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Oncogenic context shapes the fitness
landscape of tumor suppression

Lily M. Blair 1,17, JosephM. Juan1,17, Lafia Sebastian1, Vy B. Tran1, Wensheng Nie1,
Gregory D. Wall1, Mehmet Gerceker1, Ian K. Lai1, Edwin A. Apilado1,
Gabriel Grenot1, David Amar1,2,3, Giorgia Foggetti4, Mariana Do Carmo5,
Zeynep Ugur4, Debbie Deng6, Alex Chenchik6, Maria Paz Zafra7,8,9,
Lukas E. Dow 7,10,11, Katerina Politi4,5,12, Jonathan J. MacQuitty1,
Dmitri A. Petrov13,14, Monte M. Winslow15,16, Michael J. Rosen 1 &
Ian P. Winters 1

Tumors acquire alterations in oncogenes and tumor suppressor genes in an
adaptive walk through the fitness landscape of tumorigenesis. However, the
interactions between oncogenes and tumor suppressor genes that shape this
landscape remain poorly resolved and cannot be revealed by human cancer
genomics alone. Here, we use a multiplexed, autochthonous mouse platform
to model and quantify the initiation and growth of more than one hundred
genotypes of lung tumors across four oncogenic contexts: KRAS G12D, KRAS
G12C, BRAF V600E, and EGFR L858R. We show that the fitness landscape is
rugged—the effect of tumor suppressor inactivation often switches between
beneficial and deleterious depending on the oncogenic context—and shows no
evidence of diminishing-returns epistasis within variants of the same onco-
gene. These findings argue against a simple linear signaling relationship
amongst these three oncogenes and imply a critical role for off-axis signaling
in determining the fitness effects of inactivating tumor suppressors.

Adaptation by natural selection is the central mechanism of evolution
and is at the core of some of the greatest challenges facing humanity:
from loss of biodiversity to the spread of infectious disease, to cancer
development and resistance to therapy1–3. Our capacity to overcome
these challenges is dependent on our ability to predict the evolu-
tionary paths taken by such complex and evolving systems. The “fit-
ness landscape”, a map between the genotype and fitness of a

biological entity, is a key concept in evolutionary genetics4 that pro-
vides a framework to understand what kinds of evolutionary paths are
possible in a given system.

Theoretical investigations have suggested that fitness landscapes
can be broadly categorized as smooth or rugged. In smooth, “Mount
Fuji”5 landscapes, a mutation that is adaptive in one context will be
adaptive in all other contexts. Thus, adaptation continues until a
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unique fitness peak is reached. In contrast, rugged landscapes, char-
acterized by epistatic interactions wherein the effect of one mutation
depends upon others, contain multiple peaks with intervening valleys,
inhibiting certain paths. Fitness landscapes can also vary in steepness;
individual mutations can be strongly adaptive in steep landscapes
while yielding smaller fitness gains in flatter landscapes.

Empirical studies of fitness landscapes have revealed two general
observations. First, ruggedfitness landscapes containingboth pairwise
and higher-order epistasis are common, making some evolutionary
trajectories more viable than others6. Second, fixed adaptive muta-
tions reduce the selective advantage of all subsequent mutations—a
property termed diminishing-returns epistasis. Diminishing-returns
epistasis was discovered in experimental evolution systems7–9, but it
remains unknown whether this phenomenon is generalizable across
biological systems.

Cancer progression is a quintessential example of a walk on an
adaptive fitness landscape, with tumor growth depending on the
cooperation of multiple driver mutations10–12. While cancer genome
sequencing has revealed a vast set of putative cancer drivers—onco-
genes and tumor suppressors—mapping the tumor fitness landscape
that emerges from coincident alteration of these genes remains a key
gap in our understanding of cancer biology. While oncogene pairs are
known not to have “Mount Fuji”-like additive fitness effects—indeed,
the presence of more than one oncogene may even lead to growth
arrestor apoptosis13—far less is knownabout the epistasis ofoncogene-
tumor suppressor pairs. Inferring this dimension of the fitness land-
scape is the focus of this manuscript.

A commonapproach to inferring epistatic interactions is to assess
co-occurrence frequencies in observational cancer genomics data.
However, this approach is plagued by two major issues. First, the
immense number of genes mutated in human cancers, of which the
vastmajority aremutated in only a small fraction of tumors, makes the
study of mutational co-occurrence statistically underpowered for all
but themost frequently mutated genes. Second, even when two driver
genes co-occur more or less than expected by chance, this can be due
to confounding biological factors, such as inactivation of a different
gene in the same complex or patient-level selection bias, rather than
direct functional epistatic interactions14. This is especially true in
tumorswith a highmutational burdenwhere evenmutations in known
cancer driver genes may be chance passengers. Thus, a global fitness
landscape of tumorigenesis cannot be generated from human data
alone, and instead requires direct perturbational experiments and
functional genomics approaches14.

Genetically engineered mouse models are uniquely tractable
systems to uncover the phenotypic effects of defined genetic altera-
tions on tumors that develop entirely within their natural in vivo
microenvironment15. Systems that integrate CRISPR/Cas9-mediated
somatic genome editing with conventional genetically engineered
mouse models of human cancer have increased the scale at which the
consequences of tumor suppressor gene inactivation on auto-
chthonous tumorigenesis can be quantified16,17. We recently developed
tumor barcode sequencing (Tuba-seq), which integrates barcoded
lentiviral-sgRNA/Cre vectors and high-throughput barcode sequen-
cing to uncover the number of neoplastic cells in each tumor of each
genotype18–20.

Here, we initiate and quantify the development of more than one
hundred different genotypes of autochthonous lung tumors. This
extensive adaptive fitness landscape overlays inactivation of a panel of
diverse tumor suppressor genes on top of oncogenic KRAS G12D-,
KRASG12C-, BRAF V600E-, and EGFR L858R-driven lung tumors. KRAS,
EGFR, and BRAF are the three most frequently altered oncogenes in
lung adenocarcinoma (LUAD)21 and together drive tumorigenesis in
over half of patients (Supplementary Table 1). Their products are
canonically depicted in a linear axis—from EGFR to KRAS to BRAF—
within the RAS pathway21–24. This linear representation implies that the

only dimension uponwhich these oncogenes are functionally different
is the quantity of downstream MAPK signaling that they drive. How-
ever, each of these oncogenes engages additional pathways, which
could generate phenotypic differences between these oncogenes in
specific contexts22–24. Despite the well-established significance of these
RAS pathway oncogenes in lung tumorigenesis, it remains unclear the
extent to which these off-axis interactions, even if known phenotypi-
cally or biochemically, can drive differential fitness effects during
tumorigenesis. Mutations within EGFR, KRAS, and BRAF oncogenes are
also diverse, and it is unclear whether thesemutations are functionally
equivalent outside of potential differences in induced RAS signaling.

By generating the most extensive functional survey of oncogene-
tumor suppressor interactions to date, we uncover dramatically dif-
ferent tumor suppressive fitness effects across oncogenic contexts,
unexpected similarities for oncogenes with strong differences in
tumor-driving potential, and surprising effects of off-axis signaling.

Results
Oncogenic KRAS G12C is less potent than KRAS G12D in driving
lung tumorigenesis
Oncogenic KRAS mutations, predominantly within codon 12, occur in
~25% of human LUAD (Supplementary Table 1)25,26. To enable CRISPR/
Cas9-mediated somatic genome editing in the context of different
oncogenic KRAS variants, we generated mice with Cre/lox-regulated
alleles of KRAS G12C (KrasLSL-G12C)27 or KRAS G12D (KrasLSL-G12D)28 and a
Cre/lox-regulated Cas9 allele (H11LSL-Cas9; Fig. 1A)29. While the impact of
inactivating diverse tumor suppressor genes on KRAS G12D-driven
lungcancer growthhasbeen investigatedpreviously19,20, the functional
landscape of tumor suppression within KRAS G12C-driven lung cancer
in vivo remains entirely uncharacterized, even though KRAS G12C is
the most common oncogenic KRAS variant in human lung cancer
(Supplementary Fig. 1). To broadly uncover the genetic interactions
between tumor suppressor genes and these oncogenic KRAS variants
in vivo, we generated barcoded Lenti-sgRNA/Cre vectors targeting 28
known and putative tumor suppressor genes that are recurrently
mutated in human LUAD and represent key cancer pathways (Fig. 1A
and Supplementary Fig. 2; “Methods”)21,26,30. We generated a pool of
barcoded Lenti-sgRNA/Cre vectors, which included vectors targeting
each of these genes as well as control Lenti-sgRNA/Cre vectors with
non-targeting sgRNAs (sgNT) and active-cutting sgRNAs (sgAC) that
target an inert region of the genome (Rosa26; sgR26) (Lenti-D2G28-Pool/
Cre; Fig. 1A and Supplementary Fig. 2A).

We initiated tumors by delivering Lenti-D2G28-Pool/Cre to intra-
tracheally intubated KrasLSL-G12C;H11LSL-Cas9 (G12C;Cas9) and KrasLSL-G12D;
H11LSL-Cas9 (G12D;Cas9) mice (Fig. 1A). Given the uncertain oncogenicity
of KRAS G12C relative to KRAS G12D, we initiated tumors with several
different titers of Lenti-D2G28-Pool/Cre (from 1.8 × 105 to 1.35 × 106 TU
(transduction units)/mouse) and analyzed cohorts of mice at 9 and 15
weeks post-tumor initiation (Fig. 1B; n = between 9 and 35 mice per
group). At the time of lung collection, G12C;Cas9 mice had noticeably
fewer and smaller surface lung tumors and significantly lower lung
weights relative to titer- and timepoint-matched G12D;Cas9 mice
(Fig. 1C and Supplementary Fig. 3A). Histology indicated that
G12C;Cas9 mice had fewer tumors and these appeared smaller than
those inG12D;Cas9mice (Fig. 1D, E). Lung tumors in both backgrounds
were hyperplasias, adenomas, and adenocarcinomas. These results
suggest that KRAS G12C is less potent than KRAS G12D in driving lung
tumorigenesis, consistent with previous studies using in vivo models
of lung and pancreatic cancer27,31.

