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HLA3DB: comprehensive annotation of
peptide/HLA complexes enables blind
structure prediction of T cell epitopes

Sagar Gupta 1,2,4, Santrupti Nerli1,4, Sreeja Kutti Kandy1, Glenn L. Mersky1 &
Nikolaos G. Sgourakis 1,3

The class I proteins of the major histocompatibility complex (MHC-I) display
epitopic peptides derived from endogenous proteins on the cell surface for
immune surveillance. Accurate modeling of peptides bound to the human
MHC, HLA, has been mired by conformational diversity of the central peptide
residues, which are critical for recognition by T cell receptors. Here, analysis of
X-ray crystal structures within our curated database (HLA3DB) shows that
pHLA complexes encompassing multiple HLA allotypes present a discrete set
of peptide backbone conformations. Leveraging these backbones, we employ
a regressionmodel trained on terms of a physically relevant energy function to
develop a comparative modeling approach for nonamer pHLA structures
named RepPred. Our method outperforms the top pHLA modeling approach
by up to 19% in structural accuracy, and consistently predicts blind targets not
included in our training set. Insights from our work may be applied towards
predicting antigen immunogenicity, and receptor cross-reactivity.

The class I major histocompatibility complex (MHC-I) protein presents
self, foreign, or aberrant peptides to provide a mechanism of immune
surveillanceviaCD8+ cytotoxic T cell lymphocytes1. Thehumanversion
of MHC-I, Human Leukocyte Antigen class I (HLA-I), is encoded by the
highly polymorphic HLA gene locus2. There are three classical (HLA-A,
HLA-B, andHLA-C) aswell as threenon-classicalHLAgenes (HLA-E,HLA-
F, and HLA-G) that combine to encode over 35,000 HLA allotypes3,4.
Each allotype can display a repertoire of up to 108 epitopic peptide
sequences, defining distinct peptide/HLA-I (pHLA) complexes5. The
large HLA sequence variability and resulting differences in peptide
repertoires can cause alternative disease susceptibility6. Additionally,
this diversity across allotypes ensures species viability as all antigens
can likelybepresentedby at least one allotype in thepopulation. At the
structural level, peptides of length 8 to 15 amino acids bind to the HLA
groove, which consists of six major pockets labeled from A to F7.
Canonical bindingoccurs via stable anchoring interactionswithin theB
and F pockets of the HLA and the second (P2) and last (PΩ) peptide

residues, respectively, with longer peptides bulging out of the groove8.
Peptide binding specificity is restricted by allotype because the amino
acids of peptide anchor residues complement those in theHLAgroove,
leading to allele-specific sequence motifs. Meanwhile, the amino acid
propensities of non-anchor positions are generally more permissive,
which, when combined with the HLA’s polymorphic nature, leads to a
large combinatorial complexity in the number of potential pHLA
structures. As a result, estimating pHLA binding affinities has been
resolved using sequence data alone9. Predicting peptide immuno-
genicity and cross-reactivity, on the other hand, necessitates detailed
structural information, which has beenmore challenging tomodel due
to subtle structural changes which may arise from amino acid
variations10.

The high degree of structural conservation among pHLA com-
plexes suggests that structure-based modeling of novel peptide/HLA
antigens can be addressed using conventional comparative modeling
approaches11,12. Following the first crystallographic structure
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determination of a peptide/HLA complex13, we now have access to a
substantial dataset of reliable structures14. Recent efforts in de novo
modeling of the pHLA complex have focused on three main docking
strategies: constrained backbone, constrained termini, and incre-
mental peptide reconstruction15. Constrained backbone based pre-
dictions assume that all backbones of the same length are similar in
their conformation12,16–21. On the other hand, constrained termini
methods offer a less restrictive view as they assume that termini resi-
dues are confined to defined pockets in the peptide-binding groove,
while the locations of the other peptide residues are said to be
variable22–27. Lastly, fragment-based docking strategies sample the
peptide backbone ab initio, allowing for a greater degree of
flexibility28,29. In all three cases, themodeled structures are ranked and
compared based on either peptide backbone Root Mean Square
Deviation (RMSD) or all-atom RMSD. While these methods have gen-
erally been able to accurately model the HLA groove and N- and
C-termini of the peptide, they oftenmiss critical details in the center of
the peptide. The sequence and conformational diversity offered by the
central region of the peptide defines the immunologically important
area of pHLA structures30–32. Thus, accurate modeling of the center of
the peptide is difficult but necessary to understand and predict the
molecular basis for immunogenicity.

Here, we develop a database of pHLA structures (HLA3DB) and
classify peptide backbones based on the sequence separation between
their primary anchor residues. Focusing on nonamer peptides, we
apply an internal coordinate-based system to compare backbones in
dihedral angle space, and find that HLA-I peptides can sample a dis-
crete set of conformations. Additionally, we observe that similar
backbones can be obtained despite dissimilar peptide and HLA
sequences, revealing the complexity of convergent interactions which
ultimately define the peptide backbone. Exhaustive modeling simula-
tions using Rosetta reveal that distinct peptide backbones necessitate
unique biases of central peptide sequences arising from several fac-
tors, including steric hindrance. Finally, we combine our basis set of
distinct structural templates with a regression model trained on a
physically relevant energy function to develop a structural modeling
approach for nonamer/HLA complexes (RepPred). Using a cross-
validation benchmark, we find that our method outperforms six state-
of-the-art methods24,25,29,33–35, showing a 19% improvement in accuracy
relative to the top method35, while consistently identifying the correct
templates for target backbones that are sparsely populated in the
Protein Data Bank (PDB). Additionally, independent testing using a
blind set of targets shows comparable accuracy to our benchmarking
results. Our findings enable accurate modeling of peptide/HLA struc-
tures at scale, paving the way for accurate prediction of peptide
immunogenicity and cross-reactivity10,36–41.

