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A human-machine collaborative approach
measures economic development using
satellite imagery

Donghyun Ahn 1,7, Jeasurk Yang 2,7, Meeyoung Cha1,3 , Hyunjoo Yang 4 ,
Jihee Kim 3,5 , Sangyoon Park 6 , Sungwon Han 1, Eunji Lee 1,
Susang Lee 5 & Sungwon Park 1

Machine learning approaches using satellite imagery are providing accessible
ways to infer socioeconomic measures without visiting a region. However,
many algorithms require integration of ground-truth data, while regional data
are scarce or even absent in many countries. Here we present our human-
machine collaborative model which predicts grid-level economic develop-
ment using publicly available satellite imagery and lightweight subjective
ranking annotation without any ground data. We applied the model to North
Korea and produced fine-grained predictions of economic development for
the nation where data is not readily available. Our model suggests substantial
development in the country’s capital and areas with state-led development
projects in recent years. We showed the broad applicability of our model by
examining five of the least developed countries in Asia, covering 400,000
grids. Our method can both yield highly granular economic information on
hard-to-visit and low-resource regions and can potentially guide sustainable
development programs.

Reliable measures of economic activity are hard to collect in developing
countries, limiting economic research as well as policy analysis. For
example, 53 countries in the world have not conducted any agricultural
census for the last 15 years, and 17 lack population census data for the
sameperiod1.NorthKorea is anextremecase; the lastofficial statisticson
county-level population, a basic statistic in demographic surveys, were
produced by the United Nations in 20082. Alternative methods have
relied on interviews3,4, news articles published by North Korean media5,
and luminosity data from nightlight satellite imagery6,7, albeit with lim-
ited precision and coverage. Therefore, it is debatable whether these
methods can comprehensively measure the North Korean economy.

Meanwhile, recent computer visionmodels have proven effective
at analyzing satellite imagery to infer socioeconomic status, such as

consumption and assets, in other regions such as Sub-Saharan Africa8,9

and Southeast Asia10,11. Predictions become more reliable when com-
bined with alternative information sources, such as the geo-tagged
information onWikipedia12 or audience estimates derived frommobile
phone platforms13,14. However, ground-truth data remain essential to
existing machine learning approaches. Current deep learning models
are “supervised” by considerable quantities of labels from ground-
truth data that correspond to each observed region. Unfortunately,
low-income countries that would benefit the most from remote-
sensing technology (i.e., monitoring of terrain via satellite or aerial
imagery) tend to lack reliable background statistics1.

Here we present a human-machine collaborative deep neural
network model that assigns an economic development score to each
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satellite image grid (~2.45 × 2.45 km2). While economic development
encompasses wide-ranging dimensions of human progress, our model
generates a measure of economic development captured by different
patterns of human settlements that are visually distinguishable using
views from above. For example, satellite images with larger areas of
rice paddies, higher building density, or the existence of a large sta-
dium are positive indicators of economic development, whereas fewer
roads and buildings, and larger areas of forest and barren lands are
considered less developed.

Our model, depicted in Fig. 1, clusters satellite images based on
vectorized visual features (Stage 1) and then asks human annotators to
produce the subjective rankings of image clusters (Stage 2), which is
summarized in the form of a partial order graph (POG). The POG is an
essential element in our approach that addresses the limitations of
current deep-learning and satellite imagery-based economic mea-
surement methods: This lightweight and cost-effective labeling pro-
cess applies to all regions captured by satellite imagery, irrespective of
the availability of ground truth data. The model then ranks satellite
images (Stage 3) according to an ensembled POG that aggregates
multiple human annotators’ comprehensive assessments of economic
development. The final output of the model is a score for every grid
image, called siScore, in which a higher score represents a higher
degree of economic development.

