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Disease-specific loss of microbial cross-
feeding interactions in the human gut

Vanessa R. Marcelino 1,2,3,4 , Caitlin Welsh5, Christian Diener 6,
Emily L. Gulliver 1,2, Emily L. Rutten 1,2, RemyB. Young1,2, EdwardM.Giles 2,7,
Sean M. Gibbons 6,8,9,10, Chris Greening 5 & Samuel C. Forster 1,2

Many gutmicroorganisms critical to human health rely on nutrients produced
by each other for survival; however, these cross-feeding interactions are still
challenging to quantify and remain poorly characterized. Here, we introduce a
Metabolite Exchange Score (MES) to quantify those interactions. Using
metabolicmodels of prokaryotic metagenome-assembled genomes from over
1600 individuals, MES allows us to identify and rank metabolic interactions
that are significantly affected by a loss of cross-feeding partners in 10 out of 11
diseases. When applied to a Crohn’s disease case-control study, our approach
identifies a lack of species with the ability to consume hydrogen sulfide as the
main distinguishing microbiome feature of disease. We propose that our
conceptual framework will help prioritize in-depth analyses, experiments and
clinical targets, and that targeting the restoration of microbial cross-feeding
interactions is a promising mechanism-informed strategy to reconstruct a
healthy gut ecosystem.

The human gut contains hundreds of microbial species forming a
complex and interdependent metabolic network. Over half of the
metabolites consumed by gut microbes are by-products of microbial
metabolism1 with the waste of one species serving as nutrients for
others2–4. Species interdependence can render microorganisms vul-
nerable to local extinction if a partner is lost5 unless alternative species
are available to fill that niche. In this context, having functionally
redundant species with the ability to produce or consume the same
nutrients is beneficial for the host. While it is generally accepted that
high functional redundancy is a characteristic of resilient human gut
microbiomes6–8, the humanhealth impacts of redundancy inmetabolic
interactions remain largely uncharacterized. Restoring the diversity of
cross-feeding microbial partners represents a logical but still largely
unexplored rubric to fight a wide range of diseases linked with an
unbalanced gut microbiome.

Mechanistic models that simulate microbial metabolism in silico
hold the promise to fill our knowledge gap on microbial metabolic
interactions4,9. Genome-scale metabolic models (GEMs) are based on
increasingly comprehensive databases linking genes to biochemical
and physiological processes10,11. These models have been used to
estimate metabolic exchanges between pairs of bacterial species for
over a decade12,13. Developments in automating the reconstruction of
GEMs14 and the availability of manually-curated GEMs for thousands of
gut microorganisms15,16 have paved the way to build metabolic models
for complex microbial communities. Methodological advances now
allow modelling interactions between multiple species17,18, and a
recently developed workflow by Zorrilla and colleagues19 now allows
reconstructing metabolic models directly from large-scale metagen-
ome datasets. Studies using community-wide metabolic models have
found dozens to hundreds of significantly different metabolic
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exchanges in the gutmicrobiomeassociatedwith type 2 diabetes19 and
in inflammatorybowel disease20 when compared to healthy controls. A
method to rank thesemetabolic interactions according to an ecology-
based framework provides the opportunity to generate targeted
hypotheses underlyingmechanistic links between the gutmicrobiome
and diseases.

Here, we introduce ametabolite exchange scoring systemderived
from metagenome-scale metabolic models, designed to identify the
potentialmicrobial cross-feeding interactionsmost affected indisease.
We apply our conceptual framework to an integrated dataset of 1661
publicly available stool metagenomes, encompassing 15 countries and
11 disease phenotypes. Our framework identified both known and
novel microbiome-disease associations, including a link between col-
orectal cancer and the microbial metabolism of ethanol, a connection
between rheumatoid arthritis with microbially-derived ribosyl nicoti-
namide, and links between Crohn’s disease and specific bacteria that
metabolisehydrogen sulfide. The scoring systemcanhelpquantify and
identify context-dependent disruptions of microbial interactions,
which may be targets for microbiome-based medicines.

Results
Potential cross-feeding interactions quantification
To understand the link between cross-feeding interactions and dis-
ease, we designed the Metabolite Exchange Score (MES). MES is the
product of the diversity of taxa predicted to consume and taxa pre-
dicted to produce a givenmetabolite, normalized by the total number
of involved taxa (Fig. 1a and methods). The potential production,
consumption and exchange of metabolites by each microbiome
member for which MAGs can be reconstructed is estimated through
metabolic modelling. As with a centrality measure of a network that
defines their most connected nodes, metabolites with high MESs are
likely to be key components in the microbial food chain. At the other
extreme, metabolites where MES is zero are not produced or not
consumed by any member of the community. By comparing MESs for
each metabolite across healthy and diseased microbiomes, one can
rank and identify the metabolites most affected by the loss of cross-
feeding partners (Fig. 1b). Oncemetabolites have been prioritizedwith

MESs, it is then possible to integrate taxa abundances and their esti-
mated metabolic fluxes to retrieve a consortium of species that act as
the main producers or consumers of the targeted metabolites. We
propose this approach as a hypothesis generation strategy to guide
new discoveries, targeted experiments and clinical trials.

Meta-analysis of 1661 microbiomes reveals key metabolic
interactions among gut microorganisms in health and disease
To obtain an overview of the association between cross-feeding
interactions anddifferent diseases, weperformed a large-scale analysis
of 1661 high-quality and deeply sequenced gut metagenome samples,
including 871 healthy and 790 diseased individuals from 33 published
studies, 15 countries and 11 disease phenotypes (Supplementary
Data 1). Integrating studies and countries enabled the assembly of
Metagenome-Assembled Genomes (MAGs) for a diverse range of gut
microbes and allowed characterization of the baseline MESs in the
healthy population. Our healthy cohort was composed of both males
and females with a Body Mass Index (BMI) between 18.5 and 24.9 and
no reported disease. Samples for which this information was unclear
(e.g., disease controls where health status or BMIwas not reported) are
not included in our dataset (see Methods for details). Within-sample
sequence assembly21, metagenome co-binning22 and quality control23

resulted in 55,345 bins, including 24,369 high-quality MAGs with >90%
completeness and <0.05% contamination. We selected one repre-
sentativeMAGper species, defined at 95% Average Nucleotide Identity
(ANI), resulting in 949 bacterial and 6 archaeal species, encompassing
all dominant microbial phyla found in the gut (Fig. 2a, Supplementary
Data 2). The presence and abundance of these species were deter-
mined by mapping sequence reads against the 955 MAGs. Forty bac-
terial and one archaeal species were exclusively found in diseased
individuals (Supplementary Data 3a), while healthy individuals har-
boured 59bacterial and one archaeal species thatwere not observed in
any diseased individual (Supplementary Data 3b). Identifying species
in metagenome samples remains a challenge, and it is likely that our
MAG-based approach misses rare components of the gut microbiome
despite the large dataset used here for co-binning. To infer metabolic
exchanges between microbes, we reconstructed Genome-Scale Mod-
els (GEMs)14 for the 955 MAGs, built community-scale metabolic
models for each individual based on the species-level abundances
using MICOM18, and calculated MES using custom scripts24. Our mod-
elled communities contained an average of 138 species (min = 34,
max= 236 species).

