
Article https://doi.org/10.1038/s41467-023-42113-9

Enhanced multi-year predictability after El
Niño and La Niña events

Yiling Liu 1,2 , Markus. G. Donat 3,4, Matthew. H. England 5,
Lisa. V. Alexander1, Annette L. Hirsch1 & Carlos Delgado-Torres 3

Several aspects of regional climate including near-surface temperature and
precipitation are predictable on interannual to decadal time scales. Despite
indications that some climate states may provide higher predictability than
others, previous studies analysing decadal predictions typically sample a
variety of initial conditions. Here we assess multi-year predictability condi-
tional on the phase of the El Niño–Southern Oscillation (ENSO) at the time of
prediction initialisation. We find that predictions starting with El Niño or La
Niña conditions exhibit higher skill in predicting near-surface air temperature
and precipitation multiple years in advance, compared to predictions initi-
alised from neutral ENSO conditions. This holds true in idealised prediction
experiments with the Community Climate System Model Version 4 and to a
lesser extent also real-world predictions using the Community Earth System
Model and a multi-model ensemble of hindcasts contributed to the Coupled
Model Intercomparison Project Phase 6 Decadal Climate Prediction Project.
This enhanced predictability following ENSO events is related to phase tran-
sitions as part of the ENSO cycle, and related global teleconnections. Our
results indicate that certain initial states provide increased predictability,
revealing windows of opportunity for more skillful multi-year predictions.

Interannual to decadal climate predictions aim to predict the cli-
mate state for the following year and up to 10 years into the future.
These decadal predictions are affected by both external forcing and
internal climate variability and are performed by initialising a cli-
mate model with observations or reanalyses and integrating them
for 10 years after initialisation1,2. A general warming trend, asso-
ciated with increasing greenhouse gas forcing, provides some skill
for temperature on decadal time scales almost everywhere3. Align-
ing the climate variability by initialising the predictions with the
observed climate has been shown to add skill in some regions,
including the North Atlantic, the Amundsen Sea, and some land
regions including Europe, the Middle East and Africa2–4. Even pre-
cipitation, which has lower decadal predictability than temperature,
exhibits significant forecast skill on multi-year to decadal time

scales over some regions, including parts of Europe, Asia, the Sahel,
and North America3,5,6.

Studies of decadal climate predictability usually quantify skill
using predictions started from all initialised states. This approach
determines the general level of predictability, but it neglects possible
forecasting windows related to more predictable situations that could
enablemore skilful predictions under certain conditions, as in a Lorenz
system7. For example, onweather time scales (e.g. hours to days), high-
pressure weather systems are usually linked to more predictable
weather (i.e. persistent fine conditions) compared to storms within
low-pressure systems, that are generally more transient and variable8.
For conditional predictability on seasonal time scales, forecasts initi-
alised in June show modest skill in predicting sea surface temperature
(SST) in the eastern tropical Pacific for up to 6–9 months compared
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with less skilful forecasts initialised before the boreal spring predict-
ability barrier in April and May9. On decadal time scales, increased
predictability has been found when initialising from strong Atlantic
Meridional Overturning Circulation (AMOC) or Atlantic Ocean Heat
Transport (OHT) than from weak AMOC or OHT conditions10,11. A
recent effort to reconstruct states of the tropical Pacific suggested it
exhibits different predictability depending on the climate state at the
time of initialisation12.

As one of the globally dominant modes of interannual climate
variability, El Niño-Southern Oscillation (ENSO) is related to ocean
temperature and coupled atmospheric circulation anomalies in the
tropical Pacific, affecting many remote parts of the globe via
teleconnections13–17. ENSO has also recently been shown to contribute
to decadal predictability in the South Pacific18, and inter-annual rainfall
predictions for monsoon regions were shown to be more skilful when
ENSO is active19. ENSO has also been shown to possibly trigger tran-
sitions in the Interdecadal Pacific Oscillation, which could be a source
of multi-annual predictability20. However, no previous studies have
systematically investigated multi-year to decadal predictions starting
from different ENSO phases at a global scale. In this study, using
perfect-model prediction experiments and retrospective predictions
of the observed climate, we investigate multi-year climate predict-
ability and its sensitivity to ENSO phase when the predictions are
initialised21.We classify the predictions according to ENSOphase at the
time when the predictions are initialised with El Niño, La Niña and
neutral conditions, and compare the forecast accuracy between these
three different phases.