Results
Analysis of pHLA structures uncovers the basis for peptide
conformational diversity
A comprehensive structural analysis of pHLA complexes requires a
curated database of high-resolution X-ray structures. While there are
publicly available databases that store MHC-I structural data42–50, they
do not provide a consistent format needed for further automated
analysis. Using the RCSB PDB Search API51, we developed an automatic
protocol for extracting and annotating pHLA structures with peptide
lengths from 8 to 10 residues (Supplementary Fig. 1 and Methods).
From each PDB entry, we retained the α1 and α2 domains of the MHC
heavy chain, referred to as the MHC platform, in addition to the pep-
tide. Leveraging the IPD-IMGT/HLA Database4 as a reference, we then
assigned an HLA allotype to each human MHC-I X-ray structure. The
resulting set of curated pHLA platform structures were stored in
HLA3DB (https://hla3db.research.chop.edu), a publicly available, auto-
updatingdatabase.HLA3DBconsists of 393 structureswith 15 octamer,
296 nonamer, and 82 decamer peptides (Fig. 1a). In terms of HLA

peptide binding specificities, the classical HLA-Ia allotypes present in
the database coverfive out of six knownHLA-A supertypes and allHLA-
B supertypes52, in addition to two non-classical type Ib complexes
(HLA-E and HLA-G). As expected, the A02 supertype is represented by
42% of the structures in the dataset. Notwithstanding, the wide range
of HLA groove and peptide sequences present in our dataset provides
a comprehensive sampling of the conformational space covering
possible peptide backbones to guide structural modeling efforts.

The prominent peptide classification scheme for immunopepti-
domics analysis utilizes a linear view of epitope lengths, where for
most HLA allotypes, the peptide’s second (P2) and last (PΩ) position
bind to the B and F pockets of the peptide-binding groove, respec-
tively. However, notable exceptions exist, including HLA-A*02:01
bound to the MART-1 nonamer antigen (LAGIGILTV), which has non-
canonical anchor residues at P1 and PΩ (Supplementary Fig. 2a). This
exception has important ramifications from a structural perspective,
indicating that peptide configurations of the same length can deviate
significantly. Thus, to classify peptides of different lengths according
to a global frame of reference defined by the HLA groove, we
employed an anchor residue-based scheme in which an anchor class is
defined as the sequence separation between the two most distant
anchor residues (Fig. 1b and Methods). Using this scheme, we cate-
gorized all pHLA structures inHLA3DB and found three distinct classes
of peptides: Δ6, Δ7, and Δ8. Generally, octamer, nonamer, and dec-
amer peptides reside in the Δ6, Δ7, and Δ8 classes, respectively, but
this is not always the case (Supplementary Fig. 2b). As expected, theΔ7
anchor class contains the most structures since nonameric peptides
are the dominant sequence length presented by MHC-I molecules53.

Next, we evaluated the distance between the Cα atoms of the
anchor residues for each anchor class, termed the anchor distance.
Despite differences in peptide-binding motifs across HLA supertypes,
we find that the anchor distance is heavily confined by the geometry of
the HLA groove. Examination of pHLA structures reveals overlapping
distributions of anchor distances, with a median of 18 Å, 18.5 Å, and
19Å, for the Δ6, Δ7, and Δ8 classes, respectively (Fig. 1c). As the dis-
tance separation between anchor residues increases, the peptide’s
central bulge becomesmore pronounced, resulting in amore concave
structure. A small set of outliers can be attained through either β-
strand extended (Supplementary Fig. 2c, d, f) or α-helical condensed
peptide backbone conformations (Supplementary Fig. 2e). In general,
peptides belonging to the same anchor class show a relatively
restricted distance distribution, supporting a theme where divergent
conformations are attained through local changes in internal back-
bone degrees of freedom, rather than through global changes in the
overall length of the displayed peptide antigen.

We next sought to characterize the conformational diversity of
peptides belonging to the same overall anchor class. Thus, we initially
focused on Δ7 peptides (n = 303) as they were the most common
classification in our dataset. While these peptides exhibited a narrow
anchor distance distribution from 17.5 Å to 20Å, highly divergent
conformations were observed, which could influence recognition by
T-cell receptors (TCRs). Building on the knowledge that TCRs pre-
ferentially interact with the central bulge of the peptide, we employed
a structural framework, termed the fixed-local frame, to capture pep-
tide conformational diversity (Fig. 1d).We established that the primary
anchor residues (P2 and P9) provide a fixed frame of reference by
defining a narrow range of allowed Cα-Cα distances. Concurrently, the
central portion of the peptide, specified as positions 4 to 7, define
peptide backbone diversity through changes in the φ and ψ dihedral
angles.

To further highlight that dihedral angle variations occurring at
specific peptide positions are required to fit a nonamer in the peptide-
binding groove, we modeled different regular backbone structures
de novo in the absence of theMHC andmeasured the resulting anchor
distance (Methods). Peptide anchor distances within the observed
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range for Δ7 pHLA structures (17.5 Å to 20.0Å) were plotted as con-
tinuous surfaces on a Ramachandran plot (Fig. 1e). We found a single
overlapping area of this surface with the favorable region of a Rama-
chandran plot that was adjacent to the ideal polyproline type II (PPII)
helical conformation (φ = −75°, ψ = +145°)54. However, the anchor dis-
tance of an ideal PPII peptide was found to be 21.4 Å, lying outside of
the distribution observed for the Δ7 anchor class (Fig. 1f). Notably,
even pHLA complexes with a near regular PPII peptide conformation
required slight variations to allow for an acceptable anchor distance

distribution (Supplementary Fig. 3). This calculation reveals that, in
order to satisfy the observed range of anchor distances in the Δ7
peptides, individual residues within Δ7 nonamers must adopt config-
urations that deviate from the ideal PPII conformation, introducing
structural diversity.