We first sought to identify the metabolic exchanges with the
highest diversity of cross-feeding partners in healthy microbiomes by
analysing the MESs of each metabolite of the entire healthy group.
Metabolites showed a wide variation of MESs between individuals
(Fig. 2b, Fig. S1). Metabolites with the highest mean MES included
nucleobases such as uracil (MES mean and sd= 60.5 ± 17.6) and thy-
mine (41.8 ± 21.8), essential nutrients such as phosphate (59.9 ± 17.0)
and iron (40.3 ± 36.9), and sugars such as glucose (52.6 ± 22.1) and
galactose (52.3 ± 21.3).

To identify the metabolites most affected by the loss of cross-
feeding partners during disease, we compared MESs between the
healthy group and the eleven disease phenotypes. This analysis
identified significant loss of cross-feeding partners for specific
metabolites in all disease groups except for schizophrenia (Fig. 2c,
Fig. S2). Metabolites with high MESs in healthy individuals and
known to be important for human health, such as vitamin B1
(thiamin)25 and precursors of short-chain fatty acids (e.g., malate,
glucose, galactose)26, were significantly affected in multiple disease
phenotypes (Kruskal–Wallis’ p < 0.05/number of tests to correct for
multiple comparisons). Thiaminwas themetabolite with the highest
difference in MESs between healthy and diseased microbiomes in
cirrhosis and ankylosing spondylitis, ranking second in Inflamma-
tory Bowel Disease (IBD) (Fig. 2c). Associations between deficiency
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Fig. 1 | Overview of the Metabolite Exchange Score (MES) calculation and
application. a MES is the harmonic mean between the number of potential pro-
ducers (P) and consumers (C) inferred from metagenome-informed metabolic
models. b Comparative analysis of MES between healthy and diseased cohorts can
help identify the species and metabolites required to restore cross-feeding inter-
actions, which may be promising targets of microbiome therapies.
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of thiamine with cirrhosis and IBD have been previously
reported27–29, but to our knowledge, this is the first indication of a
possiblemicrobial-mediation of this phenotype. Likewise, this is the
first indication of a link between microbially-derived ribosyl nico-
tinamide and rheumatoid arthritis (Fig. 2c). The results also con-
firmed previously reported microbially-mediated disease-
metabolite associations, such as ethanol in colorectal cancer30 and

hydrogen sulfide in IBD31,32, reinforcing the potential of our novel
approach to identify reasonable relationships.

We next compared our results with the study of Zorrilla and
colleagues19, who used SMETANA17 to quantify microbial metabolic
exchanges in the gut and link those with glucose intolerance and
type 2 diabetes (T2D). Their study identified significantly different
exchanges for 22 metabolites, including for hydrogen sulfide (H2S)
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andD-galactose, which were also identified in our analyses as having
significantly higher MESs in T2D-associated microbiomes when
compared to healthy microbiomes (Supplementary Data 4). There
was also some concordance between our results regarding the
metabolites identified as beingmost frequently exchanged between
gut bacteria, with three out of the six metabolites highlighted in
Zorrilla et al. (Fig. 3a in ref. 19), being among the top 15 metabolites
with the highest MESs in healthy microbiomes (L-malate, H2S and
acetaldehyde).

Species diversity has distinct relationships with producers and
consumers of exchanged metabolites
Diversity of microbial species within the gut community is commonly
considered amarker of health status.Microbiomes associatedwithfive
diseases showed significant and consistent reduction in alpha diversity
across indices (Shannon index and species richness), while micro-
biomes from individuals with type 2 diabetes had a significantly higher
alpha diversity when compared with the healthy group (Fig. S3). Dis-
eases associated with low species diversity (e.g., Inflammatory Bowel

Disease) showed the highest magnitude in MES differences (Fig. 2c),
which is expected given that the number of microbial species
exchanging metabolites naturally correlates with the number of spe-
cies in the community.

To further understand the relationship between diversity and
metabolite exchange,we tested thenull hypothesis that producers and
consumers are equally affected by species diversity. Specifically, we
correlated the number of producer or consumer species of each
metabolite with species richness to determine statistical differences
between the slopes of these correlations for metabolite production
and consumption. The null hypothesis (no statistical difference
between slopes) implies that the number of producer species and
consumer species increases at the same rate as species richness
increases. Such results would imply that cross-feeding interactions
dependent only on the number of species present in the community.
This null hypothesis was rejected for 79% ofmetabolites exchanged by
the gut microbiome (Fig. 3a, Supplementary Data 5), with the slope of
the correlation being significantly steeper either for consumers (55%of
metabolites) or producers (24% of metabolites). From the metabolites

Fig. 2 | Global analysis reveals most common metabolic exchanges among
healthy gut microbes and disease-specific loss of cross-feeding partners.
aPrevalenceof species-levelMAGs across all samples.bTop 15metaboliteswith the
highest MESs in healthy individuals, which are expected to be central to sustain a
healthy microbial community structure. c Metabolites with significantly reduced
MES in diseased microbiomes when compared to the healthy group (one-sided
Kruskal–Wallis’ p <0.05/number of comparisons within each disease category),
suggesting significant loss of microbial cross-feeding partners for those metabo-
lites. The panel of metabolites shown here include the top 5 metabolites with the
highest MES differences between healthy and diseased groups for each disease
(metabolites with increased MES in diseased microbiomes are not included). No

significant difference inMESwas found in patientswith schizophrenia (n = 87) after
accounting for multiple comparisons. Sample sizes and Bonferroni-corrected p-
value thresholds: IBD inflammatory bowel disease (n = 63, p < 1.27 × 10−4), liver cir-
rhosis (n = 54, p < 1.30× 10−4), Ank ankylosing spondylitis (n = 72, p < 1.32 × 10−4),
NAFLD non-alcoholic fatty liver disease (n = 71, p < 1.25 × 10−4), Behcet’s disease
(n = 18, p < 2.21 × 10−4), ME/CSF myalgic encephalomyelitis/chronic fatigue syn-
drome (n = 17, p < 2.99 × 10−4), T2D type 2 diabetes (n = 32, p < 1.37 × 10−4), Athero
atherosclerosis (n = 98, p < 1.18 × 10−4), CRC colorectal cancer (n = 143,
p < 1.17 × 10−4), Arthritis rheumatoid arthritis (n = 135, p < 1.18 × 10−4). Colours in
b, c represent metabolite Sub Classes according to the Human Metabolome
Database.
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healthy and diseased cohorts), and only metabolites exchanged within at least 50
microbiomes. Each subplot contains two points for each sample to represent the
diversity of producers (brown circles) and consumers (blue triangles). Asterisks
indicate a significant p value of the t-test associated with the linear regression
model (two-sided) after Bonferroni correction (i.e., p <0.00011).
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with the highest MESs, only producers and consumers of glycerol
showed no significant difference in response to species richness
(Fig. 3b–p).