We deployed our model to North Korea, a highly data-scarce
country that cannot be analyzed using existing algorithms as the
required ground truth data are unavailable. We tried to validate our
model using regional- and grid-level data collected from various
alternative sources. As a result, we provide a detailed analysis of the
economic landscape of North Korea from 2016 to 2019. The period is
of interest to the international community as North Korea has been

subject to a series of economic sanctions since 2017. The model uti-
lizes satellite images at the spatial resolution of 10m per pixel. We also
tested the applicability of our model in each of five Asian countries
(Nepal, Myanmar, Cambodia, Bangladesh, and Laos), covering about
400,000 grids and a population of ~300 million. These countries are
categorized as least developed countries (LDCs), and are therefore
comparable to North Korea in terms of economic context. Lastly, we
discuss the interpretability of the AI model by highlighting which
pixels contributed to scoring economic development.

Results
Model prediction performance
Applying our human-machine collaborative model to North Korea, we
generated a spectrum of scores uncovering the country’s regional
development. Figure 2A is a grid-level map that shows the average
siScores between 2016 and 2019. The map depicts several distinctive
development patterns; the western plains and eastern coastal port
areas show high siScores, whereas the vast central and northern
regions with high-altitude mountains show low siScores. Our model
also provides a higher-resolution picture than existing nightlight-
based images (Fig. 2B). The difference is evident in the zoomed-in view
of Sepho County (Fig. 2D and E); our model predictions capture more
refined variations in economic development across its urban, rural,
and mountainous areas. Notably, our model results are comparable to
the maps of land cover classification or building footprints con-
structed by the South Korean government on a decennial basis, as
shown in Fig. 2C and F. In contrast to our method, generating land
cover classification and building footprints requires substantial
resources, including access to proprietary satellite and aerial images,
and extensive human inspection. Model predictions for five LDCs in
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Fig. 1 | Illustration of the proposed model. The model is composed of machine-
driven clustering of satellite images (Stage 1), human guidance on the partial order
graph (POG) of image clusters (Stage 2), and a machine-driven rank-wise score
model to compute siScore (Stage 3). A POG contains information on the relative
ranking of each cluster’s development, perceived and judged by each human

expert. Knowledge from multiple POGs is summarized as a single representative
POG using an ensemble process. The result is then used to train the scoremodel at
the subsequent stage. Satellite images in the figure contain modified Copernicus
Sentinel data [2016, 2017, 2018, 2019].
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Fig. 3 demonstrate that the applicability of our model extends beyond
North Korea to a broader set of developing countries.

We next compare the performance of our human-machine colla-
borative model with four other baselines: NL (nightlight)-regression,
NL-guided POG, land cover-guided POG, and relative wealth index
(RWI) models. The NL-regression model directly utilizes the Visible
Infrared Imaging Radiometer Suite (VIIRS) nighttime lights data in
201915. The NL-guided and land cover-guided POG models are data-
guided models that generate POGs using nightlight and land cover
datasets, respectively. RWI is a grid-scale economic indicator con-
structed from daytime satellite imagery and other nontraditional
information sources16. We conducted the evaluation with six countries
—North Korea and five LDCs. For five LDCs, we use ground-truth
information from official census and survey data as ground-truth

information (Suppl. Data S3.5). Such data are not available for North
Korea for the period of study. Instead, the evaluation for North Korea
uses three datasets for validation. The first is a manually constructed
building footprint dataset, covering 70% of the country and contains
each building’s outline marked by GIS experts in 2014 (Fig. 2F). We
extract the floor area of buildings and then aggregate them to com-
pute the building area as a proxy for economic development. The
second is the number of companies (establishments) by district, col-
lected by counting company mentions in North Korean news outlets5.
The third is the district-level population density from the country’s
most recent population census in 2008. The Supplementary
Materials (Supplementary Fig. S2) also show comparisons to geo-
digitized market data including 442 Jang-Madang (authorized market)
locations.
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Fig. 2 | Visualization of economic development levels predicted by our human-
machine collaboration model. (A) Prediction scores over grid images averaged
over 4 years from 2016 to 2019, (B) the yearly aggregated VIIRS nightlight data in
2019 from Earth Observation Group, Payne Institute for Public Policy15, and (C) the
land cover classification map released by the Ministry of Environment (MoE),
Republic of Korea in 2019. The zoomed-in views in (D–F) compare predictions for
Sepho County in the Kangwon region. From left to right are the Copernicus
Sentinel-2 satellite images [2019] (D), model predictions (E), and manually verified
buildings colored red from the building footprint data from National Geographic

