functionalities of iron(III) halides under visible light conditions for the
direct and selective coupling of low-reactive C(sp2)-H and C(sp3)-H
bonds. In the absence of any ligand and with air serving as the green

oxidant, a catalytic amount of FeCl3 or FeBr3 facilitates the reaction of a
wide variety of C(sp2)-H precursors including benzenes, phenols, phenol
ethers, phenyl sulfides, indoles andpyrroleswithC(sp3)-Hdonors suchas
benzylic, allylic derivatives and cycloalkanes. This protocol produces
various C(sp2)-C(sp3) coupling products in good yields and with high
chemo- and site-selectivity.Mechanistic studies reveal that the iron salt is
not only involved in the light-triggered initiation of C-centered radicals
but also in the induction of single-electron oxidation under aerobic
conditions, and participates in the subsequent carbocation-mediated
alkylation of arenes. The step-by-step release of radical species and car-
bocation intermediates appears to be the key to success in achieving
desirable reactivity and selectivity. Overall, this study provides a pro-
misingapproach to the selective activationof strongC-Hbonds, enabling
the construction of valuableC(sp2)-C(sp3) bonds fromabundant reserves
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of hydrocarbon feedstocks, and will contribute to the development of
efficient and sustainable synthetic methods in organic chemistry.

Methods
General procedure for the photochemical cross-coupling of
arenes with benzylic or allylic C(sp3)-H precursors
A Schlenk tube (10mL) was charged with arenes (1a‒1zn, 0.30mmol)
and benzylic or allylic C-H precursors (2a‒2x, 2z‒2zd, 0.90mmol),
FeCl3·6H2O (0.060mmol) or FeBr3 (0.11mmol), (CHCl2)2 (or (CH2Cl)2,
CHCl3, CHCl2, 0.75mL). The mixture was degassed via three freeze-
pump-thaw cycles, then filled with dry air. The Schlenk tube was
positioned approximately 5 cm away from a 50W LED lamp
(λmax = 410 nm). After being stirred at 25 °C for 48 h, the reaction
mixture was concentrated to dryness. Purification using silica gel col-
umn chromatography gave the pure products.

General procedure for the photochemical cross-coupling of
arenes with cycloalkanes
A Schlenk tube (10mL) was charged with arenes (1d, 1ze or 1zv,
0.30mmol) and cycloalkanes (2 y, 2ze‒2zj, 3.0mmol or 0.75mL), FeBr3
(0.11mmol) and (CH2Cl)2 (0.75mL) or free-solvent. The mixture was
degassed via three freeze-pump-thawcycles, then filledwithdry air. The
Schlenk tubewas positioned approximately 5 cmaway froma40WLED
lamp (λmax = 370nm). After being stirred at 80 °C for 60 hor at 25 °C for
120h, the reaction mixture was concentrated to dryness. Purification
using silica gel column chromatography gave the pure products.

General procedure for the late-stage modification of nature
product derivatives and drug-like molecules
A Schlenk tube (10mL) was charged with arenes (1a, 1zo‒1zu,
0.30mmol), benzylic C-H precursors (2a, 2zk‒2zm, 0.90mmol),
FeCl3·6H2O (0.060mmol), ((CHCl2)2 or (CH2Cl)2, 0.75mL). The mix-
ture was degassed via three freeze-pump-thaw cycles, then filled with
dry air. The Schlenk tube was positioned approximately 5 cm away
from a 50W LED lamp (λmax = 410 nm) or a 40W LED lamp
(λmax = 370 nm). After being stirred at 25 °C for 48 h, the reaction
mixture was concentrated to dryness. Purification using silica gel col-
umn chromatography gave the pure products.

Data availability
The authors declare that the data supporting the findings of this study
are available within this article and its Supplementary Information file,
or from the corresponding authors upon request. The experimental
procedures and characterizationof all newcompounds areprovided in
Supplementary Information, and coordinates of the optimized struc-
tures are provided as source data. The X-ray crystallographic coordi-
nates for structures reported in this study have been deposited at the
Cambridge Crystallographic Data Center (CCDC), under deposition
numbers CCDC 2251704 (35), CCDC 2251707 (38), and CCDC 2098093
(56). These data can be obtained free of charge from The Cambridge
Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/
cif. Source data are provided with this paper.
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