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Proteogenetic drug response profiling
elucidates targetable vulnerabilities of
myelofibrosis

Mattheus H. E. Wildschut 1,2,3, Julien Mena 1, Cyril Dördelmann 4,
Marc van Oostrum 2, Benjamin D. Hale1, Jens Settelmeier 2,5, Yasmin Festl1,
Veronika Lysenko 3, Patrick M. Schürch 3, Alexander Ring3, Yannik Severin1,
Michael S. Bader6, Patrick G. A. Pedrioli2,5,7, Sandra Goetze 2,5,7,
Audrey van Drogen2,5,7, Stefan Balabanov3, Radek C. Skoda6, Massimo Lopes 4,
Bernd Wollscheid 2,5,8 , Alexandre P. A. Theocharides 3,8 &
Berend Snijder 1,5,8

Myelofibrosis is a hematopoietic stem cell disorder belonging to the myelo-
proliferative neoplasms. Myelofibrosis patients frequently carry driver muta-
tions in either JAK2orCalreticulin (CALR) andhave limited therapeutic options.
Here, we integrate ex vivo drug response and proteotype analyses across
myelofibrosis patient cohorts to discover targetable vulnerabilities and asso-
ciated therapeutic strategies. Drug sensitivities of mutated and progenitor
cells were measured in patient blood using high-content imaging and single-
cell deep learning-based analyses. Integration with matched molecular profil-
ing revealed three targetable vulnerabilities. First, CALR mutations drive BET
andHDAC inhibitor sensitivity, particularly in the absence of high Ras pathway
protein levels. Second, an MCM complex-high proliferative signature corre-
sponds to advanced disease and sensitivity to drugs targeting pro-survival
signaling and DNA replication. Third, homozygous CALR mutations result in
high endoplasmic reticulum (ER) stress, responding to ER stressors and
unfolded protein response inhibition. Overall, our integrated analyses provide
a molecularly motivated roadmap for individualized myelofibrosis patient
treatment.

Myelofibrosis (MF) is a chronic blood cancer belonging to the family of
myeloproliferative neoplasms (MPN). Compared to the other MPN,
polycythemia vera (PV) and essential thrombocythemia (ET), MF is
characterized by a more aggressive disease phenotype and a worse
prognosis due to increased risk of progression and transformation to

acutemyeloid leukemia (AML)1. Thediseaseoccurs in patients either as
primary MF (PMF) or as a natural evolution from pre-existing PV or ET
disease (PPV-MF and PET-MF, respectively)2. At themolecular level,MF
is driven by mutations occurring in the hematopoietic stem and pro-
genitor cell (HSPC) compartment that deregulate downstream
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hematopoiesis3. Over 90% ofMF patients carry defined disease-driving
mutations in either one of two genes: JAK2, a tyrosine kinase, and
Calreticulin (CALR), an endoplasmic reticulum (ER)-residing chaper-
one of glycoproteins4, 5. Both JAK2 and CALR driver mutations cause
cytokine-independent overactivation of the JAK/STAT pathway6. Sec-
ondary mutations associated with disease progression can occur in
epigenetic regulators, the spliceosome complex, and a variety of
tumor suppressors7. Despite the genetic homogeneity driving MF, the
clinical presentation is heterogeneous.

JAK inhibitors (JAKi) that target the common JAK/STAT pathway
hyperactivation have revolutionized the treatment landscape for MF
patients by inducing symptom relief and improving quality of life8.
However, with the exception of hematopoietic stem cell transplanta-
tions, currently approved MF therapies are not curative9 and do not
eliminate the malignant MF clone10. Furthermore, therapies including
JAKi are limited by pre-existing or acquired resistance11,12, and sub-
sequent treatment alternatives are at present limited13. Thus, the
complex disease biology of MF drives significant patient hetero-
geneity, requiring a better understanding of molecularly targeted and
individualized therapeutic strategies.

Despite cell lines being essential in preclinical research, their drug
response andmolecular profiles commonly donot recapitulate patient
heterogeneity and clinical response. For example, while JAKi efficiently
and specifically targets cell lines harboring MF driver mutations14, this
targeted effect on the malignant MF clone is absent in both mouse
models15,16 and patients14,16. To ensure optimal clinical translatability of
our findings,we set out to perform ex vivo drug responseprofiling and
mass spectrometry-based proteotyping directly on MF patient blood
cells. Utilizing pharmacoscopy, previously shown to be clinically pre-
dictive across a variety of hematological malignancies17,18, we devel-
oped a single-cell multiplexed and deep learning-based MF drug
response profiling platform that captures patient heterogeneity and
quantifies drug efficacy on the malignant MF clone. Cellular proteo-
typing enabled us to capture molecular interpatient heterogeneity
using isolated blood cell populations across large clinical MF, MPN,
and healthy donor (HD) cohorts. This integrative pan-cohort analysis
provides direct insight into the molecular drivers of clinical hetero-
geneity, linking targeted therapeutic sensitivities to molecularly stra-
tified MF patient profiles.

In this work, we perform integrated clinical image-based drug
response and proteotyping profiling of MF patients to reveal three
distinct targetable vulnerabilities in defined patient subgroups. First,
MF patients with CALR driver mutation and low Ras signaling pathway
expression responded well ex vivo to BET and HDAC inhibitors. Sec-
ond, patients characterized by increased DNA replication and cell
proliferation displayed increased sensitivity to idasanutlin, vosaroxin,
and navitoclax. Third, homozygous CALR-mutated patients were
characterized by particularly high levels of ER stress, resulting in sen-
sitivity to ER stressors and UPR inhibitors. Overall, our integrated
functional drug response landscape yields molecular insights into MF
pathogenesis and concurrent therapeutic strategies, providing a
roadmap for improved personalized treatment of MF patients.

Results
Image-based single-cell oncogenic readouts in MF samples
HSPCs in the peripheral blood of MF patients contain the disease-
driving cells15,19, are characterized by clonal dominance20,21, and display
molecular features that might allow their detection by immuno-
fluorescence. We therefore set out to establish immunofluorescence
readouts reflecting the oncogenic nature of each cell in both CALR and
JAK2 mutant-driven MF compatible with pharmacoscopy-based drug
response analysis.

For CALR-mutated MF, the CALR driver mutations result in the
formation of a common neoantigen4,5. Making use of a recently
reported antibody that specifically binds this mutant CALR protein-

specific sequence (CALRm)22, we established high-throughput immu-
nofluorescence of mutant CALR expression in MF cells, compatible
with automated microscopy and single-cell image analysis. First, we
validated this image-based readout using cell lines, showing that the
CALRm antibody stained CMK11-5 cells CRISPRed to express mutant
CALR23 as well as the CALRmutant patient-derived MARIMO cell line24

(Supplementary Fig. 1a). Confirming antibody specificity and sensitiv-
ity of the approach, CALRm staining was neither observed in the same
CMK11-5 background expressing wild-type CALR, nor in a CRISPRed
CALR knockout CMK11-5 line by both imaging and flow cytometry
analysis (Fig. 1A, Supplementary Fig. 1b–d). Using an image-based
pooled cell line screening approach, we next confirmed that the CALR
mutation specifically resulted in sensitivity to JAK/STAT signaling
inhibition by ruxolitinib and fedratinib (Supplementary Fig. 1e). Lastly,
we used the image-based CALRm readout to analyze peripheral blood
mononuclear cell (PBMC) samples isolated from MF patients diag-
nosed with either CALR or JAK2 driver mutations (MF CALR and MF
JAK2, respectively). CALRm-positive cells were uniquely present in MF
CALR PBMCs, and their proportion correlated quantitatively to
mutation burden as determined by the patient variant allele frequency
(VAF) (Fig. 1B). Strikingly, CALRm levels displayed considerable single-
cell heterogeneity in MF PBMCs, even within PBMCs of patients that
genetically carry a 100% VAF (Fig. 1B).

For JAK2-mutated MF, we established a pSTAT5 antibody-based
readout that enables image-based quantification of JAK/STAT pathway
activation at the single-cell level in patient samples. As expected,
pSTAT5 levelswere significantly elevated inMFdrivenbyeither JAK2or
CALR mutations compared to HD blood (Supplementary Fig. 1f).
Confirming the approach, pSTAT5 levels were efficiently and dose-
dependently reduced by a variety of JAK inhibitors in a patient sample
(Supplementary Fig. 1g), although considerable differences in efficacy
were observed between different JAK inhibitors possibly relating to
their unique pharmacological properties23. We further confirmed that
mutant CALR expression at the single-cell level correlated with
hyperactivity of the JAK/STAT pathway within MF CALR PBMCs (Sup-
plementary Fig. 1h). Despite the correlation of CALRm and pSTAT5
levels at the single-cell level, their subcellular localizations differed
(Supplementary Fig. 1i). Whereas CALRmwas in close proximity to the
ER and cis-Golgi system, confirming previously reported tagged CALR
mutant construct localization25, pSTAT5 had a general cytoplasmic
localization as similarly found for myeloid leukemias26 and JAK2-
mutated cell lines27. Thus, the pSTAT5-based readout is a suitable
proxy for the presence of oncogenic drivermutations ofMF, amenable
to quantification by automated microscopy.