Information Institute (NGII), Republic of Korea in 2014 (F). The land cover classifi-
cationmap shown in (C) uses the ‘NorthKorea land covermap’ created byMoE. The
map is opened to the public as the KOGL first type and can be downloaded for free
by directly visiting MoE Informatization Office (Sejong City, Doum6-ro 11, MoE 6th
floor, South Korea). The building footprint data shown in (E) uses the ‘the digital
map’ created by NGII. This data is opened to the public as the KOGL first type and
can be downloaded for free from the National Spatial Data Infrastructure Portal
(http://www.nsdi.go.kr/lxmap/index.do).
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Figure 4 shows that our human-machine collaborative model
generates scores that are highly predictive of multiple proxies of eco-
nomic development for North Korea at the grid-level (Spearman’s
ρ =0.77) and at the district-level (with the highest R-squared value =
0.83). It also achieves similar performance when tested on five LDC
countries. Moreover, when compared to the four baseline models, our
model attains comparable performance and, in many cases, outper-
forms. Supplementary Data S3.3 additionally considers an alternative
baseline method of first training the neural network on a different
countrywhere ground-truth data is available (e.g., using a convolutional
neural network and OpenStreetMap data) then applying the learned
model to North Korea, and reports that our model achieves better
results by a large margin (Spearman’s ρ =0.77 vs. 0.50). These findings
suggest that the human-machine collaborative model is capable of
generating high-quality predictions of economic development using
publicly available satellite imagery in the absenceof ground truth labels.

Patterns of regional development in North Korea
Having assessed the model, we next use the yearly predictions at the
grid-level to examine changes in regional development from 2016 to

2019. In the context of a planned economy, disparities across regional
development may reflect the central government’s political and eco-
nomic policy, and responses to economic sanctions17,18. While it is
outside the scope of this study to investigate the causal relationship
between economic sanctions and local economic development, we
provide a descriptive analysis of regional differences in development
as measured by siScore over this time period. Figure 5 shows the dif-
ference in siScore for all grids in North Korea between 2016 and 2019.
The red color (blue color) represents an increase (decrease) in siScore
during this period. Grids with increases in siScore appear to be con-
centrated in and around the capital, Pyongyang.

In addition, we report the interpretability of the model (Fig. 6)
using the Grad-CAM algorithm19. This visualization method displays
how each pixel within a grid contributes to the overall economic
development score of that image. Figure 6A shows how the heatmap,
plotted based on gradients of the model, fluctuates in the reclaimed
land of Ryongyon County over the years. In 2016, most pixels within
the heatmap area, made up of ocean and agricultural lands, con-
tributed similarly to a siScore value of 0.279. As the tideland becomes
reclaimed, the heatmap detects newly built structures. Figure 6B
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Fig. 3 | Visualization of economic development predicted by the human-
machine collaboration model for North Korea and the five least developed
countries in Asia. (A) Predictions scores over grid images from 2016 to 2019. The
scores are standardized for visualization. Cyan-colored area indicates anareawhere
satellite images are not available. The zoomed-in views (B, C) compare economic

development predictions for Cambodia. (B) 3D visualization of siScore. The base
map utilizes the OpenStreetMap program, and our siScore predictions are overlaid
to it. (C) 2019 VIIRS nightlight data from Earth Observation Group, Payne Institute
for Public Policy15, with background images from Google Earth.
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provides the Grad-CAM visualization of three areas of interest in North
Korea: the Samjiyon development project, the Kalma tourist project,
and the Nyongbyun nuclear scientific research center. The heatmap
also shows infrastructural renovation in those areas. These figures
effectively demonstrate that siScore captures changes in local eco-
nomic development over time.

