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First demonstration of in-memory comput-
ing crossbar using multi-level Cell FeFET

Taha Soliman 1,7 , Swetaki Chatterjee 2,3,7, Nellie Laleni4, Franz Müller 4,
Tobias Kirchner 1, Norbert Wehn5, Thomas Kämpfe 4 ,
Yogesh Singh Chauhan 3 & Hussam Amrouch 6

Advancements in AI led to the emergence of in-memory-computing archi-
tectures as a promising solution for the associated computing and memory
challenges. This study introduces a novel in-memory-computing (IMC) cross-
barmacro utilizing amulti-level ferroelectric field-effect transistor (FeFET) cell
for multi-bit multiply and accumulate (MAC) operations. The proposed
1FeFET-1R cell design stores multi-bit information while minimizing device
variability effects on accuracy. Experimental validation was performed using
28 nm HKMG technology-based FeFET devices. Unlike traditional resistive
memory-based analog computing, our approach leverages the electrical
characteristics of stored data within thememory cell to derive MAC operation
results encoded in activation time and accumulated current. Remarkably, our
design achieves 96.6% accuracy for handwriting recognition and 91.5% accu-
racy for image classification without extra training. Furthermore, it demon-
strates exceptional performance, achieving 885.4 TOPS/W–nearly double that
of existing designs. This study represents the first successful implementation
of an in-memory macro using a multi-state FeFET cell for complete MAC
operations, preserving crossbar density without additional structural
overhead.

Although the demand for data transmission is increasing globally, it is
expected that the future will prioritize data-centric local intelligence at
the edge node. This, in turn, will inevitably necessitate devices,
includingwearables, sensors, smartphones, and cars, to locally analyze
data and make autonomous decisions.

Edge-AI devices have great potential to enable new applications
with higher performance and support local embedded intelligence,
real-time learning, and autonomy. This could propel the semi-
conductor industry’s next growth phase. Energy-efficient local com-
puting is crucial to enable smart connected Internet of Things (IoT)
devices. Further, the rise ofmemory-intensive computational tasks has

led to a significant increase in the amount of data that needs to be
accessed compared to local computation inside the algorithmic logic
units. This issue is commonly known as the von-Neumann bottleneck1.
One of the most notable examples of such storage-bound tasks is
related to AI, specifically when it comes to deep learning applications.
In recent years, the research community has demonstrated the
potential of various architectural improvements in computing sys-
tems, such as near-memory or in-memory-computing (IMC), to meet
these energy, compute, and memory requirements2.

Similarly, deep neural networks (DNNs) have gained popularity
due to their remarkable performance, especially in applications such
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as speech recognition and image processing. However, in order to
design an efficient DNN, various metrics such as throughput, latency,
and energy efficiency must be jointly optimized. Therefore,
researchers have turned their attention to IMC architectures for
deploying such networks. Such architectures perform MAC opera-
tions by utilizing the memory array without the need for data
movement, resulting in improved system performance and large
energy savings, thus, overcoming the fundamental bottleneck of
von-Neumann architecture.

Advanced IMC architecture design relies on the usage of emer-
ging memory cells, particularly non-volatile memory (NVM) cells.
These NVMs are used to store weights in neural network inference
architectures without needing a steady power supply and to perform
multiply and accumulate (MAC) operations using their analog prop-
erties. Various emerging memories have been presented, such as
resistive RAM (ReRAM),magnetic RAM, and FeFETs3–5. In this work, we
focus on using FeFETs as memory cells due to their superior perfor-
mance compared to other emerging memories5, as it has been com-
prehensively summarized in the recent FeFET survey6. Our FeFET is co-
integrated into a 28nm high-κ-metal-gate (HKMG) technology, result-
ing in a low footprint. The FeFET exhibits low read latency(~1ns), cur-
rent source capability, and extremely highwrite power efficiency (<1 fJ)
with a short write duration (~1μs), making it a highly suitable memory
cell for IMC5.

State-of-the-art FeFET based IMC architectures have been limited
to binary logical operations, specifically logical AND and XNOR7–11.
These operations are restricted to storing only two states within the
FeFET memory cell. Even the use of multi-level cell (MLC) FeFETs will
not offer any additional advantages in these architectures as the
computations are limited to only binary operations. However, MLC
FeFET have been utilized for other tasks such as matching in hyper-
dimensional computing12. We demonstrate for the first time amulti-bit
MAC operation with variation-affected FeFET cells.