Pharmacoscopy elucidates drugs specifically depleting the
malignant MF clone present in patient blood ex vivo
Utilizing the established oncogene readouts, we set up a
pharmacoscopy-based drug response screen to measure oncogene
and HSPC depletion upon ex vivo exposure of MF patient PBMCs to a
library of 79 clinical-grade drugs (Fig. 2A). We screened 43 MF
patients of which 16 carried CALR and 27 carried JAK2 driver muta-
tions with diverse secondary mutation profiles (MF PBMC cohort;
Fig. 2B and Supplementary Data 1). In short, after 20 hours of drug
treatment, cells were fixed and stained with a multiplexed antibody
panel and imaged by high-content automated microscopy. Small
compound drugs were tested at 1 and 10μM, while biologics were
tested at 0.1, 1, and 10μg/ml. Single-cell image analysis and deep
learning-based classification (by convolutional neural network; CNN;
Supplementary Fig. 2a) quantified the number of viable HSPCs
(CD34+), T-cells (CD3+), monocytes (CD14+), and other cells (marker
negatives) in each condition, outperforming classification based on
average features per cell (Supplementary Fig. 2b). Cell viability was
scored by CNN based on cellular and nuclear morphology (Supple-
mentary Fig. 2c), and conventional image analysis was used to
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quantify the CALRm and pSTAT5 oncogenic levels for MF CALR and
MF JAK2, respectively, for each CNN-classified cell, for a total of
34,750,749 cells.

We first analyzed the cellular composition in non-drug-treated
conditions, revealing vast heterogeneity both in cell population sizes
(Fig. 2C) and in cell phenotypes (Fig. 2D) across the 43 patient samples.
Image-based HSPC fractions showed highly significant concordance
with the clinically determined peripheral blood (PB) blast percentages
(p < 1.06−6; Supplementary Fig. 2d, e). Furthermore, elevated mono-
cyte fractions were observed for MF CALR patients, consistent with
their elevated clinically determined PB monocyte counts (p < 3.01−4;
Supplementary Fig. 2d, f). Drug response results for 3of the 43patients
were excluded from further analysis due to HSPC fractions below 0.3%
(Fig. 2B). Quantification of oncogenic CALRm and pSTAT5 readouts
across cell types and patient samples demonstrated that levels are
highest in monocytes and HSPCs and, particularly for CALRm, lowest
in T-cells (Fig. 2D, E). Within the MF CALR subcohort, the highest
CALRm levels were seen across cell types for patients carrying pre-
dominant homozygous mutations, which we define as CALR VAF > =
75% and refer to as ‘homozygous CALR’ (Fig. 2F).

Next, we quantified and analyzed the relative changes of cell types
andoncogenic readouts uponex vivodrug treatment across the cohort.
We prioritized drugs and drug classes with significant on-target effects
depleting HSPCs and/or the respective oncogenic CALRm and pSTAT5
readouts across MF CALR and MF JAK2 patients. Despite extensive
interpatient heterogeneity in drug responses (Supplementary Fig. 3a,
SupplementaryData 2), we observed several recurring drug sensitivities
across the cohort, including the BCL-2 family protein inhibitor navito-
clax and BET inhibitor pelabresib, both drugs of current clinical interest
for MF (Fig. 3A)27. Globally, we found that drugs belonging to the same
drug class elicited similar responses, reflecting their class-specific
mechanism of action (Supplementary Fig. 3b).

Integration of the drug response profiles with patient-
matched clinical and cellular proteotype information (Fig. 2A)
allowed us to infer the main determinants of the observed drug
response variability in MF. We first globally assessed which clin-
ical factors (Supplementary Data 1) explain the observed drug
response individuality, revealing MF driver mutation status and
PB blast counts as the strongest covariates (Fig. 3B). Unsu-
pervised clustering of the drug response profiles indeed indi-
cated significant similarity in the mutation-related vulnerabilities
(Supplementary Fig. 3c). As a striking example, both tested BCL2
inhibitors elicited considerably stronger responses in both the
HSPC- and oncogenic readout for JAK2 mutant-driven MF (Sup-
plementary Fig. 3d). Second, we analyzed the associations
between drug sensitivity and protein expression measured by
sample-matched proteomic analysis of isolated CD34+ HSPCs
across the cohort (40/43 patients; Fig. 2B, Supplementary
Fig. 4a–d, Supplementary Data 3). To get a top-level view, we first
calculated the number of times we observed a significant
pathway-level association with HSPC drug sensitivity or resis-
tance across all tested drugs. Resistance-associated pathways
showed a higher recurrence across drugs, indicating the presence
of shared resistance mechanisms, whereas sensitivity-associated
pathways were more drug-specific (Fig. 3C). Top pathways enri-
ched in drug sensitivity-associated proteins included ribosome,
spliceosome, cell cycle, and DNA repair pathways. Inversely, the
MAPK-Ras pathway levels associated with HSPC resistance to the
majority of tested drugs, in line with previous findings28.

CALR driver mutations sensitize MF HSPCs to BET inhibition
Exploring mutation-associated drug sensitivities deeper, we next
focused on the observation that HSPCs of MF CALR patient
samples were particularly sensitive to the tested BET and HDAC
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Fig. 1 | Single-cell analysis of mutant CALR protein expression. A Staining of a
cell line panel with the CALR mutant-specific antibody CALRm. Representative
images of the included cell lines are shown (left panels; blue: DAPI; red: CALRm).
Boxplots (right) represent single-cell CALRm intensities for the panel as quantified
by intracellular flow cytometry analysis (right panel). p-Values indicate Student’s t-
test significance: **** = p <0.0001. Exact p-values are reported in Source Data. Box
plots indicate the median (horizontal line) and 25% and 75% ranges (box), and
whiskers indicate the 1.5× interquartile range above or below the box. B Single-cell

immunofluorescence imaging of MF PBMCs stained with CALRm. Representative
images of different MF PBMC samples are shown (left panels; blue: DAPI; red:
CALRm). Single-cell mean CALRm intensities of four replicate wells with 25 images
per well are shownas a violin plot with percentages of thresholded CALRm-positive
cells annotated as text (right panel). Representative results of two independent
repeats are shown. Violin colors indicate the CALR VAF of the corresponding MF
patient. See also Supplementary Fig. 1.
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inhibitors (BETi and HDACi; n = 7 drugs; Fig. 4A, Supplementary
Fig. 3d). Importantly, the BETi association held when taking
potential confounders into account (Fig. 4B). We validated that
the presence of the CALR mutation results in BETi sensitivity
utilizing the CMK11-5 cell line panel. In mixed cultures of CALR
wild-type, mutant, and knockout cells, CALR-mutated cells were
specifically depleted by BETi treatment (Fig. 4C).

As an additional stratifier of the observed ex vivo BETi and HDACi
drug response heterogeneity across driver mutations, we assessed the
HSPC proteomic signatures related to drug sensitivity and resistance.
This revealed that BETi andHDACi-sensitive HSPCswere characterized
by low expression levels of Ras signaling pathway members (Fig. 4D),
including CDC42 and MAP2K1/MEK (Fig. 4E). These results are in line
with previous reports on Ras pathway-mediated resistance to BETi in
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Fig. 2 | Clinical and molecular determinants of cellular heterogeneity in MF.
A Outline of the integrative pharmacoscopy and clinical proteotyping workflow
of MF patients as performed in this study. B Circos plot of clinical annotations of
theMF PBMC cohort. Legend indicates color codes for the included variables. For
discrete variables, patient numbers are included, and for continuous variables,
the range and median are represented. Proteotyping outliers are annotated by H
and T for HSPC and T-cell proteotypes, respectively. See also Supplementary
Data 1. C Cell population sizes as defined by the CNN-based cell classifier across
the DMSO-treated conditions of the MF PBMC cohort. Annotations indicate the
mutation status and PB blast counts of the respective patients. D t-SNE embed-
ding of the CNN class probabilities for DMSO-treated cells across the cohort of 43
MF patients (n = 41,286 patient cells; up to 250 cells randomly selected from
HSPC, T-cell, monocyte, and other cells for eachMF patient). Top left panel: CNN-
based cell types. Top right panels: single-cell CALRm (upper) and pSTAT5 (lower)

intensities, scaled by z-score normalization. Bottom panels: single-cell CD3/CD14
and CD34 intensities and nuclear area. E CALRm/pSTAT5 intensities per cell type
and driver mutation. Intensities are scaled by z-score normalization per patient.
Boxplots indicate the range of scaled intensities across MF CALR and JAK2
patients, and dots represent individual patient values (MF CALR, n = 14; MF JAK2,
n = 26). Fill colors indicate cell types as in Fig. 1C. FCALRm intensities per cell type
and homozygous (VAF > = 75%) or heterozygous MF CALR (VAF < 75%). Intensities
are scaled by z-score normalization across all MF CALR cells (MF CALR hetero-
zygous, n = 11; MF CALR homozygous, n = 3). Boxplots indicate the range of scaled
intensities, and dots represent individual patient values. Fill colors indicate cell
types as in Fig. 1C. Asterisks indicate non-adjusted two-sided Student’s t-test
significance: **** = p <0.0001, *** = p < 0.001, ** = p < 0.01, * = p < 0.05; exact p-
values are reported in Source Data. Boxplots as in Fig. 1A. See also Supplemen-
tary Fig. 2.
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other cancer types29. We further repeated these analyses for BCL-2
inhibitors (BCL-2i) sensitivity, another drug class of clinical interest for
MF, which revealed a strong proteotype signature correlating to drug
sensitivity (Fig. 4F): HSPCs with high levels of oxidative phosphoryla-
tion proteins were strongly resistant to BCL-2 inhibition, correspond-
ing to the described role of this metabolic state in BCL-2i drug
responses30.