Results
Highermulti-year predictability after El Niño and La Niña events
The perfect-model predictions show positive potential skill in most
regions of the globe for multi-year to decadal predictions of near-
surface temperature (Fig. 1); a previous study showed that added skill
from initialisation is found primarily in the first two forecast years
across the sample of all starting years21. Analysing the potential skill for
the different groups according to ENSO conditions at the beginning of
the predictions, we also find large areas of the globe where the mean
squared skill score (MSSS; see Methods) is positive (Fig. 1 for

predictions started in El Niño and La Niña conditions, and Supple-
mentary Fig. S1 for predictions started in neutral conditions). In the
first year after initialisation, the skill for predictions started in neutral
conditions is still high, so that the differences between the different
groups are small. For multi-year forecast times beyond the first year,
however, substantially larger regions of the globe exhibit skill in pre-
dictions starting fromElNiñoor LaNiña conditions,when compared to
predictions starting from neutral years. This is particularly the case in
the tropical Pacific and tropical Atlantic, as well as over parts of Africa,
for the average of forecast years 2–3 (Fig. 1h, k). For the 4–6 year
forecasting period, enhanced skill is found over the extratropical
North Pacific and parts of the Southern Ocean (Fig. 1i, l).

Figure 2 shows about half of the global area exhibits significant
skill in predicting annual averages of near-surface temperature at 3, 4, 5
and 6 years in advance when starting from El Niño and La Niña events.
In contrast, <20% of the global area has significant skill when starting
from neutral conditions. For multi-year averages, the skilful areas are
even larger: for example,more than80%of the area exhibits significant
skill after El Niño conditions for the 2–3 year prediction period, versus
~50% for predictions initialised in neutral years. The areas of significant
prediction skill are ~90% (after El Niño years) versus 60% (neutral
years) for the 4–6 year forecast period. In addition, the curve of clas-
sical neutral conditions (i.e. defined as all years that arenot classified as
El Niño or La Niña) is always above the curve of persistent neutral
conditions (defined as yearswhen there areno excursions to LaNiña or
El Niño conditions (see Methods); grey line in Fig. 2). This indicates
predictability is even lower when initialising predictions from persis-
tent neutral conditions during November, December and January
(NDJ) and when average SST anomalies over these 3 months are
smaller. Based on theMSSS differences (the two right-most columns in
Fig. 1), potential skill is higher after El Niño conditions than after
neutral conditions in more than 30% (forecast years 2–3) and more
than 20% (forecast years 4–6) of the globe (Supplementary Fig. S2).
After La Niña conditions, about 10% of the globe shows positive MSSS
differences, whereas area fractions where MSSS is higher after neutral
conditions are very small.

Composite maps of predictions initialised with El Niño and La
Niña conditions show distinct temperature anomaly patterns

Fig. 1 | Potential skill dependence on initial El Niño-Southern Oscillation
(ENSO) state. The mean squared skill score (MSSS) for the near-surface tem-
perature in the perfect-model predictions for decadal simulations initialised in El
Niño (EN; a, b, c), LaNiña (LN; d, e, f), and the skill difference between the different
groups: El Niño – neutral (g, h, i) and La Niña – neutral (j, k, l). Rows correspond to
forecast year 1 (a, d, g, j), the average of forecast years 2–3 (b, e, h, k), and the

average of forecast years 4–6 (c, f, i, l). The plus sign stippling indicates grid cells
where the skill score or skill differences are significant at the false discovery rate
(FDR) being 0.2 (when adjusting for the false discovery rate, see Methods for
details). The square symbols indicate grid cells where the skill score or skill dif-
ferences are significant at the 90% level (outside the 5%–95% confidence interval
based on local individual testing with 1000 bootstrap realisations).
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reflecting the ENSO phase and related teleconnections during the first
forecast year (Fig. 3). These include warm anomalies in most tropical
regions (extending to higher latitudes along the west coasts of North
and South America) and cold anomalies in the extratropical North and
South Pacific in the first year after El Niño events, and largely opposite
sign anomalies after La Niña events. In contrast, local mean anomalies
are small in predictions initialised from neutral conditions. The

average temperature anomaly over forecast years 2 and 3 shows
anomaly patterns of mostly opposite sign compared to the first fore-
cast year, suggesting that the climate in these simulations exhibits a
tendency to evolve to the opposite ENSO phase of the initial state in
the second or third year after initialisation. The average over forecast
years 4–6 again shows similar anomalies to the first year, particularly
across the tropical Pacific, indicating that the climate system tends to
evolve back towards the initial ENSO phase at some point during this
period, affecting the 3-year average (over forecast years 4, 5, and 6)
accordingly. These tendencies for the Pacific to evolve into the
opposite phase of ENSO over a 2-3 year time scale are not a given of
course; the enhanced predictability is merely indicative of likelihoods
given the initial climate state in the forecast.