Contrary to analog computingbased implementations of theMAC
macro13, 14, we do not perform direct analogmultiplication of the input
and weight, which is highly prone to variations and requires a high
degree of linearity in the stored states. Instead, we operate using the
current-limited cell such that each cell that is activated has the same
current contribution, which limits the impact of variation and
improves operation accuracy. This is concisely what enabled us to
overcome the variation and utilize MLC FeFET for the first time to
demonstrate full MAC operations.

Wedesigned anddemonstrated aMACcircuitmacroconsistingof
cells connected in the crossbar structure using the 1FeFET-1R config-
uration, which includes a single FeFET and a single resistor. In this
macro, the FeFET cell acts as amemory for the entire weight value. We
explore in this work three dimensions (time, stored Vth state of the
FeFET, and output current) to perform a complete MAC operation
using the single FeFET per weight, detailed in Fig. 1. The input is
encoded in applied voltage duration and magnitude, the multi-bit
weight is stored in the FeFET, and the output is accumulated as the
capacitor voltage that depends on the activation time and number of
FeFETs activated as shown in Fig. 1.

Depending on the stored and input values, the multiplication
operation result is encoded in the FeFET cell activation time. Addi-
tionally, the number of simultaneously activated FeFET cells is repre-
sented by the drain current over time which reflects the accumulation
of theperformedmultiplications. Basedon the voltageof the capacitor
in the decoder block connected to an operating column of cells (as
shown in Fig. 1h), the final MAC operation results can be determined
and quantized to the required bit precision using a suitable analog-to-
digital (ADC) converter. To prove the validity of our macro design, the
stored weights, input, as well as output, are quantized to 2 bits. How-
ever, the presentedmacro and computational idea can be extended to
higher precision as long as the memory cell can store the targeted

precision while maintaining the clear separation between the memory
states.

We demonstrate in this paper the multiplication operation by a
single FeFET cell and extend to completeMAC using the IMCmacro of
32 × 32 FeFETs. This macro is tested against the LeNet network for
MNIST handwritten digit database and several layers from VGG-19 for
the CIFAR-10 dataset. Our presented work maintained the network
accuracy at 96.6% with less than 2% accuracy loss. We leverage the
properties of the FeFET device and demonstrate a novel architecture
formulti-bitMACoperations enabling neural network inferencewithin
the memory to overcome the von-Neumann bottleneck. Thus, this
work connects all the layers of the traditional computing stack from
devices to architecture to system-level application.

Our proposed architecture
Single-cell multiply operation
The polarization of the ferroelectric layer can be modulated by the
application of voltage pulses which in turn changes the Vth of the
underlying transistor and hence the conductance. The different Vth

states are achieved with respect to the value of the voltage pulse and
the pulse duration. Figure 1b illustrates the MLC FeFET where it is
programmed to four different states to store 2-bit information.

In this work, we use the 1FeFET-1R concept (to limit the drain
current variability and operate in the saturation region) for a memory
cell8, 12. This concept is constructed by adding a drain resistance to the
FeFET. The resistance is in the range of 1MΩ for a drain current of
approximately 100 nA and can be implemented by a transistor biased
at its gate or a physical resistance12, 14. In this way, the current variability
is reduced, as well as the power consumption of the memory unit cell.
With the addition of the resistance, the current is limited to 0.1μA as
compared to 2μA without the additional resistance. This reduces the
cell power which is a product of the cell-current and the supply
voltage.

We propose a novel methodology to use the MLC FeFET cell to
perform the complete MAC operation. As shown in Fig. 2a, the 2-bit
weight is encoded in the stored state inside the FeFET state such that
the smallest value is represented by the highest Vth state and the lar-
gest by the lowest Vth state. On the other hand, the input value will be
encoded as the time stamp at which the different gate voltages are
applied according to Eq. (1)

2bit � Vg ðInput,timeÞ=

0, if Input:time< ϵ1,

Vth1, if ϵ1< = Input:time< ϵ2,

Vth2, if ϵ2< = Input:time < ϵ3,

Vth3, if ϵ3< = Input:time:

8>>><
>>>:

ð1Þ

According to Eq. (1), the value of the gate voltage applied to the
FeFET cell over time is dependent on the 2-bit input value. Conse-
quently, the timestamp at which the FeFET saturates can encode the
results of themultiplication of the stored state inside the FeFET aswell
as the input voltage. However, one of the main issues will be ensuring
the commutative property for multiplication. In Eq. (1), the values
ϵ1, ϵ2, ϵ3 are used to tune the ramping voltage speed to ensure the
commutative property. As shown in Fig. 2, we can demonstrate a 2-bit/
2-bit multiply operation performed by our memory cell in both simu-
lations and measurements.