Large-scale clinical proteotyping elucidates theMF-specificity of
targetable protein alterations
To interrogate if targetable protein alterations are specific to MF, we
performed cellular proteotype analysis of samples from an orthogonal
clinical cohort (n = 113) comprising granulocytes from MF and ET
patients and age- and gender-matched HDs (Fig. 5A, B). Given the
potential contamination of erythrocytes in density-isolated
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granulocyte fractions, we performed linear regression to remove the
influence of this possible contaminant on granulocyte protein quan-
tification (Supplementary Fig. 4e–h). Granulocytes were analyzed for
their high mutational penetrance in MPNs, high abundance in both
healthy and diseased blood, and routine use in clinical diagnostics.

Comparing the similarity in granulocyte proteotypes of HDs and
MPN patients revealed that MF, the most aggressive MPN, is the most
distinct from HD (Fig. 5C, D, Supplementary Data 3). Proteins under-
lying these differences included known oncogenic signaling proteins
as well as members of the spliceosome and ribosome complexes
(Supplementary Fig. 5a), which we identified as recurring drug
sensitivity-associated pathways in HSPCs (Fig. 3C). We employed a
machine learning approach to elucidate the minimal set of proteins
that define the distinct cellular proteotypes of disease and mutation
(Fig. 5E). This strategy identified 15 key proteins that lead to excellent
separation of the five subcategories (Fig. 5F, G, Supplementary Fig. 5b).

The 15-protein signature included both known and novel protein
alterations, which includedMPN general, ET/MF-specific, or mutation-
specific protein expression patterns (Fig. 6A, Supplementary Fig. 5c).
Elevated CALR protein levels in MF JAK2 and reduced levels in MF
CALR are in line with previous reports31, 32. Similar trends in ALPL levels
can relate to differences between the two driver mutations in the
clinical neutrophil/leukocyte alkaline phosphatase (NAP/LAP)
score33,34. Protein alterations similarly described in other malignancies
include reduced levels of CD59 in AML35 and cancer-promoting loss of
fumarate hydratase (FH) in a variety of cancers36,37. Of note, the 15-
protein signature included MCM4, MCM7, and RFC2, all involved in
DNA replication and specifically upregulated in MF (Fig. 6A, Supple-
mentary Fig. 5c).

We complemented this reductionist approach with global dis-
ease- and driver mutation-specific protein and pathway level associa-
tions (Fig. 6B). Network-based visualization indicated pathway and
protein levels that were associated with patient characteristics,
enabling a systems biology view on the protein-level rewiring under-
lying MPNs. For example, the ribosome was found as a central node
positively associated with MPN, MF, higher CALR VAF, and higher JAK2
VAF. In contrast, ALPL protein levels are associated specifically with
JAK2 mutation status and JAK2 VAF. The network connectivity further
highlighted the significant association of MF with elevated DNA repli-
cation, which we found as a recurring drug sensitivity-associated
pathway in MF HSPCs (Fig. 3C). Lastly, the network analysis expanded
on the 15-protein signature with additional protein complexmembers,
including the physically interacting replication factors RFC2 and RFC3,
as well as MCM3, MCM4, and MCM7, members of the MCM helicase
complex involved in unwinding DNA for DNA replication (Fig. 6B).

ProliferativeMCM-highMF responds to the targeting of survival
signaling and DNA replication
We explored the MCM proteins as part of a signature of elevated DNA
replication in MF patients and its association with drug sensitivity.

Across the HD/MPN granulocyte cohort, the levels of signature pro-
teins MCM4 and MCM7 correlated strongly and increased in MPN,
most significantly for MF patients (Fig. 7A). However, considerable
heterogeneity waspresent amongMFpatients, in which a subset ofMF
patients could be found with markedly elevated MCM4 and MCM7
abundance (Fig. 7A, Supplementary Fig. 5c).

MCM levels per patient showed a significant positive association
with PB blast percentages, consistently for all three cell types
(Fig. 7B, C, Supplementary Fig. 6a). Furthermore, prototype-wide,
MCM4 and MCM7 levels correlated to a 50-protein signature of phy-
sically interacting proteins and protein complexes (Fig. 7D, Supple-
mentary Fig. 6b). This signature included the MCM2-7 helicase
complex and other proteins involved in DNA replication, cell cycle
regulation, and DNA repair (Fig. 7E). Analysis of an independent MPN
cohort confirmed elevation ofMCMcomplex levels inMFpatients also
on a transcriptional level38 (Supplementary Fig. 6c). Next, making use
of the subcohort of 20 MF patients present in both the MPN granu-
locyte and MF PBMC cohort (Fig. 2B), we evaluated co-regulation of
MCM abundance across cell types. This analysis revealed that MCM4
andMCM7 levels were strongly correlated between all three cell types,
allowing a robust categorization of MF patients into MCM-low,
-medium, and -high classes (Fig. 7F).

Given the function of the MCM complex in DNA replication, we
measured the functional impact of high MCM protein abundance on
cell proliferation and DNA damage using canonical immuno-
fluorescence readouts (Ki-67 and yH2Ax, respectively) on HD and
MCM-category stratified MF samples (Supplementary Fig. 6d). Across
these categories, we found a significant correlation between MCM
protein levels and cell proliferation, yet this higher proliferation rate
did not associatewith increasedDNAdamage (Fig. 7G). As proliferative
HSPCs drive MF, we next measured the impact of different MCM
protein levels on the rate of DNA replication fork progression of iso-
lated HSPCs in vitro.While ET andMCM-lowMF consistently displayed
increased fork speed compared to HD, MCM-medium and -high MF
HSPCs had fork speeds comparable to that observed in HDs (Fig. 7H).
The high proliferation rates of MCM-high MF, therefore, surprisingly
coincided with normalized DNA replication fork speeds.

We next assessed if these elevated MCM levels led to unique
therapeutic opportunities by correlating expression levels of the 50-
protein replicative signature with ex vivo drug responses across the
MF PBMC cohort (Fig. 7I). HSPCs with a high replicative signature
were particularly sensitive to the p53-stabilizer idasanutlin, the BCL-
2/BCL-XL inhibitor navitoclax, and the topoisomerase 2 inhibitor
vosaroxin (Fig. 7J). We validated the effect of vosaroxin, a potential
therapeutic option for MF, on isolated HSPCs from patients found to
be sensitive by pharmacoscopy. Upon vosaroxin treatment, deple-
tion of viable HSPCs coincided with simultaneous induction of
apoptosis and reduction of proliferation (Fig. 7K, Supplementary
Fig. 6e). Thus, specific adaptations of the DNA replication process
and pro-survival pathways appear to be of particular importance for

Fig. 4 | CALR driver mutations sensitize MFHSPCs to BET inhibition. A BET and
HDAC inhibitor HSPC responses across the cohort split by driver mutation (MF
CALR, n = 14 patients; MF JAK2, n = 26 patients). Responder = significant (p <0.05)
on-target response, non-responder = non-significant on-target, resistant = off-tar-
get response. B Signed ANOVA significance of BET and HDAC inhibitor HSPC drug
responses to clinical parameters. C BET inhibitor drug responses of a co-cultured
CALR CRISPRed cell line panel analyzed by pharmacoscopy. A representative
experiment of two is shown, with two technical replicates across two conditions
with 25 images per well. The y-axis depicts the change in relative fraction per cell
line in the drug-treated condition compared to DMSO. p-Values indicate sig-
nificance as determined by the Student’s t-test of CALR MUT depletion across the
different replicates and concentrations compared to DMSO-treated cells.
D Analysis of protein processes significantly up- or downregulated in BET (left) and

HDAC inhibitor (right) responding patients. t-Tests were performed for each pro-
tein, comparingprotein levels inHSPCsof respondingMFpatients compared to the
non-responding and resistant patients. GSEA was performed on proteins ranked
according to signed t-test significance.GSEAnormalized enrichment scores (NES; x-
axis) and enrichment significance (y-axis) are shown. E HSPC protein levels of
selected Ras signaling pathwaymembers. Patients are grouped according to HSPC
response to BET and HDAC inhibitors (Responder, n = 28; resistant/non-responder,
n = 22). Protein expression (y-axis) of proteins shown is significantly different for
responders for at least 3 BET/HDAC inhibitors. p-Values indicate the Student’s t-test
significance. Boxplots as in Fig. 1a. F Analysis of protein process–drug response
associations of Bcl-2 inhibitors as in (D). Asterisks indicate non-adjusted two-sided
significance: **** =p <0.0001, *** =p <0.001, ** =p <0.01, * =p <0.05; exactp-values
are reported in Source Data. See also Supplementary Figs. 3 and 4.
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the MCM-high replicative phenotype, possibly representing a ther-
apeutic strategy for this advanced MF patient subset.