Microbial food web restoration as a potential therapeutic
strategy for Crohn’s disease
To investigate how the application of MES and our modelling frame-
workmay guide the identification of promising therapeutic targets, we
focused on Crohn’s disease (CD), a form of IBD. We selected a single
case-control study33 with the largest number of samples from healthy
and diseased individuals within our quality-controlled dataset to
minimize batch effects. In accordance with the global analyses, we
found that H2S – a gas previously implicated in CD and IBD
symptoms31,32,34—was themetabolitemost affected by the loss of cross-
feeding microbial partners (twofold reduction, Supplementary
Data 6). While H2S production by the gut microbiome has been the
subject of several studies (e.g., refs. 35,36), the consumptionof this gas

is less characterized, and our modelling results indicate that H2S
consumed by bacteria can be incorporated into sulfur-containing
amino acids such as cysteine (Fig. S4).

Focusing on H2S, we found that the microbiome of healthy
individuals contained more species with the potential to produce
H2S, as well as more species with the potential to consumeH2S, than
the microbiomes associated with CD (Fig. 4a). Interestingly, the
diversity of potential H2S consumers was more affected in CD
patients (56% less diverse on average, Supplementary Data 7) than
the diversity of H2S producers (32% less diverse), resulting in a
significantly higher H2S producer to consumer ratio in individuals
affected by CD (Fig. 4c). We observed similar results when investi-
gating the flux of H2S among microorganisms. The total estimated
ability of the microbiome to consume H2S in the disease state was
reduced by 74%, while the total production was not significantly
affected, resulting in a higher H2S production to consumption ratio
in CD (Fig. 4b, d, Supplementary Data 7). The excess of H2S (i.e., H2S
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predicted to be exported to medium) was not significantly different
between healthy and diseased subjects (Kruskal–Wallis
χ2(1) = 0.0356, p = 0.8503). The indication that H2S consumers are
more affected than H2S producers in CD stands after correcting for
the confounding effects of species diversity, although no significant
difference was observed for the flux of H2S exchanged among
microorganisms (Supplementary Data 8).

To better understand the genetic basis of the metabolic mod-
elling results, we investigated the distribution of 46 genes known to
be involved in H2S cycling36 in the MAGs present in the CD case-
control study. We found between one and 23 genes in each MAG
(Supplementary Data 9). Five genes involved in H2S cycling were
significantly more prevalent in microbiomes associated with heal-
thy individuals (Supplementary Data 10): cysK, dcm, Fuso_cyst, metH
and metK (linear model, using species diversity as confounder
variable and a two-way t-test to assess significance, p < 0.0012
accounting for multiple comparisons). Another five genes were
more prevalent in CD-associated microbiomes: asrA, asrB, asrC,
dmsA and dsrC (p < 0.0012), the first four genes also being sig-
nificantly enriched when accounting for species abundance (Sup-
plementary Data 10).

To identify the key species associated with H2S imbalance in CD,
we compared the contribution of each species to the total H2S pro-
duction or consumption in the healthy and CD cohorts. For each
species, H2S flux (weighted by relative abundances) was estimated and
the difference of total H2S weighted flux in healthy and CD individuals
calculated. The species showing the highest increase towards H2S
production in CD patients includedmembers of the classes Clostridia,
Bacteroidia and Bacilli (Fig. 4e, Supplementary Data 11). Enterocloster
clostridioformis (Clostridia) and Enterococcus_B faecium (Bacilli) were
only observed in the CD cohort. Many species (45% of the MAGs from
the case-control study) showed an ability to both produce and con-
sume H2S according to the models, and their role was dependent on
their community context. Phocaeicola dorei (Bacteroidia) was the
species showing the highest difference in predicted H2S production
between healthy and CD individuals despite being common in both
cohorts. We found multiple genes related to H2S metabolism in this
species (cysK, bsh, dcm, Fuso cyst, luxS, metK, sufS, and two copies of
the malY and metH genes). Members of the Clostridia class were the
H2S consumers showing the highest reduction in H2S consumption in
CD microbiomes, including Roseburia intestinalis, Blautia_A obeum,
and two Faecalibacterium species (F. prausnitzii_J and F. sp900758465)
(Fig. 4e, Supplementary Data 11). The top 5 consumer species had
between two and four copies of the cysteine desulfurase (iscS) gene, in
addition to a range of other genes involved in H2S metabolism (Sup-
plementary Data 9 and 11).

We next compared the results obtained from our metabolic
modelling approach with traditional compositional microbiome ana-
lyses. Community beta-diversity was visualized using principal com-
ponent analysis, showing that microbiomes associated with CD
formed a distinct cluster (Fig. S5a). To identify the species that con-
tributed most to these differences we used a random forest (RF)
classifier (70% of data used for training, 30% for testing). The out-of-
bag error rate of the training dataset was 9.52%, and the accuracy on
the test dataset was 100%. The species contributing most to the dif-
ferences between healthy and CD-associated microbiomes were
identified through their importance scores (Fig. S5b). Some of the
species identified with the RF analysis were also identified with our
metabolic modelling approach, including the H2S consumers Rose-
buria intestinalis, Escherichia coli and Anaerostipes hadrus, and the H2S
producer Clostridium_Q symbiosum. Sixteen out of the 20 species
identified by our modelling approach as contributing most to the H2S
production to consumption ratio unbalance in CD (Fig. 4e) were not
among the top 30 species selected with this compositional-based
analysis.