Multiple-cell accumulation operation
To read out the multiple-cell accumulation operation, we utilized the
charging of a capacitor due to the total accumulateddrain currents in a
column over a period of time. The drain current frommultiple FeFETs
are collected and directed to the accumulation capacitor. The satura-
tion time of the FeFET encodes the multiplication output, and the
number of FeFETs activated at a given time represents the
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accumulation. The capacitor voltage at the end of the period or the
sampling time(ts) is given by

Vsampling =
1
C

Z ts

0

XnFeFETs

n= 1

Id,nðtÞdt ð2Þ

whereC is the capacitance of the capacitor attached to the column, Id,n
is the drain current of the nth FeFET, nFeFETs is the total number of
FeFETs connected. At that point, the FeFETs are in the saturation
region and limited by the resistance according to Eq. (3).

Id,nðtÞ=
Vdd � VsðtÞ

Rout
� hðt � toÞ ð3Þ

Vs(t) is following the charging voltage function over a capacitance C
and time constant τ = Rout ⋅ C where Rout is the total resistance seen by
the source of the FeFET including the current limiter resistance R. The
time-constant τ is sufficiently high to not allow a steep fall in the
current. h(t − to) is the step-function at time to. It represents the time at
which the FeFET is activated and it depends on the input applied and
the stored state. The value of to is such that it maintains the

commutative property of multiplication. Since the current follows a
step-jump at to, the voltage across the capacitor follows a ramp after
time to.

To quantize theMACoutput, we employ StrongArm voltage input
comparators15 followed by latches and encoder for a complete 2-bit
output. We explored the influence of the value of nFeFETs and the
induced cell variation on the accumulation results and the resulting
loss in inference accuracy.

Results
Experimental measurements
The FeFET test structures are fabricated in the GlobalFoundries 28 nm
high-k/metal gate technology node, for which co-integrationof FeFETs
with CMOS devices has been demonstrated16. The FeFETs consist of a
SiO2 interfacial oxide layer, followed by an 8 to 10 nm thick, ferro-
electric doped HfO2 layer as illustrated in Fig. 1a and Fig. S1a in
the Supplementary Materials. The gate is capped with a TiN metal cap
and silicided poly silicon17.

A 1FeFET-1R cell is constructed by externally connecting a 1MΩ
resistor to a FeFET with an area of 450× 450nm2. This is necessary to
limit the ON current and control variations. The 1FeFET-1R cell is
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Fig. 1 | Overview of the proposed IMCmacro forMACoperations. a Thematerial
stack of FeFETs. b The multi-bit FeFET can be programmed to different states to
store the weight of the synapse. c Previous works7, 8, 11 only considered binary AND
or XNOR operations to compute a single-bit multiplication operation. d Our pro-
posed 2-bit multiplication operation with input encoding and 2-bit storage is
shown. The corresponding output activates at different instances of time. e An
encoder provides the gate voltage depending on the input value which changes
between three levels at different instances of time. f The multiplication output of
the input and stored state in the cell depends on the time at which one cell is

activated which is accumulated and sampled using the decoder. g The Vth dis-
tribution of the four states for the Ids−Vgs curves is shown. h Depending on the
activation time and the number of cells activated at a given time, the voltage across
the capacitor connected to a column of cells is accumulated which corresponds
linearly with the MAC output and has a minimal impact of the underlying device
variation. i IMC accelerators facilitate MAC operations for AI workloads where our
proposed design can be utilized. j The correspondingMACoperation is performed
in the crossbar, accumulating the output in the capacitor voltage.
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written to 4 distinct states, as shown in Fig. 2a. For details of the
methods of writing the FeFET into the desired state, refer to the
Methods section.