Homozygous CALR mutations lead to ER stress-associated
vulnerabilities
Our global cellular proteotype analysis further identified MF-
specific upregulation of proteins involved in protein processing in
the ER, which were additionally correlated positively to CALR VAF

across MPN samples (Fig. 6B). These proteins comprised a network
of ER chaperones and co-chaperones including HSPA5 that physi-
cally interact with CALR. In contrast, intracellular CALR protein
abundance itself negatively scaled with CALR VAF, likely due to
secretion of mutant CALR protein37. These results indicate that
molecular differences between MF patients reflect not only their
driver mutation but also the respective mutation burden (Sup-
plementary Fig. 7a).

D

F G

E

t−SNE granulocyte cohort
(4056 proteins)

HD ET CALR

ET JAK2

MF CALR

MF JAK2

t−SNE 15−protein signature

HD ET CALR

ET JAK2

MF CALR

MF JAK2

0

25

50

75

100

Proteins selected by RFE
(n = 745 out of 4056 proteins)

Fr
eq

ue
nc

y 
(o

ut
 o

f 1
00

 ru
ns

)

Top proteins selected by RFE 
in at least 85 runs

(n = 15 out of 4056 proteins)

75

80

85

90

95

100

C
ST

7
ST

O
M

L2
TP

M
3

PS
M

B8
PS

TP
IP

1
PO

TE
J

R
FC

2
M

C
M

7
S1

00
A9

AC
SL

1
N

AM
PT

C
D

59
C

O
PS

8
ZN

F7
35

PS
AT

1
ST

YX
C

AL
R FH

AL
PL

M
C

M
4

N
EK

5

B

Recursive feature elimination (RFE)
with hyperparameter optimization

using ExtraTree classifiers

Select 30 most predictive proteins
from original dataframe
based on RFE results

4056 proteins

11
3 

H
D

/M
PN

 s
am

pl
es

Train multilayer perceptron classifier
with hyperparameter optimization

using selected 30 proteins

Report:
- Selected proteins

- Scores of classifier on test dataset
- Cross validation scores of classifier

on train and validation datasets

30 proteins

Split full dataset in disjoint
test (10%), training (70%), and

validation (20%) datasets

Repeat for  n = 100 runs

****

****
****

40

50

60

70

80

90

Eu
cl

id
ea

n 
di

st
an

ce

Disease comparisons
HD vs HD (465)

HD vs ET (1302)

HD vs MF (1240)

ET CALR
n = 21

ET JAK2
n = 21

H
D

Biology of mutation

MF CALR
n = 18

MF JAK2
n = 22

Bi
ol

og
y 

of
 d

is
ea

se

M
PN

HD
n = 31

Granulocyte
cohort

MPN/HD
n = 113

Isolate granulocytes 
and quantify protein 
levels by DIA MS/MS

Determine disease- 
and mutation-specific 
proteotypes across all 
identified proteins

Define altered 
biological processes 
correlated to disease 
and mutation

Define key proteins
differentiating disease 
and mutation

Global 
proteome 
alterations

Specific 
protein 
alterations

Compare to MF 
HSPC and T-cell
proteotyping

T
HD

M

E

F

Granulocyte cohort | n = 113

Diagnosis

MF | n = 40
ET | n = 42
HD | n = 31

Mutation
HD | n = 31
CALR | n = 39
JAK2 | n = 43

Sex
Female | n = 44
Male | n = 68

Age

Min: 23
Med: 60
Max: 95

Treatment
Anagrelide | n = 5
Aranesp | n = 2
HU | n = 25
HU & Anagrelide | n = 3
IFN−2a | n = 5
Ruxolitinib | n = 13
Ruxolitinib & HU | n = 1

Blasts

Min: 0
Med: 0
Max: 8

VAF

Min: 0
Med: 30
Max: 100

C

A

Article https://doi.org/10.1038/s41467-023-42101-z

Nature Communications |         (2023) 14:6414 8



We expanded on this finding by analyzing the correlations of
protein levels with mutant allele burden within MF patient granulo-
cytes, stratified by driver mutation. Whereas ribosomal proteins
commonly associated with both CALR and JAK2 VAF, proteins involved
in protein processing in the ER were specifically correlated to CALR
VAF (Fig. 8A, Supplementary Fig. 7b). The highest correlating proteins
to CALR VAF (Fig. 8B, C) yet not JAK2 VAF (Supplementary Fig. 7c)
constituted a co-regulated network of physically interacting ER stress-
related proteins. An intrapatient comparative analysis of genetically
stratified single-cell mRNA data39 confirmed increased levels of the ER
stress signature in CALR-mutated HSPCs also on a transcriptional level
(Supplementary Fig. 7d). The strongest negatively correlating proteins
with CALR VAF do not physically interact yet are all glycoproteins
(Fig. 8B). These included MPO and EPX, both glycoprotein chaperone
clients previously reported to be absent from homozygous CALR-
mutated granulocytes40.

As we defined the CALR MF patients with high VAF (VAF ≥ 75%) as
homozygous CALR, we next compared the cellular proteotypes of
homozygous CALR granulocytes to all other MF samples. This con-
sistently revealed strong upregulation of a chemical ER stressor-
induced proteotypic signature41 (Fig. 8D). Upregulation of ER stress
proteins in homozygous MF CALR was not only detected in granulo-
cytes but also in T-cells and HSPCs (Fig. 8E, left panel). We confirmed
causality by genetic introduction of the CALR mutation in cell lines,
which led to upregulation of the ER stress protein signature, not
observed upon introduction of the JAK2mutation (Fig. 8E, right panel).
ER stress upregulation related to a loss of function upon CALR muta-
tion, as the phenotype was reproduced upon CALR knock-out in the
same genetic background (Fig. 8E, right panel). Analyzing patient
PBMC samples using the image-based CALRm readout further con-
firmed a significant correlation at the single-cell level of mutant CALR
and HSPA5 expression levels (Fig. 8F). Thus, the presence of the CALR
mutation relates to ER stress both across and within patient samples.

We next measured the functional consequences of the observed
ER stress signature using a dedicated drug panel that includes inves-
tigational ER stressors and inhibitors of the unfolded protein response
(UPR), the cellular survival pathway activated upon ER stress42. Within
two MF PBMC samples, these two drug classes led to a specific
depletion of CALR mutant-expressing cells (Fig. 8G). Furthermore, we
investigated the drug response differences of the homozygous CALR
patient samples compared to all others in the PBMC cohort (Fig. 8H).
Homozygous CALR led to striking sensitivity to the protein translation
inhibitor omacetaxine mepesuccinate, the CDK9 inhibitor alvocidib,
and, in line with our molecular findings, the proteasome inhibitor
carfilzomib (Fig. 8H, I, Supplementary Fig. 7E). As reduction of CALRm
signal could either indicate a killing of CALRm-expressing cells or a
reduction of CALRm expression in otherwise viable cells, we investi-
gated this further by assessing the effect of carfilzomib treatment on

HSPCs isolated by flow cytometry. Comparing MF CALR heterozygous
and homozygous HSPCs, we validate the highest reduction of CALRm
intensity in homozygous MF CALR and find that this coincides with a
reduction of cell viability and induction of apoptosis (Fig. 8J, Supple-
mentary Fig. 6e). Notably, next to the aforementioned specific sensi-
tivities, homozygous CALR patient samples showed resistance to
BCL2-family inhibitors navitoclax and venetoclax (Fig. 8H, I). In con-
clusion, homozygous CALR present in a subset of MF patients leads to
ER stress associated with sensitivity and resistance to clinically rele-
vant drugs.

Discussion
Here we identified and investigated targetable molecular vulner-
abilities underlying MF using integrated drug response profiling and
cellular proteotype analyses across clinically annotated patient
cohorts. We established a high-throughput readout of mutant CALR
expression and JAK/STAT hyperactivation at the single-cell level based
on deep learning-driven image analysis, which enabled on-target drug
sensitivity profiling of MF patient blood samples at scale. We explored
specific drug sensitivities associated with (1) MF driver mutations, (2)
elevated proliferation characterized by highMCM complex levels, and
(3) elevated ER stress induced by homozygous CALR mutations (Sup-
plementary Fig. 8).

The single-cell resolution of our image-based readouts allows us
to investigate the functional consequences of oncogene expression in
the context of cellular heterogeneity. We found considerable varia-
bility of mutant CALR expression correlated with JAK/STAT activation
and ER stress, both within and between cell types in the same sample.
We further observed lineage-dependent heterogeneity, as HSPCs and
monocytes showed high CALRm levels across the cohort, while T-cells
showed low levels. Part of this cell type-specificity could potentially be
explained by differences in mutation penetrance, as MF driver muta-
tions are commonly dominant in HSPCs and myeloid cells such as
granulocytes and monocytes, yet rare in T-cells for both MF CALR43

and MF JAK2 patients44. However, both the single-cell heterogeneity
and lineage expression pattern were maintained in patients in which
genetically all cells homogeneously carry homozygous mutations.
Therefore, non-genetic regulation both across and within cell popu-
lations likely contributes to heterogeneousmutant protein expression
and resulting biology.