Next, we employed a simple regression framework to analyze the
statistical association between region-specific features and economic
development predicted by the model. As an alternative measure of
economic development, we also use nighttime luminosity, which is
commonly utilized in economics and social sciences20,21. We focused
on fourmajor features that are considered crucial to the North Korean
regime as potential determinants of regional economic development:
(i) proximity to economic and political hubs, (ii) designation of an area
as an economic development zone (EDZ, also known as Gyeongje-
gaebalgu in Korean), (iii) number of major mineral mining sites, and
(iv) containment of nuclear-related facilities. Proximity is measured as
the Euclidean distance from a grid’s center to the center of each hub.
For EDZ features, we assigned a value of one to grids that are located

inside the designated zones and a value of zero otherwise. For
other site-specific features, such as mines and nuclear test sites, we
assign a valueof one to grids that contain such sites or are adjacent to a
grid containing them. To account for other region-specific determi-
nants of economic development, we included the district’s population
and surface area as well as province indicator variables in the
regression.

Table 1 reports regression coefficients fromordinary least squares
estimation. Columns 1 and 2 use differences in the log of siScore and
nightlight as outcome variables to capture economic development
from 2016 to 2019, respectively. Column 1 suggests that areas more
distant from major cities, including the country’s capital Pyongyang
and provincial capitals, are associated with less development during
this period.We also find that EDZ regions designated for agriculture or
tourism developed more, relative to EDZ regions with industrial or
export processing sites and non-EDZ regions (Fig. 5). Coefficient esti-
mates of the major mining sites are neither economically nor statisti-
cally significant. Interestingly, wefind relatively higher development in
districts with uranium mine sites.
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Fig. 4 | Comparison ofmodel performance onNorthKorea and least developed
countries (LDCs) in Asia in terms of economic indicator prediction for the
human-machine collaborative model (red, circle) and four other baselines:
NL(nightlight)-regression (gray, cross-shaped), NL-guided POG (black, star-
shaped), Land cover-guided POG (green, square), and Relative wealth index
(RWI) (sky blue, triangle). Based on the GDP per capita (at current prices USD,
2019), we select five countries that have a similar economic rank to North Korea

(198th): Nepal (183rd), Myanmar (174th), Cambodia (169th), Bangladesh (164th),
Laos (154th)28. The grid-level evaluation is based on the density of building area
(North Korea) and population estimates (LDCs in Asia) as a proxy for economic
development. The district-level performance is calculated using official statistics
from census and surveys: density of building area (North Korea), population,
establishments and employment (LDCs in Asia). We use a simple unweighted
average for aggregating grid scores at the district level.
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In contrast, as shown in column 2, using nightlight as the outcome
variable does not indicate the same development patterns as those
observed with siScore. Specifically, distance to the capital or EDZ
regions with agriculture or tourism development is no longer corre-
lated with changes in nighttime luminosity. However, nighttime
luminosity declines in regions linked to the export processing
industry.

Columns 3 and4use indicators for positive changes in siScore and
nightlight intensity as the outcome measures to capture economic
growth, from 2016 to 2019, respectively. While columns 1 and 2 show
whether themajor features havepredictive power for both the size and
direction of changes in the outcome measures, columns 3 and 4
examine whether the features detect any positive changes, setting
aside the magnitude. The results for siScore in column 3 are qualita-
tively similar to those in column 1. For example, column3 suggests that
during 2016–2019, areas more distant from the nearest provincial or
county-level cities are less likely to experience positive growth. On the
other hand, EDZ regions for agricultural or tourism development were
more likely to experience positive growth.

We believe there are at least two reasons for the discrepancy in
results between siScore and nightlight intensity. First, these measures
may capture different aspects of economic development. Reflecting
visually discernible capital stocks such as buildings, roads, and other
infrastructure facilities, siScore is more accurate at capturing physical
urban development. For example, our model score effectively identi-
fies visual changes in landscapes, such as barren lands being converted
into agricultural fields or rice paddies into factory buildings or infra-
structure sites. On the other hand, nightlight intensity can detect the
utilization of capital stocks at night. Second, nightlight intensity in less
developed regions is tooweak to be accurately captured by satellites21.
In the context of North Korea, the median grid’s nightlight luminosity
is zero, which does not necessarily mean that there is no economic
activity in the region. Given the constant shortage of electricity supply
in rural regions, it is likely that more economic activities take place
during the daytime which nighttime light cannot capture.