As stated earlier, for a single cell, the input is encoded in duration,
and the magnitude of the voltage applied and shown in Fig. 2b. For an
input of ‘0’, the gate voltage is kept constant at 0 V. This voltage is less
than the Vth of any stored state in the FeFET, and no FeFET is turned
ON. For the other inputs, the magnitude of the voltage is changed to
levels V1, V2, and V3 at a certain point in time, as stated in Eq. (1). The
voltage level corresponds to the read voltage of the FeFETs storing ‘3’,
‘2’, and ‘1’, respectively. Consequently, the FeFET storing ‘3’ is turned
on earliest, and a FeFET storing ‘0’ is never turned ON. For input ‘3’,
voltage V1 is applied at 0, and for input ‘1’, voltage V1 is applied later at
300 μs. Correspondingly, the FeFET storing ‘3’ would turn on imme-
diately for input ‘3’ and turn on later for input ‘1’. Hence, the output of
the single multiplication operation between the stored weight and the
applied input is encoded as the time when the FeFET turns on, i.e.- the
activation time of the FeFET.

Evaluation at different input conditions is performed from the
resulting Ids − Vgs transfer characteristics. The corresponding output
is shown in Fig. 2c. The verification is done for a drain current of
75 nA. The timing marked for each output state is distinguishable.
The current rises for an output of 9 first and at last for an output of 1.
For intermediate output states, the activation time is in between. The
commutative property is also maintained as seen for output of ‘2’,‘3’,
and`6’. The instance of time when the current rises can distinguish
between the different output states, as shown in Fig. 2c. This forms
the basis for the MAC operation. It has to be noted that the slow
readout observed in the experimental measurements is attributed
solely to the limitations of the experimental setup. The measured
data in Fig. 2c is post-processed from the transfer curves of Fig. 2a,
hence the time is artificial and can be reduced further with direct
measurements.

Simulation
The functionality of the proposed in-memory macro is exemplified
through simulations. The FeFET is simulated using a Preisach-based
model18 of the Ferroelectric capacitor and industry-standard compact
model19 of the underlying transistor (for details, see SI). We use 2-bit
storage for the FeFET as in measurements, which corresponds to four
different Vth states. The simulation characteristics are matched to the
experiments as closely as possible, and the resulting Ids − Vgs char-
acteristics are shown in Fig. 2d.

Correspondingly, we simulate the single-cellmultiplyoperation as
in measurements. The timing of the input pulse is modified such as to
have almost linear characteristics of the output voltage against the
desired output. Also, to determine the maximum speed of operation,
the input pulse width is greatly reduced. The values are as per the fast
readout proposed in FeFETs5. The input and the corresponding output
are shown in Fig. 2e, f, respectively. Each output is distinguishablewith
nooverlap, and also, the commutative property of themultiplication is
maintained. We further simulated and evaluated the proposed MAC
macro for a complete array of connected cells for neural network
inference.

Evaluation
Crossbar level
The memory cells are arranged in the crossbar structure. In our
recent work20, we demonstrated that such an array can be pro-
grammed with MLC cells for up to 3b precision employing inhibit
voltage levels and target erase schemes. A capacitor of 64 fF is
connected at the bit-line for each column which is charged and dis-
charged after every cycle. The value of the capacitor is chosen to
allow the charging without being saturated. The voltage to which it is
charged depends on the total current flowing into it and the time for
which it flows, as given by equation Eq. (2). The time is determined by
the input and stored state at which a particular FeFET activates. The

Fig. 2 | Direct 2-bit multiply operation in a single cell. a The measured Ids-Vgs

characteristics of the 1FeFET-1R cell corresponding to the four stored states.b Input
voltage against time applied to the FeFETs formeasurement and (c) Output current
against time on applying the input pulse. Ids rises at different instants of time

corresponding to different outputs, which are used to get the product of input and
stored states. d–f Stored, input, and output from a single cell multiplication
operation are verified through simulations and determine the maximum speed of
operation possible.
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number of FeFETs activated at a given time determines the total
current that flows into the capacitor. The voltage across the capa-
citor (Vcap) is sampled at a particular time (tsampling) using a 2-bit ADC
to get the final output.

The single cell connected to the capacitor is shown in Fig. 3a. The
capacitor is charged with an almost constant current of 100nA, and
thus, Vcap rises linearly with time as shown in Fig. 3b. The sampled
voltage is maximum for the case of output 9 because Id turns on ear-
liest in this case (at 1 ns) Fig. 3c. For the case of output 1, voltage is
minimum because Id turns on the last (at 13 ns).