The global anomaly patterns from the initialised perfect-model
predictions closely resemble the patterns derived from the reference
run of the perfect-model predictions (compare Fig. 3 and Supple-
mentary Fig. S3) for up to 3 years after El Niño and La Niña conditions
(pattern correlations >0.7). In particular, pattern correlations between
the predicted anomalies and the reference run anomalies are higher
than the pattern correlations of the historical (uninitialized) simula-
tionswith the reference run (maps are shown inSupplementaryFig. S4;
pattern correlations for both initialised and uninitialized predictions
are shown above each map in Fig. 3). This is true for the 2–3 year
forecast period after both El Niño and La Niña events, and for the 4–6
year forecast period after El Niño, indicating added skill from initi-
alisation at the global scale. In contrast, pattern correlations are low,
and anomalies comparably smaller for predictions initialised from
neutral conditions. Further, when starting from neutral conditions,
pattern correlations show no additional skill from initialisation beyond
the first forecast year. Overall similar results are also found for pre-
cipitation anomaly patterns (Fig. S5), indicating enhanced precipita-
tion predictability and added value from initialisation for multiple
years after El Niño and La Niña events. Note that the different rows in
Figs. 3, S3 and S4 average over a different number of years (i.e. 1, 2 and
3 years), and this averaging will lead to different spatial correlations

Fig. 2 | Areas of skill. The percentage of global areas (10° × 10° grid cells weighted
by cos(latitude)) where the perfect-model predictions exhibit significant skill (the
false discovery rate (FDR) is 0.2 when adjusting for the false discovery rate as
indicatedby the ‘+’ sign stippling in Fig. 1) for predictions initialised in El Niño (red),
La Niña (blue), neutral (black), and persistent neutral (yellow) conditions. The
shading around each line represents the 5%–95%confidence interval basedon 1000
bootstrap realisations (with replacement, see Methods).

Fig. 3 | Agreement of local temperature anomalies. Composite maps of nor-
malised temperature anomalies (after detrending; refer to Methods for details of
normalisation and detrending) from perfect-model decadal simulations started
fromElNiño (EN; a,b, c), LaNiña (LN;d, e, f) and neutral (NEU;g,h, i) conditions for
forecast years 1 (a, d, g), 2–3 (b, e, h) and 4–6 (c, f, i). The pattern correlations
(weighted by grid cell areas) of the initialised (rini) and uninitialized (rnoIni) perfect-

model predictions compared to the reference simulation are shown above each
panel. Subplot titles are in black when rini is significantly greater than rnoIni
(exceding the one-sided 95% confidence interval, based on 1000 bootstrap rea-
lisations), whereas grey subplot titles show non-significant difference between rini
and rnoIni.
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across the different rows. The key information for this comparison is
that the initialised predictions show a more similar pattern to the
reference run than the uninitialized predictions.

ENSO cycle determines the conditional predictability
The added skill in the tropical Pacific may be explained by ENSO per-
iodicity. For example, in the tropical Pacific region where SST varia-
tions related to ENSO are strongest, predictions starting from either El
Niño or La Niña are more skilful than those starting from neutral
conditions (Fig. 1h, i, k, l). This could be indicative of the potential skill
in capturing ENSO variations subsequent to El Niño/La Niña events22–24.
The model exhibits an ENSO periodicity of 3–6 years, consistent with
observations (Fig. S6). Therefore, it seems plausible that the enhanced
predictability after ENSO peak phases (i.e. after either El Niño or La
Niña events) could be related to the dominant periodicity of the ENSO
cycle as seen in the tendency for evolution to the opposite ENSOphase
after 2–3 years and back to initial phase after 4–6 years (Fig. 3). This
hypothesis is confirmed by analysing the potential skill in predicting
ENSO itself, measured e.g. by the Niño3.4 index (Fig. S7). Predictions
started from El Niño and La Niña states are more skilful in predicting
the Niño3.4 index compared to predictions started in neutral condi-
tions, or skill calculated based on all annual initialisations for the
forecast years 2–3 and forecast years 4–6 (although uncertainty ranges
based on bootstrapping the relatively small samples are large). In
forecast year 1 the potential skill of predictions started in neutral
conditions (and in particular persistent neutral conditions) is very
high. This is likely due to the relatively small temperature variations in
such cases when no ENSO phase transition happens in the months
following initialisation, and SST anomalies remain relatively small.