Our drug response results indicated that CALR and JAK2 driver
mutations lead to divergent cellular proteotypes and associated drug
sensitivities in MF. MF patients are commonly genotyped in clinical
routine, yet recurrent driver mutations currently do not provide pre-
dictive information to guide treatment decisions. We found genetic
andmolecular stratifiers of response to both BET and BCL-2 inhibitors,
two drug classes currently under investigation in clinical trials for the
treatment ofMF45,46. Subgroup analyses of clinical trial results for these

Fig. 5 | Large-scale clinical proteotyping elucidates the MF-specificity of tar-
getable protein alterations. A Workflow for the proteotyping of myeloprolifera-
tive neoplasm (MPN) samples. Proteotypes of granulocytes isolated from healthy
donors (HD; n = 31) and a clinical cohort of essential thrombocythemia (ET; n = 42)
and MF patients (n = 40) from two different medical institutions were analyzed
using DIA MS/MS. HD are age- and gender-matched to the MPN cohort. B Circos
plot of clinical annotations for the HD/MPN granulocyte cohort. Legend indicates
color codes for the included variables. For discrete variables, patient numbers are
included, and for continuous variables, the range and median are represented.
Extended clinical annotations can be found in Supplementary Data 1. C t-SNE
embedding of granulocyte proteotypes. Dimensionality reduction is based on all
quantified proteins (n = 4056). MPN patients and HD are labeled by disease and
mutation status. D Proteotype similarities between HD and MPN subcohorts.
Boxplots show distributions of Euclidean distances between proteotypes of
selected subcohorts (self-comparisons were excluded). Asterisks indicate non-
adjusted two-sided Student’s t-test significance: **** = p <0.0001; exact p-values are

reported in Source Data. Boxplots as in Fig. 1A. E Workflow overview of machine
learning-based approach to identify the minimal protein signature that classifies
HD and MPN patients by disease and mutation status. The dataset is split into
disjoint test, train, and validation cohorts, after which a recursive feature elimina-
tion (RFE) model is applied to prioritize the proteins most discriminatory for dis-
ease and mutation status. Based on the selected proteins, a multi-layered
perceptron classifier is trained, of which the scores and selected proteins are
reported. The final protein signature is derived from the most frequent scoring
proteins. F Protein selection frequencies across 100 RFE runs. The main panel
shows protein selection frequencies (y-axis) are shown for all proteins selected at
least once (x-axis). Insert shows the same data for the most frequently selected
proteins. The gray box indicates the 15-protein signature of proteins selected in at
least 85 runs. G t-SNE embedding of the 15-protein signature for MPN patients and
HD. MPN patients and HD are labeled by disease and mutation status. See also
Supplementary Figs. 4 and 5.

Article https://doi.org/10.1038/s41467-023-42101-z

Nature Communications |         (2023) 14:6414 9



treatment options can strengthen our findings and contribute to a
refined personalized treatment of MF. In light of our successful iden-
tification of driver mutation-specific MF biology, larger cohort studies
following the here-established strategy will be instrumental in eluci-
dating the functional influence of themultitude of reported secondary
mutations7. The platform could further be developed to investigate
cell-extrinsic drug responses ofmyelofibrosis by analysis of spatial and
multicellular phenotypes ex vivo, a strategy recently proven successful

for delineating immunotherapy and immunomodulatory responses in
varying contexts47–49.

The strong associationwe report betweenMCMexpression levels,
replication fork speed, and proliferative potential across MF patients
suggests that specific adaptations of the DNA replication process are
instrumental in sustaining pathological HSPC proliferation in MF.
Interestingly, replication fork acceleration was recently reported to
support induced HSPC proliferation upon simulated viral infection in
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mice50 and ismodulated in humancells by excess chromatin loading of
theMCMcomplex and the associated factorMCMBP51. This, therefore,
could be in line with the high replication fork speeds as determined in
HSPCs obtained from ET patients and MF patients with low MCM
levels. In contrast, the normalizedDNA replication fork speed ofMCM-
high MF patients may be a required adaptation to specific DNA repli-
cation constraints associated with disease progression, posing a pro-
mising target in advanced MF.

We showed that ER stress levels inMF patients increase with CALR
mutation burden and that HSPA5 expression strongly correlated with
mutant CALR expression, independently of CALR mutation type. Fur-
ther, either knockout or introduction of the frameshift mutation
induced ER stress, indicating it results fromCALR loss-of-function and
does not require mutant-induced JAK/STAT hyperactivation. Upregu-
lation of ER stress and concurrent activation of UPR were first descri-
bed at the transcriptional level in granulocytes of CALR- compared to
JAK2-mutated ET patients52. Cell line studies have, however, reported
impairment of the UPR upon CALR mutation53 and UPR activation
specifically in response to type I over type II CALRmutations54. Finally,
at a single-cell level, transcriptional UPR activation was found in CALR-
mutated compared to WT HSPCs within individual ET and MF
patients39 and in mouse models of MF55. We found the ER stress phe-
notype to be strongest in homozygous CALR patient samples. Here,
despite the highest CALR VAF and mutant CALR expression levels by
immunofluorescence, total intracellular CALR levels detected by pro-
teomics were lowest, consistent with a loss-of-function phenotype of
wild-type CALR. Consistently, we found this patient subcohort to be
particularly sensitive to the ER-stressor carfilzomib, UPR inhibition by
experimental compounds, and ribosome inhibition by omacetaxine
mepesuccinate.

Our study thus provides a rich resource of clinically annotated
integrated molecular and functional data that enables further
exploration of fundamental insights into MF biology. The genetic,
molecular, and functional MF patient stratification outlined here can
inform future clinical trials and provide a concrete roadmap for
improved personalization of MF treatment.

Methods
Granulocyte isolation and processing
Peripheral blood samples were collected upon written informed con-
sent according to the Declaration of Helsinki fromMF and ET patients
diagnosed according to the World Health Organization (WHO)
classification56. Patients were included who visited the University
Hospital Zürich in the period of April 2018–June 2019 or the University
Hospital Basel in the period March 2015–May 2019. The study was
approvedby the local ethics committee (KEK-ZH-NR: 2009-0062/1 and
BASEC-NR: 2018-00539) and the Ethik Kommission Beider Basel.
Healthy donor samples were collected from coded blood donors by
the Blutspende Zürich under a study protocol approved by the Can-
tonal Ethics Committee, Zürich (KEK Zürich, BASEC-Nr 2019-01579).
The HD cohort was age- and gender-matched to the patient cohort,

and the size (n = 31) was chosen to allow for averaging out the biolo-
gical variation between healthy individuals.

As input for granulocyte isolation, per sample, either
10–40mL of MPN patient peripheral blood or one HD buffy coat
(~50mL of erythrocyte- and plasma-depleted blood) was used.
Density gradient centrifugation purification was performed using
Ficoll–Paque PLUS (GE Healthcare), after which the remaining
erythrocytes were removed from the granulocyte pellet by double
ACK hydrolysis for the discovery cohort and single ACK hydrolysis
for the validation cohort. Granulocyte cell pellets counted using a
hemocytometer were snap-frozen in liquid nitrogen immediately
after isolation and stored in liquid nitrogen until processing. All
granulocyte pellets were processed in duplicate and fully rando-
mized in a single batch. In short, 1 million granulocytes were lysed
in 0.5% SDS containing TCEP and CAA. SDS was removed with 8M
Urea using the FASP procedure57 in 96-well plates (PALL). Protein
concentrates were solubilized and processed, digested, and
cleaned in 96-well S-Trap plates (ProtiFi) according to the manu-
facturer’s protocol. Dried peptides were resuspended in 5% acet-
onitrile and 0.1% formic acid supplemented with iRT peptides
(Biognosys), and peptide concentrations were normalized.

Granulocyte proteotyping
For spectral library generation of all patient and HD samples, 1 µg
peptide was pooled and subjected to high pH-RT fractionating using
an HPLC 1260 (Agilent). Seventy-two fractions were collected and
pooled into twelve samples for subsequent MS analysis. Furthermore,
1 µg peptides of patients grouped by disease state and driver mutation
were pooled. Unfractionated total cohort pooled samples were injec-
ted between every 10 runs to monitor LC–MS/MS performance. Total
and subtype-specific pooled fractionated and unfractionated were run
on a Fusion Lumosmass spectrometer (ThermoScientific) using a 2 cm
Acclaim™ PepMap™ 100 C18 HPLC trap column (Thermo Scientific)
and 25 cm EASY-Spray™ HPLC analytical column (Thermo Scientific)
set-up connected to anEASY-nLC 1200 instrument (ThermoScientific).
Peptideswere loaded in 100%buffer A (98%H2O, 2% acetonitrile, 0.15%
formic acid) and eluted at a flow rate of 250nL/min with a segmented
2-h gradient from 1 to 58% buffer B (80% acetonitrile, 0.15% formic
acid). Themethod for data-dependent acquisition (DDA)wasOrbitrap-
based and consisted of a 3 s cycle time with an MS1 scan over a scan
range of 350–1650m/z with 60,000 resolution and maximum injec-
tion timeof 60ms and default charge state 2. The isolation window for
MS2was set to 1.6m/z and collision energy to 27%HCD, and fragments
were measured in the Orbitrap with a resolution of 15,000 and
dynamic exclusion of 60 s.MSperformancewasmonitored usingQuiC
(Biognosys). A spectral library was built integrating the fractionated
and unfractionated DDA runs using ProteomeDiscoverer 2.4 (Thermo
Scientific). The spectral library workflow included a first MSPepSearch
scoring using the ProteomeTools HCD28 spectral library, after which
low-scoring peptides by Percolator was subjected to a second Sequest
HT search.