Similarly, in the case of 2 cells in the array, for output 18, Vcap is
maximum. Here, both the cells are activated at 1 ns, and the current is
double that of one cell. Hence, the sampled voltage is also approxi-
mately double that of output 9. For output 1, only one of the FeFETs is
turned on at 13 ns, and the sampled voltage is minimum. For inter-
mediate values of output (‘2’,‘3’,‘4’, and ‘6’) the sampled voltage at the
capacitor lies in between the maximum and minimum as shown
in Fig. 3c.

The reasoning can be extended to a higher number of cells in the
column. The sampled voltage across the capacitor progressively
increases with the number of cells activated. Figure 4 shows the sam-
pled voltage (Vsampling) against theMAC output for up to 32 cells in the
array.We considered all the possible input and stored combinations to
generate the MAC output. We maintained a clear distinction between
each output level and the numerical MAC output. However, with an
increase in the number of cells, the linearity for higher output values is
lost, and the sampling voltage starts to saturate. This is because, with
an increase in the number of cells, the current in the source line
increases which charges the capacitor faster. Alternatively, the
equivalent resistance decreases and thus the time-constant decreases
which saturates the capacitor voltage to itsmaximumvalue. This is also
expected from equation Eq. (2). The capacitance value has a direct
influence on the delay, which, in turn, affects the maximum speed of
operation. Careful consideration is given to selecting the optimal
capacitance value to prevent the sampling voltage from saturating
while achieving the highest possible operational speed. However,
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achieving large capacitances can demand a substantial amount of area
in the design layout. This introduces another trade-off between the
speed of operation and the area required for the design. Balancing
these trade-offs becomes crucial in designing efficient systems that
achieve both desirable operational speed and occupy a reasonable
area footprint.

The final output is converted into 2 bits using strong-ARM
comparators15 connected across the capacitor. The comparasion
threshold levels are selected based on the quantization required. For
the final simulations of the DNN, 32 cells in a column are considered.
The crossbar is divided into 32 × 32 cells in a segment. Each column in
the segment is connected to the 2-bit ADC. The quantized weights are
directly written to the FeFET crossbar (For details on the quantization,
see SI). The quantized input is applied using a digital-to-analog con-
verter (DAC) connected to the word line for each row, which selects a
particular voltage based on the applied input.

Afterwards, the variability in the FeFET devices are incorporated
in the FeFET model to calculate the loss in inference accuracy of the
neural network. The variation in Vth is measured from real fabricated
FeFET devices. Figure 5 shows the distribution for three different tar-
get condition sets of Vth. In the first set, the target levels are chosen as
0.2 V, 0.6 V, 1.0 V and 1.4 V. In the next set, the target levels are 0.3 V,
0.633 V, 0.967 V and 1.3 V. In the third set, the target levels are 0.3 V,
0.6 V, 0.9 V and 1.2 V. The maximum standard deviation of 38mV is
obtained for the difference in actual and target Vth.

For simulations, a standard deviation of 40mV for Vth of the
FeFET is assumed for each state. 1000 Monte Carlo samples for each
stored, and the input value is simulated for up to 4 cells in the array.
For a higher number of cells, the total variability of each state is cal-
culated algebraically from the lower number of cells (for details, see
SI). A maximum standard deviation of less than 4mV for any given
output state is observed in the case of 32 cells in the array. Quantiza-
tion of the output into 4 levels (2 bits) further reduces the error
probability. Finally, the neural network models are simulated to cal-
culate the loss in inference accuracy and derive the performance
metrics of the proposed MAC macro.

Architecture level
We used the experimental and simulation data to estimate the per-
formance of the demonstratedmacro on two neural networkmodels.
We perform the inference of these networks on the target macro and
at limited variability of 40mV based on ourmeasurements. As shown
in Fig. 6a, b, we fully quantize the LeNetmodel21 forMNIST22 into 2-bit
activation and 2-bit weights to fit our macro capabilities of MAC
precision. The network consists of three convolutional layers and
two dense layers. The network requires 397920 MAC operations
using 61610 parameters. Considering a max of 40mv device

variation, we achieve 96.64% network accuracy compared to the
original model accuracy of 99.11% achieved at full floating point
precision.