KRAS G12C induces fewer and smaller tumors than KRAS G12D
To quantify the number and size of the tumors in each mouse, and to
better understand the dynamics of lung tumor growth driven by these
different oncogenic KRAS variants, we performed Tuba-seq on DNA
extracted from bulk tumor-bearing lungs from mice across the

Article https://doi.org/10.1038/s41467-023-42156-y

Nature Communications |         (2023) 14:6422 2



G12C;
Cas9

13.5

13.5

Mouse
genotype

Lenti titer
(x105 TU)

15
 w

ee
ks

9 
w

ee
ks

B

5.4

5.4

N

G12D;
Cas9

9

13
10

12

G12C;
Cas9

13.5

5.4
1.8
5.4

1.8
G12D;
Cas9

10

13
9

10

35

H&E

H&E

H&E

H&E

H&E

H&E

H&E

H&E

H&E

H&E

1.35 x 106 TU 5.4 x 105 TU 5.4 x 105 TU1.35 x 106 TU 1.35 x 106 TU

D 9 weeks 15 weeksE

G12D;Cas9G12C;Cas9 G12C;Cas9 G12C;Cas9 G12D;Cas9

C

A

Lenti-D2G28-Pool/Cre KrasLSL-G12D/+;H11LSL-Cas9/+ (G12D;Cas9)
KrasLSL-G12C/+;H11LSL-Cas9/+ (G12C;Cas9)

Cre

sgRNA
Barcode

intratracheal
inhalation

Quantify tumor 
number and 

sizes via ultra 
deep barcode 
sequencing

9 or 15 
weeks

sgFbxw7
sgKdm6a

sgKrasWT

sgMsh2

sgNf2

sgPalb2

sgR26-1

sgLkb1

sgp53

sgAtm

sgRb1sgKeap1

sgApc

sgSmad4
sgSetd2

sgRbm10

sgCdkn2a

sg
In

er
t

sgArid2

sgAtrx
sgBrca2

sgCmtr2

sgKmt2d

sgMga

sgNf1

sgPten
sgPtprd

sgRnf43

sgStag2
sgTsc1

sgR26-2
sgR26-3

sgNT-1
sgNT-2
sgNT-3

J

Lu
ng

 w
ei

gh
t (

g)

5.4 x 105 TU

G12C;
Cas9

G12D;
Cas9

0.2

0.4

0.6

0.8

0.2

0.4

0.6

Lu
ng

 w
ei

gh
t (

g)

G12C;
Cas9

G12D;
Cas9

9 weeks
13.5 x 105 TU

15 weeks

0.8

(1.5x10-4)

(9.4x10-5)

K L

103 104 105 106
100

102

104

Tumor size cutoff (cells)

sg
In

er
t t

um
or

 n
um

be
r

 (
>

=
 c

ut
of

f p
er

 1
05  

T
U

)

G12D;Cas9
15 weeks
G12C;Cas9
15 weeks

F
(2.1x10-8)

(2.8x10-11)

T
ot

al
 tu

m
or

 n
um

be
r

(>
10

00
 c

el
ls

/1
05  

T
U

)

G12C;
Cas9

G12D;
Cas9

G12C;
Cas9

G12D;
Cas9

9 weeks 15 weeks

7.6x

45.0x
G IH

(1.8x10-8)

(5.3x10-12)

sg
In

er
t t

um
or

 b
ur

de
n

(s
gI

ne
rt

 n
eo

pl
as

tic
 c

el
ls

/1
05  

T
U

)

G12C;
Cas9

G12D;
Cas9

G12C;
Cas9

G12D;
Cas9

9 weeks 15 weeks

6.0x
10.1x

(1.8x10-8)
(7.2x10-12)

T
ot

al
 tu

m
or

 b
ur

de
n

(T
ot

al
 n

eo
pl

as
tic

 c
el

ls
/1

05  
T

U
)

8.3x
13.6x

G12C;
Cas9

G12D;
Cas9

G12C;
Cas9

G12D;
Cas9

9 weeks 15 weeks

(1.8x10-8)

(1.3x10-11)

sg
In

er
t t

um
or

 n
um

be
r 

(>
10

00
 c

el
ls

/1
05  

T
U

)

10.5x

80.5x

G12C;
Cas9

G12D;
Cas9

G12C;
Cas9

G12D;
Cas9

9 weeks 15 weeks

Tumor size cutoff (cells)

R
el

at
iv

e 
tu

m
or

 n
um

be
r

(G
12

D
;C

as
9/

G
12

C
;C

as
9

tu
m

or
 n

um
be

r 
pe

r 
T

U
)

G12D;Cas9 15 weeks
G12C;Cas9 15 weeks
G12D;Cas9 9 weeks
G12C;Cas9 15 weeks

Active-
Cutting

(AC)

Non-
Targeting

(NT)

Tumor size cutoff (cells)

sg
In

er
t t

um
or

 n
um

be
r

 (
>

=
 c

ut
of

f p
er

 1
05  

T
U

)

G12D;Cas9
9 weeks
G12C;Cas9
15 weeks

103 104 105 106
100

102

104

103 104

1

2

4

8

16

32

64

128

106

107

108

101

102

103

104

106

107

108

100

101

102

103

104

Fig. 1 | Oncogenic KRAS G12C has a reduced ability to drive initiation and
growthof lung tumors in vivo relative tooncogenicKRASG12D.A Experimental
schematic depicting the composition of the pool of barcoded Lenti-sgRNA/Cre
vectors (Lenti-D2G28-Pool/Cre),mouse genotypes, analysis time points, and readouts.
B Genotype, time point, lentiviral titer, and number of mice in each group. C Lung
weights of mice transduced with the indicated titers of Lenti-D2G28-Pool/Cre. Geno-
typeand timepost-tumor initiation are indicated. Eachdot represents amouse, and
the bar is themedian. Fold difference betweenmedians and significance calculated
using a two-sided Wilcoxon rank-sum test (P values = number in parentheses) are
shown. n = 22 biologically independent animals used to calculate significance in
each plot. D, E Representative histology of lungs from mice (from n = 3 mice for
each timepoint-genotype pair). Mouse genotype, virus titer delivered to each
mouse, and time post-tumor initiation are shown. Top scale bars = 3mm; bottom
scale bars = 500μM. F–I Total number of neoplastic cells (F) and total number of
tumors greater than 1000 cells in size (G) across all Lenti-sgRNA/Cre vectors,

normalized to viral titer. Total number of neoplastic cells (H) and total number of
tumors greater than 1000 cells in size (I) only for Lenti-sgInert/Cre vectors (tumors
driven by oncogenic Kras alone), normalized to viral titer. Mouse genotypes and
time points are indicated. Each dot represents a mouse, and the bar is the median.
Fold difference and significance calculated using a two-sided Wilcoxon rank-sum
test (P values = number in parentheses) are shown. n = 44 (9-week comparison) and
n = 77 (15-week comparison) biologically independent animals were used to cal-
culate significance. J, K Number of tumors at or above the tumor size cutoff in
G12D;Cas9 mice at 15 weeks and G12C;Cas9 mice at 15 weeks (J) or G12D;Cas9 at
9 weeks and G12C;Cas9 at 15 weeks post-tumor initiation (K). Each transparent line
represents a mouse, and the solid line is the median tumor number. L Fold change
inmedian tumor number betweenG12D;Cas9 andG12C;Cas9 at 15weeks (black line)
and G12D;Cas9 at 9 weeks versus G12C;Cas9 at 15 weeks (gray line) post-tumor
initiation.
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different titers and timepoints (Supplementary Fig. 2A). Tuba-seq
accurately quantifies the number of neoplastic cells in each tumor
(cells directly descending from the tumor cell of origin) through deep
sequencing of the multi-component barcode encoded within each
genomically integrated lentivirus (Supplementary Fig. 2A–C)19,20. This
allowed us to estimate the total tumor burden (total neoplastic cells/
TU) and total tumor number (number of clonal barcoded tumors with
>1000 neoplastic cells/TU) in each mouse (Supplementary Fig. 2A–C;
“Methods”)19,20. Nine weeks post-tumor initiation, total tumor burden
(normalized to titer) was >eightfold lower in G12C;Cas9 mice than in
G12D;Cas9 mice (Fig. 1F and Supplementary Fig. 3B; P < 2 × 10−8). This
differencewas slightly greater and still highly significant 15weeks post-
tumor initiation (Fig. 1F and Supplementary Fig. 3C; P < 7 × 10−12). At
both 9 and 15 weeks post-tumor initiation, G12C;Cas9 mice also had
many fewer tumors per TU than G12D;Cas9 mice (Fig. 1G and Supple-
mentary Fig. 3B, C; P < 2 × 10−8). Tumor number increased linearly with
titer, consistent with a lack of inter-tumor competition even at high
tumor burden. Thus, when considering all tumors independently of
their engineered tumor suppressor inactivation, KRAS G12C drives
substantially less neoplastic growth than KRAS G12D.

Lenti-sgNT/Cre and Lenti-sgR26/Cre (sgInert) vectors induce the
expression of oncogenic KRAS from the engineered alleles without
CRISPR/Cas9-mediated inactivation of any gene, generating tumors
driven solely by oncogenic KRAS. Before exploring the impact of
inactivation of each tumor suppressor gene on tumor growth, we
restricted our analysis to these sgInert “KRAS-only” tumors. sgInert
tumor burden and tumor number were also dramatically lower in
G12C;Cas9 mice relative to G12D;Cas9 mice, at both 9 and 15 weeks
post-tumor initiation (Fig. 1H, I and Supplementary Fig. 3B–D; all
P < 10−7). As expected, for eachoncogene and timepoint, sgInert tumor
burden (normalized for titer) is lower than total tumor burden, which
reflects the fact that the total tumor burden includes tumors in which
tumor suppressor genes have been inactivated (Fig. 1F, H). For exam-
ple, at 15 weeks, the ratio of the median total tumor burden to median
sgInert tumor burden (normalized to their relative viral titers) was 1.85
(P = 6.4 × 10−4, Wilcoxon rank-sum test) in G12D;Cas9 mice and 1.37
(P = 0.17) in G12C;Cas9 mice.

To further investigate the different abilities of oncogenic KRAS
G12C andKRASG12D to initiate lung tumors and drive their growth, we
explored the distribution of sgInert tumor sizes (Fig. 1J–L and Sup-
plementary Fig. 3E–G). A comparison of the twomodels 15 weeks post-
tumor initiation revealed fewer KRAS G12C tumors than KRAS G12D
tumors above any minimum size cutoff (Fig. 1J). Furthermore, the
KRAS G12D tumor size distribution had a longer tail of large tumors,
suggesting that its increased tumor number might be driven by more
rapid growth than tumors driven by KRAS G12C (Fig. 1J). In support of
this notion, the shape of the KRAS G12C tumor size distribution
15 weeks post-tumor initiation was similar to that of the KRAS G12D
tumor size distribution at the earlier 9-week timepoint (Fig. 1K).
However, while the shapes of the distributions at these two timepoints
were quite well matched (Fig. 1K), KRAS G12D consistently produced
~2–4× greater tumor number than KRAS G12C, suggesting that KRAS
G12D may also drive greater levels of tumor initiation (Fig. 1L). These
results are all consistent with a model in which KRAS G12C is less
potent at initiating lung tumors and less able to drive the expansion of
established tumors in vivo than KRAS G12D.

Diverse tumor suppressor genes have strikingly similar effects
on the initiation and growth of KRAS G12C- and KRAS G12D-
driven lung tumors
Having used Tuba-seq to uncover differences in the baseline ability of
KRAS G12C and KRAS G12D to initiate lung tumors and drive their
growth, we next analyzed the impact of inactivating each of the 28
putative tumor suppressor genes on the growth of lung tumors driven
by these oncogenes (Fig. 2A, B and Supplementary Fig. 4A). To

compare the effects of inactivating each targeted gene across onco-
genes, we analyzed all tumors above oncogene-specific tumor size
(number of neoplastic cells) cutoffs that matched the number of sgI-
nert tumors in each oncogenic context (“Methods”). Matching cutoffs
in this way allowed us to account for differential oncogene-intrinsic
growth dynamics. We used a minimum tumor size cutoff of 1600 cells
for G12D;Cas9 mice at 15 weeks post-tumor initiation, 600 cells for
G12D;Cas9 mice at 9 weeks, 400 cells for G12C;Cas9 mice at 15 weeks,
and 300 cells forG12C;Cas9 at 9 weeks.We then compared the sizes of
tumors in which each tumor suppressor gene was targeted to the sizes
of sgInert tumors.