The predictable tropical Pacific conditions also appear to result in
higher potential skill in other remote locations due to both inter-basin
and tropical-extratropical teleconnections. For example, tropical
Pacific SST anomalies related to ENSO cycles teleconnect to both high
southern and northern latitudes, and the tropical Pacific is known to
interact with both the tropical Indian and Atlantic Oceans via adjust-
ments in the Walker circulation25–29. In particular, the simulated
anomaly in the tropical Pacific region co-exists with same-sign high-
latitude anomalies over North America, the Arctic, and the Amundsen
Sea regions for both temperature (Fig. 3) and precipitation (Fig. S5).
Such correspondence of regional anomalies is found during e.g. 1, 2–3
and 4–6 years after El Niño, years 1 and 2–3 after La Niña in Fig. 3; and
years 1 and 2–3 after El Niño and La Niña in Fig. S5).

From an oscillator point of view, peak phases of the ENSO oscil-
lation (i.e. El Niño and La Niña events) are most likely followed by a
transition towards the opposite phase, except in a few cases when
these events (in particular La Niña) can endure for a second year30. In
contrast, after neutral start years, there is less predictive skill as the
system could evolve towards either El Niño or La Niña, or indeed
remain neutral. In order to compare transition probabilities based on
different initial conditions in our perfect-model experiment, we
investigate the average transition probabilities over all forecasting
members of the El Niño, La Niña and neutral starting points respec-
tively during different forecasting times; namely 1, 2–3 and 4–6 years
(Table S2). This analysis confirms that El Niño start years are mostly
followed by neutral or La Niña years in the first year after initialisation;
while La Niña start years are more likely followed by neutral or El Niño
years. The simulations have an increased probability to transition into
the opposite phase during forecast year 2 or 3 after initialisation
compared to transitioning into the initial phase. In particular, simula-
tions started in El Niño conditions have a probability to transition into
La Niña at some point during forecast year 2 or 3 of 32%, whereas only
19% transition back to El Niño, and simulations started in La Niña
conditions have a probability of 37% to transition into El Niño during
forecast year 2 or 3, but only 22% probability to transition back into La
Niña. During forecast years 4, 5 or 6 there is a slightly increased

probability for the simulations to transition back into the initial state
(i.e. after El Niño to El Niño and after La Niña to La Niña) than into the
opposite phase. In contrast, for the neutral start years, the probability
of transition to El Niño is comparable to La Niña for the 2–3 year and
4–6 year forecast periods. Inconsistent variations (i.e. of opposite sign)
across ensemble members following different neutral initial states
tend to cancel one another out, so that average anomalies after neutral
conditions are relatively small (Figs. 3 and S6).

The interannual phase variations of ENSO are driven by the
recharge and discharge of heat along the tropical Pacific Ocean over a
dominant 3-6 year time scale31. Capturing the ENSO phase in the initial
state appears to be the primary agent for improved multi-year pre-
dictability, with the reliability of these predictions dependent on the
representation of the dominant time scales of ENSOvariability (e.g. the
power spectral analysis of Fig. S6). In the context of this study, when
initialising from either El Niño or La Niña phases, the non-equilibrium
component between the zonalmeanequatorial thermoclinedepth and
wind stress of the recharge-discharge oscillator is included in the
initialisation. Initialising from neutral states, however, does not guar-
antee the inclusion of the imbalance between the subsurface ocean
temperature and atmospheric winds, as the SST, sea level pressure, sea
surface height and surface wind anomalies are very weak. Indeed, we
found the difference in prediction skill between ENSOpeakphases and
neutral states to bemore pronounced for persistent neutral states (i.e.
those not exceeding the El Niño or La Niña threshold in any single
month during NDJ) than for the classical neutral states (i.e. those not
identified as El Niño or La Niña). That is, without any (even brief)
excursion to El Niño or La Niña states, as in the persistent neutral
states, there may be less non-equilibrium information embedded in
the initialisation. This finding suggests that, in addition to the simu-
lated ENSO cycle, stronger initial SST anomalies in the tropical Pacific
may lead to enhanced skill. This is plausible when a stronger non-
equilibrium component of the recharge-discharge oscillator is related
to a lower error growth rate and a better-defined attractor evolution,
compared to situations with smaller SST anomalies and related non-
equilibrium components.