We next analyzed the distributions ofφ andψ dihedral angles for
each peptide position among peptides in the three anchor classes
(Fig. 1g, Supplementary Figs. 4 and 5). For the majority of structures,
the canonical anchor residues (P2 and PΩ) and adjacent residues were
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Fig. 1 | Analysis of pHLA structures in HLA3DB uncovers the basis for peptide
conformational diversity. a Distribution of pHLA structures in HLA3DB by
supertype for HLA-A and HLA-B and single-resolution allotype for HLA-C, HLA-E,
and HLA-G. b Schematic depicting how anchor class and anchor distance are
defined using the Δ7 anchor class as an example. Cα atoms of anchor residues are
shownasgreen spheres and connectedby anorange solid line depicting the anchor
distance. B and F pockets are shaded in pink and blue, respectively, and the
remainder of the HLA is colored in gray. cDistribution of anchor distances for each
anchor class with the center indicating the median (Δ6 pHLA structures: n = 15; Δ7
pHLA structures: n = 303; Δ8 pHLA structures: n = 75). Whiskers extend to the
furthest values that lie within the 75th and 25th percentile value ± 1.5 times the
interquartile range. Outliers are shown in black and pink circles with pink data
points elaborated in Supplementary Fig. 1c–f. Peptide backbones corresponding to
the median anchor distance of each anchor class are shown above each respective
boxplot (Δ6: PDB ID 1E28 [https://doi.org/10.2210/pdb1E28/pdb], Δ7: PDB ID 1K5N

[https://doi.org/10.2210/pdb1K5N/pdb], Δ8: PDB ID 3I6K [https://doi.org/10.2210/
pdb3I6K/pdb]). d A schematic of the fixed-local framework for conformational
diversity. On the right, the inset highlights the central bulge of the peptide and the
respective dihedral angles in orange dashed sectors. Backbone heavy atoms are
shown as spheres. e General Ramachandran plot showing dihedral angle pairs
satisfying the anchor distance distribution seen in the Δ7 anchor class. Favorable
overlaps are colored green, allowed overlaps are colored cream, and disallowed
overlaps are colored red. Favorable regions are shaded blue, allowed regions are
shaded light blue, and unfavorable regions are shaded white. PPII conformation is
shown as a red diamond at (−75°, +145°). f Backbone of a de novo designed poly-
glycine nonamer with all dihedral angles set to the PPII angle (−75°, +145°). Cα
atoms of anchor positions are shown as spheres and connected via an orange
dotted line to indicate anchor distance. g General Ramachandran plots of all Δ7
peptides (n = 303). Plots are shaded identically to (b) with discrete points insteadof
shaded surfaces.
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clustered around the PPII conformation. For instance, in Δ7 peptides,
P2, P3, and P8 were conserved. On the other hand, residues in the
center of the peptide showed frequent deviations from the PPII region
towards a more extended (β-strand) or more condensed (α-helix)
structure. The magnitude and order of these divergences, driven by
the identity of both the HLA groove and peptide residues, defines the
conformational diversity of epitope backbones. These results support
that the conserved anchor residues (P2 and PΩ), which are primarily
involved in HLA binding, display little variability from the ideal PPII
conformation, while changes in the central part of the peptide pro-
mote conformational diversity necessary for specific TCR recognition.

Unbiased classification reveals conserved peptide backbones
across HLA allotypes
Guided by insights from our analysis of peptide dihedral angles, we
apply an existing internal coordinate-based metric55 to measure
structural divergence by comparing theφ andψ dihedral angles of the
center of thepeptide, termed theD-score (Methods). This is in contrast
to RMSD, which is defined in Cartesian space using a global frame of
reference56. To compare the performance of D-score vs RMSD in
comparing peptide backbone conformations, we focused on Δ7 pep-
tides as they are the most common in our dataset and determined the
backbone heavy atom RMSD of P4 to P7 and the D-score for each pair
of structures. While low D-score values generally corresponded to low
RMSD values, there were significant differences between peptide
backbones leading to an increased D-score that was not captured by
RMSD (Supplementary Fig. 6a). Thus, our results suggest that D-score
more accurately captures the difference in backbone configuration
between two peptides. In contrast, the global frame used by RMSD
does not accurately assess variations between individual φ and ψ
dihedral angles, limiting a more precise, quantitative analysis. We
define the D-score criteria as a D-score of less than 1.5 as this ensure
that the RMSD is less than 1 Å between backbones. We scaled the
D-score for Δ6 and Δ8 peptides according to the number of angles
included in the summation. An exemplar comparison of two structures
reveals how significant dihedral angle differences cannot be captured
by backbone heavy atomRMSD, leading to an inaccurate evaluation of
structural similarity (Supplementary Fig. 6b). We find that a large
dihedral angle difference at P5 can cause a substantial backbone
deviation at P6 and P7 (Supplementary Fig. 6c). Nonetheless, the
resulting RMSD is less than 1 Å, suggesting a near identical peptide
configuration. These results establish that the D-score, a metric in an
internal coordinate system, is a more accurate measure than RMSD in
determining the structural similarity of the central part of peptide
backbones.

To assess the extent of structural similarity in our dataset, we
determined the number of neighbors (non-self peptides which satisfy
the D-score criteria) for each Δ7 peptide. Overall, each structure had a
median of 28 neighbors; however, the number of similar backbones
ranged from 0 to over 100 (Supplementary Fig. 7a). Furthermore, we
generally found that two pHLA complexes could be neighbors irre-
spective of their peptideor allele sequence, signifying that interactions
between divergent peptide and HLA residues can yield similar back-
bone structures. For instance, one structure (PDB ID 5VGD [https://doi.
org/10.2210/pdb5VGD/pdb]) had 12 neighbors, each of which exhib-
ited similar peptide backbone dihedral angles to 5VGD, despite their
allotype (Supplementary Fig. 7b–d). As a result, this finding confirmed
that HLA allotype, which restricts the peptide sequence at anchor
residues, plays a negligible role in defining the backbone conforma-
tion, and instead structural diversity is definedbynon-anchor residues,
specifically P4 to P7 for Δ7 peptides.