Fig. 6 | Protein and pathway-level alterations linked to disease and driver
mutation status. A Volcano plots of comparisons underlying the classification of
the RFE-selected protein signature (n = 15). Volcanoes indicate log2FC (x-axis) and
significance (y-axis) of Student’s t-test results comparing granulocyte protein levels
for the indicated groups. Members of the 15-protein signature are highlighted and
colored by reaching significant differences only in the HD vs. MPN comparison
(MPN general alterations), in the MF vs. ET comparison (Disease-specific altera-
tions), or also in the MF CALR vs. MF JAK2 comparison (Mutation-specific altera-
tions). B Association network of protein and pathway-level alterations linked to
disease and driver mutation status. For every protein quantified in the granulocyte
proteotypes, expression levels were associated with general disease (MPN vs. HD),
diagnosis (MF vs. ET), and mutation status (CALR vs. JAK2) by ANOVA analysis. For
all clinical factors, the top 20 significantly associated proteins with an adjusted

ANOVA p-value < 0.001 are shown. The edges connecting these proteins to factors
represent the corresponding signed ANOVA significance. For a pathway-level view,
all signed ANOVA p-values were ranked per factor, after which GSEA enrichment
analyses were performed. Significantly enriched KEGG pathway terms are linked to
the respective factors with edges representing signed GSEA p-values (adjusted
p <0.05). For discrete clinical factors, red edges indicate association with the first
term and blue with the second term. For VAF, red edges indicate positive and blue
negative association. Orange proteins indicate those proteins within the network
that are also members of the 15-protein signature. Green edges represent STRING-
defined physical protein-protein interactions (physical interaction STRING
score > 0.7). Brown and gray backgrounds indicate subnetworks of interest that are
experimentally followed up on. See also Supplementary Fig. 5.
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Individual patient and HD peptide samples were run on the same
LC–MS/MS set-up and gradient as for DDA library generation runs but
in data-independent acquisition (DIA) mode. The Orbitrap-based
method used contained 40 dynamic windows over a scan range of
350–1650m/z with 30,000 resolution and 27% HCD collision energy
and a survey scan with 120,000 resolution and a maximum injection
time of 100ms and default charge state 2. Raw files were converted to
HTRMS using HTRMSConverter (Biognosys) and analyzed in Spec-
tronaut 13.9 (Biognosys) applying the “only protein group-specific”
proteotypicity filter, and otherwise, the standard manufacturer’s

settings, after which common contaminants were removed, and
Spectronaut output files were exported.

MF PBMC isolation
Peripheral blood samples were collected from MF patients visit-
ing the University Hospital Zürich in the period of December
2012–May 2021 upon written informed consent according to the
Declaration of Helsinki. The study was approved by the local
ethics committee (KEK-ZH-NR: 2009-0062/1 and BASEC-NR:
2018-00539). Patient peripheral blood mononuclear cells
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(PBMCs) were isolated by density gradient centrifugation pur-
ification using Ficoll-Paque PLUS (GE Healthcare) and viably
stored in FCS supplemented with 10% DMSO in liquid nitrogen
until further use. For selected samples, CD34+ cells were isolated
from patient PBMCs using MACS bead isolation (Miltenyi), which
were similarly viably stored in FCS with 10% DMSO in liquid
nitrogen until further use. Upon use, frozen PBMCs were rapidly
thawed at 37 °C, washed, and treated with DNAse for ten minutes
at 37 °C to prevent clotting. Afterward, recovered cells were
counted, and for pharmacoscopy and immunofluorescence,
PBMC-based assays were used directly.

MF T-cell and HSPC proteotyping
For HSPC and T-cell proteotyping, cells were enriched from
thawed PBMCs using CD34+ and CD3+ MACS isolation kits (Mil-
tenyi), respectively, according to the manufacturer’s protocol. We
have found this protocol to yield a median CD34+ enrichment
purity of 98% across 73 independent isolations for the includedMF
patients. In the case of low viable cell counts after the thawing of
PBMC samples, pharmacoscopy-based drug response screening
was prioritized over proteotyping (<4E6 viable PBMCs, 3/43 sam-
ples). Next, samples were fully randomized for batch processing,
accounting for driver mutation, MF subtype, age, gender, and
sample date. Peptides were isolated from up to 1e6 cells of the
respective samples using the iST 96× kit (PreOmics), using the
manufacturer’s protocol and a 3-h digestion. Dried peptides were
resuspended in LC-LOAD (PreOmics), and peptide concentrations
were determined using the Pierce Quantitative Colorimetric Pep-
tide Assay (Thermo Scientific) according to the manufacturer’s
protocol. Peptide concentrations were normalized and supple-
mented with iRT peptides (Biognosys). LC–MS/MS was performed
in DIA mode on a Q Exactive HF-X mass spectrometer (Thermo
Scientific) using the standardized Moonshot DIA protocol58. Raw
files were directly imported into Spectronaut 15.0 (Biognosys), and
features were extracted in a library-free method using directDIA.
Specificity filtering was set to “protein group-specific”, Lys-C was
added as a digestion enzyme, a regular q-value cutoff was used for
detection, and other settings were kept to the standard manu-
facturer’s settings. The Spectronaut output files were exported.

Protein-level identification and quantification
Protein quantification and subsequent statistical analyses on DIA
features extracted from Spectronaut were performed using
MSStats59 version 3.16. Features were log-transformed, normal-
ized, and summarized per protein. In case of availability of
technical replicates, analyses were run twice: on the single MS run
level for QC analyses and otherwise summarized per patient or
cell line for further analyses and plotting. In all datasets, outliers

were determined on a level of (a) correlation to all other samples
of the same isolated cell type (Supplementary Fig. 4a, d) and (b)
missing values after peptide q-value cutoff filtering (Supple-
mentary Fig. 4b, d). Most outliers in the HSPC and T-cell cohorts
had low protein levels of the respective markers used for isola-
tion, CD34 and CD3, indicating outlier status relating to isolation
impurities (Supplementary Fig. 4c). On the resulting dataset with
missing values, we applied stringent filtering to remove all pro-
teins not found in 90% of all patients of at least one group. In this
way, we can account for group-specific protein expression in, for
example, only MPN patients but not HDs, while removing all
proteins that have random missingness and thus suffer from less
robust quantification. After filtering, for the remaining missing
values, imputation was performed, replacing the missing value
with the lowest detected value for that protein and up to five
percent added noise.

Granulocyte proteotype 5-class classifier with RFE
The granulocyte proteotypes are split into five groups: HD, ET CALR,
ET JAK2, MF CALR, and MF JAK2. 100 runs are performed, in which, in
each run, classifiers are trained on selected proteins. In short, the data
is first split into disjoint training, validation, and test sets of 70%, 20%,
and 10%, respectively. Next, the training dataset is split six times for
cross-validated recursive feature elimination (RFE) using grid-
optimized hyperparameters until 30 features are left. The expression
values of the RFE-selected proteins are used to train a grid-optimized
and cross-validatedmultilayer perceptron classifier (MLPC). For all 100
runs, the performance of the resultingMLPC is tested on the initial test
dataset, of which the test scores (accuracy, weighted F1, andmacro F1)
are saved together with the cross-validation scores and selected pro-
tein features.

Hemoglobin regression
To combat inter-cohort differences leading to data batch effects
despite randomized peptide isolation and LC–MS/MS analysis, red
blood cell (RBC) contaminations were computationally resolved
(Supplementary Fig. 4e, g). Average intensity of the major RBC pro-
teins hemoglobin A, B, and D was calculated (Supplementary Fig. 4f).
With this average level, a linear regression model was calculated for
every protein present in the dataset. Correlation with the hemoglobin
contents was regressed, after which the original protein values were
replaced by the residuals that were used in all subsequent analyses
(Supplementary Fig. 4h).