Discussion
Our human-machine collaborative model’s predictions complement
existing remotely sensed measures, such as nightlight intensity, and
provide new information on the cross-regional distribution of eco-
nomic development identified by human visions. Our model could
create grid-level indicators of local economic development of North
Korea, a state that releases almost no socioeconomic indicators, and
show that development has been concentrated in cities and areas with
state-led agriculture or tourism projects in recent years. Overall, our
modelwill be especially useful for policy design and implementation in
countries with limited data. For example, governments can design
targeted interventions by utilizing siScore todetect andmonitor urban
sprawl or inequality in urban development.

Our model differs from other work in that it introduces colla-
boration between humans and machines. Most existing computer
vision techniques relyonhigh-resolution images and a large number of
ground-truth or proxy labels9,22,23. Our approach, on the other hand,
employs weak supervision and only requires public satellite imagery
and minimal human input during the ranking process. As a result, our
computational framework can provide granular economic measure-
ments from the above without the need for extensive ground-truth or
proxy data, broadening its applicability worldwide. Note that semi-
supervised or transfer learningmodels, which leverage data fromwell-
represented areas, can also be applied to data-scarce regions, as sug-
gested in refs. 10,16. It will be interesting to compare our findings
alongside these efforts for performance evaluations.

However, considerable efforts are underway to make the model
more applicable in the future. First, the predictions can be enriched
using alternative sources of remote sensing and other geo-located
data. While we utilized publicly available satellite images, our model
can readily be applied to other proprietary satellite images and aerial
photographs to improve the prediction quality. Using additional
bands, such as near-infrared23 for clustering and POG training is one
such possibility. Second, model training could also be improved. Due
to the multistage structure, noise in the initial clustering stage can
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Fig. 5 | The changes in siScore in North Korea from 2016 to 2019. (Left) The
changes in siScore in North Korea. (Right) Examples of satellite images and siScore
in model predictions between 2016 and 2019. The top images present industrial
development areas in Wiwon County. The bottom images present the recently

constructed Kalma tourist project of Wonsan City. The boundaries of these
developmentprojects aredrawn as red lines. Thebottompictures revealmorevivid
changes due to new buildings and roads compared to the top pictures. Satellite
images in the figure contain Copernicus Sentinel data [2016, 2019].
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propagate throughout training, degrading overall performance. The
clustering step, for example, can bedesignedmore cohesively with the
human guidance step in the form of active learning. Lastly, extending
themodel for cross-country assessments could bea valuable next step.
While our current model was designed to compare regions within a
country, we plan to validate the model across wider regions that share
similar geographic or economic landscapes. We can then ultimately
aim for applications at a global scale that would require the model to
evaluate more diverse landscapes in various geographies and eco-
nomic development stages.

Impact statement
Accurate measurements of social and economic characteristics are
essential when governments and organizations allocate resources and
design policies. However, many developing countries still lack
regional-level data on key economic and human development

indicators, despite recent progress in data gathering methods24. Our
human-machine collaborative approach addresses this issue by utiliz-
ing daytime satellite imagery combined with light-weight human
annotation for relative scoring, enabling machine learning-driven
predictions and reducing the burden of ground truthing.

However, the development of such an approach may posit the
data reliability issues encompassing the human-provided annotations
that substantiate the prevailing economic conditions. Subjective
human judgment might introduce the possibility of errors in the
annotations due to cultural, social, and cognitive limitations, when
validating the economic conditions in satellite images. Therefore, the
credibility and expertize of the annotators could influence the out-
comes. Nevertheless, additional technical considerations, such as an
ensemble technique in our case, can be made to mitigate subjective
errors and instead put higher weights on the common patterns in the
annotations.