Inactivation of many of these genes led to the development of
larger KRAS G12C- and KRAS G12D-driven tumors (Fig. 2A, B). These
tumor suppressive effects were highly reproducible across eleven
G12D;Cas9 study groups (pre-defined cohorts of mice of identical
genotype, administered viral titer, date of tumor initiation, and date of
take down) and four G12C;Cas9 study groups (Fig. 2C and Supple-
mentary Fig. 5; data from 243 G12D;Cas9mice and 47 G12C;Cas9mice;
Pearson r ≥0.95 and r ≥0.87, respectively, for each comparison). To
further assess whether these effects were driven by on-target cutting,
we generated a second barcoded Lenti-sgRNA vector targeting each
gene with a distinct sgRNA.We initiated tumors using a new virus pool
that contained the original and new sgRNAs targeting each gene, and
compared the tumor suppressive effects measured using each of the
two sgRNAs per gene. The 95th percentile relative tumor size ratios
were highly correlated between the two sgRNAs (Supplementary
Fig. S5D; r =0.93). Tumor suppressive effects were also correlated
when using vectors with the same sgRNA but on different plasmid
backbones (Supplementary Fig. S5E; r =0.96).

Comparing size distributions of tumors of each tumor sup-
pressor genotype revealed consistent effects between KRAS G12C-
and KRAS G12D-driven lung tumors. Despite the differences in
oncogenic potential of KRAS G12C and KRAS G12D, the tumor
suppressive effects at 15 weeks post-initiation were highly corre-
lated (Fig. 2A, B, D; Spearman ρ = 0.92). Tumor suppressive effects
were also highly correlated between KRAS G12C-driven tumors at
15 weeks post-tumor initiation and KRAS G12D-driven tumors at
9 weeks post-tumor initiation, when sgInert tumors were most
similar in size (Fig. 2E; Spearman ρ = 0.90). In fact, across all com-
parisons of timepoints and oncogenic alleles, tumor suppressive
effects were well correlated (Fig. 2D, E and Supplementary Fig. 6; all
Spearman and Pearson correlations ρ ≥ 0.88).

Our pool contained Lenti-sgRNA/Cre vectors targeting two
established negative regulators of oncogenic KRAS signaling: the NF1
RAS GTPase-activating protein and wild-type KRAS (KrasWT). Inactiva-
tion of either Nf1 or KrasWT has been shown to increase downstream
signaling and enable faster growth of oncogenic KRAS G12D-driven
lung tumors in vivo19,32,33. Contrary to our expectation that inactivation
of these negative regulators would have a greater effect on tumors
driven by the weaker KRAS G12C variant, inactivation of Nf1 or KrasWT

increased KRAS G12C- and KRAS G12D-driven tumor growth to the
same extent. This result was consistent across study groups inmultiple
independent studies (Fig. 2F, G). Thus, despite the large difference in
the ability of KRASG12C andKRASG12D to drive tumor growth, as well
as their knownbiochemical differences34, lung tumor growth driven by
these oncogenic variants was similarly affected by alterations in
oncogene-proximal tumor suppressors.

While the impact of inactivating most tumor suppressor genes
was similar in lung tumors driven by KRAS G12C and KRAS G12D, there
were some notable exceptions. Inactivation of the H3K4mono- and di-
methyltransferase Kmt2d or the cap-specific mRNA methyltransferase
Cmtr2 consistently increased the growth of KRAS G12C-driven tumors
less than KRAS G12D-driven tumors (Fig. 2H, I; P = 1.8 × 10−6, 2.6 × 10−24,
respectively). Collectively, these results are inconsistent with the
model of diminishing-returns epistasis where adaptive mutations are
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Fig. 2 | Tumor suppressor genes have strikingly similar effects on the initiation
and growth of KRAS G12C- and G12D-driven lung tumors. A, B Relative size
(neoplastic cells) of the tumor at the indicated percentiles of the tumor size dis-
tributions for barcoded Lenti-sgRNA/Cre vectors targeting each gene, relative to
the size of the sgInert tumor at the same percentile, in G12C;Cas9 mice (n = 29
biologically independent animals) (A) and G12D;Cas9 mice (n = 48 biologically
independent animals) (B) at 15 weeks post-tumor initiation. The point represents
the value calculated from the initial data, and 95% confidence intervals from
bootstrapping are shown.C 95th percentile relative tumor sizes (relative to sgInert)
for 5 of theG12D;Cas9 study groups (see Supplementary Fig. 5A, B for comparisons
between additional study groups). Each point represents the tumors initiated with
one Lenti-sgRNA/Cre vector and the bars are the 95th percent confidence intervals
determined by bootstrapping. Gray line indicates equal effect. Pearson r is indi-
cated. D, E Relative size of the tumor at the 95th percentile of the tumor size
distributions in G12D;Cas9 mice at 15 weeks (D) or G12D;Cas9 mice at 9 weeks
(n = 25 biologically independent animals) (E) versus in G12C;Cas9mice at 15 weeks
post-tumor initiation. Each dot represents the tumors initiated from one Lenti-

sgRNA/Cre vector and the bars are the 95th percent confidence intervals. Genes
where the 95%CI excluded no effect inG12C;Cas9 andG12D;Cas9mice are shown in
color and some key genes are labeled. The black dotted line indicates equal effect.
Spearman rank-order correlation (ρ) and Pearson correlation (r) are indicated.
F–I Relative size of the tumor at the indicated percentiles (see legend in (A, B)) of
the tumor size distributions for barcoded Lenti-sgRNA/Cre vectors targeting Nf1
(F), KrasWT (G), Kmt2d (H), and Cmtr2 (I) across multiple arms of our main experi-
ment and repeat studies in G12C;Cas9 and G12D;Cas9 mice. The significance of
oncogene differences at the 95th percentile were calculated by combining the
study groups for each oncogene using inverse variance weighting and comparing
the resulting means and variances under a normally distributed null. Bonferroni-
corrected, one-sided P values are shown for significant genes. For each study group
from left to right along the x axes, data include n = 10, n = 10, n = 18, n = 13, n = 35,
n = 23, and n = 33 biologically independent animals. Note that the two study groups
from repeat studies in G12D;Cas9 correspond to Group 8 and Group 3 in Supple-
mentary Fig. 5.
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expected to provide greater fitness benefit on the less fit genetic
background—in this case, KRAS G12C.

Oncogenic BRAF and EGFR have distinct tumor-initiating and
growth-promoting abilities
Oncogenic mutations in BRAF and EGFR occur frequently in human
LUAD, underscoring the importance of activation of the RAS pathway
in a large fraction of these tumors (Supplementary Table 1)21,26.
Oncogenic BRAF mutations (including those at the hotspot V600)

occur in ~6% of LUAD, while oncogenic EGFR mutations occur in ~27%
(AACR Project GENIE) of LUAD (Supplementary Table 1)21,26. BRAF- and
EGFR-driven lung cancers have been modeled inmice using a Cre/lox-
regulated conditionally activatable allele of BRAF V600E (BrafCA-V600E)35

and a doxycycline regulated EGFRL858R transgene36,37. To quantify the
ability of oncogenic BRAF and EGFR to initiate lung tumors and drive
their expansion in vivo, as well as to uncover whether tumor sup-
pressor effects are consistent across these oncogenic contexts in lung
cancer, we initiated tumors with Lenti-D2G28-Pool/Cre in BrafCA-V600E;
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Fig. 3 | Oncogenic BRAF, EGFR, and KRAS have different abilities to initiate
lung tumorigenesis and drive tumor growth. A Experimental schematic showing
the design of barcoded Lenti-sgRNA/Cre vectors (Lenti-D2G28-Pool/Cre), mouse
genotypes, and analysis timepoints. BMouse genotype, time point, lentiviral titer,
and number of mice in each experimental group. C Representative histology of
lungs from mice. Mouse genotype, viral titer, and time point post-tumor initiation
are shown. Top scale bars = 3mm; bottom scale bars = 500μM.Titer represented in
the Braf;Cas9 image was 900,000 TU, from a mouse in a separate titering experi-
ment that used a similar virus pool. Titer represented in the Egfr;Cas9 image was
5,000,000 TU. D–G Total number of neoplastic cells (D) and total number of
tumors greater than 1000 cells in size (E) across all Lenti-sgRNA/Cre vectors, nor-
malized to viral titer. Total number of neoplastic tumors cells (F) and total number
of tumors greater than 1000 cells in size (G) only for Lenti-sgInert/Cre vectors
(tumors driven by oncogene alone), normalized to viral titer. Mouse genotypes are

indicated. Each dot represents amouse, and the bar is themedian. Fold differences
betweenmedians and significance calculated using a two-sidedWilcoxon rank-sum
test (P values = number in parentheses) are shown. Folddifferences are ratios of the
following pairs, moving clockwise from the upper left: G12D;Cas9/Braf;Cas9,
G12D;Cas9/Egfr;Cas9, G12C;Cas9/Egfr;Cas9, Braf;Cas9/G12C;Cas9. H The density
function of sgInert tumor burden as a function of log(tumor size) at 15 weeks for
G12D;Cas9, Braf;Cas9, and Egfr;Cas9. Comparison to G12C;Cas9 can be found in
Supplementary Fig. 3F, G. Error bands represent the 95% confidence interval
determined from bootstrapping. For all panels, Egfr;Cas9 mice are represented by
n = 18 biologically independent animals, Braf;Cas9 mice are represented by n = 28
biologically independent animals, G12D;Cas9 mice are represented by n = 48 bio-
logically independent animals, and G12C;Cas9 mice are represented by n = 29 bio-
logically independent animals. I Schematic representation of the ability of each
indicated oncogenic allele to drive in vivo lung tumor formation.
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H11LSL-Cas9 (Braf;Cas9) and tetO-EGFRL858R;Rosa26LSL-rtTA3-ires-mKate/LSL-Cas9-2a-GFP

(Egfr;Cas9) mice (Fig. 3A)36. Mice received several different titers of
Lenti-D2G28-Pool/Cre (from 1.6 × 104 to 5 × 106 TU/mouse) and were
analyzed 15 weeks post-tumor initiation (Fig. 3B). Consistent with
previous observations, Braf;Cas9 mice developed lung tumors that
appeared more uniform in size than oncogenic KRAS-driven or
oncogenic EGFR-driven tumors (Figs. 1D, E and 3C; Lung weights
shown in Supplementary Fig. 7A, B)35,38. BRAF and EGFR-driven tumors
were adenomas and adenocarcinomas (Fig. 3C).