Granulocyte variant allele frequency (VAF) quantification
Genomic DNA was isolated from ~1E6 granulocytes per sample using
the QIAamp DNAMicro Kit (QIAGEN) according to the manufacturer’s
protocol. VAF quantification of isolated granulocyte DNA was

Fig. 7 | Proliferative MCM-high MF responds to the targeting of survival sig-
naling and DNA replication. A Correlation of MCM4 and MCM7 protein levels
across the granulocyte cohort. Levels normalized by subtracting the median HD
expression. B ANOVA significance of averaged MCM4 and MCM7 protein level
associations with clinical parameters across the MF cohort. The red color indicates
a positive associationwith continuous parameters (PB blasts and age) or to the first
term of discrete factors (mutation, sex, and treatment). C Z-score normalized
MCM4 and MCM7 protein levels across MF patients stratified by PB blast counts
(<1%, n = 64; 1–5%, n = 39; >5%, n = 6). p-Values indicate the Student’s t-test sig-
nificance.D Protein–protein interaction network of the top-50 proteins correlating
to MCM4 and MCM7 protein levels across T-cell, HSPC, and granulocyte proteo-
types. Edges: STRING score > 0.7. Proteins colored by average Pearson correlation.
E Pathway enrichment analysis results of the 50-protein signature. Significant
positive KEGG term enrichments (p <0.05) are shown. F Ranking of averaged
MCM4 andMCM7protein levels per cell type andMFpatient for the 20MFpatients
present in both the granulocyte and MF PBMC cohorts. G Quantification of the

percentage of MCM7, Ki-67, and yH2Ax positive PBMCs. Dots summarize the
staining quantification of 2–4 patients (brackets) per MCM group averaged across
three replicate wells and 25 images per well. Bars indicate the average per group.
H Representative images of in vitro HSPC DNA replication fork fibers (left panel)
and corresponding quantification (right panel). Dots summarize average fiber
lengths of HSPCs isolated from 1 to 6 patient samples (brackets) per MCM group
with 93–370 fibers per sample. Bars indicate the average per group. I On-target
HSPC drug responses correlated to the average expression of the 50-protein
replicative signature. x-axis, Pearson correlations; y-axis, corresponding sig-
nificance. J Scatterplots of the three highest correlating drug responses of (I).
Linear fit (blue line) and 95% confidence intervals (gray area) are shown. Pearson
correlation and significance are indicated. K Vosaroxin responses of FACS-isolated
CD34 +MF patient HSPCs from three vosaroxin-sensitive patients. Asterisks indi-
cate non-adjusted two-sided significance: **** = p <0.0001, *** = p <0.001, ** =
p <0.01, * = p <0.05; exact p-values are reported in Source Data. Boxplots as in
Fig. 1A. See also Supplementary Fig. 6.
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subsequently performed using ddPCR60 for the determination of CALR
type 1, type 2, and JAK2 V617F mutations. For the other CALR muta-
tions, a fragment analysis PCRwasperformed61.When therewas no cell
material available for genomic granulocyte DNA isolations but muta-
tion quantification was available from clinical NGS data, those were
included. ADVIA cytometry measurement of MPO activity was further
used to assess CALR homozygosity status, in line with previous
findings40.

Granulocyte proteotype association network analysis
For every protein, expression levels across the HD and MPN granulo-
cyte cohort were associated with general disease (MPN vs. HD), diag-
nosis (MF vs. ET), andmutation (CALRvs. JAK2) byANOVAanalysis. For
VAF associations, mutation-stratified MPN subcohorts (CALR-mutated
ETandMF; JAK2-mutated ETandMF)wereanalyzedbyANOVAanalysis
integrating VAF and diagnosis as a confounding factor to negate
diagnosis-associated VAF differences.
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Mutant CALR and pSTAT5 antibody conjugation
The monoclonal antibody SSI-HYB 385-06 Anti Frameshift Mutated
Calreticulin (Anti Crtfs), IgG1/Kappa, clone SSI-4F10 (Art. No. 100808)
(from now on CALRm) was developed and manufactured by Statens
Serum Institut, Copenhagen, Denmark. The CALRm and pSTAT5 anti-
bodies were both conjugated using an in-house developed conjuga-
tion procedure. Briefly, the antibody storage solution was exchanged
to coupling buffer (PBS with NaHCO3 and NaOH) by Zeba Spin
Desalting Column (Thermo Scientific)-mediated buffer exchange.
Antibodies were incubated with NHS-reactive Alexa Fluor 647 or 488
(bothThermoScientific) for onehour at roomtemperature. Afterward,
using another Zeba Spin-mediated buffer exchange, unconjugated
fluorophores were removed, and the antibody was eluted in an anti-
body storage solution (BSAwith NaN3). Antibodieswere aliquoted and
stored at 4 °C until further use.

Detection of mutant CALR by intracellular flow cytometric
analysis
To investigate the detection of mutant CALR by the CALRm antibody,
CMK wild-type, knockout, and mutant cells were harvested, washed
with phosphate-buffered saline (PBS), and stained with the Zombie
Aqua™ Fixable Viability dye (Biolegend) for 20min at room tempera-
ture in the dark. After washing, cells were fixed and permeabilized
using the Intracellular Fixation & Permeabilization Buffer Set
(eBioscience) according to the manufacturer’s instructions. After
fixation and permeabilization, cells were incubated with CALRm for
60min at room temperature in the dark. Cells were subsequently
washed and analyzed on a BD LSRFortessa™ flow cytometer.

MF PBMC immunofluorescence and pharmacoscopy
Thawed PBMCs were counted, and 10,000 cells per well were seeded
in RPMI medium supplemented with 10% human serum on top of 384-
well plates with pre-dispensed drug libraries. The drug library was
composed to consider MF patient eligibility (i.e., no chemotherapies),
maximize pathway diversification, include pathways targeted by drugs
currently used and in development for MF, and possess pathway
redundancy. All drugs were randomized across the plate layout with
duplicates of 1μM and 10μM final concentrations, except for anti-
bodies that had three replicates and 0.1, 1, and 10μg/ml final con-
centrations. Cells were incubated with drugs for 20 h at 37 °C and 5%
CO2. Drug and antibody concentrations were based on previous
experience17,18,48,49,62,63. Drug concentrations were validated as clinically
predictive in two separate interventional clinical trials, treating
patients with leukemias or lymphomas based on their ex vivo drug
responses to drugs tested at these concentrations (EXALT-1 and
DARTT-117,18,63) and shown to be predictive of clinical response in a
multi-year observational study on multiple myeloma49.

The next day, cells were fixed with 1% PFA for 20min. After that,
cells were blocked, and permeabilized, and nuclei were stained with
10% BSA, 0.1% Triton, and 0.25 µg/uL DAPI for 30min in the dark.
Subsequently, plates were stained overnight at 4 °C with an antibody
mix (Table 1). Throughout, liquid handling steps that interactwith non-
adherent cells in the well are kept to a minimal pipetting speed to
prevent loss of cells. Single wells were used to demultiplex the CD3/
CD14 stains in the green channel. Plates were imaged by confocal
microscopy using anOpera Phenix (PerkinElmer) at 20×magnification
with 25 imaged sites perwell. For test stains, the sameprocedureswere
followed without exposing the cells to drugs and with additional sets
of antibodies (Table 1).

Image immunofluorescence and pharmacoscopy analysis
Cells were identified from images using CellProfiler (Broad Institute of
Harvard andMassachusetts Institute of Technology) based on nuclear
detection by DAPI signal and size extrapolation for cellular
cytoplasm62. Dead cells, dying cells, and incorrectly segmented cells or
debris were removed using a CNN-based approach training on manu-
ally curated cell crop images. This live/dead CNN classifier was trained
on a total of 86,000 manually annotated image crops of individual
cells (comprising 1000 live and 1000dead cells fromeach of the 43MF
patients). Manual labeling was performed by transfer learning and
expert labeling based on nuclear (DAPI) and cell (brightfield)
morphologies. This allowed for the training of a CNN-based classifier
that detects live cells with an accuracy of 90.3% and a sensitivity
of 90.5%.

For pharmacoscopy, 4-class cell type identities were determined
similarly using a ResNet CNN trained on a total of 6600 manually
curated cell crop images (150 per cell type from each of the 43 MF
patients). For comparison, a feature-based CNN was trained in parallel
by segmenting the cells in the images and analyzing mean channel
features asopposed to raw images. This feature-based networkhas not
been used further; cell type classification and all further analyses have
been performed using the higher-performing image-based CNN. As
selectedMF samples had very lowHSPC cell type fractions, aminimum
threshold of 0.3% HSPCs was required for further inclusion in drug
response analyses (40/43 samples). Drug pharmacoscopy scores were
calculated as the relative reduction of cell population fractions of
interest compared to the corresponding fractions in DMSO-control
wells for small molecules, PBS-control wells for biologicals, and
isotype-control wells for antibodies17.