Recognizing that the backbones in our dataset can adopt recur-
rent structures, we sought to establish a minimal set of peptide con-
figurations which could describe the entire conformational space for
peptides in each anchor class. Due to its limited size, our dataset does

not accurately capture the frequency ofdifferent backboneswhich can
be adopted by immunodominant peptide antigens. Thus, it was critical
that peptide conformations with zero neighbors were retained. Hence,
we chose a greedy algorithm based on the fixed-local frame and con-
structed a binary symmetric adjacency matrix, using the D-score to
measure structural similarity (Fig. 2a andMethods). In this process, the
structure with the most neighbors, known as a discrete peptide
backbone, was identified and it, alongwith its neighbors, was removed
from the matrix. This procedure was continued iteratively until the
matrix was empty, i.e., until all structures were accounted for. In this
way, we were able to capture the full peptide conformational space
without redundancy while also accounting for underrepresented
backbones. As per our expectation, we found that our set of 303 Δ7
peptides could be represented by a minimal set of 35 discrete peptide
backbones (Supplementary Fig. 8). Similarly,Δ6 (n = 15) andΔ8 (n = 75)
peptides could be represented by 3 and 34 backbones, respectively
(Supplementary Figs. 9, 10 and Supplementary Table 1).

We focused further analysis on Δ7 pHLA structures as they were
the most common in our dataset. To visualize the extent to which our
discrete peptide backbones spanned the peptide conformational
landscape, we used a two-dimensional PCA plot. This revealed that
discrete peptides were not only able to capture common conforma-
tions such as those located in the lower left of the PCA plot, but also
rare configurations represented by data points in the upper center
region of the plot (Fig. 2b). Thus, our greedy algorithm successfully
captured the entire conformational space. A historical analysis of Δ7
pHLA structures in the dataset showed a geometric progression in the
number of structures deposited (Fig. 2c). Notably, the rise in the
number of discrete peptide backbones has comparatively stagnated
over the past 5 years. We next sought to understand the supertype
distribution and number of neighbors for each discrete epitope. We
defined a discrete peptide backbone and its neighbors as a distinct set
of backbones. Since supertypes were generally diverse among each set
of backbones, we recapitulated our finding that similar epitope con-
formations are not solely defined by the groove residues, but rather a
convergent set of interactions between HLA and peptide residues
(Fig. 2d). Furthermore, the most common class (Δ7-1_6J1V), accounted
for 35% of all pHLAs in our dataset. In contrast, just under half of the
discrete peptides defined unique classifications with just one neigh-
bor. These results indicate that our basis set of 35 discrete peptide
backbones can capture the diversity of pHLA structures in our dataset
and that the existing structural data likely cover the majority of pos-
sible Δ7 peptide backbone conformations.

Exhaustive enumeration of the peptide sequence space reveals
structural biases
Next, we sought to investigate if peptide sequence biases existed
across distinct backbones. However, our dataset dwarfed the potential
sequence space of 209 peptides, containing just 247 nonredundant Δ7
nonamer sequences. Thus, we expanded our existing peptide
sequence space coverage using a fixed backbone Rosetta design57,58

technique (Fig. 3a and Methods). To ensure that the peptide-binding
groove was not a confounding variable, we restricted our analysis to
HLA-A*02:01, the most common allotype in our dataset. Using the
aforementioned greedy algorithm, we determined that there were 20
distinct peptide backbones across all 121 HLA-A*02:01 Δ7 nonamers.
We focused our analysis on the five most common HLA-A*02:01 con-
figurations, determined by their number of neighboring conforma-
tions. Next, we narrowed down the set of potential peptide sequences
by applying two constraints. First, along with the center of the peptide
(P4 to P7), P3 and P8 were also included to capture any effects that
adjacent positions may have on the peptide sequence of the central
residues. Second, we used a previously published matrix59, which
reports amino acid preferences on a per-position basis to narrow our
sequence space for P3 to P8 from20amino acids to 8 to 11 amino acids,
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depending on the position (Supplementary Table 2). We also con-
sidered proline at each position due to its restraining effects on the
peptide backbone. In total, we evaluated 784,080 peptide sequences
for each of the five distinct peptide backbones. Iterating through the
set of peptide sequences, we generated models, determined the total
score of each model using the ref2015 Rosetta energy function60, and
only considered the peptide sequences of models that were in the top
onepercent of the energydistribution, i.e., 7840models.While ref2015
has struggled with capturing subtle changes involved electrostatic
interactions61, prior research suggests its potency in capturing steric

hindrance58. Thus, we use the energy function along with practical
constraints on the peptide sequence applied by the groove, to enable
exhaustive structural modeling to substantially expand our dataset of
HLA-A*02:01 epitopes.

To determine if these backbone-specific peptide sequences were
distinct from the baseline peptide binding preferences, we computed
the Kullback–Leibler (KL) divergence62 at each position using 32,483
peptides experimentally verified to bind to HLA-A*02:01. We utilized
peptide binding data fromHLA-A*68:01, an allele belonging to the A02
supertype and therefore showing a similar peptide binding specificity,
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as a measure of the lower bound of the KL divergence. Our results
revealed that all five distinct backbones exhibited peptide sequence
biases (Fig. 3b). While the KL divergence was consistently lower for P4
compared to other positions, the HLA-A*02:01 binding motif con-
tained a known bias63 for negatively charged amino acids at P4, ulti-
mately decreasing the perceived sequence bias. We confirmed the
quantitative values given by the KL divergence by visually comparing
the sequence logo of all knownHLA-A*02:01 binders to those obtained
by exhaustive structural modeling (Fig. 3c and Supplementary
Fig. 11a–c).