Moreover, the inherent limitations of remote sensing are applic-
able to our approach1,21. Cloud cover often masks economic features
from satellite imagery, potentially misleading the training process.
Also, static satellite imagery may not accurately capture dynamically
changing economic factors including factory utilization, commuter
and consumer traffic, or operations conducted underground. There-
fore, measurements that solely rely on low-frequency static images
may not fully reflect the extent of capital resource utilization. Explor-
ing ways to overcome this shortcoming presents a promising avenue
for future research.

It is important to highlight negative implications such as potential
privacy and dual-use concerns associated with remote sensing meth-
ods. Super high-resolution imagery could potentially disclose personal
information such as license plates, addresses, or other identifiable
features. Even low-resolution analyses that involve predictive research
may cause concerns about invasion of privacy anddual-use. Therefore,
careful consideration of ethical implications will be important when
applying satellite imagery-based approaches like ours. Implementing
proper safeguards and standards can help ensure the responsible use
of methods utilizing remote sensing data, preventing ill-intended use
of the study outcomes.

Finally, it should be acknowledged that top-down studies are
often unable to capture the day-to-day reality of individuals on the
ground. While these studies are useful to overcome data collection
limitations and allow for large spatial analyses, they do not capture an
individual’s lived experience. Therefore, whenmaking policy decisions
these experiences must also be taken into consideration.

Nonetheless, this study can assist the international community in
addressing humanitarian challenges. While this paper primarily
demonstrates how our approach can be utilized to measure economic
development, these methods can be extended to various other
socioeconomic or geographic measurements. For example, the model
could be trained to identify areas with higher exposure and sensitivity
to climate change and natural disasters which can help locate where
economic and humanitarian resources and further studies should be
directed.

Methods
Developing a human-machine collaborative approach
We present a human-machine collaborative model that learns visual
features from satellite images without using conventional labeled data
(see Fig. 1).

Satellite imagery data. The original satellite imagery input data we
used for North Korea are 256 × 256 pixel-sized Sentinel-2 satellite
images taken at 10m per pixel resolution each year from 2016 to 2019.
We adjusted images to 9.557m per pixel resolution to match the
standard resolution of zoom level 14 tiles. This is the highest resolution
data available for North Korea amongst public resources.

2016 2017 2018 2019

satellite
image

Grad-
CAM

overlap

0.279 0.342 0.408 0.465siScore

0.461 0.548

0.387 0.542

0.241 0.296
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Fig. 6 | Model interpretability with Grad-CAM results (2016–2019). (A) Grad-
CAMheatmap visualization over a grid image of the Ryongyon region from 2016 to
2019, indicating the reclaimed land as being a critical factor in the change of eco-
nomic development scores. The pixels that contain dramatic gradient change
appear brighter in the visualization. (B) Grad-CAM heatmap over three areas of
interest: Samjiyon development project, Kalma tourist project, and Nyongbyun
nuclear scientific research center. All three sites show growth in economic devel-
opment and the heatmap highlights the key areas contributed to the score change.
The model can detect subtle changes in roofing and road network in the Nyong-
byun nuclear site that would be otherwise hard to detect with human eyes. Satellite
images in the figure contain modified Copernicus Sentinel data [2016, 2017,
2018, 2019].
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Model overview. The proposed model utilizes deep learning-based
computer vision techniques to identify image clusters with similar
visual features. The image clusters generated by algorithms lack
interpretation, so our model was designed to involve light human
intervention to subjectively rank satellite image clusters with four
binary operators: higher than, less than, equals, and incomparable. The
ranked sets of clusters jointly identified by machines and humans are
represented in a partial order graph (POG), which contains essential
information on the relative ranks of cluster-wise economic develop-
ment. The model then computes grid-level prediction scores that tally
with the order of satellite images in the given POG. Below, we sketch
the three stages of our human-machine collaborativemodel, andmore
details can be found in S2. Methods of Supplementary Materials.