Discussion
In this work, we introduce a new MES-based conceptual framework
and apply it to an integrated dataset of metabolic models for 955 gut
species from 1661 publicly available stool metagenomes, encompass-
ing 15 countries and 11 disease phenotypes. This approach revealed a
significant depletion of potential cross-feeding interactions in the
microbiomes associated with 10 diseases and identified promising
therapeutic targets in a case-control Crohn’s disease study.

We show that our analytical framework identifies both known and
novel microbiome-disease associations, providing a cost-efficient and
mechanistically grounded strategy to prioritize experiments and guide
clinical trials. One example is the link between rheumatoidarthritis and
ribosyl nicotinamide (also knownas nicotinamide riboside or NR). This
metabolite is one of the main precursors of nicotinamide adenine
dinucleotide (NAD+), which has been reported to be significantly
reduced in individuals with rheumatoid arthritis37. Administration of
NR andother NAD+ precursors leads to improved clinical outcomes for
rheumatoid arthritis patients37 and for a range of other inflammatory,
neurodegenerative and cardiovascular diseases38. To our knowledge,
this is thefirst reported evidence for a role ofmicrobialNRmetabolism
in rheumatoid arthritis. We also identified ethanol as the metabolite
most affected by loss of cross-feeding in individuals with Colorectal
Cancer (CRC). Moderate to heavy alcohol consumption is associated
with a 1.17 – 1.44 higher risk of developing CRC39 via a process that is at
least partiallymediated by themicrobiome, as gut bacteriametabolise
ethanol to produce the carcinogenic acetaldehyde40. The capacity to
identify these and other coherent metabolite-disease links using
exclusively metagenome data is further evidence for the validity and
utility of our approach. Some associations observed in our study such
as links between Roseburia intestinalis and CD could be retrieved using
analyses based solely on the composition of themicrobiome, butmost
associations could not (e.g., Phocaeicola dorei), with the modelling
framework yielding additional insights on the metabolic and ecologi-
cal processes underlying these associations. We also observed a
complementarity between our MES approach and previously pro-
posed methods based on SMETANA scores. Metabolites identified as
markers of T2D progression19 were among the metabolites with high-
est MESs in the healthy population, supporting the idea that the
exchange of these metabolites is an important feature of healthy
microbiomes.

The reliance of microbes on cross-feeding is expected to be
influenced by the availability of metabolites in the gut environment.
Several metabolites with significant MES difference in health and dis-
ease are found in food (e.g., vitamins and sugars), highlighting the
importance of diet in understanding cross-feeding in the gut micro-
biome. Interestingly, for many metabolites (e.g., phosphate, glucose,
galactose and choline), we observe a high proportion of producers
when species diversity is low, but the proportion of consumers over-
takes producers as species richness increases (Fig. 3). We speculate
that low species richness is associated with a lack of metabolites
available for consumption, favouring species that are self-sufficient in
producing these metabolites. High species diversity, on the other
hand, is likely linked to higher net metabolite production by the
community, providing more opportunities for consumer species to
thrive. This hypothesis is consistent with two recent studies indicating
that microbiomes associated with IBD (which typically have low spe-
cies diversity) are enriched in bacteria with genomes that encode
complete pathways for the synthesis and metabolism of essential
amino acids and vitamins (including thiamine), while microbiomes of
healthy individuals are enrichedwith bacteria that are expected to rely
on cross-feeding for essential metabolites41,42. These studies, together
with our results, suggest an extensive reliance on cross-feeding in
healthy and diverse microbiomes.

Using CD as a case study, we demonstrated how the modelling
framework can help define mechanistically informed hypotheses for
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targeted experimental and clinical validation. Our results suggest that
CD patients lack microbial community members to support a healthy
H2S balance. This gas is expected to have a protective effect in the gut
when present in small amounts, but it disrupts the mucus layer and
may cause inflammation when present in larger quantities43–46. Our
results corroborate recent findings suggesting that the microbiome of
IBD patients is particularly deficient in secreting metabolites contain-
ing sulfur20, and additionally indicate that H2S consumer species are
disproportionately lost in CD. Microbial exchanges of H2S may affect
the host directly through mechanisms such as modulating luminal
pH32, or indirectly through cascade effects on microbiome
composition.

The accuracy of the modelling framework applied here is limited
by the use of automated genome-scale metabolic reconstructions,
which represent phenotypes close to manually-curated models14 but
are naturally unable to predict all organism-specific traits or secondary
metabolism, especially if those rely on genes and pathways that are yet
to be characterized. Automated genome-scale models provide an
opportunity for a top-down approach, where large scale analyses like
the one performed here can guide a range of more refined hypothesis-
driven studies, ideally coupled with experimental validation. Addi-
tional refinement can be obtained in future studies handling smaller
datasets by manual model curation, integration of additional ‘omics
data, e.g., ref. 47 and other lines of evidence (e.g., machine learning
methods trained on compositional data), and by integrating persona-
lized data on host diet and metabolism48. It is also important to note
that only the prokaryotic fraction of the microbiomes for which high-
qualityMAGswere reconstructed could be included in themodels and
that our analyses were performed at the species level (95% ANI), which
may miss strain-level differences in metabolism. Future research
applying the MES approach in combination with strain-level compo-
sitional information will be highly informative to identify biomarkers
of health status and to better understand the ecology of these complex
gut communities.

We expect that metagenome-informed metabolic models, cou-
pled with an assessment of microbial cross-feeding interactions, will
help alleviate one of the main barriers in the development of micro-
biome therapies – prioritizing which species or metabolites to target.
By focusing on restoring key aspects of the gut ecology, we may be
able to introduce more effective and long-lasting changes in the
human gut microbiome.

Methods
Global survey of gut metagenomes and quality control
We performed a literature search for peer-reviewed studies with
publicly available human stool metagenomes and associated meta-
data. These included large-scale meta-analyses of gut metagenomes
and metadata compilations49,50. Studies focusing on dietary interven-
tions, medications, exercise and children (<10 years old) were exclu-
ded. For longitudinal studies, only one sample per individual was
included in the analyses. To minimize the impact of sequencing tech-
nologies, only studies reporting paired-end sequencing using Illumi-
na’s HiSeq or NovaSeq platforms were included.

The healthy cohort included individuals reported as not having
any evident disease or adverse symptoms50. Samples classified as dis-
ease controls and where the health status could not be determined
were excluded. To avoid ambiguous health/disease status, samples
from individuals with colorectal adenoma (non-cancerous tumour)
and impaired glucose tolerance (pre-diabetes) were excluded, and
only individuals with a Body Mass Index (BMI) between 18.5 and 24.9
were included in the healthy cohort. Samples with less than 15M PE
reads after quality control were excluded to minimize the impact of
sequencing depth. A maximum of 100 samples per disease category
from each study were used to minimize batch effects and reduce the
dataset to a computationally feasible size.