Windows of opportunity in real-world predictions
Both the model and the observational data indicate a peak in the
spectral intensity of Niño3.4 SST at around 3–6 years (Fig. S6). This
indicates similar ENSO periodicity in the model and real-world, con-
sistent also with previous evaluations that showed realistic ENSO
characteristics of the model version used here32,33, and suggests that
we may also achieve enhanced skill following ENSO events in real-
world predictions. In fact, the real-worldhindcasts also showenhanced
skill for predictions starting from El Niño and La Niña compared to
neutral conditions for the forecast periods 2–3 and 4–6 years, in par-
ticular in the Pacific Ocean (Fig. 4 for predictions started in El Niño and
La Niña conditions, and Supplementary Fig. S8 for predictions started
in neutral conditions), while some negative MSSS differences are
found in other regions outside the Pacific. Despite the generally lower
skill compared to the perfect-model predictions, there is positive
MSSS in the central Pacific in forecast years 2–3 after El Niño events,
whereas skill in this region is negative after neutral initial conditions—
pointing to a window of opportunity also in real-world predictions. As
the enhanced multi-annual skill after El Niño and La Niña conditions is
spatially more limited to the Pacific, also the global area fraction with
positive skill differences is substantially smaller compared to the
perfect-model predictions (Supplementary Fig S9).

These results based on the CESM model are largely consistent
with the retrospective predictions provided within the Coupled
Model Intercomparison Project phase 6 (CMIP6) Decadal Climate
Prediction Project (DCPP)34. The multi-model ensemble of decadal
hindcasts (which does not include the CESM; see the list of DCPP
models in Supplementary Table S4) also shows enhanced skill
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in particular in parts of the Pacific in predictions initialised in El Niño
and La Niña conditions compared to predictions initialised in neutral
conditions (Supplementary Fig. S10)35. Similar to the real-world pre-
dictions with the CESM model, this enhanced skill is not transferred
to other regions outside the Pacific (in particular for multi-annual
timescale predictions), possibly due to inconsistent representation
of relevant teleconnections in the different models36–38. Still these
results indicate windows of opportunity for multi-annual predictions
related to the ENSO state for large parts of the Pacific Ocean (including
SSTs in the NINO3.4 region, Supplementary Fig. S11), and improved
models may in the future transfer the enhanced skill also to other
regions.

Given the similar ENSO periodicity between the CESMmodel and
observations and the generally low skill over the Pacific region in the
real-world predictions, it is likely that this overall lower skill in the real-
world hindcasts compared to the perfect-model is related to non-ideal
initialisation of the hindcasts and related adjustments5, unresolved
ocean dynamics, or inconsistent representation of long-term trends
between model and observations in the Pacific5,21,39–41. Therefore, real-
world predictions may be improved with improved initialisation, in
terms of both observational coverage and model-observation con-
sistency, to reduce both the uncertainty of the observed initial state
and the shock and drift of the simulations after initialisation.

ENSO transition probabilities calculated from observations also
indicate an increased chance for the opposite phase to occur 2 or 3
years in particular after La Niña events (Table S3), consistent with the
transitions in themodel. No clear probability differences are found for
the pooling of forecast years 4, 5, 6. However, there is an increased
probability of La Niña events compared to El Niño 5, 6 or 7 years after
La Niña events—pointing to possibly slightly longer ENSO cyclicity in
observations compared to the model.