We next sought to explain why different backbones could lead
to distinct peptide sequence biases. As an example, we chose two
peptide configurations (PDB IDs 5HHQ [https://doi.org/10.2210/
pdb5HHQ/pdb] and 6VR1 [https://doi.org/10.2210/pdb6VR1/pdb])
with a D-score of 5.9 (Fig. 3d). A per-position D-score analysis
revealed that the deviations occurred at P5 and P6 where the back-
bones diverge (Supplementary Fig. 11d). Peptide sequence logos of
these backbones also revealed significant differences. For 5HHQ’s

backbone, our modeling approach reported a preference for tryp-
tophan at P3, which was also found in the native peptide sequence
(GIWGFVFTL). Meanwhile, the sequence logo of 6VR1 favored small
amino acids at P3 such as alanine since a bulky group at this position
would clash with most side chains at P5 (Fig. 3e). The native peptide
sequence of 6VR1, HMTEVVRRC, followed this trend as well. A
backbone deviation in 5HHQ diverted the side chain at P5 away from
the tryptophan, avoiding an energetically unfavorable steric hin-
drance issue and encouraging a broad selection of sequences.
Additionally, we found a preference for aspartate at P5 in the
sequence logo of 6VR1, which can be explained by a favorable
hydrogen bonding interaction occurring between the side chain and
backbone (Fig. 3f). Due to 5HHQ’s backbone conformation, the side
chain of P5 cannot contact the backbone nitrogen atom of P7 and
thus does not display the same sequence bias. This comparison
demonstrates how the backbone conformation could impose local
steric constraints or introduce favorable interactions through
crosstalk between peptide backbone and side chain features.
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imposed by different backbone conformations. a A schematic of the exhaustive
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HLA-A*02:01. b Kullback–Leibler (KL) divergence between each of the predicted
sequence space of the five most common HLA-A*02:01 backbones represented by
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modeling results (n = 7840). Created using Seq2Logo90. d Structural overlay of the
peptide backbones (5HHQ [https://doi.org/10.2210/pdb5HHQ/pdb], blue and 6VR1
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A trained regression function allows for accurate structural
modeling
We aimed to harness the knowledge that all pHLA structures in our
dataset could be captured by a set of discrete peptide backbones to
enable accurate structural modeling of new antigens on all HLA allo-
types. To this end, we developed RepPred, an automated modeling
method which utilizes discrete backbones as templates for homology
modeling of Δ7 nonamer epitopes (Fig. 4a). Briefly, a target peptide
sequence is threaded onto 33 stable discrete backbone templates,
followed by structural refinement in Rosetta to create an initial set of
models. We computed the per-residue Rosetta energy terms of the
models29 andutilized these values as input features for a support vector
machine regression (SVR) function, enabling the prediction of the
D-score between the native crystal structure and the model. RepPred
reports the best model as that with the lowest predicted D-score.

To assess the accuracyofRepPred,weperformabenchmarkon all
targets in our dataset against a set of nonhomologous discrete peptide

backbones. Thus, we evaluate a total of 7775 target-template pairs in a
leave-one-out cross-validated manner whereby the models of the tar-
get structure are removed from the training set. As expected, we
observe that 96%ofmodels have a sub-angstromHLAbackboneRMSD
(Supplementary Fig. 12a). Recognizing the overrepresentation of HLA-
A*02:01 (A02) structures in our dataset, we first explore the accuracy
for A02 targets separately from all other allotypes, i.e., non-A02, tar-
gets. We define a successful model as one that has a D-score less than
1.5 relative to its known crystal structure. RepPred reports a structu-
rally accurate model for 63% of A02 targets (n = 102) and, on the basis
of backbone RMSD for the middle of the peptide, it selects a sub-
angstrommodel for 92% of A02 targets (Fig. 4b).While the refinement
step can cause the backbone to drift from the template conformation,
selecting the best model for A02 targets by D-score gives an accuracy
of 99% which is generally in agreement with the finding that the
representatives cover the conformational space. On the other hand, a
random selection of the representative backbone rarely (10%) selects
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Fig. 4 | Structural modeling of Δ7 nonamer/HLA complexes (RepPred) and
comparison to state-of-the-art methods. a Full workflow of the RepPred struc-
tural modeling method. b Boxplots showing the distribution of the D-score and
peptide backbone heavy atom RMSD of RepPred and six state-of-the-art methods,
sorted by publication date, for A02 targets with the center indicating the median
(Best model, RepPred, ref2015: n = 102; GradDock: n = 90; APE-Gen: n = 99; Keller:
n = 101; PANDORA: n = 100; AlphaFold: n = 101; AF-FineTune: n = 93). Whiskers
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dashed line is at a D-score of 1.5 and an RMSD of 1.0. c Structural superposition of

the RepPredmodel (template PDB ID 1OF2 [https://doi.org/10.2210/pdb1OF2/pdb])
and native structure (PDB ID 7U21 [https://doi.org/10.2210/pdb7U21/pdb]) of the
blind target melanoma antigen AVGSYVYSV bound to HLA-A*02:01. The target
sequence and allotype is written below the structure followed by the sequence and
allotype of the template. d Comparison of RepPred against AF-FT for A02 and non-
A02 targets. Accuracy is shown as a percentage over each bar. e Structural super-
position of the RepPred model (template PDB ID 6MT6 [https://doi.org/10.2210/
pdb6MT6/pdb]) and native structure (PDB ID 7R7Y [https://doi.org/10.2210/
pdb7R7Y/pdb]) of the blind target HIV antigen QATQEVKNW bound to HLA-
B*57:01. Formatting is identical to (c).
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the correct decoy, as expected. To further validate our modeling
approach, we conduct a blind test by assessing the accuracy of
RepPred on five Δ7 nonamer/HLA-A*02:01 structures in HLA3DB
deposited after the cutoff date for our dataset. In line with the
benchmark results, we accurately predict three out of five structures
within a D-score of 1.5, allowing for accurate placement of side chains
in their native rotameric states (Supplementary Fig. 12b). Our blind test
included a melanoma neoantigen (AVGSYVYSV)64 which we modeled
with a template structure originating from HLA-B*27:09, an allele not
found in the target’s supertype family (Fig. 4c). This finding recapitu-
lates the trend that similar backbones can occur independent of allele
identity, allowing us to use all observed backbones as a basis set for
structural modeling.