Tuba-seq analysis of DNA extracted from bulk tumor-bearing
lungs allowed us to quantify tumor burden and size across mouse
genotypes, and thus determine the tumorigenic potential of BRAF
V600E and EGFR L858R relative to KRAS G12C and KRAS G12D. Total
tumor burden and total tumor number in Braf;Cas9 mice was higher
than in G12C;Cas9 mice but >fivefold lower than in G12D;Cas9 mice
(Fig. 3D, E; P = 1.9 × 10−2, P = 1.3 × 10−11). Egfr;Cas9 mice had slightly
lower tumor burden and number than Braf;Cas9 mice and >tenfold
fewer tumors than G12D;Cas9 mice (Fig. 3D, E; P = 1.5 × 10−9). These
results remained consistent after restricting the analysis to sgInert-
containing tumors driven by oncogenic BRAF or EGFR (Fig. 3F, G;
P = 1.6 × 10−2).

Interestingly, the distribution of BRAF-driven tumor sizes was
strikingly different from that of other oncogenic contexts. Excep-
tionally large tumors accounted for a much smaller percentage of the
total tumor burden in Braf;Cas9 mice than in any other mouse geno-
type: only 0.9% of neoplastic cells in Braf;Cas9mice were from tumors
with >300,000 cells comparedwith 13.1% and 25.4% forG12D;Cas9 and
Egfr;Cas9 mice, respectively. This is consistent with previous reports
that BRAF tumors hit a maximum size threshold and stop growing38.
However, unlike in G12C;Cas9, G12D;Cas9, and Egfr;Cas9 mice, a
majority of the total tumor burden in Braf;Cas9mice was from tumors
with 30,000–300,000 neoplastic cells. (62.2% in Braf;Cas9 mice
compared with 36.0% and 32.3% in G12D;Cas9 and Egfr;Cas9 mice,
respectively) (Fig. 3H and Supplementary Fig. 7C, D). In comparison to
Braf;Cas9mice, a much greater fraction of the total neoplastic burden
in G12D;Cas9 mice arose from smaller tumors. The difficulty in quan-
tifying these smaller tumors using histological methods might explain
why previous studies have suggested that BRAF V600E is a stronger
driver of lung tumorigenesis than KRAS G12D39,40. Collectively, these
results indicate that different oncogenes in the EGFR/KRAS/BRAF axis
have dramatically different effects on tumor initiation and
growth (Fig. 3I).

Oncogenic BRAF and EGFR redefine the landscape of tumor
growth suppression
We next investigated the impact of tumor suppressor gene inactiva-
tion on the growth of BRAF V600E- and EGFR L858R-driven lung
tumors and compared tumor suppressor effects across all four onco-
genic alleles. Very few coincident tumor suppressor alterations have
been investigated in the context of oncogenic BRAF-driven auto-
chthonous lung tumors, and the extent to which tumor suppressor
effects differ in EGFR-driven tumors remains poorly understood
(Supplementary Fig. 1)36,41–44. Interestingly, the overall tumor suppres-
sive landscapes of BRAF- and EGFR-driven lung tumors were dramati-
cally different from each other as well as from oncogenic KRAS-driven
tumors (Figs. 2A, B and 4A, B). Indeed, the effects of tumor suppressor
inactivation on growth across oncogenic KRAS-, BRAF-, and EGFR-
driven tumors were uncorrelated (Fig. 4C, D; Spearman ρ = 0.41 for
BRAF versus G12C, ρ =0.14 for EGFR versus G12C). While inactivation
of some tumor suppressor genes increased growth across all contexts
(e.g., Pten), thosewere the exception (Figs. 2 and 4 and Supplementary
Fig. 8). Importantly, several tumor suppressor genes impacted
tumorigenesis as anticipated. Inactivation of Nf1 increased size of
KRAS- and EGFR-driven tumors while having no effect on BRAF-driven
tumors (Supplementary Fig. 8D). Inactivation of KrasWT increased the

growth of KRASG12C- andKRASG12D-driven tumors but hadno effect
of BRAF-driven tumors and reduced the growthof EGFR-driven tumors
(consistent with KRAS being an important downstream effec-
tor) (Fig. 4E).

Inactivation of many tumor suppressor genes had strikingly dif-
ferent effects on the growth of BRAF-driven tumors compared to
tumors driven by either KRAS variant (Fig. 4C and Supplementary
Fig. 8A). While the tumor suppressive effects of inactivating Pten,
Rnf43, andApc are consistentwith previous data on these genes and/or
related pathways in BRAF-driven lung cancer38,41–43,45–48, the general
decreases in magnitude relative to oncogenic KRAS were unexpected
(Fig. 4F and Supplementary Fig. 8E). The effect of coincident tumor
suppressor inactivation could generally be reduced due to
diminishing-returns epistasis in fast-growing BRAF V600E-driven
tumors. However, lower effect magnitudes were not universal as
inactivation of Rnf43 or Fbxw7 increased tumor growth as much or
more in Braf;Cas9 mice than in G12C;Cas9 mice (Fig. 4F, G). Thus, the
impact of certain tumor suppressor pathways on tumor growth largely
depends on the oncogenic context.

The differences between tumor suppressive effects in EGFR-
driven lung cancer and the other oncogenic contexts were even more
pronounced (Fig. 4B, D and Supplementary Fig. 8B, C). Inactivation of
many genes that were functional tumor suppressors in KRAS-driven
lung tumors, including Lkb1, Setd2, and Kmt2d, were deleterious in
EGFR-driven lung tumors (Fig. 4B, D and Supplementary Fig. 8B, G–I).
Conversely, inactivation of p53 increased the overall growth of EGFR-
driven lung tumors more than in any other oncogenic context (Sup-
plementary Fig. 8F). These differences represent the clearest indica-
tion of a rugged landscape of oncogene-tumor suppressor
interactions; whether a second step (tumor suppressor inactivation)
led uphill or downhill depended strongly on which first uphill step was
taken (EGFR or KRAS or BRAF).

Genetic interactions between oncogenes and tumor sup-
pressors impact the earliest stages of tumor development
The initiation of tumors using the same virus pool in mice with and
without the Cas9 allele enables quantification of the impact of each
gene on tumor number, as the relative numbers of tumors in mice
without the Cas9 allele constitute an in vivo titering experiment that
reveals the representation of each virus in the pool (Supplementary
Fig. 9)19. As anticipated, mice with conditional oncogene alleles but
lacking theH11LSL-Cas9 allele (Cas9-negativemice) transducedwith Lenti-
D2G28-Pool/Cre had much lower overall tumor burden than their Cas9-
positive counterparts, and no Lenti-sgRNA/Cre vector had any effect
on tumor sizes (Supplementary Fig. 4B, C shows the tumor size per-
centiles for the correspondingCas9-positive cohort). Furthermore, the
Cas9 allele had little-to-no effect on tumor growth (Supplementary
Fig. 4D; see “Methods”).

As the Cas9-negative cohorts behaved as expected, each Cas9-
positive oncogenic context was compared to a corresponding cohort
of Cas9-negativemice initiatedwith the same virus pool, allowing us to
quantify the impact of each tumor suppressor gene on tumor initia-
tion/early tumor expansion (Fig. 5A–D and Supplementary Fig. 9B–E).
To capture the signal most representative of tumor initiation, we used
the lowest possible cutoff for all oncogenes, which was 500 neoplastic
cells given the resolution of our method. Although this approach did
not control for differences in baseline oncogenic potency as was done
for tumor size enrichment, we did not see any systematic bias of the
tumor number enrichment when comparing pairs of oncogenes.

As was the case for tumor growth effects, inactivation of most
genes had similar effects on the number of KRAS G12C- and KRAS
G12D-driven tumors (Fig. 5A, B and Supplementary Fig. 10A). However,
Cdkn2a inactivation increased tumor number in the KRAS G12D con-
text more than in KRAS G12C, consistent with genomic analyses of
human non-small cell lung cancers describing enrichment of CDKN2A
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mutations in tumor with KRAS G12D relative to KRAS G12C or other
KRAS variants30,49,50. Furthermore, the impact of different tumor sup-
pressors on tumor number varied across oncogenic KRAS, BRAF, and
EGFR contexts (Fig. 5 and Supplementary Fig. 10). Interestingly, in
Braf;Cas9 mice, inactivation of tumor suppressors had little effect on
tumor number (Fig. 5C). Conversely, the number of EGFR-driven
tumors was greatly impacted by coincident tumor suppressor inacti-
vation. These effects were large in magnitude (e.g., >sixfold increase
for sgPten) and included many genes that reduce tumor number (e.g.,
>fourfold decrease for sgLkb1), suggesting several of these tumor
suppressorgenes donot in fact suppress EGFR-driven tumors (Fig. 5D).
Thus, much like the effects on tumor growth, tumor initiation/early
expansion is highly context-dependent with complex and diverse
genetic interactions influencing even the earliest steps of lung
carcinogenesis.

Finally, as was found before in the KRAS G12D context19, across
all four oncogenic contexts in our study the impact of inactivating
tumor suppressor genes on tumor initiation/early expansion and

tumor growth did not correlate (Fig. 5E–H). This suggests that the
genes and pathways that regulate the earliest stages of tumor-
igenesis are largely non-overlapping with those that modulate later
tumor growth.

In vivo tumor suppressive effects correlatewith the frequencyof
tumor suppressor alterations in human tumors when the bur-
den of passenger mutations is low
We next performed a retrospective analysis to determine whether the
frequencies of tumor suppressor alterations in human lung adeno-
carcinoma (2204 samples fromAACRProjectGENIE) correlatewith the
fitness effects elucidated usingour in vivomodels. Sucha correlation is
expected if the mutation frequencies are driven by effects on tumor
growth that our model recapitulates, but may be undermined by the
fact that (i) tumor suppressor genes could have complex epistatic
relationships with each other; for instance, the inactivation of a gene,
complex, or pathway can make the inactivation of another gene in the
same complex or pathway functionally redundant and thus neutral,
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Fig. 5 | The impact of different tumor suppressors on lung tumor number is
dependent on oncogenic context and largely independent of effects on tumor
growth. A–D Impact of inactivating each gene on relative tumor number in the
indicated genotypes of mice. Error bars represent the 95% confidence interval
determined by bootstrapping the tumors and mice. E–H Relative size of the tumor
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the oncogene indicated on the x- and y- axes. For relative tumor number metrics in
all panels in this figure, Egfr;Cas9 mice are represented by n = 18 biologically
independent animals, Braf;Cas9 mice are represented by n = 28 biologically inde-
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dent animals, and G12C;Cas9 mice are represented by n = 18 biologically
independent animals.
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and (ii) the high number of mutations in a tumor can generate a large
number of passenger mutations, even in driver genes20,51.