Discussion
We have demonstrated that multi-year predictions started from El
Niño and La Niña conditions show significantly higher potential and
actual skill than predictions started from neutral conditions, based
on perfect-model prediction experiments with the Community

Climate System Model Version 4 and real-world hindcasts with CESM
and a CMIP6 multi-model ensemble. This enhanced skill seems to be
related to the simulated ENSO cycles and related teleconnections after
ENSO peak phases, while after neutral conditions a cancellation of
different phase transitions reduces predictability. The simulated ENSO
cycles imply somemulti-year predictability of ENSO events, consistent
with the finding that some ENSO events can be predicted as much
as four years ahead in real-world hindcasts42. Our results also suggest
that enhanced predictive skill related to ENSO is potentially achievable
if remaining shortcomings related to the initialisation of the model
predictions could be improved, as well as the representation of
relevant dynamics in the model. Despite the generally lower skill
in comparison to the perfect-model case, there are instances where
skill over parts of the Pacific is positive after El Niño or La Niña con-
ditions and negative after neutral conditions—hinting to windows of
opportunity also in the real-world predictions. Even though the actual
skill is low, this gives hope that if the general weakness of low skill in
the Pacific can be improved in decadal prediction systems, the con-
ditional predictability on ENSO may provide more skilful ‘windows of
opportunity’.

Temporal variations in predictability that indicate ‘windows of
forecast opportunity’ have previously been noted in sub-seasonal to
seasonal predictions, where certain regimes and persistent anomalies
can provide added information above the weather noise43. For exam-
ple, El Niño or La Niña events can provide forecasting windows on
seasonal time scales43. Furthermore, ENSO predictability can undergo
pronounced multi-decadal variations and the multi-decadal variability
in the strength of ENSO teleconnections affects the predictive skill of
extratropical teleconnections44,45. Our work indicates that such win-
dows of opportunity also exist for multi-annual predictions, where
predictions starting from El Niño and La Niña states exhibit larger
predictable regions compared to those starting from neutral years for
forecast times longer than one year. Our study suggests that con-
ditionally enhanced prediction skill from specific climate states can
yield improvedpredictions at certain points in time. This paves theway
for climate services to providemore credible multi-year predictions at
certain times with specific climate states.

Fig. 4 | Skill dependence on initial El Niño-Southern Oscillation (ENSO) status
in decadal hindcasts of the real-world climate. The mean squared skill score
(MSSS) of the near-surface temperature for the real-world hindcasts provided by
the Community Earth System Model decadal prediction large ensemble (CESM-
DPLE) simulations5 initialised in El Niño (EN; a–c), La Niña (LN; d–f), and the skill
difference between the different groups: El Niño – neutral (g–i) and La Niña –

neutral (j–l). Rows correspond to forecast year 1 (a, d, g, j), the average of forecast

years 2–3 (b, e, h, k), and the average of forecast years 4–6 (c, f, i, l). The plus sign
stippling indicates grid cells where the skill score or skill differences are significant
at the false discovery rate (FDR) being 0.2 (when adjusting for the false discovery
rate, seeMethods for details). The square symbols indicate grid cellswhere the skill
score or skill differences are significant at the 90% level (outside the 5%–95%
confidence interval based on local individual testing with 1000 bootstrap realisa-
tions). HardCRUT4-median is used as the observation ref. 59.
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Methods
We investigatemulti-yearpredictability conditional on the ENSOphase
at the time of initialisation in both perfect-model predictions and
hindcasts of the real-world climate. To study the perfect-model pre-
dictability, we performed experiments with the Community Earth
SystemModel (CESM) version 1.0.5, a fully coupled model comprising
atmospheric, oceanic, land and sea ice models. We used a configura-
tion of the model that corresponds to the Community Climate System
Model Version 4 (CCSM4), i.e. with the atmospheric component
Community Atmosphere Model (CAM4) (at a horizontal resolution of
1.25° × 0.9°, with 26 vertical layers)46; the ocean component Parallel
Ocean Program version 2 (at a 1 degree horizontal resolution and 60
vertical levels on a displaced-pole grid)47; the land component Com-
munity Land Model version 4 (run in the atmospheric grid)48; and the
sea ice component Community Ice Code version 4 (run in the ocean
grid)49. This is the same model configuration used for the CCSM4
contributions to Coupled Model Intercomparison Project phase 5
(CMIP5) historical and Representative Concentration Pathway (RCP)
scenarios from which we are using transient historical simulations as
uninitialized reference. For simplicity, we therefore refer to our
perfect-model predictability experiments as CCSM4.