Raw sequence reads were downloaded from NCBI and subject to
quality control with TrimGalore v.0.6.6 (Krueger F. http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) using a mini-
mum length threshold of 80bp and a minimum Phred score of 25.
Potential contamination with human sequence reads was removed by
mapping the metagenome sequences to the human genome with
Bowtie v.2.3.551. To minimize the impact of sequence depth, samples
were rarefied to 15M fragments (30M PE reads) with seqtk v.1.3
(https://github.com/lh3/seqtk). The quality-controlled dataset con-
tained 1697 samples, which are provided along with their metadata in
Supplementary Data 1.

Metagenome assembly and binning
Assembly was performed for individual metagenomes with Megahit
v.1.2.921. It has been shown that co-binning multiple samples yields a
higher number of high-quality MAGs, but using co-abundance infor-
mation requires significant computational resources52. We, therefore,
divided the 1697 samples into two batches (indicated in Supplemen-
tary Data 1) and, for each of these batches, followed the steps
recommended in the VAMB v.3.0.222 workflow. In short, we mapped
quality-filtered sequenced reads against all contigs assembled within
that batch with minimap253, and used VAMB to identify metagenome
bins. The snakemake workflow for these steps (adapted from the
VAMB github) is available in our Zenodo repository24. Completeness
and contamination levels of metagenome bins were assessed with
CheckM23. We retrieved 24,369 bins with >90% completeness and
<0.05% contamination. These bins were dereplicated at 95%ANI using
drep v.3.0.054, which selects the ‘best’ representative genomebased on
multiple quality metrics (completeness, contamination, strain het-
erogeneity, N50, centrality). De-replication resulted in 955 high-qual-
ity, species-level (95% ANI) metagenome-assembled genomes. These
MAGs were taxonomically classified with GTDBtk v.1.5.155 and their
species abundances across samples were calculated by mapping
sequence reads to MAGs with KMA v.1.3.1356. The prevalence of MAGs
across all samples was visualized along a tree built with GTDBtk55 and
visualized with iTOL57.

Genome and metagenome-scale metabolic modelling
Genome-scale metabolic models (GEMs) were reconstructed for each
species-level MAG with CarveMe v1.514. GEMs were produced using
domain-specific templates for archaea and bacteria, an average Eur-
opean diet58 as medium for gap filling, and the IBM Cplex solver.

Metabolic exchanges between community members of a
microbiome were calculated with MICOM v.0.2618. MICOM simu-
lates growth and metabolic exchanges among members of the
microbiome while accounting for their differential abundances,
and it has been shown to estimate realistic growth rates. Further-
more, MICOM is computationally tractable when it comes to
simulating diverse microbial communities (i.e., dozens-to-
hundreds of species). Metabolic exchanges were estimated with
MICOM’s growth workflow, using a 0.5 trade-off parameter, an
average European diet as medium, and parsimonious Flux Balance
Analysis (pFBA) to identify optimal growth rates and metabolic
fluxes. The underlying CarveMe models contain relatively few
carbon sources, leading to low growth rates and consequent
numerical instability. Therefore, the fluxes of medium items were
multiplied by 600 to feasibly calculate metabolic exchanges, and
then corrected in the final results. We verified the bacterial growth
rates estimated with MICOM for all samples, which were within the
expected range (Fig. S6), suggesting that this multiplication step
did not induce unrealistic growth. An optimal solution was not
found for 36 samples, which were removed from the analysis
(identified in Supplementary Data 1), resulting in a final dataset of
1661 samples. A snakemake workflow is provided in the Zenodo
repository for reproducibility24.
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Metabolite exchange scores
The underlying rationale to define the Metabolite Exchange Score
(MES) is that an individual where metabolites are produced and con-
sumed by multiple members of the microbiome will have a higher
functional redundancy than an individual where these metabolites are
produced and consumed by fewer species, which is a characteristic of
most healthy ecosystems. For homogenized stool-derived metagen-
omes, which do not capture the patchiness in microbial aggregates
found in the gut, high functional redundancy increases the likelihood
that most micro-niches are populated by at least one species. TheMES
weighs the number of microbial species consuming and producing a
given metabolite, in a given microbiome sample. MES was defined for
each metabolite as the harmonic mean between potential consumers
and producers (Eq. 1):

MES= 2×
P ×C
P +C

ð1Þ

Where P is the number of potential producers and C is the number
of potential consumers of a given metabolite. Note that MES will be
zero if a metabolite is only produced or only consumed but not
exchanged among microorganisms.

The specific metabolites for which cross-feeding partners were
significantly lost were identified with a Kruskal–Wallis test com-
paring diseased phenotypes against the healthy population. The
Bonferroni method was used to account for multiple tests (0.05 as
target alpha, divided by the number of tests), and only metabolites
present in at least 50 individuals, including at least 15 diseased
subjects, were included in the analyses. Water and oxygen were
excluded from the analyses. For a simplified graphical representa-
tion (Fig. 2c), metabolites were selected for display if they showed a
significant reduction in the number of cross-feeding partners, and if
they were in the top 5 metabolites with the highest difference in
MES in any disease. Barplots were generated and coloured accord-
ing to the metabolite Sub Class defined in the Human Metabolome
Database59 using the ggplot2 R package60. An additional word cloud
including up to 100 metabolites with significant MES differences
between healthy and diseased was generated with the wordcloud R
package61.

Species diversity effects
To estimate taxonomic diversity, themetagenome readsweremapped
to the 955 species-level MAGs with KMA v.1.3.1356. Shannon index and
species richness (total number of species in each sample, according to
the reads mapping result) were used to quantify alpha-diversity, and
compared between healthy and diseased microbiomes using the Wil-
coxon test (holm method to account for multiple comparisons). Spe-
cies richness were then used as a measure of species diversity for
downstream analyses.

Differences in the slopes between species diversity and consumer
or producer correlations were assessed on the entire dataset (includ-
ing healthy and diseasedmicrobiomes) by fitting a linearmodel (lm) in
R, considering the interaction between number of producers and
consumers with their category (producer or consumer). The statistical
significance for the difference between slopes was corrected for mul-
tiple comparisons using the Bonferroni method.