To minimize these potential confounders, we first aligned the
strength of causal effects in our mouse data with the frequency of
alterations in human EGFR-driven lung adenocarcinoma. EGFR-driven
lung adenocarcinomas have a low tumor mutational burden (TMB)52

(Fig. 6A), and our mouse data suggest that inactivation of several
putative tumor suppressor genes are deleterious and thus unlikely to
be observed in the human data, even as passengers. Indeed, there is a
strong correlation betweenmouse cause-and-effect data andmutation
frequencies in humanEGFR-driven tumors (Fig. 6B; Spearmanρ =0.57,
Pearson r = 0.63). Restricting analysis of human mutation frequencies
to patients with EGFR L858R mutations retains the strong correlation
between mouse data and human mutational frequency (Spearman
ρ = 0.57, Pearson r = 0.67). The genes whose loss is predicted to be
detrimental to EGFR-driven tumors (i.e., Keap1, Lkb1, and Nf2) are
rarely co-mutated with EGFR in human lung adenocarcinoma as pre-
dicted (Fig. 6B). Furthermore, P53 inactivation, which provides a
strong benefit in our mouse models, is very commonly co-mutated
with EGFR. Even excluding these extreme examples, the relationship
between mouse causal data and human observational data remains
strongly correlated (Fig. 6B; Spearman ρ =0.42, Pearson r =0.41).

As anticipated, in the KRAS and BRAF contexts where the TMB is
generally high there was a poor correlation between co-mutation fre-
quency in human lung adenocarcinoma and causal mouse effects,
suggesting that in these subgroups, humanmutational frequency does
not predict the importance of most tumor suppressor genes (Sup-
plementary Fig. 11A, B). Consistent with previous studies, our analyses
showed that in high-TMB tumors the mutation frequency of most
tumor suppressor genes is strongly predicted by gene length and thus
is very similar between the KRAS and BRAF contexts (Supplementary
Fig. 11C, D; Spearman ρ =0.77 and ρ = 0.82, respectively)53. The impli-
cation of this observation is that most mutations, even those in func-
tionally important tumor suppressorgenes, inKRAS- andBRAF-mutant
tumors are in fact passengers. High passenger mutation loads as well

as a variety of mechanisms of tumor suppressor inactivation (beyond
direct genomic alteration) together obscure functionally important
interactions between oncogene and tumor suppressor alterations that
are revealed by in vivo cause-and-effect experiments. For instance,
PTEN is rarely mutated in KRAS- and BRAF-driven human lung cancers,
and yet Pten inactivation provides a very strong tumor fitness advan-
tage in our autochthonous mousemodels (Fig. 6B and Supplementary
Fig. 11A, B). Indeed, the PI3K pathway is commonly activated by non-
mutational mechanisms in human lung tumors, and thus PTEN and
other members of the PI3K/AKT pathwaymay be important regulators
of human lung tumorigenesis54–57. This underscores the importance of
unbiased functional genomic studies as we have done here, as driver
alterations that occur rarely are not necessarily unimportant when
present.

Discussion
In this study, we investigated the fitness landscape of lung tumor-
igenesis by quantifying the joint effects of inactivating 28 known and
putative tumor suppressor genes across four oncogenic contexts on
tumor development in vivo (Fig. 7). In total, we quantified the fitness of
112 distinct oncogeneby tumor suppressor pairs by assaying the ability
of these genetic combinations to initiate tumorigenesis and drive
tumor growth. While our previous work defined the fitness landscape
of lung tumor suppression in the context of KRAS G12D19, the land-
scapeswithin the threeother oncogenic contexts are largelyunstudied
(Supplementary Fig. 1). Going beyond understanding fitness within
isolated oncogenic contexts, our multiplexed and quantitative
approach allowed direct comparison of tumor suppressive effects
acrossmultiple contexts. Indeed, to our knowledge, we generated data
on fifteen times more cross-oncogene tumor suppressor effect com-
parisons than have been studied previously in quantitative in vivo
models (Supplementary Fig. 12). And although we did find alignment
between growth effects in ourmodel and human LUADmutation rates
in the context of EGFR—an oncogene notable for its low tumor muta-
tional burden—most of the interactions we observed could not have
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been inferred from human data alone, e.g., with mutation rates over-
whelmed by passengers for about 80% of the genes studied (Supple-
mentary Fig. 11C, D) in the contexts of KRAS and BRAF.

The scale of our data allowed us to demonstrate that tumor
suppressor effects vary strongly by oncogenic context and that the
fitness landscape of tumor suppression displays strong and abundant
epistasis. Of 28 tumor suppressors studied, few increased size or
number across all oncogenes. Only inactivation of one, Pten, had a
consistently strong, positive effect on both tumor growth and tumor
number across all oncogenic contexts. Rnf43 and p53 consistently
increased relative tumor size and number, respectively (Fig. 7A, B).
Given the general trend of widespread epistasis, the robustness of the
tumor suppression provided by these three genes is notable. The
physiological role of p53 in constraining tumor initiation/early
expansion is striking and might be one reason for the prevalence and
ubiquitous nature of TP53 mutations in human cancer.

Many tumor suppressors showed clear sign epistasis with the
oncogenes, whereby inactivation was advantageous in one context
and either neutral or deleterious in another context. Surprisingly,
inactivation of some of the strongest tumor suppressors in the pre-
sence of oncogenic KRAS variants decreased tumor growth in the

presence of oncogenic EGFR. Furthermore, the oncogenic contexts
were qualitatively different from each other: loss of tumor suppressors
generally led to increased rates of tumor initiation and growth in the
KRAS backgrounds, had more muted effects in the BRAF context, and
had variable effects in the EGFR context.

Some of these epistatic effects were expected given our under-
standing of the RAS pathway and thus serve as positive controls. For
example, the inactivation of NF1—a positive regulator of KRAS GTP to
GDP transition—should shift KRAS proteins into their GTP-bound state
and increase tumor number and/or growth in the KRAS G12C-, KRAS
G12D- and EGFR-driven tumors. However, as class I mutations (e.g.,
BRAF V600E/D/K/R) have been demonstrated to activate MAPK sig-
naling independent of upstreamRAS signaling, inactivation of NF1 was
expected to be neutral in BRAF V600E-driven lung tumors58. Likewise,
inactivation of wild-type KRAS was expected to increase tumor num-
ber and/or growth in the KRAS G12C and KRAS G12D contexts, as wild-
type KRAS suppresses oncogenic KRAS33. Conversely, inactivation of
wild-type KRAS was expected to reduce tumor number and/or growth
in the EGFR context, as EGFR signals via wild-type KRAS, and, as with
NF1-deficiency, should not affect BRAF-driven tumors22. Indeed, we
observed all of these expected effects in our data, providing an
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Fig. 7 | The impact of tumor suppressor pathways on tumorigenesis largely
dependsonwhichoncogene is activated and isnotpredictedby theunderlying
strength of the oncogene alone. A, B Relative tumor size ratio at the 95th per-
centile (A) and relative tumor number (B) for tumors with the indicated Lenti-

sgRNA/Cre vector on the x-axis and oncogenic allele on the y-axis. Asterisks indi-
cate effects that are significant with FDR at 0.05 and half a log2-fold change from
neutral.
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important validation of our results (Figs. 2A, G, 4E, and 7 and Supple-
mentary Fig. 8D).

The other cases of strong epistasis that we observed could not
havebeenpredictedbasedon the linearoncogenic EGFR→KRAS→BRAF
pathway model. It is unclear why inactivation of Lkb1, Setd2, Keap1,
Kmt2d, or Nf2 leads to increased growth of oncogenic KRAS-driven
lung tumorsbut is deleterious to EGFR-driven lung tumors (Fig. 7). This
pattern indicates that the “off-axis” (i.e., not within the linear RAS
pathway) signaling controlled by these three oncogenes drastically
shifts the fitness effects of tumor suppressor losses. This should, in
turn, affect the set of evolutionary trajectories that are likely after the
initial oncogenic events of tumorigenesis.

Furthermore, the fitness effects of subsequent tumor suppressor
inactivation could not have been predicted from the basal oncogenic
potential of these four oncogenes, from strongest to weakest: KRAS
G12D to BRAF V600E to KRAS G12C to EGFR L858R. The precise
quantitative similarity of the tumor suppressive effects across KRAS
variants is particularly striking because it implies that such effects can
be robust to extreme (>tenfold) differences in oncogenic potential,
differences in biochemical properties and enzymatic activities31, 34, and
diminishing-returns epistasis7–9. Overall, it appears that it is not pos-
sible to predict the impact of tumor suppressor alterations from sim-
ple linear pathway structures or from the fitness effects of the
activated oncogenes in isolation.

Due to this lack of predictability, large, multiplexed screens that
assay fitness effects across many genetic combinations are critical for
revealing the contours of the fitness landscape. But such multiplexing
makes it challenging to collect additional data—such as histological
staging, immunohistochemistry (e.g., on pERK, cell proliferation, or
apoptosis), or spatial or single cell transcriptomics information—which
may contribute to our understanding of the biology underlying the
observed fitness effects. Future experiments in mice with tumors of a
single genotype of interest in which rich readouts from diverse ana-
lytes can be measured using existing methods should uncover the
mechanistic underpinnings of these genetic interactions.

In addition, this unpredictability may have implications for tar-
geted therapeutic interventions, which work by repressing the sig-
naling of oncogenes or co-linear nodes. If the epistasis also applies in
reverse—i.e., that the fitness costs of oncogenic signal repression have
strong, rugged interactions—then drug effects will be influenced by
tumor suppressor inactivation in complex, target-specific ways that
will require direct cause-and-effect empirical testing to unravel.
Indeed, this has been found in previous studies using Tuba-seq in the
context of EGFR inhibitors36 and chemotherapy59, provides a possible
explanation of why many cancer therapies have low response rates,
and suggests that matching patients to therapies based on both
oncogene and tumor suppressor alterations may be critical to
improving clinical outcomes.

Methods
Design and generation of Lenti-sgRNA/Cre vectors
We generated lentiviral vectors encoding Cre and an sgRNA (expres-
sed from a human U6 promoter) targeting each of the following 28
genes, which are known or putative tumor suppressors that are
recurrently mutated in lung adenocarcinoma (or pan-carcinoma) and
represent diverse cancer pathways:25,26 Apc, Arid2, Atm, Atrx, Brca2,
Cdkn2a, Cmtr2, Fbxw7, Kdm6a, Keap1, Kmt2d, KrasWT, Lkb1, Mga, Msh2,
Nf1, Nf2, Palb2, Pten, Ptprd, Rb1, Rbm10, Rnf43, Setd2, Smad4, Stag2,
Tsc1, and p53. Vectors encoding “inert” sgRNAs were also generated:
sgRosa26-1, sgRosa26-2, sgRosa26-3, sgNT-1, sgNT-2, and sgNT-3 were
used in the G12C;Cas9, G12D;Cas9, and Braf;Cas9 experiments, while
sgNT-2 and sgNeo-1 were used in the Egfr;Cas9 experiments.

sgRNAs were designed and selected as follows. First, all possible
20-bp sgRNAs (using an NGG PAM) targeting each gene of interest
were identified and scored for predicted on-target cutting efficiency

using an available sgRNA design/scoring algorithm60. For each tumor
suppressor gene, we then selected the sgRNApredicted to be themost
likely to producenull alleles: preferencewasgiven to sgRNAs thatwere
previously validated in vivo20,31,61, had the highest predicted on-target
cutting efficiencies, targeted exons conserved in all known splice iso-
forms (ENSEMBL), targeted splice acceptor/splice donor sites, posi-
tioned earliest in the gene coding region, occurring upstream of or
within annotated functional domains (InterPro; UniProt), and occur-
ring upstream of or at known recurrent mutation sites in human lung
adenocarcinomas. The sgRNA sequences for each target are listed in
Table 1.