Next, we compareRepPredwith six existing approaches for pHLA-
I structural modeling: GradDock24, APE-Gen33, a method by
ref. 29 that we refer to as Keller, PANDORA25, AlphaFold234, and a
peptide/MHC fine-tuned version of AlphaFold (AF-FT)35. We focus our
comparison on A02 targets and find that RepPred outperforms five of
the six methods by at least 32% with respect to D-score (Fig. 4b).
Additionally, RepPred performs competitively (62% ≤ 1.5 Å) when
considering all-atom RMSD for the middle of the peptide (Supple-
mentary Fig. 12c). However, we found that nearly half of the A02 tar-
gets are neighbors to a discrete backbone (PDB ID 6J1V [https://doi.
org/10.2210/pdb6J1V/pdb]). Hence, a naivemethod could achieve 50%
accuracy by simply adopting this backbone conformation for all tar-
gets. While RepPred does achieve higher accuracy (76%) for the most
common backbone classification, it maintains 50% accuracy for all
other backbones, resulting in an overall accuracy of 63% (Supple-
mentary Fig. 12d).Meanwhile, AF-FT reports an overall accuracy of 57%
(n = 93) and an accuracy of 78% and 38% for the most common and all
other backbones, respectively. Thus, while AF-FT is influenced by the
bias of the most common configuration, in utilizing discrete peptide
backbones, RepPred weighs each conformation equally and reduces
the effect of this bias. As a result, RepPred shows a slight improvement
across all backbones and a notable enhancement for less common
conformations. We next sought to conduct a similar comparison of
RepPred to AF-FT for non-A02 targets. RepPred achieves 60% accuracy
for these structures (n = 102) (Fig. 4d), an accuracy comparable to that
of A02 targets.We further validatedourmethod through ablind testof
seven non-A02 targets in which we obtained an accuracy of 57%
(Supplementary Fig. 12b). RepPred models an immunodominant HIV
epitope (QATQEVKNW)65 with near-native side chain placement as a
result of high-fidelity generation of the peptide backbone (Fig. 4e). A
comparison to AF-FT reveals an overall accuracy of 56% for non-A02
targets (n = 63). When assessing performance for both methods based
on backbone conformation, we observe that RepPred performs 19%
better thanAF-FT for commonbackbones and comparably for all other
conformations (Supplementary Fig. 12e). Taken together, RepPred
models nonamer pHLA complexes with high accuracy, a finding which
resurfaces in blind tests of immunologically relevant antigens and
performs better than state-of-the-art methods.

Discussion
Our results characterize peptide backbone diversity across all pHLA-I
structures and builds on the work of Dunbrack and colleagues who
clustered antibody and kinase conformations66–70. Using HLA3DB, our
database of peptide/HLA structures, we broadly categorize peptides
using our anchor classification scheme, which accounts for non-
canonical anchor residues. When combined with a comprehensive
analysis of the backbone dihedral angles, we describe a framework to
explain conformational diversity and introduce D-score as a measure
of structural similarity. Using this metric, we find that peptide back-
bone similarity is allotype-independent and identify 35 discrete pep-
tide configurations which cover the entire seen conformational
landscape. Focusing on HLA-A*02:01, we discover strong peptide

sequence trends influenced by distinct backbone features. Finally, we
introduce RepPred, an accurate, pan-allelic structural modeling
approach for nonamer/HLA complexes, and demonstrate its improved
accuracy over existing methods.

There are several important limitations to our study. First, our
dataset of X-ray crystal structures is not necessarily a representative
sample of in vivo nonamer pHLA structures, and thus, the true dis-
tribution of backbone conformations is currently unknown. Addi-
tionally, due to the inherent bias in the motivations behind the
determination of each crystal structure, our dataset likely contains a
high proportion of disease-relevant peptides. Nonetheless, we are
confident that we have captured a large fraction of known backbone
conformations, as evidenced by our historical analysis of HLA3DB
(Fig. 2c). Additionally, as peptide/HLA structures are solved, our
automated modeling method will progressively improve due to
greater sampling of underrepresented backbone conformations. Sec-
ond, in utilizing crystallographic structures, we do not account for the
dynamic nature of the pHLA complex which has been shown to impact
TCR recognition in some cases71. For instance, peptide backbones have
been observed to exhibit rigid body motions upon TCR binding, and
thus could acquire conformations not covered by our discrete
backbones72–74. Third, RepPred is currently limited toΔ7 nonamers and
thus cannot model structures with non-canonical anchors or other
peptide lengths. Future efforts can build on RepPred to extend mod-
eling to longer peptides by focusing on the center of the peptide after
classifying backbones using the anchor residue-based scheme.

We present HLA3DB (https://hla3db.research.chop.edu), a data-
base of pHLA structures, as an accessible, intuitive resource for the
immunology and structural biology community. Beyond providing
discrete peptide backbones, its advantage over existing structural
databases42–50 lies in its standardization of structural information. This
opens the door for applications including but not limited to serving as
a training set for machine learning-based methods for pHLA binding
predictions and to ease setup for molecular dynamics simulations.

HLA3DB contains discrete peptide backbone conformations,
which were utilized for structural modeling of peptide/HLA-I com-
plexes via RepPred. Going forward, this approach can be improved by
training the regression function on data from non-human or class II
peptide/MHC structures and incorporating multiple sequence align-
ment information. Given that the peptide backbone can be accurately
modeled, this structural information can be incorporated into existing
TCR:pMHC modeling approaches to allow for improved prediction of
binding specificity75–78. Additionally, RepPred can be utilized to aid the
design of chimeric HLA molecules and subsequently identify peptide-
centric receptors79,80. Finally, leveraging structures in HLA3DB, we
envision the identificiation of cross-reactive peptide sequences which,
when combined with large-scale structure prediction, can help to
finetune immune receptors10,36–41. Collectively, HLA3DB provides an
atlas of peptide backbones, which RepPred utilizes to traverse from
the sequence to the structure space, setting the stage for predicting
peptide cross-reactivity in a backbone-focused manner.