The first set of simulations includes perfect-model predictions
thatwere performedby initialising an ensemble of decadal simulations
from annual restart files of a transient historical simulation21. The term
‘perfect-model predictions’ refers to experiments in which a model is
used to predict the climate evolution of that same model as opposed
to a real-world climate, meaning that the model is a physically perfect
representation of the reference it is aiming to predict, meaning that
predictability estimates are thus not affected by inconsistencies
betweenmodel and real-world climate. These initialised perfect-model
predictions include five ensemble members initialised from every
January 1st of the 46 initialisation years from 1961 to 2006. The
ensemble members were generated by adding small Gaussian pertur-
bations (order of 10−5K) to the atmospheric temperatures, with all
other variables being identical, to simulate the case of perfectly known
initial conditions21. The potential skill is then evaluated by quantifying
how well these decadal simulations predict the transient reference
simulation fromwhich they were initialised. We compare the potential
skill of the perfect-model predictions against the second set of unin-
itialized, transient climate simulations that contributed to CMIP5.
These simulations are performedwith the samemodel as the reference
simulation they areused to predict, sowe refer to these as uninitialized
perfect-model predictions. Same as the initialised perfect-model pre-
dictions and the transiently forced reference run, these simulations
use historical forcing until 2005 and then follow the RCP4.5 scenario
from 2006 to 2015. For these uninitialized perfect-model predictions,
we also use five ensemble members (started from different states of a
pre-industrial control simulation to sample a wider range of internal
variability), available within CMIP5, matching the ensemble size of the
initialised perfect-model predictions21. Note that the ENSO periodicity
was overly biennial in older versions of the CCSMmodel, e.g. CCSM3,
but these issues have been much improved in the CCSM4 version
which shows a typical ENSO periodicity of 3-6 years, consistent with
observations as seen in the power spectrum shown in Fig. S632,33,50.
CCSM4, CESM1 and the newer version CESM2 were shown to simulate
ENSO characteristics such as periodicity and transitions reasonably
similar to observations33.

For real-world predictions, we utilise the CESMdecadal prediction
large ensemble (CESM-DPLE), which has 40 ensemble members
each initialised on November 1st from 1954 to 2015 that are integrated
for 122 months5. Note the atmospheric component of CCSM4 that
we use for the perfect-model experiment is the Community Atmo-
sphere Model 4 (CAM4)46. CESM-DPLE used in the real-world hindcast
utilises the Community Atmosphere Model 5 (CAM5) as its atmo-
spheric component5. As we do not directly compare perfect-model

predictions and real-world hindcasts, our conclusions do not require
identical model versions or configurations for these different
experiments.

Classifying the starting years of the perfect model and the real-
world predictions from 1961 to 2006 according to ENSO phase, the
basic methodology of the analyses in this study is to analyse skill
measures and composites for these different ENSO groups of predic-
tions. Detrended 5-month running means of monthly SSTs from the
Nino3.4 region are used to estimate the Nino3.4 index. The detrending
is done by subtracting the 30-year moving climatology preceding the
year under consideration. This Nino3.4 index is used to classify each of
the starting years as either El Niño, La Niña or neutral. El Niño start
years arewhen theNino3.4 index exceeds the upper quartile threshold
(computed over the 1960–2015 period) from November to January
(NDJ). La Niña start years are when the Nino3.4 index is below the
lowest quartile. All remaining years are classified as neutral (this is
referred to as the ‘classical’ neutral year definition in this paper).
However, in the conventional neutral year definition (i.e. all years that
are not classified as El Niño or La Niña), neutral years are not always
characterised by persistent neutral conditions over all the 3 months
(NDJ), because the Nino3.4 Index can exceed the quartile thresholds
for 1 or 2 months. Therefore, we also consider a second neutral year
classification (referred to as persistent neutral), which only includes
the years when all 3 months (i.e. November, December and January)
exhibit neutral conditions (i.e. excluding those years with intermittent
positive or negative conditions during NDJ). The classification of
starting years for the perfect-model predictions and real-world pre-
dictions are shown in Table S1.

While this ENSO classification includes some information from
after the initialisation of the predictions (i.e. January SST, the first
forecastmonth of the perfect-model predictions), this is still useful for
interannual ormulti-year predictions that target forecast times several
years after initialisation. January is included in the classification to
consider the entire season when ENSO events typically peak. For
classifying ENSO in the real-world hindcasts, which are initialised on
November 1st each year (i.e. 2 months earlier than the perfect model),
we use the same months (November, December and January, i.e. the
first three forecast months of the hindcasts). This classification
thereforematches the perfect-model decadal prediction and the ENSO
peak period, keeping the definitions consistent between the perfect-
model and the real-world predictions.