Twenty-four of these 28 sgRNAs had been validated in our pre-
vious work; Kdm6a, KrasWT, Msh2, and Palb2 are the only new
sgRNAs19,20. In Cai et al., a rigorous analysis was performed to calculate
the expected true positive rate given that sgRNAs targeting the same
gene were concordant across multiple metrics and therefore con-
sistent with on-target effects. The true positive rate was above 89% for
all metrics tested, and in particular, was above 95% for the relative
tumor size metric, which is consistent with the data produced in this
study in Supplementary Fig. 5.

To generate Lenti-sgRNA/Cre vectors containing each sgRNA,
a double-stranded DNA fragment (IDT gBlock) containing a U6-
sgRNA-tracrRNA cassette flanked by restriction sites (AscI and
SbfI) was synthesized and digested by AscI and SbfI. This digested
DNA fragment was then cloned into an AscI/SbfI-digested par-
ental pLL3.3 lentivector encoding Cre to produce each circular-
ized Lenti-sgRNA/Cre vector.

Table 1 | Sequence of each sgRNA used in the main
experiments

sgRNA target sgRNA sequence

Apc TTGAGCGTAGTTTCACTCCG

Arid2 GGCAGTTCCACCACAGCAGA

Atm GTATCTCAGCAACAGTGGCT

Atrx CAGGTTCATCAAGGTCAAAG

Brca2 GTACCCAAAGTCTCGTCAAG

Cdkn2a CGGTGCAGATTCGAACTGCG

Cmtr2 GTAAGCCACTCGATAATGAG

Fbxw7 ACGTTAGTGGGACATACAGG

Kdm6a TTCCTCATCACCGAAAGCGG

Keap1 TCAAATACGACTGCCCGCAG

Kmt2d TTGTGCTCTCTGTAACTGCG

KrasWT CTTGTGGTGGTTGGAGCTGG

Lkb1 CCACTCTCTGACCTACTCCG

Mga TTATACCGATGACTATCCAC

Msh2 GCGCCGTGTAAAAGTCGCCG

Nf1 CCAAACGTAAAGCAGCAGTG

Nf2 GCTTGGTATGCGGAGCACCG

Palb2 GCACATTGATGACTCCTACC

Pten TCACCTGGATTACAGACCCG

Ptprd CTTGGTGCGGAGCACATCTG

Rb1 TCTTACCAGGATTCCATCCA

Rbm10 GTATTTCCTGAACAGATCCG

Rnf43 TAGACAGATGGCACACACGG

Setd2 TCTCTAATCCATCTTCCCAG

Smad4 GATGTGTCATAGACAAGGTG

Stag2 GGTCAAGAAGCGCTATGTCC

Tsc1 ATCGTGTGGCTCCTGCAAGG

p53 AGGAGCTCCTGACACTCGGA
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Barcode diversification of Lenti-sgRNA/Cre
To enable quantification of the number of cancer cells in individual
tumors in parallel using high-throughput sequencing, we diversified
the Lenti-sgRNA/Cre vectors with a 46 bp multi-component barcode
cassette that would be unique to each tumor by virtue of stable inte-
gration of the lentiviral vector into the initial transduced cell. This
46 bp DNA barcode cassette was comprised of a known 6-nucleotide
ID specific to the vector backbone (vectorID), a 10-nucleotide ID spe-
cific to each individual sgRNA (sgID), and a 30-nucleotide random
barcode containing 20 degenerate bases (random BC; Supplemen-
tary Fig. 2A).

The 46bp barcode cassette for each sgRNA was flanked by uni-
versal Illumina TruSeq adapter sequences and synthesized as single-
stranded DNA oligos. Forward and reverse primers complementary to
the universal TruSeq sequences and containing 5’ tails with restriction
enzyme sites (AscI and NotI) were used in a PCR reaction to generate
and amplify double-strandedbarcode cassettes for cloning. Each Lenti-
sgRNA/Cre vector and its matching insert barcode PCR product was
digested with AscI and NotI.

To generate a large number of uniquely barcoded vectors, we
ligated 1 µg of linearize vector and 50ng of insert with T4DNA ligase in
a 100 µl ligation reaction. Four to five hours after incubation at room
temperature, ligated DNA was precipitated by centrifugation at
20,000×g for 12min after adding 5 µl Glycogen (5mg/ml) and 280 µl
100% Ethanol into the ligation reaction. The DNA pellet was washed
with 80% Ethanol and air-dried before being resuspended with 10 µl
water. This 10 µl well-dissolved DNA was transformed into 100 µl of
Sure Electrical Competent Cells using BioRad electroporation system

following manufacturer’s instructions. Electroporation-transformed
cellswere immediately recoveredby adding into 5ml pre-warmedSOC
media. From these 5ml of bacteria, 10 µl were further diluted with LB
ampicillin broth, and a final dilution of 1:200,000 was plated on an LB
ampicillin agar plate for incubation at 37 °C. The remaining bacteria
weremixed gently and thoroughlybefore being inoculated into 100ml
LB ampicillin broth. After shaking at 37 °C overnight, colony numbers
on the LB ampicillin agar plate were counted to estimate the com-
plexity of each library and the 100ml bacterial culture was pelleted for
plasmid purification.

Eight colonies from each library were picked and PCR screened
for verification of the specific sgRNA sequence and corresponding
barcode sequence among these eight colonies. The final purified
library plasmid for each library was again sequence verified.

Generation of vectors to confirm the correlation of effects of
sgRNAs targeting the same gene
Toconfirm that the effects of sgRNAs targeting the samegeneproduce
correlated effects on in vivo lung tumorigenesis (consistent with
sgRNA effects being driven by on-target gene inactivation), we gen-
erated an independent set of Lenti-sgRNA/Cre vectors using a pScribe
lentiviral backbone (Cellecta; see Supplementary Fig. 5D, E) encoding
the same 28 sgRNAs listed above as well as a second unique sgRNA for
each of those 28 genes. The unique 2nd sgRNA targeting each gene is
listed in Table 2.

Production, purification, and titering of lentivirus
Twenty-four hours prior to transfection, 2.4 × 107 293T cells were pla-
ted on a 15-cm tissue culture plate. In total, 30 µg of pPack (packaging
plasmidmix) and 15 µgof library plasmidDNAweremixedwell in 1.5ml
serum-free D-MEM medium before an equal volume of serum-free D-
MEM medium containing 90 µl of LipoD293 was added. The resulting
mixture was incubated at room temperature for 10–20min before
adding into 293T cells. At 24 h post-transfection, replace the medium
containing complexes with 30ml of fresh D-MEM medium supple-
mented with 10% FBS, DNase I (1 unit/ml), MgCl2 (5mM), and 20mM
HEPES, pH 7.4. The entire virus-containing medium from each plate
was collected and filtered through a 0.2 µmPES filter (Nalgene) at 48 h
post-transfection. The viruses were further concentrated by cen-
trifugation at 41,325×g, 4 °C for 2 h, and the pellet was resuspended in
500 µl PBS buffer. In all, 50 µl virus aliquots were stored at −80 °C.

To quantify the titer of packaged library constructs, 105 LSL-YFP
MEF cells29 were transduced with 1 µl of viruses in 1ml culturemedium
containing 5 µg/ml polybrene. Transduced cells were incubated for
72 h before being collected for FACS analysis to measure the percen-
tage of YFP-positive cells. Control viruses were used in parallel to
normalize the virus titers.

Pooling of Lenti-sgRNA/Cre vectors
To generate a pool of barcoded Lenti-sgRNA/Cre vectors for
initiation of multiple tumor genotypes within individual mice, bar-
coded Lenti-sgRNA/Cre vectors targeting the 28 genes described
above (Apc, Arid2, Atm, Atrx, Brca2, Cdkn2a, Cmtr2, Fbxw7, Kdm6a,
Keap1, Kmt2d, KrasWT, Lkb1, Mga, Msh2, Nf1, Nf2, Palb2, Pten, Ptprd,
Rb1, Rbm10, Rnf43, Setd2, Smad4, Stag2, Tsc1, and p53), and those
containing the inert, negative control sgRNAs, were combined such
that the viruses would be at equal ratios in relation to their esti-
mated in vitro or in vivo titers. The same barcoded Lenti-sgRNA/Cre
vectors (same sgRNAs and virus preparations) for each gene were
used in all the main experiments. In the EGFR;Cas9 experiment,
some viruses were underrepresented in the pool as we were limited
by total volume of those viruses, and in that same experiment, the
virus pool contained additional targets for which data were not
included in this study. All virus pools were diluted with 1× DPBS to
reach the necessary titer for each experiment.

Table 2 | Sequence of each sgRNA used in the validation
experiment in Supplementary Fig. 5