Methods
HLA3DB curation
The peptide/HLA-I structural dataset (HLA3DB) was curated using a
custom Python script (Supplementary Fig. 1). Complexes were identi-
fied using the RCSB PDB Search API (v. 2)51 via a JSON file with the
following broad criteria: (i) macromolecular name containing key-
words “MHC” or “HLA” or gene name is “HLA-A”, “HLA-B”, “HLA-C”,
“HLA-E”, or “HLA-G” (ii) source organism is “Homo sapiens”, (iii)
structure resolution is 3.0Å or higher, and (iv) structure release date is
January 1st, 1988, or later. Using these selection criteria, we obtain a
total of 1017 PDB entries (as of April 29th, 2022). Each structure is
automatically fetched, filtered and saved into the database using the
Bio.PDB Python package fromBiopython (v. 1.79)81. Next, we check the
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PDB file for readability, classify chains into HLA heavy chain, β-2
microglobulin, peptide and other depending on the sequence align-
ment (with >50% identity) to a reference HLA-A*02:01 heavy chain
(consisting of 180 residues from N-terminus), β-2 microglobulin and
sequence length (for peptides of length 8 to 10 amino acids). If the PDB
file has other chains not within 5 Å from the peptide, the entry is
retained for subsequent filtering. Complexes with missing N-terminal
residues in the heavy chain are subjected to RosettaRemodel (Rosetta
v. 2020.08)57 where missing one (glycine) or two residues (glycine and
serine) from the reference HLA-A*02:01 are modeled. Structures with
HLA sequence length of less than 180 residues along the C-termini of
the heavy chain are discarded. After trimming the heavy chain up to
180 residues, the structure only contains the peptide/HLA complex.
Any structure missing backbone heavy atoms or contains atoms with
zero occupancy along the (i) peptide are removed from the database
and (ii) heavy chain are reported for manual examination. The PDB
entries are then HLA typed by performing pairwise sequence align-
ment with ~3000 HLA sequences obtained from the IPD-IMGT/HLA
Database82. The peptide and the heavy chains are renamed, the resi-
dues are renumbered, and coordinates are saved in our final structure
database. A FASTA file is generated summarizing the dataset with PDB
ID, chain name, allele, structure release date, and resolution followed
by the sequence of either the HLA or peptide depending on the chain
name specified in the previous line. Finally, the dataset was queried for
decameric peptides in the Δ7 anchor class and, if appropriate, manual
truncationwas conducted to create additional nonamericΔ7 peptides,
which were named by their original PDB ID followed by “−9”.

Anchor-based classification
The two most distant anchor residues were established by finding the
peptide residue with lowest Cα-Cα distance between residue 24 and
123 in the HLA corresponding to the B and F pockets, respectively7.
Anchor class was determined by subtracting the two most distant
anchor residues. The anchor distance was computed by assessing the
Cα-Cα distance between the two most distant anchor residues, which
define the anchor class. All analysis was completed using custom
Python scripts and PyRosetta 4.0 (v. 2020.50)83.

Dihedral angle analysis
A free polyglycine nonamer, chosen to eliminate the impact of steric
hindrance between HLA residues and peptide side chains, was created
using PyMOL84 Builder (v. 2.5.3) defaulted to anα-helical conformation.
Dihedral angleswere set using the Python PyMOLpackage (v. 2.5.3) and
iterated through −180° to +180° at 1° intervals for both φ and ψ dihe-
dral angles. For each instance, the anchor distancewas computedusing
the aforementioned method. Dihedral angle pairs that allowed for an
anchor distance between 17.5 Å and 20.0Å were plotted on a Rama-
chandran plot. Visualization of Ramachandran plots was conducted
using a modification of the Ramachandran 0.0.2 Python package.

D-score structural accuracy metric
The difference between backbone dihedral angles of the same type
and residue position was computed using the following equation55,
which was developed to compare antibody loop conformations.

D θ1,θ2

� �
= 2ð1� cosðθ1 � θ2ÞÞ ð1Þ

This equation accounts for the cyclic nature of dihedral angles,
allowing for an accurate difference measurement. We applied this
equation to determine the similarity between two Δ7 peptide back-
bones “A” and “B” for positions “p” as

D-scoreðA, BÞ=
X7

p=4

D
�
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B
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�h i
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The D-score criteria states that if A and B have a D-score of ≤1.5,
then the two backbones are considered structurally similar or neigh-
bors. ForΔ6 andΔ8 peptide backbones, we apply the D-score for P4 to
P6 and P4 to P8, respectively, and scale the D-score criteria according
to the number of angles.

Peptide backbone classification using a greedy algorithm
Backbone classification was conducted using a greedy algorithm in
Python (v. 3.8.15). Peptide dihedral angles of all Δ7 nonamers were
computed, and a binary matrix was created using the D-score criteria
such that if twobackboneswere similar a onewas added andotherwise
a zero. Then, for each backbone, the number of similar structures were
summed. The backbone with the most number of neighbors was
noted, and it and its neighbors were removed from the matrix. This
process continued iteratively until the matrix was empty.