Stage 1: Clustering satellite images. Deep learning-based clustering
can discriminate distinct visual patterns from group images with
similar traits. This work employs DeepCluster25, an unsupervised deep
learning algorithm, to analyze satellite images.Nature anduninhabited
areas constitute a large proportion of terrain, expected since an esti-
mated 75% of North Korean territory is uninhabited26. We therefore
regard uninhabited regions as a single cluster and separate them prior
to clustering using a pre-training step. This adjustment helps the
clustering algorithm to focus on images that require more critical
comparison and improves computational efficiency. To determine the
optimal number of clusters, we apply silhouette analysis over the
clusters’ embedding space and measure how similar every instance is
within a cluster. This method yielded 23 suggested clusters for North
Korea. Scaling down the ranking problem to nearly two dozen clusters
makes the subsequent sorting task feasible for humans.

Stage 2: Sorting clusters by human guides. Humans were tasked to
assess the clusters obtained from Stage 1 by visually inspecting the
images in each cluster, and then ordering the clusters by their level of
economic development. The outcome of this human-guided process
is the relative rankings of clusters (i.e., POG). Note that a POG
represents the ordinal relationship (i.e., ‘higher than’, ‘less than’,
‘equals’, and ‘incomparable’) among clusters, where each cluster
comprises visually similar images determined bymachines in Stage 1.
To generate POGs for North Korea, we hired ten human annotators in
three groups with varying backgrounds: economists, satellite ima-
gery experts, and North Korean defectors. Most human experts
completed the ranking task within 2 h, which shows that human input
at this stage is relatively lightweight in workload compared to tra-
ditional surveys or extensive manual labeling. When we examined
what visual characteristics of satellite images might have been con-
sidered in the ranking task, satellite images with more artificial sur-
faces, such as buildings and roads, and fewer natural surfaces, such as
forests, grass, and water received higher rankings (see regression
results in Suppl. Table S3). The POGs contributed by each human can
be summarized as a single representative POG using an ensemble
rank process.

Note that a POG can be generated either by readily available
existing data (i.e., data-guided approach) or by humans (i.e., human-
guided approach). One can extrapolate the nationwide spatial data
(e.g., nightlight, land cover classification) to match the size of the
satellite grids. Once all grids that correspond to each cluster are
identified, the average value (e.g., nightlight intensity, built-up ratio)
for each cluster can be used to rank clusters in the data-guided POG.
However, a human-guided approach is useful as it does not require

Table 1 | Grid-level regression estimates (2016–2019)

(1) (2) (3) (4)
Δln(siScore) Δln(NL) 1 {ΔsiScore >0} 1 {ΔNL>0}

Proximity to economic and political hubs

Log distance to NK-China and Russia border 0.089 (0.071) 0.058a (0.028) 0.002 (0.031) −0.055 (0.043)

Log distance to Pyongyang −0.256c (0.069) 0.175 (0.098) −0.142c (0.040) 0.223 (0.147)

Log distance to nearest city −0.105b (0.033) 0.083b (0.032) −0.034a (0.017) −0.090b (0.037)

Log distance to nearest major port 0.132b (0.048) 0.022 (0.024) 0.044b (0.015) −0.018 (0.054)

Economic Development Zone (EDZ)

Agriculture development 0.243c (0.041) 0.070 (0.081) 0.236c (0.022) 0.307b (0.118)

Tourism development 0.297c (0.083) 0.391 (0.281) 0.182c (0.032) 0.643b (0.198)

Industrial development −0.058 (0.128) −0.083 (0.165) −0.005 (0.130) 0.153a (0.077)

Export processing −0.063 (0.108) −0.378c (0.047) −0.038 (0.143) 0.199 (0.127)

Mining site of key minerals

Gold mine 0.083b (0.031) −0.024 (0.028) 0.005 (0.019) 0.020 (0.038)

Coal mine 0.074a (0.034) 0.003 (0.024) 0.039a (0.022) 0.117b (0.049)