sgRNA target 2nd sgRNA sequence

Apc CCTTCTACACAGTACACCCG

Arid2 ACTTGCAGTAAATTAGCTCG

Atm GTGAAGTATCTCAGCAACAG

Atrx GAATGGCCGTAAAAGTTCTG

Brca2 AGCTGTTTAAAACACCACAG

Cdkn2a GGGCCGCCCACTCCAAGAGA

Cmtr2 CAGCCTGAATCCATACCACG

Fbxw7 GTATGTCACAGATTCTAACG

Kdm6a ATGGCGGCGGGAAAAGCGAG

Keap1 CATGTACCAGATTGACAGCG

Kmt2d GTTCACCATTAATACCCCCA

KrasWT AAACTTGTGGTGGTTGGAGC

Lkb1 GGGCCTGTACCCATTTGAGG

Mga TGACCTCTGATGTACATACG

Msh2 CCTTAATAAATGCAGCCCGG

Nf1 GACAAGATGACAAACCTGGT

Nf2 GACCCCTCTGTGCACAAGCG

Palb2 ACTGCTGCGCCTAACGACAG

Pten TGTGCATATTTATTGCATCG

Ptprd AACTCCGGTTGATCAGACAG

Rb1 AAATGATACGAGGATTATCG

Rbm10 TGTCGGCCAGGATTCCTACG

Rnf43 CGTGTGGATCCTCCTGACCG

Setd2 GCATTCGCTTAATATCCCGG

Smad4 GGTGGCGTTAGACTCTGCCG

Stag2 ATTTCGACATACAAGCACCC

Tsc1 GGAGAGTCAAAGCCCCCTCG

p53 GAAGTCACAGCACATGACGG
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Mice, tumor initiation, and tissue collection
KrasLSL-G12D, BrafCA-V600E, tetO-EGFRL858R, Trp53flox, Rosa26LSL-rtTA3-ires-mKate,
Rosa26LSL-Cas9-2a-GFP and H11LSL-Cas9 alleles have been
described29,35–37,62–64. Mice with Kras and Braf alleles were on a BL6
(C57BL/6) background, while mice with the Egfr allele were on a
mixed BL6/129/FVB background. Mice 6–30 weeks old were anes-
thetized with isofluorane (1–3% inhaled) and lung tumors were
initiated in the mice via intratracheal delivery of a lentivirus pool as
previously described20,65. Briefly, a catheter was carefully inserted
into the trachea of each anesthetizedmouse, virus was pipetted into
the opening of the catheter, and the catheter was left in place for
about one minute while the mouse inhaled the virus. The lentivirus
pool contained barcoded Lenti-sgRNA/Cre vectors targeting 28
genes (Apc, Arid2, Atm, Atrx, Brca2, Cdkn2a, Cmtr2, Fbxw7, Kdm6a,
Keap1, Kmt2d, KrasWT, Lkb1, Mga, Msh2, Nf1, Nf2, Palb2, Pten, Ptprd,
Rb1, Rbm10, Rnf43, Setd2, Smad4, Stag2, Tsc1, and p53). For all
experiments using G12D;Cas9, G12C;Cas9, and Braf;Cas9 mice, the
lentivirus pool also contained vectors encoding 6 negative control
sgRNAs: three targeting the Rosa26 gene, which are actively cutting
but functionally inert, and 3 non-cutting sgRNAs with no expected
genomic target (sgNon-Targeting: sgNT). For all experiments using
Egfr;Cas9 mice, the lentivirus pool contained vectors encoding two
negative control sgRNAs: one targeting the Neomycin resistance
gene within the Rosa26 allele, which is actively cutting but func-
tionally inert64, and one non-cutting sgRNA with no expected
genomic target (sgNT). To induce oncogenic EGFR expression in
Egfr;Cas9 mice, mice were fed doxycycline-impregnated food pel-
lets (625 ppm; HarlanTeklad) starting 1–2 days prior to delivery of
pooled barcoded Lenti-sgRNA/Cre vectors. We randomized mice
across groups such that sexes and ages were approximately evenly
represented in each study group (Supplementary Dataset 1).

Whole lung tissue was extracted from euthanized mice as pre-
viously described20. Lung mass measurements were recorded as a
proxy for overall lung tumor burden. Individual lung lobes from some
mice were inflated with 10% neutral buffered formalin and allowed to
fix for 16–24 h before passaging into 70% ethanol for subsequent
embedding, sectioning, and histological analyses using conventional
methods. The remaining lung tissue was weighed and then stored at
−80 °Cprior to subsequent processing for next-generation sequencing
(see sections below).

All animals were kept in pathogen-free housing and animal
experiments were conducted in accordance with protocols
approved by either the Yale University Institutional Animal Care or
Explora BioSciences Institutional Animal Care and Use Committee
(IACUC) guidelines. Mice were housed in a pathogen-free environ-
ment in Innovive Disposable IVC cages made from 100% high-
viscosity PET. Each cage had a dual HEPA-filtered ventilation system.
The density of mice was limited to five per cage. Animal rooms had a
controlled 12 h light/dark cycle. The normal temperature and rela-
tive humidity ranges in the animal rooms were 23 ± 2.5 °C and
50 ± 20%, respectively. Cages were set to have 50–60 air exchanges
per hour. Water (filtered, purified, and acidified to a pH of 2.5 to 3.0;
e.g., Aquavive acidified water from Innovive) and standard rodent
chow (e.g., Teklad 2920X irradiated diet) were provided ad libitum.

A veterinarian oversaw and maintained authority over all animal
welfare. Mice experiencing pain or distress (or found moribund) as
evidenced by prolonged respiratory distress, poor grooming,
inability to eat, lack of movement, loss of greater than 10% of their
body weight over any window of time, or a rapid or sustained
deterioration in health status resulting in a Body Condition Score
(BCS)66 of ≤2 were deemed to require immediate euthanasia. Mice
were euthanized using CO2 followed by a secondary method (i.e.,
cervical dislocation or thoracotomy).

Generation of spike-in controls
DNA barcode cassettes comprised of 46 bp barcode cassettes and
flanked by universal Illumina TruSeq adapter sequences as well as
additional buffer sequences to extend their total length to >400bp
were generated either by direct synthesis of the double-stranded DNA
fragments (GeneWiz, IDT) or synthesis of single-stranded DNA oligos
(GeneWiz, IDT) with overlapping complementary regions that were
extended and amplified via PCR to create double-stranded DNA pro-
ducts that were then purified. Aliquots of these stock double-stranded
DNA fragments were diluted to the desired copy numbers using
DNase-free ultra-pure H2O and stored at −20 °C.

Isolation of genomic DNA from mouse lungs
Whole lungs were removed from the freezer and allowed to thaw at
room temperature. Spike-ins were added to each whole lung
sample. Qiagen Cell Lysis Buffer and proteinase K from Qiagen
Gentra PureGene Tissue kit (Cat # 158689) was added as described
in the manufacturer protocol. Whole lungs plus spike-ins from
each mouse were homogenized in the Cell Lysis buffer and Pro-
teinase K solution using a tissue homogenizer (FastPrep-24 5 G, MP
Biomedicals Cat # 116005500). Homogenized tissue was incubated
at 55 °C overnight. To remove RNA from each tissue sample, RNase
A was added with additional spike-ins to the whole homogenized
tissue. To maintain an accurate representation of all tumors, DNA
was extracted, and alcohol precipitated from the entire lung lysate
using the Qiagen Gentra PureGene kit as described in manu-
facturer protocol. More spike-ins were added to the
resuspended DNA.

Preparation of barcode libraries for sequencing
Libraries were prepared by amplifying the barcode region from
32 µg of genomic DNA per mouse. The barcode region of the inte-
grated Lenti-sgRNA/Cre vectors was PCR amplified using primer
pairs that bound the universal Illumina TruSeq adapters and con-
tained a primer tail encoding unique dual indexes plus Illumina P5/
P7 adapters. Specifically, the forward primer was comprised of the
P5 Illumina adapter sequence followed by a unique i5 index and then
a sequence complimentary to the Illumina TruSeq R1 adapter, as
follows (5’ to 3’): AATGATACGGCGACCACCGAGATCTACAC[unique
i5 index]ACACTCTTTCCCTACACGA. The reverse primer was com-
prised of the P7 Illumina adapter sequence followed by a unique i7
index and then a sequence complementary to the Illumina TruSeq
R2 adapter, as follows (5’ to 3’): CAAGCAGAAGACGGCATACGAGA-
T[unique i7 index]GTGACTGGAGTTCAGACG.

Weused a single-stepPCRamplificationof barcode regions,which
we found to be a highly reproducible and quantitative method for
determining the number of cancer cells in each tumor. We performed
eight 100 µl PCR reactions permouse (4 µg genomicDNA per reaction)
using Q5 HF HS 2x mastermix (NEB #M0515) with the following PCR
program (Table 3).

The concentration of amplified barcode product in each PCR
was determined by TapeStation (Agilent Technologies). Sets of 20-
60 PCRs were pooled at equal molar ratios of barcode product,
normalized to the estimated burden of tumors (measured lungmass
minus an estimated normal lungmass of between 0.15 and 0.18 g) in

Table 3 | Details of PCR program

Step Temperature (°C) Time Cycles

Initial denaturation 98 °C 30 s

Denaturation 98 °C 10 s ×27

Annealing 63 °C 10 s

Extension 72 °C 10 s

Final extension 72 °C 5min

Hold 4 °C ∞
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each mouse lung sample (measured lung mass minus an estimated
normal lung mass of between 0.15 and 0.18 g) associated with the
PCRs. Pooled PCRs were cleaned up using a two-sided SPRI bead
purification. Samples were sequenced on an Illumina NextSeq 550
or NovaSeq 6000.

Analysis of sequencing data
Paired-end sequencing reads were demultiplexed via unique dual
indexes using BCLConvert (version 3.8.2) and adapters sequences
were trimmed using CutAdapt (version 4.1). CutAdapt was used in
paired-end mode with the following parameters: minimum-length=0,
error-rate=0.1, overlap=3. Paired-end alignments were constructed
between mate-paired reads and library-specific databases of the
expected oligonucleotide spike-in and tumor barcode insert sequen-
ces using Bowtie2 (version 2.4.4, RRID:SCR_016368). These alignments
were stringently filtered from downstream analysis if they failed to
meet any of several quality criteria, including:

• Nomismatches between the twomate pairs, which fully overlap
one another, at any location.

• No mismatches between the mate-paired reads and expected
constant regions of the barcode or spike-in to which they
best align.

• No indels in alignments between mate-paired reads and the
barcode or spike-in to which they best align.

Following alignment, errors in paired-end reads were corrected
via a simple greedy clustering algorithm:

• Reads were dereplicated into read sequence/count tuples, (si, ri)
• These tuples were re-ordered from highest to lowest based on

their read abundances, {ri}.
• This list of tuples was traversed from i = 1…N, taking one of the

following actions for each tuple (si, ri):

– If si is notwithin a Hamming distance of 1 from any sjwith j < i,
then (si, ri) initiates a new cluster.

– If sj is within a Hamming distance of 1 from some sj with j < i,
then it joins the cluster of sj.

The resulting clusters are each considered to represent an error-
corrected sequence equal to that of the sequence that founded the
cluster with read count equal to the sum of the read counts of the
dereplicated reads that are members of the cluster.

A second stage of error correction was performed to remove
additional errors. Hamming distanceD(si, sj) was computed on all pairs
of error-corrected sequences. Then, each sequence si (with ri reads)
was absorbed into the most abundant sequence sj (with rj > ri reads) if
either of the following criteria were met:

• D(si, sj) ≤ 3
• D(si, sj) ≤ 5 and rj/ri ≥ 5 or ri ≤ 3

These heuristics were established based on internal control data.
After applying both rounds of error correction, we estimate a false
positive rate of 1.4 × 10−8 based on the number of reads assigned to
spike-in oligonucleotide sequences (which have no degenerate bases)
that were not added to the samples. Following error correction, a filter
was applied to remove sequences that could have originated from
cross-contamination: barcodes were compared across samples in the
same study, and any exact sequences thatwere found inmore thanone
library were removed.

Following error correction and cross-contamination removal, the
read counts of each unique barcode were converted to neoplastic cell
number by dividing the number of reads of the spike-in oligonucleo-
tide added to the sample prior to tissue homogenization and lysis at a
fixed, known concentration.

Removal of mice that did not get sufficient viral titer during
transduction
Following the sequence processing,mice were removed if they did not
reach a lower bound of total neoplastic cells. For the experiments with
G12D;Cas9 andG12C;Cas9, micewere removed if they had less than 106

total neoplastic cells. For the experimentswith Braf;Cas9 and Egfr;Cas9
mice,micewere removed if they had less than 105 total neoplastic cells.
Thresholds were chosen using by examining the distribution of total
neoplastic cells per mouse across each study. Most mice fall within
~two orders ofmagnitude of each other, and any outliers fell at least an
order of magnitude below the rest of the distribution.

Accounting for processed lung mass when normalizing metrics
by titer
Because several mice had lobes taken for histology and therefore only
a fraction of the lungmade it into Tuba-seq, the processed lung should
not be expected to represent the full viral titer transduced to the
mouse. To correct the titer for that fraction of lung, we multiplied the
total titer given to themouse by the ratio of the processed lungweight
to the total lung weight before any lobes were removed. This effective
titerwas used for all plots thatpresent titer-normalizedquantities (e.g.,
Figs. 1F–I and 3D–G).