Exhaustive structural modeling
Before modeling peptides using pHLA structure templates, we pre-
pared the crystal structures using the FastRelax protocol in Rosetta (v.
2020.08)85,86. Then, using a Python script, we iterated through all
possible combinations of amino acids between positions 3 to 8 as
defined by the HLA-A*02:01 groove bias, which was determined based
on a value of 0.0 or lower in a published amino acid similarity matrix
derived from experimental data (Supplementary Table 2)59. The new
peptide sequencewas stored in a blueprint file. The anchor residues of
P2 andP9werenot included as their sequencewasgenerally conserved
across HLA-A*02:01 epitopes. Based on its distance from the center of
the peptide, P1 was not included. Tomodel different peptides onto the
template pHLA structures, we utilized the RosettaRemodel57 applica-
tion from the Rosetta suite of programs. All side chains of the template
structure aside from those modeled on the peptide were left in their
original poses. The Remodel application automatically scores the
modeled structure, and the total score of the complex was utilized.
The top 1% of all structures by total Rosetta score were used to
establish the peptide sequence space of a given discrete peptide
backbone. Next, a position probability matrix (PPM) was created from
sequence data with zeroes defaulted to 0.02. The KL divergence was
computed using the rel_entr function in SciPy (v. 1.7.3)87 with eluted
HLA-A*02:01 and HLA-A*68:01 peptides from the IEDB as a reference.

Structural modeling of peptide/HLA complexes (RepPred)
Initial setup. We apply the greedy algorithm to Δ7 nonamers to
obtain discrete peptide backbones. Next, we perform a stability
check on the crystal structures of the discrete peptide backbones
identified by the greedy algorithm using the Cartesian relax protocol
in the Rosetta forcefield. The backbones which move more than a
D-score of 1.0 upon relaxation are removed from the template set
and the greedy algorithm is reapplied to ensure complete coverage
of the conformational space.

Structural modeling. For a given template discrete peptide back-
bone, we set the target amino acid sequence of the nine peptide
residues and 180 HLA residues using the PartialThreadingMover in
PyRosetta (v. 2020.50)83. This threaded model is then optimized
using the Cartesian relax protocol and four relaxed models are
created. If the D-score between the template crystal structure and a
given relaxed model is greater than 1.5, that model is removed and
not considered during further analysis. We then select the best
relaxed model out of the remaining structures by total
ref2015 score. Rarely, all four relaxed models may adopt a different
backbone after optimization and thus this template backbone
would not be considered in further analysis.

Regression. For each relaxed model, we compute 129 per residue
energy terms of peptide from the ref2015 energy function29 and these
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energy terms are further used for regression analysis. We train a
regression function to predict the D-score between the target crystal
structure and relaxed model using per residue energy terms of pep-
tides as features. We use the scikit-learn88 (v. 0.0) implementation of
Support vector machine regression (SVR) with radial basis function
(sklearn.svm.SVR). The free parameters of the models, namely the
distance parameter epsilon and regularization parameter C, are
determined through a grid search hyperparameter scanning. The grid
search covers values for epsilon and C in the range 10−4 to 104 and the
best parameter combination is determined using the coefficient of
determination (R2) score. The input features of the SVR function are
transformed using a uniform Quantile Transformer to avoid non-
standard distributions.

Benchmarking. We perform the above three steps to benchmark
RepPred. First, we conduct the “Initial setup” step. As a result of this
stability check, one discrete peptide backbone was removed and not
replaced as it had noneighbors. Thus,we beganourmodeling by using
33 discrete peptide backbones as templates. Next, we conduct the
“Structural modeling” step. We thread the sequence of 260 pHLA
complexes (targets) onto the 33 discrete backbone templates,
removing structural models generated using a template structure that
had a peptide differing from the target peptide at three or fewer
residues (homologs). This resulted in 7775 relaxed models (target-
template pairs). Finally, we perform the “Regression” step. Here, the
SVR function was subjected to a leave-one-out cross validation in
whichwe removed all data corresponding to one target structure from
the training dataset and used it as our test case. In the training set only,
we removed any target-template pairs with a D-score of greater than 7.
For each target, themodel with lowest predicted D-score from the SVR
is chosen as the best structural model.

The backbone heavy atom and all heavy atom RMSD of the
middle of the peptide as well as the backbone heavy atom RMSD of
the HLA was computed for A02 targets. For non-A02 targets,
RepPred reports a model only if the predicted D-score is less than
2.0. RepPred can model a single target sequence utilizing 136 Xeon
2.10 GHz cores in 30min.

Blind testing. To further confirm the accuracy of RepPred, we per-
formed a blind test. Here, 12 pHLA structures with nonredundant
sequences, deposited in the PDB after the cutoff date for HLA3DB,
were used. Structuralmodelswere created as describedpreviously and
the best model was selected using an SVR function trained on 260
nonhomologous pHLA complexes used in the benchmark. Consistent
with our benchmarking, the D-score was determined between the best
structuralmodel according to RepPred and the crystal structure of the
target.

Comparison to state-of-the-art methods
In comparing RepPred against six open-source methods for pHLA
structural modeling, we maintained all default parameters and fol-
lowed the appropriate documentation with no change to existing
code. For all peptide/HLA-A*02:01 targets, we removed structural
homologs for each method except PANDORA. For AF-FT, we removed
any targets that were utilized to fine-tune AlphaFold. Some structures
could not be processed by existing software. Thus, we report results
from 90 structures for GradDock, 99 for APE-Gen, 101 for Keller, 100
for PANDORA, 101 for AlphaFold, and 156 for AF-FT. For GradDock,
3MRE [https://doi.org/10.2210/pdb3MRE/pdb] was used as the tem-
plate structure as it is the highest resolution HLA-A*02:01 structure in
our dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed pHLA structures are available at https://hla3db.
research.chop.edu. Protein structures were obtained from the Pro-
tein Data Bank (PDB) using the RCSB PDB Search API (v. 2). A full list of
the structures used in this study can be found in the Source Data in the
form of PDB IDs. Source data are provided with this paper.

Code availability
HLA3DB can be accessed via https://hla3db.research.chop.edu. Code
used for structural modeling89 is available on Zenodo via https://doi.
org/10.5281/zenodo.8372875.
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