Additionally, we also quantize two layers from the VGG1923 net-
work for the CIFAR-1024 dataset as shown in Fig. 6c, d. The network
consists of 19 layers. However, we tested and quantized only two
convolutional layers. The networks require 38947914 parameters out
ofwhichwequantizedonly 1179648parameters to 2-bit, where the rest
are quantized to 8-bit. The 2-bit quantization layers use 2-bit quantized
activations. We considered a max of 40mv device variation for those
two layers. We achieved 91.55% network accuracy compared to the
original model accuracy of 93.22%. Nevertheless, we tested the net-
work’s accuracy in case of smaller device variation. Accuracy of 97.25%
and 91.9% for LeNET and VGG19 was observed for the case of 30mV
variation in Vth. However, for 25mV and lower, there is no overlap and
hence we achieve full software equivalent accuracy.

As demonstrated, the variation has a very limited influence on the
accuracy of the final network resulting in less than 4% in both networks
over the testing set. This can be reasoned by the cell architecture of
1FeFET-1R, which limits the current and the quantization of the final
output into 2 bits, which limits the impact of the variation on the
sampling voltage thresholds. Also, the device variation has less error
probability on the states corresponding to the values 2 and 3 com-
pared to the values 0 and 1 as shown in Fig. 5. This error distribution is
reflected in the accuracy as the least significant bit has a lower impact
on the network accuracy compared to the most significant bit.

To further demonstrate the reliability of our proposed system, we
analysed the impact of retention and endurance of the device on the
tested network’s accuracy. Extrapolated 10-year retention and endur-
ance of 1010 cycles have been demonstrated for FeFET in the
literature25–27. The retention and endurance characteristics of our MLC
FeFET are shown in Fig. 7. We observed minimal changes in the
threshold voltage state, and also minimal overlap among the states
over the entire studied time span (105 s). This results in no further
accuracy loss in the case of LeNET while for VGG19 accuracy drops to
90.67% (from 91.9%) after 105 s. The endurance of our FeFET cell under
the target programming and verify scheme is at least 104 cycles for the
devices in the array. The usage of the write-verify algorithm which
continuously writes until the required target or the maximum pulse
count is reached accelerates degradation. Proper selection of the tar-
gets could increase endurance at the cost of a reduced memory win-
dow. Also, a better write algorithm that detects the target value won’t
be reached anymore after a few tries and therefore limiting the write
voltage from there on could improve endurance. However, the focus
of this work is only neural network inference (i.e - no training), where
the memory states are written once at the beginning and very rarely
after that, there is no drop in accuracy resulting from the endurance.
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Fig. 5 | Experimentally measured device-to-device variation with respect to Vth. a Target condition 1. b Target condition 2. c Target condition 3. Different target
conditions were set for measuring the standard deviation in target and measured Vth. A maximum standard deviation of 38mV is observed.
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In our experiments, the crossbar and the ADCs consume 153.6μW
measured directly for the given frequency(66 MHz) and accumulation
capacitance (64 fF). The energy efficiency of the presented crossbar
accordingly is 885.4 tera-operations per second power watt (TOPS/W),
where each operation refers to 2-bit/2-bit multiply or accumulate. We
compared our design against existing in-memory crossbars which are
shown in Table 1.

Discussion
In this work, we have demonstrated the multi-bit MAC operation
exploiting for the first time amulti-bit FeFET cell and a novel encoding

and decoding scheme. The variability was controlled with the help of
the external current-limiting resistor approach. Compared to other
works in the literature with different memory architectures, we show a
higher throughput and efficiency. The results portray that FeFET can
be a strong contender for DNN acceleration with high efficiency.

We see an important potential for our computational innovation
to allow for a dense IMC macro that can use simple memory cell
1FeFET-1R while performing multi-bit MAC operation per each cell.
Additionally, the combination of several computational dimensions
time/voltage/current encodings allow for combating the variability
and maintaining the macro efficiency in an unprecedented way.
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Fig. 6 | Neural network simulation utilizing the proposed IMC MAC macro.
a LeNet neural network is tested for handwritten digit recognition MNIST dataset.
All the MAC layers are quantized to 2 bits. b The weight distribution shows the
trained weights when they are re-quantized to 2 bits for the second convolutional
layer. An accuracy of 96.64% is achieved considering device variations. c VGG19

neural network is tested for object classification CIFAR-10 dataset where only two
convolutional layers are quantized for testing. d The weight distribution shows the
trained weights when they are re-quantized to 2 bits for a convolutional layer in
VGG19. An accuracy of 91.55% is achieved under the effects of device-to-device
variations.