Nutritional interactions in the microbiome associated with
Crohn’s disease
We selected a case-control study for an in-depth analysis that
demonstrates howour framework canbe applied to identify promising
therapeutic targets. Given that the completeness of metagenome-
assembled genomes is optimized by co-binning large datasets22, we
opted to select a case-control study from our quality-controlled
dataset to take advantage of the large number of high-quality MAGs

used to model community-wide metabolism. A total of 84 samples
from the study of He and colleagues33—the largest CD study within our
dataset—passed our quality control and were included in our analyses,
including46patientswithCrohn’s disease and38healthy controls. The
specific metabolites for which cross-feeding partners were lost were
identified with a Kruskal–Wallis test, using only metabolites observed
in over half of the samples and adjusting for multiple tests with a
Bonferroni correction.

The flux of H2S, estimated in millimoles per hour per gram of dry
weight, was multiplied by species abundances to obtain the total H2S
production and consumption exchanged among microorganisms.
Fluxes were log2-transformed for the statistical tests and graphical
representation. Differences between the diversity of H2S producers
and consumers, ratios of producers to consumers, and their fluxes was
evaluated with Kruskal–Wallis tests. The H2S predicted to be exported
to medium was used to estimate the excess H2S production by the
microbiome.

We used a nested linear model to account for the confounding
effects of species diversity on the associations between number or flux
of producers/consumers and disease status. Samples containing less
than 99 species (the minimum number of species in the healthy
cohort) were excluded from this analysis (n = 58 samples remaining),
ensuring a linear relationship between species diversity and number of
H2S consumers or producers.

To better understand the genetic basis of H2S production and
consumption in MAGs observed within the CD case-control study,
we performed a Hidden Markov Model (HMM) survey of 74 genes
involved in H2S cycling36 with HMMer v.3.3.262, using trusted cutoff
scores to ensure homology. We used a linear model to test if these
genes were differentially distributed between healthy and CD
individuals, using only samples with at least 100 species and genes
observed in at least 10 samples. Analyses were performed con-
sidering both MAGs abundance (by multiplying gene counts by
spp. abundance) and prevalence (using species presence/absence,
which would be more informative when relatively rare taxa are
responsible for a large proportion of the production and con-
sumption of H2S). Data was offset by 0.1 to avoid infinity upon log-
transformation, species diversity was used as a confounding vari-
able and the Bonferroni correction was used to account for mul-
tiple comparisons.

In order to identify species that may be promising targets of
microbiome therapy inCD,weweighted in theirfluxofH2S and relative
abundances within CD and healthy cohorts. Specifically, weighted H2S
fluxes of eachmicrobial specieswas estimated bymultiplying their H2S
fluxes by their relative abundances. The weighted sum of H2S fluxes
was calculated as the sum of all weighted fluxes within healthy or
diseased cohorts. Differences in the weighted sum of H2S between
healthy and CD cohorts pointed to the key H2S producers and con-
sumers associated with Crohn’s disease. The Crohn’s disease cohort
contained more individuals than the healthy one, therefore, eight
random samples were excluded to ensure the same number of indi-
viduals (38) in healthy and diseased categories. The metabolic model
of Roseburia intestinalis, one key H2S consumer, was visualized with
Fluxer63 using best k-shortest paths to visualize pathways between H2S
intake and cell growth.

To better understand how the modelling framework compare to
more traditional composition-based analyses, we visualized the com-
munity beta diversity using a PCA plot of CLR-normalized species
abundances with mixOmics64, using the balanced dataset fromHe and
colleagues33 described above. We then performed a random-forest
analysis65 where 70% of the samples were randomly selected for
training the model and the remaining 30% were used to test the clas-
sifier. Feature importance (meandecrease inGini)was used to rank the
species that most explained the variation between healthy and CD-
associated microbiomes.
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Statistics and reproducibility
The statistical tests applied here are described within their relevant
section above using R. For reproducibility, we provide the R scripts in
our Zenodo repository24. Data exclusion was performed based on
quality/sequencing depth of metagenomes and completeness of the
metadata (see ‘Global survey of gut metagenomes and quality control
section’). No statistical method was used to predetermine sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study is publicly available in the European
Nucleotide Archive (ENA). All assemblies and MAGs reconstructed in
this study have been deposited in ENA under project PRJEB63093.
BioSample IDs for the raw sequence data and assembly IDs for the
assemblies performed in this study are provided in Supplementary
Data 1. ENA sample accessions for all metagenome bins reconstructed
in this study are provided in Supplementary Data 12, and the ENA
analysis ID for the 955 species-level MAGs are provided in Supple-
mentary Data 2. All high-quality MAGs are also available in Zenodo24

[https://zenodo.org/record/8223163].Metabolite classeswere inferred
from the Human Metabolome Database HMDB 4.0 [https://hmdb.ca].

Code availability
The code developed to run the metabolic modelling analysis, perform
statistical tests and to produce the graphs presented here, alongwith a
step-by-step description of the analysis workflow, are available in
Zenodo24: https://zenodo.org/record/8223163 (repository v.1.2.2), and
in GitHub: https://github.com/vrmarcelino/MetaModels.

References
1. Wang, T., Goyal, A., Dubinkina, V. & Maslov, S. Evidence for a multi-

level trophic organization of the human gut microbiome. PLOS
Comput. Biol. 15, e1007524 (2019).

2. Fischbach, M. A. & Sonnenburg, J. L. Eating for two: how metabo-
lism establishes interspecies interactions in the gut. Cell Host
Microbe 10, 336–347 (2011).

3. Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interac-
tions and the drivers of microbial community assembly. Curr. Biol.
30, R1176–R1188 (2020).

4. Goyal, A., Wang, T., Dubinkina, V. & Maslov, S. Ecology-guided
prediction of cross-feeding interactions in the human gut micro-
biome. Nat. Commun. 12, 1335 (2021).

5. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the micro-
biome: networks, competition, and stability. Science 350,
663–666 (2015).

6. Moya, A. & Ferrer, M. Functional redundancy-induced stability of
gut microbiota subjected to disturbance. Trends Microbiol. 24,
402–413 (2016).

7. Tian, L. et al. Deciphering functional redundancy in the human
microbiome. Nat. Commun. 11, 6217 (2020).

8. Fassarella, M. et al. Gut microbiome stability and resilience: eluci-
dating the response to perturbations in order to modulate gut
health. Gut 70, 595–605 (2021).

9. Sung, J. et al. Global metabolic interaction network of the human
gut microbiota for context-specific community-scale analysis. Nat.
Commun. 8, 15393 (2017).

10. Fang, X., Lloyd, C. J. & Palsson, B. Ø. Reconstructing organisms in
silico: genome-scale models and their emerging applications. Nat.
Rev. Microbiol. 18, 731–743 (2020).

11. Heinken, A., Basile, A., Hertel, J., Thinnes, C. & Thiele, I. Genome-
scale metabolic modeling of the human microbiome in the era of

personalized medicine. Annu. Rev. Microbiol. 75, 199–222
(2021).