High-resolution imaging
Cells were stained with a similar protocol as above, yet instead of in
384-well plates, they were seeded on µ-Slide VI imaging slides (Ibidi).
Imaging was performed using a Nipkow spinning disk microscope

Fig. 8 | Homozygous CALRmutations lead to ER stress-associated vulner-
abilities. A Gene set enrichment analysis (GSEA) of ranked correlations between
granulocyte protein levels and CALR/JAK2 granulocyte VAF. KEGG terms with an
adjusted enrichment p <0.0001 are shown. B Protein–protein interaction network
of proteins significantly correlating to CALR VAF. Proteins with significant Pearson
correlations are shown (p <0.01). Edges: physical interaction STRING score> 0.7.
Node color: Pearson correlations; Outer rings: selected protein pathway member-
ships. Blue shading indicates the interaction cluster of CALR and associated ER
proteins.CHeatmapofER stress cluster protein expression levels acrossMFpatient
granulocytes. Patient VAF and protein class are indicated. D Volcano plot of MF
CALR homozygous versus all other MF CALR proteotypes. Proteins are colored
green and annotated if significantly different and previously described to be
upregulated in ER-stressed cell lines41. E Heatmap of ER stress cluster protein
expression levels across cell types and cell lines. Protein levels normalized as
log2FC as indicated in the legend. F Single-cell expression levels of CALRm corre-
lated with HSPA5 across PBMCs of two MF CALR patients. Representative images

(left panel) and quantification (right panel) of four replicate wells with 25 images
per well are shown. Representative results of two independent repeats are shown.
Pearson correlation and significance are reported. G Significance of depletion of
CALR mutant expressing cells by ER stress inducers and UPR inhibitors across two
MF CALR patient samples. The dashed line represents the diagonal.H Comparison
of oncogenic drug responses between MF CALR homozygous and either MF CALR
heterozygous (x-axis) or MF JAK2 (y-axis). Axes indicate an averaged difference in
signed −log10 significances. Selected drugs are labeled and colored by drug class.
IOncogenic drug responses correspond to selectedMFCALRhomozygous-specific
drug responses shown in (H). Boxplots indicate the range of drug responses across
theMF cohort, dots represent individual patients. JCarfilzomib responses of FACS-
isolated CD34+MF patient HSPCs. Boxplots represent log2FC differences between
DMSO- and drug-treated conditions. Asterisks indicate non-adjusted two-sided
Student’s t-test significance: **** = p <0.0001, ** = p <0.01, * = p <0.05; exact p-
values are reported in Source Data. Boxplots as in Fig. 1A. See also Supplemen-
tary Fig. 7.
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(Visitron) with a W1–T2 Confocal Scanner Unit (Yokogawa), on which,
for selected fields, 100 Z-stack cell images were captured. These ima-
ges were processed using ImageJ64, in which the 25–30 Z-stacks that
captured the cell best were flattened to a single image by average
intensity representation.

Cell line CRISPRing and proteotyping
For comparison to patient cells, the following cell lines carrying CALR
mutations were included: CMK11-5, from which the wild type and the
CRISPRed clone 75123 were kindly providedby K. Shide, andK562, from
which thewild type, CRISPRedmutant and knockout clonewere kindly
provided by A. Vannucchi. To complement the CMK background with
a knockout counterpart, CMK11-5 wild-type cells were CRISPRed using
a ribonucleoprotein (RNP)-based strategy65. After confirmation of
CRISPRing in bulk isolated DNA, a single-cell sort was performed.
Various clones could be confirmed to be homozygous knockouts on
both a DNA and protein level. For cell line proteotyping, for the CMK
dataset, the same unlabeled DIA quantification workflow as for the
granulocyte proteotyping was used. For the K562 dataset, isolated
peptides were TMT-labeled and measured on a Fusion mass spectro-
meter (Thermo Scientific) using a DDA MS3-based quantification
approach as previously described66. The dataset of the proteomic
analysis of JAK2-mutated compared to wild-type Ba/F3 cell lines of
Pearson et al.67 was additionally included. Given the differences in
quantification, all protein quantities were only analyzed as log2FC
relative to the corresponding parental wild types present in the
respective datasets.

Cell line pharmacoscopy
CMK and MARIMO cell lines were cultured in RPMI supplemented
with 10% FBS and antibiotics. Cells were seeded on 384-well plates
at a concentration of 5000 cells/well and incubated, processed,
and imaged, using the same protocol as for PBMCs, except for
fixation and the antibody panel used. For fixation, cells were
incubated for one hour in 4% PFA, followed by antigen retrieval
using incubation with Urea and Tris for 10 min at 80 °C. The anti-
body panel used consisted of CALRm and CALRWT antibodies. For
test stains, the same procedures were followed without exposing
the cells to drugs. For the computational analyses, a similar
strategy as for patient PMBCs was followed with an adjusted
CellProfiler pipeline and CNN for the cleanup of images. WT, MUT,
and KO cell lines were distinguished based on the gating of single-
cell CALR WT and CALRm intensities.

DNA replication fork fiber assays
Frozen CD34+ cells from a liquid nitrogen biobank were rapidly
thawed at 37 °C, washed, and treated with DNAse (ITW Reagents) for
tenminutes at 37 °C to prevent clotting. Afterward, the recovered cells
were counted and cultured in complete X-vivo media (Lonza) for 48 h
containing GlutaMAX (Thermo Scientific), SCF, TPO, and Flt3 (all Pre-
ProTech). After recovery, cells were incubated with subsequent CldU
and IdU (both Sigma)-containing X-vivo media, both for 30min at
37 °C. Nucleotide incorporation was stopped by addition and washing
with ice-cold PBS, after which cells were concentrated, resuspended in
the remaining volume, pipetted onto imaging slides, and lysed in an
SDS lysis buffer. After 5min of lysis, slides were tilted to spread the
DNA fibers. The slides were dried and fixed in methanol:acetic acid
overnight at 4 °C, after which DNA was denatured using HCL and
subsequently blocked using BSA. The DNA was stained using primary
antibodies against IdU (BD Biosciences) and CldU (Abcam) and
respective secondary antibodies (anti-mouse IgG1 AF488, Invitrogen;
anti-rat Cy3, Jackson ImmunoResearch). The DNA was imaged using a
fluorescence microscope at 63X magnification. Finally, the length of
the fibers was measured using imageJ64.

Drug response analyses of flow-sorted CD34+ cells
Thawed PBMCs were resuspended to 1 × 108 cells/mL in PBS supple-
mented with 2% FBS. Cells were stained with CD34 antibodies (Table 1)
and LIVE/DEAD™ Fixable Near-IR DeadCell Stain Kit (Invitrogen) in the
dark on ice for 30min to enable sorting of viable CD34+ cells. Stained
cellswerewashedwith PBSand resuspended at afinal concentrationof
1 × 107 cells/ml in 2% FBS. Cell sorting was performed with an Aria
Fusion flow cytometer (BD Biosciences) at 4 C. Purified CD34+ viable
cells were collected in 10% FBS in RPMI prior to seeding in drug-loaded
384-well plates and incubated for 20 h at 37 °C and 5% CO2. Finally,
cells were fixed, blocked, and stained as described above in “MF PBMC
immunofluorescence”.

Data analysis, visualization, and statistics
Data from proteotype and validation experiments were analyzed and
visualized in R 4.2.0. Pharmacoscopy analyses were performed in
MATLAB R2021a and visualized in R 4.2.0. Flow cytometry data was
analyzed using FlowJo software (FlowJo Enterprise, version 10.0.8, BD
Biosciences).

No statistical method was used to predetermine the sample size.
Unless otherwise stated, significance values were calculated with a
Student’s t-test. Where significance is not shown, it did not reach

Table 1 | Antibodies used in this study and their respective applications

Antigen Company Clone Conjugation Application

CALRm Statens Serum Institut 385-06 In-house: AF647 Pharmacoscopy MF CALR patients and cell lines

pSTAT5 Invitrogen Polyclonal In-house: AF647 Pharmacoscopy MF JAK2 patients

CD3 BioLegend UCHT1 AF488 Pharmacoscopy all patients

CD14 BioLegend HCD14 AF488 Pharmacoscopy all patients

CD34 BioLegend 581 PE Pharmacoscopy all patients

CALR Abcam FMC 75 PE Pharmacoscopy cell lines

HSPA5 (GRP78) Invitrogen C38 AF488 Immunofluorescence (IF) imaging

pSTAT5 Invitrogen Polyclonal In-house: AF488 IF imaging

CALX Abcam EPR3632 AF488 IF imaging

GM-130 Abcam EP892Y AF594 IF imaging

IdU BD Biosciences B44 Unconjugated DNA fibers

CIdU Abcam BU1/75 (ICR1) Unconjugated DNA fibers

IgG1 (mouse) Invitrogen Polyclonal AF488 DNA fibers

IgG (rat) Jackson ImmunoResearch Polyclonal Cy3 DNA fibers

Ki-67 Cell Signaling Technology D3B5 AF647 IF imaging and CD34+ drug response analyses

Cleaved caspase-3 Cell Signaling Technology D3E9 AF647 CD34+ drug response analyses
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p <0.05. Spearman’s rank correlation or Pearson correlation coeffi-
cients and significances are reported for all scatterplots. Unless stated
otherwise, data distributions were assumed to be normal, but this was
not formally tested. Where applicable, data distributions are shown.
Drug screening plate layoutswere randomized across thewells of each
384-well plate. For proteotype analyses, the sample preparation and
measurements were randomized for disease and mutation status. For
the HSPC and T-cell proteotype analyses, additional randomization
was included for common confounders such as age and sex. Other-
wise, no randomization was performed as part of this study. Data
collection and analysis were not performed blind to the conditions of
the experiments. Further information on researchdesign is available in
the Nature Research Reporting Summary linked to this article.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided in this paper. The mass spectrometry pro-
teomics data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE68 partner repository with the dataset identifier
PXD036075. Additionally, Supplementary Data 1 contains the full
clinical annotations of the different included cohorts, Supplementary
Data 2 the processed pharmacoscopy drug response matrices, and
SupplementaryData 3 the processedproteotypematrices. Sourcedata
are provided in this paper.

Code availability
Image analysis was performed using the open-source CellProfiler
package available at https://www.cellprofiler.org. All other analyses
were performed using standard MATLAB R2021a and R 4.2.0 code.
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