Fig. 7 | Experimentally measured retention and endurance of the FeFET cells
with respect to Vth. a 24-h retention characteristics at 85 °C of the four target Vth

states of the FeFET showing almost steady retention for the entire duration.

b Endurance of the proposed cell under subsequent target program-erase cycles
(standard erase followedby target programmingby increasingpulse amplitudeand
verify of Vth) with a pulse width of 200ns.
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Methods
1FeFET-1R cell characterization
To write the FeFET, into 4 distinct states (i.e 2-bit), we employed the
write-verify scheme. A FeFET is written into a fully programmed state
by applying +4.5 V for 500ns and into a fully erased state by applying
−5 V for 500 ns while keeping the source and drain terminals groun-
ded. Before evaluation, each FeFET is cycled 50 times with these
conditions for preconditioning. A FeFET is then written to 4 distinct
states using awrite-verify-scheme. Therefore, the FeFET is initially fully
erased28,29. Startingwith awrite voltage of 1.4 V for 200 ns, the FeFET is
gradually programmed. Write voltage is incremented in steps of
40mV. After each write pulse, a delay of 500ms is applied for charge
detrapping, and a read operation verifies the state. This scheme is
continued until the target value is reached. Target levels are selected at
0.3 V, 0.7 V, 1.1 V, and 1.5 V at a constant current condition of 80 nA.
After setting the target state, a final readout is performed. Before
reading, a sufficiently large time is waited for any charge detrapping. In
this case, a delay time of 2 seconds is chosen. For reading a voltage
ramp, VG from −0.2V to 1.7 V in steps of 10mV is applied to the gate.
Current ID is measured at the drain side while biasing the drain-
terminal at 0.1 V, obtaining the 4 distinct Ids −Vgs curves.

For the retention measurements at 85 °C shown in Fig. 7a, a pulse
width of 400ns is used to measure the Vth of each state at different
intervals of time for up to 105 s. The states are written using the “write-
verify" scheme to set it to a particular Vth. For a more detailed
description see SI. For the endurance measurements shown in Fig. 7b
with target programming for MLC first, erase pulse is applied with a
magnitude of −5 V followed by increasing magnitude pulses of dura-
tion 200 ns and verify of Vth until the required state is reached or the
maximumnumber of pulses or voltage is detected. This represents the
used target-verify scheme of programming the FeFET to a desired
state. This cycle is repeated for up to 104 cycles.

Simulation methodology
All the simulations are performed in the commercial SPICE simulator
Cadence Spectre. For simulating the FeFET, a Preisach-basedmodel of
the FeFET is considered along with the BSIM-IMG model of the
transistor18, 19. To simulate the FeFET crossbar array, a single column in
the crossbar is first selected. Each cell in the crossbar is a 1FeFET-1R
structure. The ADC connected to the column is simulated using well-
calibrated BSIM-IMG transistors based on measured data30. For all
possible input and stored combinations, netlists for the column are
generated using a Python script. The netlists are then run in SPICE, and
the results are extracted. To include the variability of the FeFET on the
MAC output, Monte Carlo simulations are performed following a
normal distributionwith 3σ truncation. 1000 sampleMonte-Carlo runs
is simulated for each possible input and stored combination. The
mean, 5th, and 95th percentile of the sampling voltage are extracted
corresponding to each MAC output. Finally, the output is sampled
using the ADC. The threshold voltages of the comparators are chosen
according to the 2-bit quantization of the neural network. Finally, the

output levels are converted tobinary values and areused for theneural
network simulation.

To assess the impact of FeFET variability and the DNN quantiza-
tion on the performed task accuracy, a bit-accurate simulation of the
multi-level FeFET macro was implemented using the simulation fra-
mework ProxSim31 based on Tensorflow32. We implemented a custom
CUDA operator to simulate the results from different simulations and
measurements.

Data availability
The data generated in this study and used in the figures and
plots within this manuscript have been deposited in the public
database repository under: https://github.com/TUM-AIPro/Nature
Communications_CiM_FeFET.

Code availability
The codes that supports the findings of this study has been deposited
in the public database repository under: https://github.com/TUM-
AIPro/NatureCommunications_CiM_FeFET.
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