To examine decadal prediction accuracy, we use the mean
squared skill score (MSSS) as the primary deterministic verification
metric and follow the framework for evaluating decadal
predictions14,51–54. MSSS can be decomposed as a function of the
hindcasts, climatological forecast and observations when the clima-
tological forecast is used as the reference, namely:

MSSS H, �O,O
� �

= r2HO � rHO � SH
SO

� �2
�

�H � �O
SO

� �2
ð1Þ

where rHO represents the sample correlation between the hindcasts

(H) and the observations (O), SH
2 is the sample variance of the

ensemble mean hindcasts, SO2 denotes the sample variance of the
observations, �O=

Pn
j = 1Oj is the climatological forecast (of which Oj

represents the observations, or perfect-model reference respectively,
over j = 1,...,n starting times), and �H is the mean hindcast.

The evaluation process is implemented in the Miklip evaluation
system55. The temperature and precipitation data are remapped to a
10° × 10° grid prior to calculating the skill measures to reduce small‐
scale noise effects51. To account for model drift (which is a pertinent
issue in the initialised real-world predictions), anomalies are calculated
from lead-time dependent climatologies. We use 1000 bootstrap rea-
lisations (with replacement) to test the significance level of MSSS and
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skill differences between the different ENSO initialisations and esti-
mate the p values of the local grid points. Each bootstrap realisation
differs in a combination of starting years, and 5-year blocks are main-
tained to preserve temporal autocorrelation related to low‐frequency
variability in resampling51. We further assess field significance and
control for the false discovery rate (FDR), therebyminimising potential
overinterpretation related tomultiple significance testing56. For a local
grid point topass the adjusted significance testwith controlled PFDR, its
p value (p(i) as shown in Eq. 2) has to be smaller than the PFDR calcu-
lated from the following equation:

PFDR = max½pðiÞ : pðiÞ*ði=NÞ*αFDR�ði= 1, . . . ,NÞ ð2Þ

where N is the total number of grid points and i is the rank of sorted p
values. Significance is assessed at αFDR = 0.2 in this case. For fields with
moderate to high auto-correlation αFDR = 0.2 corresponds to the
significance level of αglobal = 0.156.

To estimate the uncertainty of global area fractions with sig-
nificant skill (e.g. Fig. 2), we also use the 1000 bootstrap realisations
described above to estimate the significance of skill values. To obtain a
range ofp values for eachgrid cell (basedonwhich then areaswith skill
can be calculated), we subsample 1000 times 100 of these realisations
(with replacement).

To avoid some systematic differences in temperature caused
by the uneven distribution of La Niña or El Niño years over the
investigation period (note our historical reference runused to initialise
the perfect-model predictions exhibits the majority of El Niño events
in the later, warmer, part of the investigation period), we remove the
forced signal in the temperature and precipitation fields before com-
positing them. These composite maps (e.g. Fig. 3) therefore demon-
strate common features of internal variability. To do this, we use
the ensemble mean of six CCSM4 historical simulations from
CMIP5 togetherwith our ownhistorical simulation (i.e. sevenmembers
in total) to determine the forced response at each grid point for
each year. We also apply an 11-year running average to the ensemble
to remove responses to other short-term forcing, such as volcanoes57.
We then deduct the smoothed ensemble mean from the reference
run and the decadal predictions to obtain the detrended data.
Subsequently, El Niño, La Niña and neutral group anomaly composite
maps are calculated by subtracting the composite of all years from
each group. For both the temperature and precipitation composite
maps, we normalise the anomalies by dividing them by the standard
deviation of the temperature and precipitation time series with
annual ormulti-annual (i.e. for forecast years 2–3 and 4–6) averages on
each grid point in order to ensure anomalies in the composite maps
are comparable across regions (e.g. tropics where temperature varia-
bility is usually small versus high latitudes where variability is larger).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The perfect-model prediction output data used in this study are
available in NCI Australia data collections58. The CESM-DPLE data
used in this study are available for downloading through https://
www.cesm.ucar.edu/community-projects/dple. The temperature
observation data used in this study are accessible at https://www.
metoffice.gov.uk/hadobs/hadcrut4/; https://www.metoffice.gov.uk/
hadobs/hadisst/; https://data.giss.nasa.gov/gistemp/; https://psl.
noaa.gov/data/gridded/data.mlost.html.

Code availability
The tool that calculates the Mean Squared Skill Score (MSSS) is avail-
able through Github at https://github.com/illing2005/murcss.
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