12. Freilich, S. et al. Competitive and cooperative metabolic interac-
tions in bacterial communities. Nat. Commun. 2, 589 (2011).

13. Levy, R. & Borenstein, E. Metabolic modeling of species interaction
in the human microbiome elucidates community-level assembly
rules. Proc. Natl Acad. Sci. 110, 12804–12809 (2013).

14. Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast auto-
mated reconstruction of genome-scale metabolic models for
microbial species and communities. Nucleic Acids Res. 46,
7542–7553 (2018).

15. Magnúsdóttir, S. et al. Generation of genome-scale metabolic
reconstructions for 773members of the humangutmicrobiota.Nat.
Biotechnol. 35, 81–89 (2017).

16. Heinken, A. et al. Genome-scale metabolic reconstruction of 7302
humanmicroorganisms for personalizedmedicine.Nat. Biotechnol.
41, 1320–1331 (2023).

17. Zelezniak, A. et al. Metabolic dependencies drive species co-
occurrence in diverse microbial communities. Proc. Natl Acad. Sci.
112, 6449–6454 (2015).

18. Diener, C., Gibbons, S. M. & Resendis-Antonio, O. MICOM:
metagenome-scale modeling to infer metabolic interactions in the
gut microbiota. mSystems 5, e00606–e00619 (2020).

19. Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. metaGEM: recon-
struction of genome scale metabolic models directly from meta-
genomes. Nucleic Acids Res. 49, e126–e126 (2021).

20. Heinken, A., Hertel, J. & Thiele, I. Metabolicmodelling reveals broad
changes in gut microbial metabolism in inflammatory bowel dis-
ease patients with dysbiosis. Npj Syst. Biol. Appl. 7, 19
(2021).

21. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an
ultra-fast single-node solution for large and complex metage-
nomics assembly via succinct de Bruijn graph. Bioinformatics 31,
1674–1676 (2015).

22. Nissen, J. N. et al. Improved metagenome binning and assembly
using deep variational autoencoders. Nat. Biotechnol. 39,
555–560 (2021).

23. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson,
G. W. CheckM: assessing the quality of microbial genomes recov-
ered from isolates, single cells, and metagenomes. Genome Res.
25, 1043–1055 (2015).

24. Marcelino, V. R. et al. Code for community-wide metabolic mod-
elling, calculation of metabolite exchange scores (MES) and sta-
tistical tests. version 1.2.2. https://doi.org/10.5281/zenodo.
8223163 (2023).

25. Uebanso, T., Shimohata, T., Mawatari, K. & Takahashi, A. Functional
roles of B‐vitamins in the gut and gut microbiome. Mol. Nutr. Food
Res. 64, 2000426 (2020).

26. Mortensen, P. B., Holtug, K. & Rasmussen, H. S. Short-chain fatty
acid production frommono- anddisaccharides in a fecal incubation
system: implications for colonic fermentation of dietary fiber in
humans. J. Nutr. 118, 321–325 (1988).

27. Baker, H. et al. Inability of chronic alcoholics with liver disease to
use food as a source of folates, thiamin and vitamin B6. Am. J. Clin.
Nutr. 28, 1377–1380 (1975).

28. Tallaksen, C. M. E., Bell, H. & Bøhmer, T. The concentration of
thiamin and thiaminphosphate esters inpatientswith alcoholic liver
cirrhosis. Alcohol. Alcohol. 27, 523–530 (1992).

29. Costantini, A. & Pala, M. I. Thiamine and fatigue in inflammatory
bowel diseases: an open-label pilot study. J. Altern. Complement.
Med. 19, 704–708 (2013).

30. Tsuruya, A. et al. Ecophysiological consequences of alcoholism on
human gut microbiota: implications for ethanol-related pathogen-
esis of colon cancer. Sci. Rep. 6, 27923 (2016).

Article https://doi.org/10.1038/s41467-023-42112-w

Nature Communications |         (2023) 14:6546 9

https://www.ebi.ac.uk/ena/browser/view/PRJEB63093
https://zenodo.org/record/8223163
https://hmdb.ca
https://zenodo.org/record/8223163
https://github.com/vrmarcelino/MetaModels
https://doi.org/10.5281/zenodo.8223163
https://doi.org/10.5281/zenodo.8223163


31. Mottawea,W. et al. Altered intestinalmicrobiota–hostmitochondria
crosstalk in new onset Crohn’s disease. Nat. Commun. 7,
13419 (2016).

32. Dordević, D., Jančíková, S., Vítězová, M. & Kushkevych, I. Hydrogen
sulfide toxicity in the gut environment: meta-analysis of sulfate-
reducing and lactic acid bacteria in inflammatory processes. J. Adv.
Res. 27, 55–69 (2021).

33. He, Q. et al. Two distinct metacommunities characterize the gut
microbiota in Crohn’s disease patients. GigaScience 6, 1–11 (2017).

34. Roediger, E. W. & Millard, S. Reducing sulfur compounds of the
colon impair coionocyte nutrition: implications for ulcerative colitis.
Gastroenterology 104, 802–809 (1993).

35. Braccia, D. J., Jiang, X., Pop, M. & Hall, A. B. The capacity to produce
hydrogen sulfide (H2S) via cysteine degradation is ubiquitous in the
human gut microbiome. Front. Microbiol. 12, 705583 (2021).

36. Wolf, P. G. et al. Diversity and distribution of sulfur metabolic genes
in the human gut microbiome and their association with colorectal
cancer. Microbiome 10, 64 (2022).

37. Perez-Sanchez, C. et al. POS0394 NAD+ boosters reestablish the
altered NAD+ metabolism of leukocytes from rheumatoid arthritis
patients improving their oxidative, apoptotic and inflammatory
status. Ann. Rheum. Dis. 80, 426.2–426 (2021).

38. Mehmel, M., Jovanović, N. & Spitz, U. Nicotinamide riboside—the
current state of research and therapeutic uses. Nutrients 12,
1616 (2020).

39. LoConte, N. K., Brewster, A.M., Kaur, J. S.,Merrill, J. K. &Alberg, A. J.
Alcohol and cancer: a statement of the American Society of Clinical
Oncology. J. Clin. Oncol. 36, 83–93 (2018).

40. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial
metabolites and colorectal cancer. Nat. Rev. Microbiol. 12,
661–672 (2014).

41. Watson, A. R. et al. Metabolic independence drives gut microbial
colonization and resilience in health and disease. Genome Biol. 24,
78 (2023).