Copper mine 0.090 (0.050) 0.076a (0.040) −0.000 (0.030) −0.018 (0.049)

Iron mine 0.116 (0.072) −0.126a (0.059) 0.113b (0.037) −0.042 (0.042)

Nuclear-related site

Nuclear test site −0.033 (0.087) −0.098a (0.046) 0.048 (0.047) −0.011 (0.113)

Uranium mine 0.375b (0.156) 0.077 (0.072) 0.197c (0.042) 0.110 (0.078)

Province FE Yes Yes Yes Yes

Mean of outcome variable −0.09 3.10 0.45 0.30

Observations 32,578 32,578 32,578 32,578

Table 1 reports ordinary least squares (OLS) regression estimates, which were tested using two-sided tests and there was no additional adjustment made for any of the regressions. The outcome
variable in columns (1) and (2) is the difference of logarithmized values between 2016 and 2019. Columns (3) and (4) use an indicator for positive change as the outcome variable. Logistic regression
gives similar results. All specifications include province fixed effects, log of district population in 2008, and log of district area. Standard errors are clustered at province level and reported in
parentheses.
adenotes statistical significance at 0.10,
bat 0.05, and
cat 0.01.
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pre-existing or extensive ground truth statistics. This approach makes
our technique applicable to predicting the economic status of regions
where labels are restricted or scarce. While a human-guided approach
(instead of an objectively measurable result) may be susceptible to
error due to subjective measures, an ensemble of human judgments
can reduce disparities between individuals.

Stage 3: Training a rank-wise scoremodel. The final stage is training
a convolutional neural network (CNN) to assign a numeric score
between 0 and 1 for every satellite grid image, which we call siScore.
The scores assigned to tens of thousands of satellite grid images
should align with the human-generated POG obtained from Stage 2.
For instance, if Cluster A is judgedmore developed than Cluster B, the
machine-inferred siScores of images in Cluster A should on average be
larger than those for Cluster B. Moreover, within the same cluster, a
score should be given to each image differently as themodel can learn
to detect which features from satellite imagery determine the relative
orders of clusters in the POG. The training details of preserving the
POG ordering are as follows: We train a ranker function that assigns
scores to each image for every possible ordered path in a given POG
containing the least and the most developed clusters. This results in
images being ranked according to their cluster in the POG. This
objective is identical tomaximizing the Spearman correlation between
the model’s scores and the order of clusters in the POG. This mapping
is nontrivial since the numbers of clusters and grids are different (e.g.,
23 clusters versus 32,578 grid images in the case of North Korea). Also,
it is challenging to optimize the rank correlation via back-propagation,
since ranks are nondifferentiable. As a solution, we apply a differenti-
able ranking function to approximate the rank27.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data obtained from third parties and used in figures include daytime
satellite imagery (Google Earth at https://www.google.com/maps;
Sentinel-2 of Copernicus at https://earthexplorer.usgs.gov/), back-
ground tiledmap (Openstreetmap at https://www.openstreetmap.org/),
nightlight imagery (Earth Observation Group-Payne Institute for Public
Policy at https://eogdata.mines.edu/products/vnl/), land use map of
North Korea (Ministry of Environment, Republic of Korea, its access
permission process is described at https://egis.me.go.kr/), the digital
map of North Korea (National Geographic Information Institute,
Republic of Korea at http://www.nsdi.go.kr/lxmap/index.do), and
mining industry dataset (I-RENK at https://irenk.net/). These datasets are
available under restricted access for third party rights. The access can be
obtained by either perceiving proper permission from the data provi-
ders or providing appropriate credit. Data generated by this study such
as siScore are available in the GitHub repository (https://github.com/
DonghyunAhn/development-measure) and the Zenodo database
(https://doi.org/10.5281/zenodo.7694909). Data needed to reproduce
our findings, figures, and tables are also available with detailed
descriptions in the same GitHub repository and Zenodo database.

Code availability
Code to replicate the findings of this study is available at https://
github.com/DonghyunAhn/development-measure https://doi.org/10.
5281/zenodo.7694909
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