Calculation of tumor size percentiles
First, tumors were pooled across all mice in the group, and separated
into tumors that map to each Lenti-sgRNA/Cre guide. Tumors from
Lenti-sgInert/Cre were pooled (sgNT−1, sgNT−2, sgNT−3, sgR26−1,
sgR26−2, sgR26−3 for experiments using G12D;Cas9, G12C;Cas9, Braf;-
Cas9 mice, and sgNT−2, sgNeo−1 for the experiments using Egfr;Cas9
mice) to create one pool of sgInert tumors. Using the sgInert tumors, a
minimum tumor size cutoff was determined, above which tumor
percentiles would be calculated. The goal of matching this cutoff
across study groups, particularly when comparing across oncogenes,
was to ensure that the tumor suppressor effects were being measured
on the same fraction of initiated tumors, independent of the strength
of the oncogene. A cutoff was chosen for each study group that mat-
ched the number of sgInert tumors per titer above the cutoff. The
exception was for the Braf;Cas9 experiments. Because the Braf;Cas9
tumor sizes differed so strikingly from those in the G12D;Cas9,
G12C;Cas9, Egfr;Cas9 experiments, suggesting a very different process
for tumor initiation and/or growth, we opted to use an ad hoc cutoff
that captured >85% of total tumor burden and reduced the high
mouse-to-mouse variability in the number of small tumors. For the
main experiments where all mice of each oncogene-timepoint pair
were pooled, the following minimum cutoffs were used: 1600 cells for
G12D;Cas9 15 weeks, 600 cells for G12D;Cas9 at 9 weeks, 400 cells for
G12C;Cas9 at 15 weeks, 300 cells forG12C;Cas9 at 9weeks, 300 cells for
Egfr;Cas9 at 15 weeks, and 3000 cells for Braf;Cas9 at 15 weeks. Neo-
plastic cell number cutoffs for the comparisons of the replicate study
groups in Fig. 2 were calculated using the same procedure.

For each set of Lenti-sgRNA/Cre tumors in each oncogene-
background pair, size percentiles of tumors above the cutoff were
computed and divided by the same size percentiles for the sgInert
tumors in the same context with the same cutoff. This ratio is referred
to as relative tumor size in Figs. 2, 4, and 7, and Supplementary Figs. 4,
6, and 8. Mice and tumors were bootstrapped 8000 times and the
calculation was repeated each time. A 95% confidence interval from
these bootstraps was reported.

Comparison of relative tumor size between Cas9-negative vs
Cas9-positive
To confirm that the presence of Cas9 did not affect tumor size of
sgInert tumors, we calculated the relative tumor size of non-
targeting and active-cutting sgInert tumors across four
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independent studies of G12D;Cas9 mice (Cas9-positive) that each
had a group of G12Dmice (Cas9-negative) (Supplementary Fig. 4D).
Aminimum tumor size cutoff of 300was used for all groups, and the
metric was calculated as described in Methods Section “Calculation
of tumor size percentiles”, where the inert tumors in the Cas9-
positive group were used for the numerator of the ratio and the
Cas9-negative were used for the denominator. In three of the four
groups, the relative tumor sizes of the sgInert tumors were the same
in Cas9-positive and Cas9-negative mice, with no significant dif-
ference at any percentile of the distribution. In the fourth study
group, the inert tumors in the Cas9-positive mice were slightly lar-
ger than in the corresponding Cas9-negative group, but the mag-
nitude of this effect was small and considered neutral by themetrics
used for the rest of the tumor suppressor inactivations. In addition,
because the metrics used to measure growth effects are calculated
between tumors that are within the same Cas9 background, any
effects of Cas9 on tumor size are controlled.

Calculation of tumor number enrichment
Tumor number enrichment estimates the factor by which there are
more or fewer sgRNA tumors above a minimum size cutoff than there
would have been if the tumors had been sgInert. As we sought to
measure tumor number effects associated with initiation and very
early tumor growth, a cutoff of 500 cells was used, as it represents a
lower bound on our technical resolution.

First, all tumors from each mouse in each study group being
compared are pooled and separated into tumors that map to each
Lenti-sgRNA/Cre guide. Tumors from Lenti-sgInert/Cre were pooled
(sgNT-1, sgNT−2, sgNT−3, sgR26−1, sgR26−2, sgR26−3 for experiments
using G12D;Cas9, G12C;Cas9, Braf;Cas9mice, and sgNT−2, sgNeo−1 for
the experiments using Egfr;Cas9 mice) to create one pool of sgInert
tumors.

Because tumor number for a given sgRNA will be proportional to
the titer of the individual sgRNAs within the viral pool, we calculated
the ratio of sgRNA tumors to sgInert tumors in mice without Cas9 in
eachvirus pool, which is expected tobedriven only by titer differences
between viruses.

Then, to calculate the tumor number enrichment for each sgRNA,
we divided the number of sgRNA to sgInert tumors, and divided this
ratio by the same ratio in themicewithout Cas9 that had been initiated
with the same pool of viruses. This ratio of ratios is referred to as
relative tumor number in Figs. 5 and 7 and Supplementary Figs. 9 and
10. Mice and tumors were bootstrapped 8000 times and the calcula-
tion was repeated each time. A 95% confidence interval from these
bootstraps was reported.

Calculation of tumor burden densities
The density of tumor burden as a function of log tumor size was
estimated as follows. First, we pooled tumors across all mice in
each cohort and computed total tumor burden by summing the
sizes of all tumors. We then generated log-spaced bins with ten
bins per order of magnitude of tumor size, summed the sizes of all
Lenti-sgInert/Cre tumors in each bin, and divided by total tumor
burden. To create a density in log size, we then divided this ratio by
log (bin width), which was a constant given the log-spaced binning.
Finally, mice and tumors were bootstrapped 1000 times and this
procedure repeated each time, and the mean density across
bootstraps as well as a 95% confidence interval are shown for
each size.

Calculating lengths of gene coding regions
For each gene of interest, we used the coding sequence annotations of
the “Ensembl Canonical” transcript (Ensembl project, release 105)67 to
determine the length of the gene’s coding region.

Determining gene mutation and co-mutation rates from human
lung cancer genomics data
Mutation rates in human LUAD were estimated using AACR Project
Genie (release version Genie 12.0)26. First, we restricted our analysis to
patients with LUAD and then selected those with the relevant onco-
gene mutations. We used the following definitions of KRAS, EGFR, and
BRAF oncogene mutations:

• KRAS: any mutation in codon 12, 13, or 61
• EGFR: p.L858R, p.L861Q, p.G719X, deletion or insertion in exon

19, insertion in exon 20
• BRAF: all mutations listed in Table 1 of Owsley et al.68.

To minimize bias due to the variety of genetic panels used in
AACR Project Genie, we restricted our analysis to patients sequenced
with the MSK-IMPACT468 panel, which was the most commonly used
panel for LUAD patients. This resulted in 1134 patients with KRAS
mutations, 935 with EGFR mutations, and 135 with BRAF mutations.
CMTR2 was the only gene that we tested that was not included in the
panel, so we excluded it from our analysis. KRASWT was also excluded
from this analysis because of the difficulty in distinguishing mutations
in awild-type allele frommutations in the oncogenic allele in the Genie
data. Correlations of mutation frequencies and mouse effects were
also assessed using all panels in the AACR Project Genie database, and
Spearman and Pearson correlations produced were similar to those
using only MSK-IMPACT468.

To determine the co-mutation frequencies for each of the tumor
suppressor genes we inactivated in our mouse models, we counted
mutations as follows: first, we selected all mutations that were non-
sense, missense, or frameshift variants. Then, any mutations that were
predicted by Polyphen to be benign or predicted by SIFT
(RRID:SCR_012813) to be tolerated were excluded. Correlations
between causal mouse effects and human co-mutation frequencies
were also tested with other definitions, and we confirmed that as we
move from the set of mutations defined above to non-synonymous
mutations, and then to all mutations the Spearman correlations
decreased slightly, but the trend remained the same.

Tumor mutational burden was calculated as the total number of
mutations per 1,000,000 base pairs. The total gene length was cal-
culated using the sum of exon length for all genes that were queried in
the panel.

When correlating exon length and co-mutation frequency, out-
liers were first removed. We found the same set of outliers using two
methods: (1) Clustering was run using the pam algorithm, a robust
version of Kmeans, and the gap statistic was calculated using the
“globalSEmax” method, which looks for the first value that is lower
than the global maximumminus the standard error when evaluated at
that value. (2) Spearman correlation was calculated using the full set of
genes, and then genes were removed one at a time to test how the
correlation increased. Each iteration, the gene whose removal max-
imized the Spearman correlationwas removed. Aplot of thenumber of
genes removed against Spearman correlation showed an elbow at the
removal of 5 genes. Both methods determined CDKN2A, TP53, KEAP1,
LKB1, and RBM10 to be the outliers. Linear regression on a log-log scale
was then performed on the remaining genes. Pearson correlation and
Spearman correlation were reported on the plot.

Relative tumor size at the 95th percentile was used as themetric of
mouse causal effects. Correlation of co-mutation frequency in EGFR-
driven tumors with relative tumor size at 90th, 75th, and 50th per-
centilesmaintained the trendbut became less strong as thepercentiles
increased, with Spearman correlations of 0.53, 0.49, and 0.43,
respectively.

Statistical analysis
All statistical tests were done in Python, using Scipy version 1.8.1.
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Study design statistics and reproducibility
No sample size calculation was performed for this study. However,
prior studies with comparable sample sizes revealed many significant
effects19,20,61. Further, our bootstrap confidence intervals capture
uncertainty in statistical metrics due to random sampling of mice and
tumors.

Mice were randomized into experimental groups within each
oncogenic background, and sex ratios were all approximately
balanced.

Blinding was not relevant to our study because all mice received
the same treatment, and no drugs were administered.

As described above, mice were excluded if they did not receive
sufficient viral titer during transduction, as measured by tumor bar-
code sequencing. Although the absolute cutoff was not pre-deter-
mined, the method by which we would remove the mice was
determined in advance of the study.

Many experiments were done to reproduce our results. We
reproduced the tumor suppressor effects in the G12D;Cas9 mice with
11 different study groups (243 mice) and the tumor suppressor effects
in the G12C;Cas9 mice with 4 different study groups (47 mice).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw tumor data have been deposited in Dryad69. The data plotted
in the main manuscript, including summary statistics and their con-
fidence intervals, are provided in the Source Data file. Source data are
provided with this paper.

Code availability
The core software used is described in the Methods, under the sub-
section Analysis of sequencing data. The open-source software
includes the following external tools: BCLConvert v3.8.2, CutAdapt
v4.1 and Bowtie2 v2.4.4. A description of all open-source code is
included in “Methods”, and further details are availableon request. The
proprietary portions of the code are not available. Statistics and plots
were generated using Python. Statistical tests were run using
Scipy, v1.8.1.
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