42. Veseli, I. et al. Microbes with higher metabolic independence are
enriched in human gut microbiomes under stress. eLife. 12,
RP89862 (2023).

43. Blachier, F. et al. Luminal sulfide and large intestine mucosa: friend
or foe? Amino Acids 39, 335–347 (2010).

44. Gemici, B. & Wallace, J. L. Anti-inflammatory and cytoprotective
properties of hydrogen sulfide. inMethods in Enzymology Vol. 555,
169–193 (Elsevier, 2015).

45. Wallace, J. L., Motta, J.-P. & Buret, A. G. Hydrogen sulfide: an agent
of stability at the microbiome-mucosa interface. Am. J. Physiol.
Gastrointest. Liver Physiol. 314, G143–G149 (2018).

46. Blachier, F., Beaumont, M. & Kim, E. Cysteine-derived hydrogen
sulfide and gut health: a matter of endogenous or bacterial origin.
Curr. Opin. Clin. Nutr. Metab. Care 22, 68–75 (2019).

47. Zampieri, G., Campanaro, S., Angione, C. & Treu, L.
Metatranscriptomics-guided genome-scale metabolic modeling of
microbial communities. Cell Rep. Methods 3, 100383 (2023).

48. Thiele, I. et al. Personalized whole‐body models integrate metabo-
lism, physiology, and the gut microbiome. Mol. Syst. Biol. 16,
e8982 (2020).

49. Pasolli, E. et al. Accessible, curated metagenomic data through
ExperimentHub. Nat. Methods 14, 1023–1024 (2017).

50. Gupta, V. K. et al. A predictive index for health status using species-
level gut microbiome profiling. Nat. Commun. 11, 4635 (2020).

51. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
Bowtie 2. Nat. Methods 9, 357–359 (2012).

52. Salazar, V.W. et al.Metaphor—aworkflow for streamlinedassembly
and binning of metagenomes. GigaScience 12, giad055
(2022).

53. Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100 (2018).

54. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for
fast and accurate genomic comparisons that enables improved
genome recovery frommetagenomes through de-replication. ISME
J. 11, 2864–2868 (2017).

55. Chaumeil, P.-A.,Mussig, A. J., Hugenholtz, P. & Parks, D. H.GTDB-Tk:
a toolkit to classify genomeswith theGenome TaxonomyDatabase.
Bioinformatics 36, 1925–1927 (2019).

56. Clausen, P. T. L. C., Aarestrup, F. M. & Lund, O. Rapid and precise
alignment of raw reads against redundant databases with KMA.
BMC Bioinformatics 19, 307 (2018).

57. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool
for phylogenetic tree display and annotation.Nucleic Acids Res.49,
W293–W296 (2021).

58. Noronha, A. et al. The Virtual Metabolic Human database: inte-
grating human and gut microbiome metabolism with nutrition and
disease. Nucleic Acids Res. 47, D614–D624 (2019).

59. Wishart, D. S. et al. HMDB4.0: the humanmetabolomedatabase for
2018. Nucleic Acids Res. 46, D608–D617 (2018).

60. Wickham, H. ggplot2: Elegant graphics for data analysis. Springer-
Verlag New York (2016).

61. Fellows, I. wordcloud : Word Clouds. R package version 2,
331 (2018).

62. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol.
7, e1002195 (2011).

63. Hari, A. & Lobo, D. Fluxer: a web application to compute, analyze
and visualize genome-scale metabolic flux networks.Nucleic Acids
Res. 48, W427–W435 (2020).

64. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R
package for ‘omics feature selection and multiple data integration.
PLOS Comput. Biol. 13, e1005752 (2017).

65. Liaw, A. & Wiener, M. Classification and regression by randomFor-
est. R News 2, 18–22 (2002).

Acknowledgements
This work was supported by the Australian Research Council
(DP190101504) and the AustralianNational Health andMedical Research
Council (APP1181105 and APP1186371). V.R.M. is supported by an Aus-
tralian Research Council DECRA Fellowship (DE220100965), C.G. is
supported by an National Health & Medical Research Council EL2 Fel-
lowship (APP1178715), and S.C.F. is supported by a CSL Centenary Fel-
lowship. S.M.G. and C.D. were supported by the National Institute of
Diabetes and Digestive and Kidney Diseases of the National Institutes of
Health (R01DK133468). The authors acknowledge the Monash eRe-
search Centre for access to computational resources and expertise and
the support of the Victorian Government’s Operational Infrastructure
Support Program. We thank Dr Paul Harrison and Dr Jamie Gearing for
statistical and bioinformatics advice, and Dr Lucas Schiffer for help with
curatedMetagenomicData. We also thank the stool donors and
researchers who made their metadata publicly available and the
reviewers of this manuscript for their constructive feedback. Open
access charges funded by the Hudson Institute of Medical Research.

Author contributions
V.R.M. and S.C.F. designed the study. V.R.M. and R.B.Y. identified sam-
ples and curated the metadata. V.R.M. conducted the metabolic mod-
elling analyses. C.D. and S.M.G. assisted with data analysis and
interpretation. C.W. and C.G. performed the survey of H2S genes. E.L.G.,
E.L.R., and R.B.Y. contributed with bacterial microbiology expertise, and
E.M.G contributed with clinical expertise in IBD. All authors contributed
to the results interpretation and manuscript writing.

Competing interests
S.C.F. is an inventor on patents and has acted as an advisor to Biome-
Bank and Microbiotica. R.B.Y. has acted as an advisor to BiomeBank. All
other authors have no competing interests to declare.

Article https://doi.org/10.1038/s41467-023-42112-w

Nature Communications |         (2023) 14:6546 10



Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42112-w.

Correspondence and requests for materials should be addressed to
Vanessa R. Marcelino or Samuel C. Forster.

Peer review information Nature Communications thanks Francisco
Zorrilla and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42112-w

Nature Communications |         (2023) 14:6546 11

https://doi.org/10.1038/s41467-023-42112-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Disease-specific loss of microbial cross-feeding interactions in the human gut
	Results
	Potential cross-feeding interactions quantification
	Meta-analysis of 1661 microbiomes reveals key metabolic interactions among gut microorganisms in health and disease
	Species diversity has distinct relationships with producers and consumers of exchanged metabolites
	Microbial food web restoration as a potential therapeutic strategy for Crohn’s disease

	Discussion
	Methods
	Global survey of gut metagenomes and quality control
	Metagenome assembly and binning
	Genome and metagenome-scale metabolic modelling
	Metabolite exchange scores
	Species diversity effects
	Nutritional interactions in the microbiome associated with Crohn’s disease
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




